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Design Guide: TIDEP-01018
Automated Doors Reference Design Using TI mmWave
Sensors

Description
The TIDEP-01018 reference design demonstrates the
use of the IWR6843, a single-chip, mmWave radar
sensor from TI with integrated DSP, for an automated
Smart Door application. This reference design uses
the IWR6843AOP EVM, which has antennas
integrated in to the IWR6843 package, or the
IWR6843 ISK + ICB (Industrial Carrier Board) and
integrates a complete radar-processing chain onto the
IWR6843 device. This solution is designed to track a
persons position and velocity in order to simulate the
opening of a door when they are approaching.

Resources

TIDEP-01018 Design Folder
IWR6843 Product Folder
IWR6843ISK IWR6843
intelligent mmWave
sensor standard antenna
plug-in module

Tool Folder for ISK/ICB Bundle

Ask our TI E2E™ support experts

Features
• Demonstration hardware and software using

IWR6843 or IWR6843AOP, mmWave radar sensor
for entrance systems

• mmWave technology provides range, velocity, and
angle Information – ideal for environmental effects

• Tracking algorithm serves to ensure door should
only open when a person is directly approaching

• Azimuth field of view of 120 degrees across
distance of 5m

• Examples of implementation of static clutter and
group tracking algorithms

Applications
• Automated door and gate
• Gates and guarded entryways
• Turnstiles
• Lighting
• Area scanner safety guard

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other
important disclaimers and information.

http://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUER1B
http://www.ti.com/tool/TIDEP-01018
http://www.ti.com/product/IWR6843
http://www.ti.com/tool/IWR6843ISK#buy
http://www.ti.com/tool/IWR6843ISK#buy
http://www.ti.com/tool/IWR6843ISK#buy
http://www.ti.com/tool/IWR6843ISK#buy
http://e2e.ti.com
http://e2e.ti.com/support/applications/ti_designs/
http://www.ti.com/solution/automated_doors_and_gates
http://www.ti.com/solution/automated_doors_and_gates
http://www.ti.com/solution/automated_doors_and_gates
http://www.ti.com/solution/machine_vision_illumination
http://www.ti.com/solution/area_scanner_safety_guard
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1 System Description
The TIDEP-01018 provides a reference for an automated door application that can detect and track
humans up to 5 meters away. This design is a custom data processing demo application built to work on
the IWR6843, an integrated single-chip frequency modulated continuous wave (FMCW) radar sensor
capable of operation in the 60 to 64 GHz band.

Entrance systems, such as sliding doors and turnstiles, should leverage sensor-driven intelligence to allow
their systems to operate efficiently. The ability to continuously and consistently monitor human motion is
an important function for this; moreover, while sensors such as passive infra-red (PIR) are in use, they
suffer from limitations in accuracy, false alarms, and certain environmental changes. Radars allow for an
accurate measurement of distances, relative velocities of people, and other objects. They are relatively
immune to environmental conditions such as the effects of rain, dust, or smoke.

The design provided is an introductory-demo application developed on the IWR6843 ISK to simulate the
opening of a door only when a person is directly approaching it. The radar data processing chain
implements the static clutter removal, range azimuth heat map, and Doppler extraction algorithms for
obtaining point cloud information. Furthermore the post-processed object data is used to determine the
correct time a door should open such that it will open in time for its target. After viewing this design, the
customer should be able to better understand the implementation of advanced algorithms on the IWR6843
device.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUER1B
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2 System Overview

2.1 Block Diagram

2.1.1 Hardware Block Diagram
The TIDEP-01018 is implemented on the IWR6843 ISK EVM as shown in Figure 1. The EVM is connected
to a host PC through a universal asynchronous receiver-transmitter (UART) for visualization.

Figure 1. Hardware Block Diagram

2.1.2 Software Block Diagram

2.1.2.1 mmWave SDK Software Block Diagram
The mmWave software development kit (SDK) enables the development of mmWave sensor applications
using the IWR6843 SOC and EVM as shown in Figure 2. The SDK provides foundational components that
help end users focus on their applications. The SDK also provides several demonstration applications,
which serve as a guide for integrating the SDK into end-user mmWave applications. This reference design
is a separate package, installed on top of the SDK package.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUER1B
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Figure 2. mmWave SDK Software Block Diagram

2.1.2.2 Software Block Diagram of Automated Doors Application
As shown in Figure 3, the implementation of the Automated Doors application demo on the IWR6843
consists of a signal chain running on the C674x DSP, and the tracking module running on the ARM®

Cortex®-R4F processor.
• Range processing:

– For each antenna, 1D windowing, and 1D fast Fourier transform (FFT)
– Range processing is interleaved with the active chirp time of the frame

• Capon beam forming:
– Static clutter removal
– Covariance matrix generation, inverse-angle spectrum generation, and integration is performed
– Outputs range-angle heat map

• CFAR detection algorithm:
– Two-pass, constant false-alarm rate
– First pass cell averaging smallest of CFAR-CASO in the range domain, confirmed by second pass

cell averaging smallest of CFAR-CASO in the angle domain, to find detection points.
• Doppler estimation:

– For each detected [range, azimuth] pair from the detection module, estimate the Doppler by filtering
the range bin using Capon beam-weights, and then run a peak search over the FFT of the filtered
range bin.

• Tracking:
– Perform target localization, and report the results.
– Output of the tracker is a set of trackable objects with certain properties like position, velocity,

physical dimensions, and point density
– Tracking information used to trigger opening of door at specific time with regard to a person's

position and velocity.

http://www.ti.com
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Figure 3. Automated Doors Application Block Diagram

http://www.ti.com
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2.2 Highlighted Products

2.2.1 IWR6843
The IWR6843 is an integrated, single-chip, frequency modulated continuous wave (FMCW) sensor
capable of operation in the 60- to 64-GHz band as shown in Figure 4. The sensor is built with the low-
power, 45-nm, RFCMOS process from TI and enables unprecedented levels of integration in an extremely
small form factor. The IWR6843 is an ideal solution for low-power, self-monitored, ultra-accurate radar
systems in the industrial space.

Figure 4. IWR6843 Block Diagram

The IWR6843 has the following features:
• FMCW transceiver

– Integrated PLL, transmitter, receiver, baseband, and A2D
– 60- to 64-GHz coverage, with 4-GHz available bandwidth
– Four receive channels
– Three transmit channels
– Ultra-accurate chirp (timing) engine based on fractional-N PLL
– TX power

• 12 dBm
– RX noise figure

• 12 dB (60 to 64 GHz)
– Phase noise at 1 MHz

• –92 dBc/Hz (60 to 64 GHz)
• Built-in calibration and self-test (monitoring)

– ARM Cortex-R4F-based radio control system
– Built-in firmware (ROM)
– Self-calibrating system across frequency and temperature

http://www.ti.com
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• C674x DSP for FMCW-signal processing
– On-chip memory: 1.75MB

• Cortex-R4F MCU for object detection, and interface control
– Supports autonomous mode (loading the user application from QSPI flash memory)

• Integrated peripherals
– Internal memories with ECC
– Up to six ADC Channels
– Up to two SPI Channels
– Up to two UARTs
– CAN interface
– I2C
– GPIOs
– Two-lane LVDS interface for raw ADC data and debug instrumentation

2.2.2 mmWave SDK
The mmWave SDK is divided into two broad components: mmWave Suite and mmWave Demos.

2.2.2.1 mmWave Suite
The mmWave Suite is the foundational software part of the mmWave SDK and includes the following
smaller components:
• Drivers
• OSAL
• mmWaveLink
• mmWaveLib
• mmWave API
• BSS firmware
• Board setup and flash utilities

For more information, see the mmWave SDK user's guide.

2.2.2.2 mmWave Demos
The SDK provides a suite of demonstrations that depict the various control and data-processing aspects
of an mmWave application. Data visualization of the output of a demonstration on a PC is provided as part
of these demonstrations.
• mmWave processing demonstration

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUER1B
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2.3 System Design Theory

2.3.1 Use-Case Geometry and Sensor Considerations
The IWR6843 is a radar-based sensor that integrates a fast, FMCW, radar front end, with both an
integrated Arm Cortex-R4F MCU and a TI C674x DSP for advanced signal processing. The configuration
of the IWR6843 radar front end depends on the configuration of the transmit signal and the configuration
and performance of the RF transceiver, the design of the antenna array, and the available memory and
processing power. This configuration influences key performance parameters of the system.

The key performance parameters at issue follow with brief descriptions:
• Maximum range

– Range is estimated from a beat frequency in the de-chirped signal that is proportional to the round
trip delay to the target. For a given chirp ramp slope, the maximum theoretical range is determined
by the maximum beat frequency that can be detected in the RF transceiver. The maximum practical
range is then determined by the SNR of the received signal and the SNR threshold of the detector.

• Range resolution
– This is defined as the minimum range difference over which the detector can distinguish two

individual point targets, determined by the bandwidth of the chirp frequency sweep. The higher the
chirp bandwidth, the finer the range resolution.

• Range accuracy
– This is often defined as a rule of thumb formula for the variance of the range estimation of a single

point target as a function of the SNR.
• Maximum velocity

– Radial velocity is directly measured in the low-level processing chain as a phase shift of the de-
chirped signal across chirps within one frame. The maximum unambiguous velocity observable is
then determined by the chirp repetition time within one frame. Typically this velocity is adjusted to
be one-half to one-fourth of the desired velocity range to have better tradeoffs relative to the other
parameters. Other processing techniques are then used to remove ambiguity in the velocity
measurements, which experience aliasing.

• Velocity resolution
– This is defined as the minimum velocity difference over which the detector can distinguish two

individual point targets that also happen to be at the same range. This is determined by the total
chirping time within one frame. The longer the chirping time, the finer the velocity resolution.

• Velocity accuracy
– This is often defined as a rule of thumb formula for the variance of the velocity estimation of a

single-point target as a function of the SNR.
• Field of view

– This is the sweep of angles over which the radar transceiver can effectively detect targets. This is a
function of the combined antenna gain of the transmit and receive antenna arrays as a function of
angle, and can also be affected by the type of transmit or receive processing, which may affect the
effective antenna gain as a function of angle. The field of view is typically specified separately for
the azimuth and elevation.

• Angular resolution
– This is defined as the minimum angular difference over which the detector can distinguish two

individual point targets that also happened to have the same range and velocity. This is determined
by the number and geometry of the antennas in the transmit and receive antenna arrays. This is
typically specified separately for the azimuth and elevation.

• Angular accuracy
– This is often defined as a rule of thumb formula for the variance of the angle estimation of a single

point target as a function of SNR.

2.3.2 Low-Level Processing
An example of a processing chain for automated doors is implemented on the IWR6843 EVM.

http://www.ti.com
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The main processing elements involved in the processing chain consist of the following components:
• Front end – Represents the antennas and the analog RF transceiver implementing the FMCW

transmitter and receiver and various hardware-based signal conditioning operations. This must be
properly configured for the chirp and frame settings of the usage case.

• ADC – Main element that interfaces to the DSP chain. The ADC output samples are buffered in ADC
output buffers for access by the digital part of the processing chain.

• EDMA controller – User-programed DMA engine employed to move data from one memory location to
another without using another processor. The EDMA can be programed to trigger automatically and
can also be configured to reorder some of the data during the movement operations.

• C674 DSP – Digital signal-processing core that implements the configuration of the front end and
executes the main signal processing operations on the data. This core has access to several memory
resources as noted further in the design description.

• Arm R4F – Arm MCU that can execute application code including further signal processing operations
and other higher level functions. In this application, the Arm Cortex-R4F primarily implements group
tracker and relays target-list data over the UART interface. There is a shared memory visible to both
the DSP and the Cortex-R4F.

The processing chain is implemented on the DSP and Cortex-R4F together. Table 1 lists the several
physical memory resources used in the processing chain.

Table 1. Memory Configuration

SECTION NAME SIZE (KB) AS
CONFIGURED

MEMORY USED (KB) DESCRIPTION

L1D SRAM 16 16 Layer one data static RAM is the fastest data access
for DSP and is used for most time-critical DSP

processing data that can fit in this section.
L1D cache 16 16 Layer one data cache caches data accesses to any

other section configured as cacheable. LL2, L3, and
HSRAM are configured as cache-able.

L1P SRAM 28 24 Layer one program static RAM is the fastest program
access RAM for DSP and is used for most time-critical

DSP program that can fit in this section.
L1P cache 4 4 Layer one cache caches program accesses to any

other section configured as cacheable. LL2, L3, and
HSRAM are configured as cache-able.

L2 256 176 Local layer two memory is lower latency than layer
three for accessing and is visible only from the DSP.

This memory is used for most of the program and data
for the signal processing chain.

L3 640 600 Higher latency memory for DSP accesses primarily
stores the radar cube and the range-Doppler power

map. It is a less time-sensitive program. Data can also
be stored here.

HSRAM 32 Currently unused Shared memory buffer between the DSP and the R4F
relays visualization data to the R4F for output over the

UART in this design.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUER1B
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Figure 5. Processing Chain Flow: Detection-Tracking Visualization

As shown in Figure 5, the implementation of the Automated Doors example in the signal-processing chain
consists of the following blocks implemented as DSP code executing on the C674x core in the IWR6843:
• Range processing

– For each antenna, EDMA is used to move samples from the ADC output buffer to the local memory
of the DSP. A 16-bit, fixed-point 1D windowing and 16-bit, fixed-point, 1D FFT are performed.
EDMA is used to move output from the DSP local memory to the radar cube storage in layer three
(L3) memory. Range processing is interleaved with active chirp time of the frame. All other
processing occurs each frame, except where noted, during the idle time between the active chirp
time and the end of the frame.

• Capon beam former
– Let s(t) be the incoming waves after mixing to baseband. The sensor array signal to be processed

is given by: X(t) = A(θ)s(t) + n(t). Where:
• A(θ) = (a(θ1), …a(θM)) is the steering matrix.
• a(θ) = (ej2πy1sin(θ), …, ej2πyNsin(θ)) is the steering vector.
• M is the number of angle bins.
• yn is the sensor position normalized by wavelength.
The Capon BF approach is: θcapon = argminθ{trace(A(θ) × Rn

-1 × A(θ)H }, where Rn is the spatial
covariance matrix.

– Static clutter removal is implemented by removing DC components per range bin. This removes the
static object reflections like a chair or table in the area of interest. Then per range bin, spatial
covariance matrix Rn is computed using multiple chirps within a frame. Then Rn is inverted and the
upper diagonal of the Rn

-1 is stored in memory for each range bin. Per range bin, capon beam
former output is calculated and stores the angle spectrum in memory to construct the range-
azimuth heat-map.

• Object detection
– Two pass CFAR algorithms is used on the range azimuth heat map to perform the object detection.

First pass is done per angle bin along the range domain. Second pass in the angle domain is used
confirm the detection from the first pass. The output detected point list is stored in L2 memory.

• Doppler estimation
– For each detected point in range and azimuth(angle) space, Doppler is estimated using the capon

beam weights and Doppler FFT. The output is stored in the L2 memory.
All the above processing except the range processing happens during inter-frame time. After DSP
finishes frame processing, the results are written in shared memory (L3/HSRAM) for Cortex-R4F to
input for the group tracker.

• Group tracker
– The tracking algorithm implements the localization processing. Tracker works on the point cloud

data from DSP, and provide localization information which can be used by classification layers
(currently not implemented in this example of a Automated Doors application). Tracker inputs the
point cloud data, performs target localization, and reports the results (a target list). Therefore, the

http://www.ti.com
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output of the tracker is a set of trackable objects with certain properties (like position, velocity,
physical dimensions, point density, and other features).

The output from the tracker is formatted and sent to the host using UART for visualization. The
visualization update rate is slower than the actual processing rate due to the limited bandwidth of the
UART interface.

Table 2 lists the results of benchmark data measuring the overall MIPS and memory consumption of the
processing chain, up to and including the tracking.

Table 2. MIPS Use Summary

PARAMETER AVAILABLE TIME USED TIME LOADING
Active chirp time 92 µs 14 µs 15%

Frame time 26.5 ms 7.2 ms 27%

http://www.ti.com
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2.3.3 High-Level Processing Details

2.3.3.1 Task Model
As shown in Figure 6 high-level processing is implemented with two tasks: higher priority mailbox task,
and lower priority application task. When the system is configured, the mailbox task is pending on a
semaphore, waiting for the frame ready message from DSP. When awakened, the mailbox task copies the
relevant point cloud data from the shared memory into TCM, and posts the semaphore to an application
task to run. It then creates the transport frame header, and initiates a DMA process for each part (TLV) of
the frame. While DMA started sending data over UART, the mailbox task yields to the lower priority
application task. When the DMA process completes, additional DMA can be scheduled (for example, TM2
and TM3). To achieve parallelism between the task processing and DMA, the transmit task sends the
current (Nth) point cloud TLV with the previous (N-1)th target list and target index TLVs.

Figure 6. High-Level Processing Task Model

2.3.3.2 Group Tracker
The tracking algorithm is implemented as a library. The application task creates an algorithm instance with
configuration parameters that describe sensor, scenery, and behavior of radar targets. The algorithm is
called once per frame from the application task context. It is possible to create multiple instances of group
tracker. Figure 7 shows the steps algorithm goes during each frame call. The algorithm inputs
measurement data in polar coordinates (range, angle, Doppler), and tracks objects in Cartesian space.
Therefore, use the extended Kalman filter (EKF) process.

Figure 7. Group Tracking Algorithm

Point cloud input is first tagged based on scene boundaries. Some points may be tagged as outside the
boundaries, and are ignored in association and allocation processes.

The predict function estimates the tracking group centroid for time n based on state and process
covariance matrices, estimated at time –1. Compute a-priori state and error covariance estimations for
each trackable object. At this step, compute measurement vector estimations.

http://www.ti.com
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The association function allows each tracking unit to indicate whether each measurement point is close
enough (gating), and if it is, to provide the bidding value (scoring). The point is assigned to a highest
bidder. Points not assigned go through an allocate function. During the allocation process, points are first
joined into a sets based on their proximity in measurement coordinates. Each set becomes a candidate for
an allocation decision, and must pass multiple tests to become a new track. When passed, the new
tracking unit is allocated. During the update step, tracks are updated based on the set of associated
points. Compute the innovation, Kalman gain, and a-posteriori state vector and error covariance. In
addition to classic EKF, the error covariance calculation includes group dispersion in a measurement
noise covariance matrix.

The report function queries each tracking unit and produces the algorithm output.

2.3.3.3 Configuration Parameters
The configuration parameters are used to configure the tracking algorithm. They are adjusted to match the
customer use case, based on particular scenery and target characteristics. Parameters are divided into
mandatory, and optional (advanced). Mandatory parameters are described in Table 3.

Table 3. Mandatory Configuration Parameters

PARAMETER DEFAULT DIM DESCRIPTION
maxNumPoints 250 — Maximum number of detection points per frame
maxNumTracks 20 — Maximum number of targets to track at any given time

stateTrackingVectorType 2DA — 2DA = {x, y, vx, vy, ax, ay}. This is the only supported option
initialRadialVelocity 0 m/s Expected target radial velocity at the moment of detection
maxRadialVelocity N/A m/s Maximum absolute radial velocity reported by sensor

radialVelocityResolution N/A m/s Minimal non-zero radial velocity reported by the sensor

maxAcceleration 2 m/s2 Maximum target acceleration. Used to compute processing noise
matrix

deltaT 50 ms Frame rate

verbosityLevel NONE —
A bit mask representing levels of verbosity: NONE | WARNING |

DEBUG | ASSOCIATION DEBUG | GATE_DEBUG | MATRIX
DEBUG

2.3.3.3.1 Advanced Parameters
Advanced parameters are divided into a few sets. Each set can be omitted, and defaults are used by an
algorithm. The customer must modify the necessary parameters to achieve better performance.

2.3.3.3.1.1 Scenery Parameters
This set of parameters describes the scene. It allows the user to configure the tracker with expected
boundaries and scene entrances. These effect tracker behavior. The tracker does not track clusters
outside of the boundaries set by the rightWall and leftWall parameters, and tracker behavior can be tuned
differently for the areas defined by the lowerEntrance and upperEntrance parameters. Table 4 lists these
parameters.

Table 4. Scenery Parameters

PARAMETER DEFAULT DIM DESCRIPTION

leftWall –1.5 m Position of the left wall, in meters, set to -100 if no wall.
Points behind the wall will be ignored

rightWall 1.5 m Position of the right wall, in meters, set to 100 if no wall.
Points behind the wall will be ignored

lowerEntrance 1 m Entrance area lower boundary, in meters; set to 0 if not
defined.

upperEntrance 4.5 m Entrance area lower boundary, in meters; set to 100 if not
defined.

http://www.ti.com
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2.3.3.3.1.2 Measurement Standard Deviation Parameters
This set of parameters is used to estimate standard deviation of the reflection point measurements.
Table 5 lists these parameters.

Table 5. Measurements Standard Deviation Parameters

PARAMETER DEFAULT DIM DESCRIPTION

LengthStd 1/3.46 m Expected standard deviation of measurements in target
length dimension

WidthStd 1/3.46 m Expected standard deviation of measurements in target
width dimension

DopplerStd 1.0f m/s Expected standard deviation of measurements of target
radial velocity

Typically, the uniform distribution of reflection points across target dimensions can be assumed. In such

cases, standard deviation can be computed as: .

For example, for the targets that are 1 m wide, standard deviation can be configured as: .

2.3.3.3.1.3 Allocation Parameters
The reflection points reported in the point cloud are associated with existing tracking instances. Points that
are not associated are subjects for the allocation decision. Each candidate point is clustered into an
allocation set. To join the set, each point must be within maxDistance and maxVelThre from the set’s
centroid. When the set is formed, it must have more than setPointsThre members, and pass the minimal
velocity and SNR thresholds. Table 6 lists these parameters.

Table 6. Allocation Parameters

PARAMETER DEFAULT DIM DESCRIPTION
SNR threshold 100 — Minimum total SNR for the allocation set, linear sum of power ratios

Velocity threshold 0.1 m/s Minimum radial velocity of the allocation set centroid
Points threshold 5 — Minimum number of points in the allocation set

maxDistanceThre 1 m2 Maximum squared distance between candidate and centroid to be
part of the allocation set

maxVelThre 2 m/s Maximum velocity difference between candidate and centroid to be
part of the allocation set

2.3.3.3.1.4 State Transition Parameters
Each tracking instance can be in either FREE, DETECT, or ACTIVE state. Once per frame, the instance
can get HIT (have non-zero points associated to a target instance) or MISS (no points associated) event.

When in FREE state, the transition to DETECT state is made by the allocation decision. See
Section 2.3.3.3.1.3 for the allocation decision configuration parameters. When in DETECT state, use the
det2active threshold for the number of consecutive hits to transition to ACTIVE state, or det2free threshold
of number of consecutive misses to transition back to FREE state. When in ACTIVE state, the handling of
the MISS (no points associated) is as follows:
• If the target is in the static zone and the target motion model is close to static, then assume that the

reason for no detection is because they were removed as static clutter. In this case, increment the
miss count, and use the static2free threshold to extend the life expectation of the static targets.

• If the target is outside the static zone, then no points were associated because that target is exiting. In
this case, use the exit2free threshold to quickly free the exiting targets.

• If the target is in the static zone, but has non-zero motion in radial projection, then the lack of
detections occurs when the target is obscured by other targets. In this case, continue target motion
according to the model, and use the active2free threshold.
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http://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUER1B


4�
V abc

3
 

www.ti.com System Overview

15TIDUER1B–May 2019–Revised April 2020
Submit Documentation Feedback

Copyright © 2019–2020, Texas Instruments Incorporated

Automated Doors Reference Design Using TI mmWave Sensors

Table 7 lists the parameters used to set this behavior.

Table 7. State Transition Parameters

PARAMETER DEFAULT DIM DESCRIPTION

det2activeThre 10 — In DETECT state; how many consecutive HIT events needed to
transition to ACTIVE state

det2freeThre 5 — In DETECT state; how many consecutive MISS events needed to
transition to FREE state

active2freeThre 10 — In ACTIVE state and NORMAL condition; how many consecutive MISS
events needed to transition to FREE state

static2freeThre 100 — In ACTIVE state and STATIC condition; how many consecutive MISS
events needed to transition to FREE state

exit2freeThre 5 — In ACTIVE state and EXIT condition; how many consecutive MISS
events needed to transition to FREE state

2.3.3.3.1.5 Gating Parameters
The gating parameters set is used in the association process to provide a boundary for the points that can
be associated with a given track. These parameters are target-specific. Table 8 lists each of these
parameters.

Table 8. Gating Function Parameters

PARAMETER DEFAULT DIM DESCRIPTION
Volume 4 — Gating volume

LengthLimit 3 m Gating limit in length
WidthLimit 2 m Gating limit in width

VelocityLimit 0 m/s Gating limit in velocity (0 – no limit)

The gating volume can be estimated as the volume of the ellipsoid, computed as , where a, b,
and c are the expected target dimensions in range (m), angle (rad), and doppler (m/s).

For example, consider a person as a radar target. For the target center, we could want to reach ±0.45 m
in range (a = 0.9), ±3 degree in azimuth (b = 6π / 180), and ±5.18 m/s in radial velocity © = 10.36),
resulting in a volume of approximately 4.

In addition to setting the volume of the gating ellipsoid, the limits can be imposed to protect the ellipsoid
from overstretching. The limits are the function of the geometry and motion of the expected targets. For
example, setting the WidthLimit to 8 m does not allow the gating function to stretch beyond 8 m in width.

2.3.3.4 Memory Use
The Cortex-R4F uses tightly-coupled memories (256KB of TCMA and 192KB of TCMB). TCMA is used for
program and constants (PROG), while TCMB is used for RW data (DATA). Memory use at the Cortex-R4F
is summarized in the following tables. Table 9 lists the total memory footprint, indicating memory use.

Table 9. Cortex-R4F Memory Use

MEMORY AVAILABLE (BYTES) USED (BYTES) USE (PERCENTAGE)
PROGRAM 261888 103170 39%

DATA 196608 171370 87%
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http://www.ti.com/feedbackform/techdocfeedback?litnum=TIDUER1B


Frame

Header
TL V TL V TL V

TLV1 TLV2

TLVn

PC

GUI

Configuration

File

UART port 1 

config

UART port 2

Point cloud etc

IWR6843

EVM

Rx antennas

Tx antennas

System Overview www.ti.com

16 TIDUER1B–May 2019–Revised April 2020
Submit Documentation Feedback

Copyright © 2019–2020, Texas Instruments Incorporated

Automated Doors Reference Design Using TI mmWave Sensors

Table 10 lists the memory used by the tracking algorithm in percentages to a total memory footprint. The
tracking algorithm is instantiated with 250 maximum measurements in point-cloud input, and a maximum
of 20 tracks to maintain at any given time.

Table 10. Group Tracking Algorithm Memory Use

MEMORY AVAILABLE (BYTES) USED BY GTRACK
(BYTES) USE (PERCENTAGE)

PROGRAM 103710 12609 12%
DATA 92056 14650 16%

2.3.4 Output Through UART
As shown in Figure 8, the example processing chain uses one UART port to receive input configuration
from the front end and signal-processing chain, and uses the second UART port to send out processing
results for display. See the information included in the software package for details on the format of the
input configuration and output results.

Figure 8. IWR6843 UART Communication

2.3.4.1 Output Results Format
The transport process at the R4F outputs one frame every frame period. The frame has a fixed header,
followed by a variable number of segments in tag/length/value (TLV) format. Each TLV has a fixed header,
followed by a variable size payload. Byte order is little endian. Figure 9 shows a visualization of the data
output.

Figure 9. Output Frame Format

http://www.ti.com
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2.3.4.2 Frame Header
The frame header is a fixed size (52 bytes) and has following structure (using MATLAB® notation, with
name, type, and length in bytes). The header is designed to self-describe the content, and allow the user
application to operate in a lossy environment. The header fields are protected with the checksum, see
Figure 10.

Figure 10. Frame Header

2.3.4.3 TLV Elements
Each TLV has a fixed header (8 bytes) followed by a TLV-specific payload. Figure 11 shows the TLV
header.

Figure 11. TLV Header

Three TLVs are supported at this time, as follows:
• Point cloud TLV

– Type = POINT_CLOUD_2D
– Length = sizeof (tlvHeaderStruct) + sizeof (pointStruct2D) × numberOfPoints
– Each detection point is defined as in Figure 12.

Figure 12. Point Cloud TLV

http://www.ti.com
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• Target list TLV
– Type = TARGET_LIST
– Length = sizeof (tlvHeaderStruct) + sizeof (targetStruct) × numberOfTargets
– Each target is defined as in Figure 13.

Figure 13. Target List TLV

• Target Index TLV
– Type = TARGET_INDEX
– Length = sizeof (tlvHeaderStruct) + numberOfPoints.
– Payload is a byte array, each byte represents a tracking ID.

NOTE: The target index TLV received in the N-th frame indices the point cloud in (N-1)-th frame.

NOTE: The track ID is a byte. Values 0 to 249 are supported. Values 250 to 255 are reserved.

http://www.ti.com
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2.4 Implementation Considerations

2.4.1 Floating-Point Versus Fixed-Point Implementation
The C674x DSP integrated in the IWR6843 offers a rich set of fixed-point and floating-point instructions.
The floating-point instruction set can accomplish addition, subtraction, multiplication, and conversion
between a 32-bit fixed point and floating point – in a single cycle for a single-precision floating point, and
in one to two cycles for a double-precision floating point. The majority of the single-precision, floating-point
instructions are at the same speed as the 32-bit fixed-point instructions (the single-precision, floating-point
FFT is almost as efficient as a 32-bit, fixed-point FFT). There are also fast instructions to calculate the
reciprocal and reciprocal square root in a single cycle with 8-bit precision. With one or more iterations of
Newton-Raphson interpolation, the user can achieve higher precision in a few tens of cycles. Another
advantage of using floating-point arithmetic is that the user can maintain both the precision and dynamic
range of the input and output signal, without spending CPU cycles checking the dynamic range of the
signal or rescaling intermediate computation results to prevent overflow or underflow. These enable the
user to skip or do less requalification of the fixed-point implementation of an algorithm, making algorithm
porting simpler and faster.

With the above, the 16-bit, fixed-point operations are two to four times faster than the corresponding
single-precision, floating-point instructions. Trade-offs between precision, dynamic range, and cycles cost
must be carefully examined to select suitable implementation schemes.

Using the example of 1D FFT, because the maximum effective ADC bit per sample is about 10 bits, under
the noise and cluttered condition the output peak to average ratio is limited (not a delta function in the
ideal case), data size does not expand between input and output. Because the deadline requirement for
chirp processing is generally tight, a 16-bit, fixed-point FFT is used for the balanced dynamic range and
SNR performance, memory consumption, and cycle consumption.

Using the example of 2D FFT, there is additional signal accumulation in the Doppler domain; thus, the
output signal peak tends to be very big. A single-precision, floating-point FFT is used, so adjusting the
input signal level (which may cause SNR loss) or having a special FFT to have dynamic scaling for each
butterfly is not required—both could have much higher cycle cost. In addition, because there is a 2D
windowing function before FFT, the data reformatting from 16-bit IQ to single-precision, floating-point and
2D windowing can be combined without additional cycle cost. The drawback of the floating-point FFT is
that the output data size is doubled from the input data size. The 2D FFT results cannot be stored back to
the radar cube. For DoA detection, reconstructing the 2D FFT results per detected object is required at
additional cycle cost.

For the example of clustering, the 16-bit fixed-point can safely cover the dynamic range and precision
requirements of the maximum range and range resolution. The arithmetic involved is the distance between
the two points and decision logic, which can be easily implemented using 16-bit, fixed-point multiplications
instructions and 32-bit fixed-point condition check instructions. Thus, a fixed-point implementation is used,
which is approximately two times the cycle improvement of the floating-point implementation.

2.4.2 EDMA Versus DSP Core Memory Access
Enhanced direct memory access (EDMA) provides an efficient data transfer between various memories
with minimum DSP core intervention and cost. In general, data movement in the radar processing chain is
regular and ordered, whereas data from lower-level, slow memory is moved to higher-level faster memory
for DSP processing, then transferred back to lower-level memory for storage. Thus, EDMA is the preferred
way to accomplish most of these data movements. Specifically, the ping-pong scheme can be used for
EDMA to parallelize data transfer and signal processing, so that at a steady state, there is no overhead for
data movement.

There are a few scenarios that must consider the trade-offs between using EDMA and direct core access.

First, if there is irregular data access pattern for a processing module, using EDMA would be very
cumbersome and sometimes impractical. For the example of the two-pass CFAR algorithm used in the
example signal processing chain, a CFAR-CASO search must be conducted in the range domain; then,
immediately conduct a CFAR-CA search in a doppler domain to confirm the results of the first pass. For
this 2D alike search, using EDMA for data movement could be cumbersome. Thus, DSP is used to access
the L3 memory directly with an L1D cache with L3 memory turned on. Cycle performance degrades to
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1.8× to 2× of the entire power heat map stored in L2 memory (thus no EDMA involved). Flexibility is
gained, if it is required to change the search order or do other algorithm tuning because no hardcoded
EDMA is tied with this implementation, and there is no requirement to use any local buffer in the L2
memory to store the power heat map. With the current memory usage and cycle cost, it is a good design
choice.

Secondly, when the size of the data transfer is small, the EDMA overhead (setting up PaRamSet,
triggering the EDMA, and checking the finish of EDMA) compared to the signal processing cost itself
increases, and it might be more cycle-efficient to use direct DSP access to L3 with the L1 cache on. It has
been observed for small 2D FFT size of 32, direct core access costs less cycles than using EDMA. In
addition, code is simpler without the ping-pong scheme and EDMA.

2.4.3 DSP Memory Optimization
To optimize the DSP memory, portions of the L1D and L1P are configured as SRAM.

There are 32KB of L1D and 32KB of L1P in C674x. Typically, memory is configured as L1D cache and
L1P cache as a whole, but for the radar processing chain, the data and program memory footprint is
relatively small, which makes it possible to carve out a portion of L1D and L1P and use them as SRAM,
without any cycle performance impact .

In this implementation, 16KB of L1D are configured as the L1 data cache. The remaining 16KB are
configured as data SRAM. The EDMA input and output ping-pong buffers are allocated in this fast memory
and shared between range processing and Doppler processing.

4KB of L1P is configured as L1 program cache. The remaining 28KB is configured as program SRAM,
which holds the majority of the real-time frame-work code and all algorithm kernels except tracking.

With this implementation, 40KB of L2 memory was saved, which can be used for adding new algorithms or
for other optimizations. There was approximately a 5% to 10% cycle improvement for range processing,
while no cycle penalty for other modules with data buffers in L2 or L3 memory was observed. Specific to
range processing, because all functions are in L1P SRAM, all input and output buffers are in L1D SRAM
and only FFT twiddle factors are in L2, but the FFT will be fetched to the L1D cache and stay there for the
all antennas and all chirps. There is very small cycle fluctuation because there is fewer L1 cache
operations in the background.
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3 Hardware, Software, Testing Requirements, and Test Results

3.1 Required Hardware and Software

3.1.1 Hardware
The IWR6843 ISK + ICB bundle or the IWR6843AoP (Antenna-On-Package) is required to get the
demonstration running (see Figure 15).

Figure 14. IWR6843AOP EVM
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Figure 15. IWR6843ISK EVM

3.1.2 Software
• mmWave software development kit (SDK)
• Automated Doors User's Guide
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3.2 Testing and Results

3.2.1 Test Results

3.2.1.1 Test Scenario 1: Single Person, Single Lane
This fundamental scenario was conducted to test basic functionality. The IWR6843 should detect if a
person is walking away from a door or towards it. If a person is walking away from the door, the door
should stay entirely closed as shown in Figure 16. If a person is walking towards a door, as shown in
Figure 17, the door should open when a person is within three seconds of reaching it.

The GUI uses three lane indicators to show if a door is closed (red) or open (green), the open state will
persist for fifty frames if more people are walking through the door. The GUI also features a plot of a
scene which tracks people in a scene with an added vector to indicate velocity and direction. Please note
that for the below tests, the GUI has been inverted to reflect the point-of-view of the mmWave Sensor.

This threshold of three seconds is established at code level and is configurable for a particular system;
moreover, the time is calculated as a function of a person's both range and velocity with respect to the
door.

Figure 16. Person Moving Away From Sensor. All Lanes Stay Red Indicating a Closed State

Figure 17. Person Moving Toward the Sensor. Middle Indicator Turned Green
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3.2.1.2 Test Scenario 2: Walking Past a Door
One condition for this design was that the door should not open unless a person is walking towards it
which is what this test aimed to show. This was clearly observed as the door stayed in a closed state. This
is accomplished through the use of range, angle, and velocity information in order to plot and track a
persons position and direction of movement.

Figure 18 shows a single person walking past the door while all three lanes remain closed. Figure 19
shows two people walking past the door while all three lanes also remain closed. This specific scenario is
important because it shows the sensor can resolve the position and direction multiple people in a scene.

Figure 18. One Person Walking Past But Not Towards Door

Figure 19. Two People Walking Past Door
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3.2.1.3 Test Scenario 3: Walking Past and Towards
This test served to combine the factors in the previous two test scenarios and the specific conditions of
those scenarios. A person would walk past the door which should not trigger any door to open but another
person would walk toward the door which should trigger the door to open. This scenario also shows the
sensor's capability to resolve multiple people appropriately.

Figure 20 shows this specific case where one person that has walked past the left and middle lanes,
which remain closed, while the person walking toward the sensor in the right hand lane has triggered the
door in an open state.

Figure 20. One Person Walking Past and Another Person Walking Toward Door

3.2.1.4 Test Scenario 4: People in Three Lanes
The final test conducted was to have three people walking down each of the lanes in order to observe
independent functionality. The plot in Figure 21 accurately shows each person in a separate lane walking
toward the door. What is important to note is that while the person in the left lane is present in the plot,
their lane is indicated as being in a closed state. This is due to the timing threshold set on each lane. The
person in left lane has been clearly detected but the sensor has computed that he is not within three
seconds of reaching the door, leaving it in a closed state.

Figure 21. Three People Walking Towards Door
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4 Design Files

4.1 Schematics
To download the schematics, see the design files at IWR6843.

4.2 Bill of Materials
To download the bill of materials (BOM), see the design files at IWR6843.

4.3 Altium Project
To download the Altium Designer® project files, see the design files at IWR6843.

5 Software Files
To download the software files, see the design files at IWR6843.

6 Related Documentation
1. Texas Instruments, IWR6843 Data Sheet
2. Texas Instruments, IWR68xx/16xx/14xx Industrial Radar Family, technical reference manual
3. Texas Instruments, mmWave SDK, tools folder

6.1 Trademarks
TI E2E is a trademark of Texas Instruments.
Altium Designer is a registered trademark of Altium LLC.
ARM, Cortex are registered trademarks of Arm Limited.
MATLAB is a registered trademark of MathWorks, Inc.
All other trademarks are the property of their respective owners.
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