• Menu
  • Product
  • Email
  • PDF
  • Order now
  • 缓解 ADC 存储器串扰的方法

    • ZHCACF7A june   2021  – march 2023 TMS320F2800132 , TMS320F2800133 , TMS320F2800135 , TMS320F2800137 , TMS320F2800152-Q1 , TMS320F2800153-Q1 , TMS320F2800154-Q1 , TMS320F2800155 , TMS320F2800155-Q1 , TMS320F2800156-Q1 , TMS320F2800157 , TMS320F2800157-Q1 , TMS320F280021 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280033 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C-Q1 , TMS320F28075 , TMS320F28075-Q1 , TMS320F28076 , TMS320F28374D , TMS320F28374S , TMS320F28375D , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376S , TMS320F28377D , TMS320F28377D-EP , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28378D , TMS320F28378S , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379S , TMS320F28384D , TMS320F28384D-Q1 , TMS320F28384S , TMS320F28384S-Q1 , TMS320F28386D , TMS320F28386D-Q1 , TMS320F28386S , TMS320F28386S-Q1 , TMS320F28388D , TMS320F28388S , TMS320F28P650DH , TMS320F28P650DK , TMS320F28P650SH , TMS320F28P650SK , TMS320F28P659DH-Q1 , TMS320F28P659DK-Q1 , TMS320F28P659SH-Q1

       

  • CONTENTS
  • SEARCH
  • 缓解 ADC 存储器串扰的方法
  1.   摘要
  2.   商标
  3. 1引言
    1. 1.1 存储器串扰挑战
    2. 1.2 信号调节电路设计资源
      1. 1.2.1 TI 精密实验室 - SAR ADC 输入驱动器设计系列
      2. 1.2.2 模拟工程师计算器
      3. 1.2.3 相关应用报告
      4. 1.2.4 TINA-TI 基于 SPICE 的模拟仿真程序
      5. 1.2.5 PSPICE for TI
      6. 1.2.6 C2000 MCU 的 ADC 输入电路评估
      7. 1.2.7 C2000 ADC 的电荷共享驱动电路
  4. 2ADC 输入趋稳综述
    1. 2.1 ADC 输入趋稳的机制
    2. 2.2 稳定不足的症状
      1. 2.2.1 失真
      2. 2.2.2 存储器串扰
      3. 2.2.3 精度
    3. 2.3 C2000 ADC 架构
  5. 3问题说明
    1. 3.1 示例系统
    2. 3.2 S+H 趋稳分析
    3. 3.3 电荷共享分析
    4. 3.4 问题总结
  6. 4专用 ADC 采样
    1. 4.1 专用 ADC 概念
    2. 4.2 专用 ADC 的趋稳机制
    3. 4.3 专用 ADC 的设计流程
    4. 4.4 专用 ADC 电路的稳定性能仿真
  7. 5预采样 VREFLO
    1. 5.1 VREFLO 采样概念
    2. 5.2 VREFLO 采样方法误差的属性
    3. 5.3 增益误差补偿
      1. 5.3.1 确定补偿系数的方法
    4. 5.4 VREFLO 采样设计流程
    5. 5.5 讨论 VREFLO 采样序列
  8. 6总结
  9. 7参考文献
  10. 8修订历史记录
  11. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

APPLICATION NOTE

缓解 ADC 存储器串扰的方法

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

摘要

高速多路复用模数转换器 (ADC),例如 C2000™ 系列微控制器上的那些 ADC,可在实时控制应用中快速检测多个反馈信号。这些反馈信号的信号调节电路应经过精心设计和评估,以便确保能够在分配给 ADC 采样保持 (S+H) 的时间内实现充分的稳定。如果在信号调节电路的硬件设计中未能实现充分的稳定,系统中可能会出现存储器串扰问题。本应用报告介绍了存储器串扰的原因和特征,然后给出了两种缓解存储器串扰错误的可能策略:使用专用 ADC 来处理受影响的信号(仅导致自串扰),在受影响信号之前对地进行采样(将存储器串扰转换为增益误差,随后可通过校准从系统中消除该误差)。

本文档所述的工程配套资料可从以下 URL 下载:https://www.ti.com/cn/lit/zip/spracw9。

商标

C2000™ and TINA-TI™are TMs ofTI corporate name.

PSPICE®is a reg TM ofCadence Design Systems, Inc.

Other TMs

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale