
Copyright © 2016, Texas Instruments Incorporated

SMBus master

PRU-ICSSARM

EDMA

SCL

SDA

3.3 V 3.3 V

SMBus slave

TIDEP0065AM437x

1TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

TI Designs
Enhanced I2C and SMBus Master Interface Reference
Design With PRU-ICSS

All trademarks are the property of their respective owners.

Description
TI provides the system solution for Industrial
Communication on Sitara™ processors with
programmable real-time unit and industrial
communication subsystem (PRU-ICSS). PRU-ICSS
allows custom firmware applications in the field of real-
time applications. The I2C peripheral on many
application processors does not support SMBus
commands like block read and block write transfers.
This TI Design implements those SMBus commands
with standard I2C commands into the PRU-ICSS
peripheral.

This TI Design supports:
• I2C and SMBus master interface with PRU-ICSS
• Dynamic block mode read and write transfer
• PRU-ICSS source code for customization (already

in the design)

Resources

TIDEP0065 Design Folder
AM4379 Product Folder
TMDSIDK437X EVM Tools Folder

ASK Our E2E Experts

Features
• Enhanced I2C and SMBus Master Interface

Example Implementation
• Validated With TMDSIDK437X Industrial

Development Kit (IDK) EVM
• I2C Register Interface Emulation

Applications
• Programmable Logic Controller (PLC)
• Industrial I/O Modules
• Industrial Sensor and Actuators
• Industrial Ethernet

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other
important disclaimers and information.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A
http://www.ti.com/tool/TIDEP0065
http://www.ti.com/product/AM4379
http://www.ti.com/tool/TMDSIDK437X
http://e2e.ti.com
http://e2e.ti.com/support/applications/ti_designs/

System Overview www.ti.com

2 TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

1 System Overview

1.1 System Description

1.1.1 I2C and SMBus
The system management bus (SMBus) is derived from an inter-integrated circuit (I2C) bus. Various system
component chips and devices can communicate through it. The SMBus is a two-wire pair interface
developed by Intel in 1995. It carries clock, data, and instructions through this interface, and it supports
clock frequencies in the range of 10 to 100 kHz. The SMBus protocol is bidirectional master-slave
communication protocol, which communicates half duplex because of a single data wire. The master
communicates with the slave by a dedicated 7-bit slave address. The protocol frame formats that the
SMBus system supports are Quick Command, Send Byte, Receive Byte, Write Byte/Word, Read
Byte/Word, Block Write, and Block Read—all of these protocol commands are discussed in detail in
Section 2.1.

1.1.2 Difference Between SMBus and I2C Bus
The differences between the SMBus and I2C bus are:
• Both buses operate in the same way up to 100 kHz. The SMBus cannot operate beyond 100 kHz

whereas the I2C bus support versions with 400 kHz and 2 MHz. Complete compatibility of both buses
is only ensured if all devices operate at 100 kHz or below.

• The SMBus supports a timeout event whereas I2C has no such event. A timeout event is when the
slave device resets its interface whenever clock stays longer than a certain period of time, typically 35
ms. In the I2C, the clock can go static for indefinite amount of time without the occurrence of a timeout.

• Timeout dictates the minimum clock speed specification, so the minimum clock speed for SMBus is 10
kHz. For the I2C, there is no such requirement and the clock speed can be DC.

• The electrical specification for the two buses are given in Table 1:

Table 1. Electrical Specifications for I2C and SMBus

BUS V-HIGH V-LOW I-MAX
I2C Bus 3 V 1.5 V 3 mA
SMBus 2.1 V 0.8 V 350 µA

A device is compatible with both buses if its V-high > 3 V and V-low < 0.8 V, and the pullup resistor
values are in the range of 2.4 to 3.9 kΩ.

• I2C and SMBus both support the General Call, which is a special slave address (0b0000 000). All slave
devices designed for General Call will respond accordingly. The general call is a mechanism by which
communication with several slave devices simultaneously is possible.

• SMBus also supports Alert Response, which I2C does not. SMBus provides a line called ALERT
Number, which acts as interrupt to the SMBus master. When the master receives this interrupt, it
generates an Alert Response, which is sent to special slave address 0b0001100. Any slave device that
generated the interrupt after getting this response puts its own address on the bus to identify itself. The
master repeats this process until all generated interrupts are cleared.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

Copyright © 2016, Texas Instruments Incorporated

SMBus master

PRU-ICSSARM

EDMA

SCL

SDA

3.3 V 3.3 V

SMBus slave

TIDEP0065AM437x

www.ti.com System Overview

3TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

1.2 Block Diagram
Figure 1 shows the block diagram of the SMBus system:

Figure 1. SMBus System Block Diagram

1.3 Highlighted Products

1.3.1 AM4379 Processor
Up to 1-GHz SitaraARM® Cortex®-A9 32‑Bit RISC Processor
• NEON™ SIMD co-processor and vector floating point (VFPv3) coprocessor
• 32KB of L1 instruction and 32KB of data cache
• 256KB of L2 cache or L3 RAM
• 256KB of on-chip boot ROM
• 64KB of dedicated RAM
• Emulation and debug JTAG
• Interrupt controller

PRU-ICSS
• Supports protocols such as EtherCAT®, PROFIBUS, PROFINET, EtherNet/IP™, EnDat 2.2, and more
• Two PRU subsystems with two PRU cores each
• 32-bit load and store RISC processor capable of running at 200 MHz
• 12KB (PRU-ICSS1), 4KB (PRU-ICSS0) of instruction RAM with single-error detection (parity)
• 8KB (PRU-ICSS1), 4KB (PRU-ICSS0) of data RAM with single-error detection (parity)
• Single-cycle 32-bit multiplier with 64-bit accumulator
• Enhanced GPIO module provides shift-in and shift-out support and parallel latch on external signal
• 12KB (PRU-ICSS1 only) of shared RAM with single-error detection (parity)
• Three 120-byte register banks accessible by each PRU
• Interrupt controller module (INTC) for handling system input events
• Local interconnect bus for connecting internal and external masters to the resources inside the PRU-

ICSS

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

System Overview www.ti.com

4 TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

• Peripherals inside the PRU-ICSS:
– One UART port with flow control pins, supports up to 12 Mbps
– One enhanced capture (eCAP) module
– Two MII Ethernet ports that support industrial Ethernet, such as EtherCAT
– One MDIO port

On-chip memory (shared L3 RAM)
• 256KB of general-purpose on-chip memory controller (OCMC) RAM
• Accessible to all masters

External memory interfaces (EMIF)
• DDR controllers:

– LPDDR2: 266-MHz clock (LPDDR2-533 data rate)
– DDR3 and DDR3L: 400-MHz clock (DDR-800 data rate)
– 32-bit data bus
– 2GB of total addressable space
– Supports one ×32, two ×16, or four ×8 memory device configurations

• General-purpose memory controller (GPMC)
– Flexible 8-bit and 16-bit asynchronous memory interface with up to seven chip selects (NAND,

NOR, Muxed-NOR, SRAM)
– Uses BCH code to support 4-, 8-, or 16-bit ECC
– Uses hamming code to support 1-bit ECC

See the AM4379 datasheet for a complete list of features (SPRS851).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A
http://www.ti.com/lit/pdf/SPRS851

www.ti.com System Overview

5TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

1.3.2 AM437X IDK EVM Hardware Specification
• AM4379 ARM Cortex-A9
• 1GB DDR3, QSPI-NOR Flash
• Discrete power solution
• EnDat connectivity for motor feedback control
• 24-V power supply
• USB cable for JTAG interface and serial console

Software and tools
• SYS/BIOS real-time OS
• Starterware base port
• Code Composer Studio™ (CCS) integrated development environment (IDE)
• Application stack for industrial communication protocols
• Sample industrial applications

Connectivity
• PROFIBUS interface
• CANOpen
• EtherCAT
• EtherNet/IP
• PROFINET
• Sercos III
• IEC61850
• PWM
• Motor axis position feedback
• Up to 3-phase motor drive connector
• Sigma-delta decimation filter
• Digital inputs and outputs (I/O)
• SPI
• UART
• JTAG

See the AM437X IDK website for a complete list of features and design resources
(http://www.ti.com/tool/TMDXIDK437X).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A
http://www.ti.com/lit/pdf/http://www.ti.com/tool/TMDXIDK437X

S Address AW P

1 7 1 1

Data Byte

8 1

A

1

S Address AR/W P

1 7 1 1 1

SCL

SDA

Start bit Address bits R/W bit ACK bit Stop bit

System Design Theory www.ti.com

6 TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

2 System Design Theory

2.1 SMBus Function and Frame Format
All frames of the SMBus protocol start the communication on the bus when the master asserts a start bit
condition (S). The start bit is generated when the data line is pulled to a low state from a high state by
master while the clock line is at a high state. The start bit is followed by 7 bits of slave address appended
with 1 bit for the Read/Write direction. The slave sends an ACK (A) to acknowledge to the master that it
was addressed by the slave address. After the ACK, a command code or data transmission of 8 bits can
follow from master, which is also acknowledged by the slave. The communication is terminated when the
master asserts a stop bit condition (P) on the bus. The stop bit is generated when the data line is pulled to
a high state from a low state by master while the clock line is in a high state. Aside from the start and stop
bits, all transitions on the data line happen during the duration of the clock when it is low. Figure 2 shows
example of a Quick Command frame with each individual bit.

Figure 2. SMBus Frame Format Example Bit by Bit

The following subsections describe the SMBus protocol frames. In each figure, S is the START bit, Sr is
the REPEATED START, A is the acknowledge (ACK) bit, N is the no-acknowledge (NACK) bit, and P is
the STOP bit. The blue portions represent communication direction by the master to the slave, and the red
portions represent communication direction by the slave to the master.

2.1.1 Quick Command
In a Quick Command, there is no data sent or received. Quick Command can be used to turn on or off a
device or some other basic feature in the slave device. Quick Command is good for small devices that
provide limited support for SMBus. In Quick Command, the Read/Write bit denotes the command, for
example, to turn on or off a device. The frame format of a Quick Command is given in Figure 3:

Figure 3. Quick Command Format

2.1.2 Send Byte
With the Send Byte, a slave device can accept a maximum of 256 possible encoded commands, which is
sent by the master to the slave in the form of a data byte after the slave address. The frame format of a
Send Byte is given in Figure 4:

Figure 4. Send Byte Format

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

S Address AW P

1 7 1 1 1

ACommand Code

8

Data Byte High

8 1

A

1

A Data Byte Low

81

S Address W A P

1 7 1 1 1

Command Code A

8

Data Byte

8 1

N

1

Sr Address RA

1 7 11

S Address AW P

1 7 1 1 1

ACommand Code

8 1

A Data Byte

81

S Address AR P

1 7 1 1

Data Byte

8 1

A

1

www.ti.com System Design Theory

7TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

2.1.3 Receive Byte
Receive Byte is similar to Send Byte. The difference is in the direction of the data byte and that the NACK
from the master precedes the stop bit. With the Receive Byte, a slave device can send information to the
master. The frame format of a Receive Byte is given in Figure 5:

Figure 5. Receive Byte Format

2.1.4 Write Byte
In a Write Byte, the first byte after the slave address is the command code. The next byte contains the
data to be written. After every received byte, the slave acknowledges the transfer. The stop bit indicates
the end of transfer. The frame format of a Write Byte is given in Figure 6:

Figure 6. Write Byte Format

2.1.5 Read Byte
Reading data is slightly different than writing data because a change in direction of transfer is required.
First, the master writes the command code to slave. After the command code, the master always sends a
repeated start condition followed by the slave address with the read bit to indicate that now it wants to
read the data byte from the slave. The slave returns a data byte to the master. The master then sends a
NACK to indicate the end of transfer followed by the stop bit. The format of a Read Byte is given in
Figure 7:

Figure 7. Read Byte Format

2.1.6 Write Word
In Write Word, the first byte after the slave address is the command code. The next two bytes contains the
data bytes to be written. After every byte, the slave acknowledges the transfer. The stop bit generated by
the master indicates the end of transfer. The frame format of Write Word is given in Figure 8:

Figure 8. Write Word Format

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

S Address W A P

1 7 1 1 1

Command Code A A

8

Sr Address R

1

Block Count = N A

8

«

1

Data Byte 1 A

8 1

Data Byte N N

8171 1 1

S Address W A P

1 7 1 1 1

Command Code A

8 1

Block Count = N A

8

«

1

Data Byte 1 A

8 1

Data Byte N A

8 1

S Address W A P

1 7 1 1 1

Command Code A

8 1

Data Byte Low A

8 1

Data Byte High N

8 1

Sr Address RA

1 7 11

System Design Theory www.ti.com

8 TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

2.1.7 Read Word
Read Word is same as Read Byte with the difference being instead of one byte, the slave transmits two
bytes to the master. The frame format of Write Read is given in Figure 9:

Figure 9. Read Word Format

2.1.8 Block Write
Block Write starts with the start bit followed by slave address with the write bit. Next, the command code is
sent followed by block count (N), which specifies the number of bytes that follow in the message. After N
data bytes, communication terminates with stop bit. The frame format of Block Write is given in Figure 10:

Figure 10. Block Write Format

2.1.9 Block Read
Block Read is different from the Block Write as the direction changes in the middle of communication,
which is introduced by the repeated start condition. After all data bytes are sent, the master sends the
NACK to end the transfer. The frame format of Block Read is given in Figure 11:

Figure 11. Block Read Format

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

31 0

31 011

SMBUS slave

11

pr0_pru1_gpi11

pr0_pru1_gpo11

13

Pinmux mode from
control module

Pinmux mode from
control module

cam1_data5

cam1_data3

3.3 V 3.3 V

pr0_pru1_gpo13

SDA

SCL

SMBus master

ICSS0-PRU1

R30

R31
Pin 17

Pin 19

J16

www.ti.com System Design Theory

9TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

2.2 PRU Hardware Description for I2C and SMBus Master
• PRU1 of ICSS0 is used as the SMBus master.
• The SCL signal is exposed at J16, pin 19 [cam1_data5]. This uses AM437X pinmux mode 0x4

[pr0_pru1_gpo13].
• The SDA signal is exposed at J16, pin 17 [cam1_data3]. This uses AM437X pinmux mode 0x4

[pr0_pru1_gpo13] for the output direction and mode 0x5 [pr0_pru1_gpi13] for the input direction.
• PRU register R30.b13 is used for SCL output.
• PRU register R30.b11 is used as SDA output.
• PRU register R31.b11 is used as SDA input.
• Bit patterns in SMBus frames are generated using the bit banging technique and the timings of SCL

and SDA are generated by PRU delay cycles.
• When the I2C and SMBus is in an idle state, the SMBus master has set the SDA pin multiplex value to

input. The external pullup sets the SDA signal state to '1'.
• Figure 12 shows how the PRU hardware interface is connected to the slave device:

Figure 12. PRU Hardware Connection to Slave

2.3 PRU Firmware Description
The PRU firmware is divided into different modules that are called by the main program. The main
program first calls a module for initializing the communication link and setting the correct pin multiplex
value for the SDA line. After that, the PRU firmware waits for an interrupt signal from the ARM to execute
a specific SMBus operation. When the PRU firmware receives the interrupt signal from the ARM, the
firmware clears the access ready bit (ARDY) in the shared register interface so that the ARM cannot
access the shared interface while PRU is performing the SMBus operation. After that, the PRU firmware
checks the type of SMBus operation that is required to get performed. The PRU firmware then proceeds
with executing the requested SMBus operation. After executing the SMBus operation, results are updated
by PRU firmware in the control and status registers in shared memory, and the ARDY bit is set to allow
ARM access to the shared register interface. Then the PRU firmware generates the interrupt for ARM to
let it know that the SMBus operation has been performed, and the PRU firmware goes back to wait for the
next interrupt signal from ARM.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

Start

Wait for Event from
ARM

Initialize the
Communication Link

Clear ARM Event

Clear Access Ready
Flag

Check Requested
SMBus operation

Execute SMBus
operation

Update Control & Status
Registers

Set Access Ready
Flag

Generate Event for
ARM

System Design Theory www.ti.com

10 TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

2.3.1 PRU Firmware Flowchart
The PRU software functionality as previously described is shown in Figure 13:

Figure 13. PRU Firmware Flowchart

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

1 2 3 4 5 6

S Slave address Rd/Wr A P

1 7 1 1 1

www.ti.com System Design Theory

11TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

2.3.2 PRU Firmware Functions
The PRU firmware is divided into the following functions:
1. Init_Comm_Link
2. Check_Set_Pinmux
3. Start_Bit_Generation
4. Write_One_Byte_To_Slave
5. Check_ACK_TX
6. Stop_Bit_Generation
7. Repeated_Start_Bit_Condition
8. Read_One_Byte_From_Slave
9. Check_ACK_RX
10. Stop_Bit_Generation_RX
11. Master_Send_ACK_To_Slave
12. Master_Send_NACK_To_Slave

The SMBus protocols are essentially made up by these building blocks that are called and repeated in this
order. For instance, Figure 14 shows the SMBus Quick Command frame calling the following modules:

Figure 14. Example of Used Modules in Quick Command

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

SCL

(1)
EDMA triggering point for

changing SDA pinmux value

Point for taking ACK sample
(2)

(3)
EDMA triggering point for

changing SDA pinmux value

EDMA triggering point for changing
6'$�SLQPX[�YDOXH�LI�ODVW�VHQW�ELW�LV�µ0¶

(4)

System Design Theory www.ti.com

12 TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

2.3.3 Definition of PRU Action Points
This section describes PRU action points, that is when the PRU firmware functions takes action in an I2C
and SMBus clock cycle. Action point examples are the triggering of the EDMA to switch the I/O mode of
the SDA signal or take a sample value on SDA signal for determining whether there was an
acknowledgment sent by the slave device.

Figure 15 shows these action points with respect to the clock cycle. Action points (1) and (3) show the
points where most of the PRU functions trigger the EDMA to change the multiplex value of the SDA pin.
Action point (2) is where functions Check_ACK_TX and Check_ACK_RX take a sample from the SDA line
to determine whether there was an acknowledgment from the slave device. Action point (4) is used for
EDMA triggering to change the multiplex value of SDA pin—this depends on functions
Write_One_Byte_To_Slave, Check_ACK_TX, and Check_ACK_RX, all which decide the value based on
the last sent bit to the slave device. The details about the functionality of PRU functions are given in the
following Section 2.3.4, which uses one of these points.

Figure 15. Action Points of Clock Cycle

2.3.4 PRU Firmware Functions Description and Flowchart
The following subsections describe each function of PRU firmware in detail.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

CHECK_AND_SET_PINMUX

Generate clock
positive cycle

Read current multiplex value
for SDA pin

Is it Input?

Return

Trigger change in multiplex
value of SDA (Output to

Input)
Yes

No

INIT_COMM_LINK

Initialize used PRU
firmware registers

Load the delay value from
the register interface

Clear Interrupt flags
in INTC of ICSS0/1

Return

www.ti.com System Design Theory

13TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

2.3.4.1 Init_Comm_Link
This PRU function is responsible for initializing the delay values to generate clock according to the user
selected CLK frequency. The module also initializes some of the PRU registers that are used in the PRU
firmware. Figure 16 shows the functionality of this module.

Figure 16. Init_Comm_Link Flowchart

2.3.4.2 Check_Set_Pinmux
This function makes sure that the SDA pin multiplex mode is set to input (mode 5). If the entry multiplex
mode is output (mode 4), this module generates the EDMA event to trigger the multiplex value change
from output to input. Figure 17 shows the functionality of the module in the form of flowchart.

Figure 17. Check_And_Set_Pinmux Flowchart

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

START_BIT_GENERATION

CLR SDA while SCL
is high

SET SDA

Return

Trigger change in
multiplex value of SDA

(Input to Output)

System Design Theory www.ti.com

14 TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

2.3.4.3 Start_Bit_Generation
This module is used to generate the start bit condition on the I2C and SMBus link. The SDA pin is the
input to this function, but on exit it is changed to the output.

Figure 18. Start_Bit_Generation Flowchart

2.3.4.4 Write_One_Byte_To_Slave
This function is used to write one byte to the slave device. That one byte can be the 7-bit slave address
appended with 1 bit for read or write mode, or the byte can be either a command code, block count, or
data byte.

This function writes the data byte serially on the SDA signal using a shift register approach. It sets or
clears the SDA line whether the MSB of the PRU shift register is '1' or '0'. After the SDA output, the
function shifts the register to the left by one bit. This is repeated until all 8 data bits are written onto the
SDA line. After the data byte has been written, the function checks whether the last bit on SDA was a '1'
or a '0'. If it was a '1', then the function triggers EDMA event to change the multiplex value of the SDA pin
from output to input. Setting the SDA pin to input is done to reduce undesired spike generation on the
SDA line between the SMBus master and the slave device.

Figure 19 shows the described function.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

WRITE_ONE_BYTE_TO_SLAVE

Shift tx_data reg left
by 1 bit

Clear Interrupt flags in
INTC of ICSS0/ICSS1

Return

Initialize counter registers

Is MSB of tx_data
UHJ�µ1¶?

SET SDA CLR SDA

Bit_count < 8?

Trigger change in
multiplex value of SDA

(Output to Input)

bit_count++

Is last bit of tx_data
UHJ�µ1¶?

Clear Interrupt flags in
INTC of ICSS0/ICSS1

Yes No

Yes

No

Yes

No

www.ti.com System Design Theory

15TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

Figure 19. Write_One_Byte_To_Slave Flowchart

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

CHECK_ACK_TX

Check ACK bit at center of
positive clock period

Return

Yes

No

Initialize counter registers

Was last bit written to
VODYH�µ1¶?

Trigger change in multiplex
value of SDA

(Output to Input)

Trigger change in multiplex
value of SDA

(Input to Output)

Clear Interrupt flags in
INTC of ICSS0/1

System Design Theory www.ti.com

16 TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

2.3.4.5 Check_ACK_TX
This function is used to check if an acknowledgment bit has been generated by the slave device after a
byte has been written by the SMBus master. The function takes the acknowledge bit sample at the middle
of the positive clock cycle.

The SDA pin multiplex value upon entry to the function can be input or output—this depends whether the
EDMA event was triggered at the end of the function Write_One_Byte_To_Slave. This function sets on
exit the SDA pin to output. Figure 20 shows the functionality of this function.

Figure 20. Check_ACK_TX Flowchart

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

REPEATED_START_CONDITION

Return

Generate repeated start bit
condition on the bus

Clear Interrupt flags in
INTC of ICSS0/ICSS1

Trigger change in multiplex
value of SDA

(Input to Output)

STOP_BIT_GENERATION

Return

Generate stop bit condition
on the bus

Clear Interrupt flags in
INTC of ICSS0/ICSS1

Trigger change in
multiplex value of SDA

(Output to Input)

Clear Interrupt flags in
INTC of ICSS0/ICSS1

www.ti.com System Design Theory

17TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

2.3.4.6 Stop_Bit_Generation
This function is used to generate the stop bit condition on the bus. It sets the SDA signal to '1' while the
CLK is still at '1'. Upon function entry, the SDA pin multiplex value is output and it is changed to input
upon exit. Figure 21 shows how this function behaves.

Figure 21. Stop_Bit_Generation Flowchart

2.3.4.7 Repeated_Start_Bit_Condition
This function is used by the SMBus read commands because a change in the direction of data flow is
needed in the middle of SMBus frame. Upon function entry the SDA pin multiplex value is input and is
changed to output upon exit. Figure 22 shows this functionality.

Figure 22. Repeated_Start_Condition Flowchart

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

READ_ONE_BYTE_FROM_SLAVE

Shift rx_data register left
by 1 bit

Return

Read the value of
SDA line

,V�LW�µ1¶?

:ULWH�µ1¶�WR�/6%�RI�U[_data
register

:ULWH�µ0¶�WR�/6%�RI�U[_data
register

Bit_count < 8?

bit_count++

Clear Interrupt flags in
INTC of ICSS0/ICSS1

Yes No

Yes

No

System Design Theory www.ti.com

18 TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

2.3.4.8 Read_One_Byte_From_Slave
This function reads bits from the SDA line and saves the bits in the LSB of the rx_data register. This
function also uses the shift register to accumulate 8 bits to 1 byte. The value of the SDA pin multiplex is
not changed in this function and it remains input upon entry and exit to this function.

Figure 23. Read_Byte_From_Slave Flowchart

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

CHECK_ACK_RX

Check ACK bit at center of
positive clock period

Return

Yes

No

Initialize counter registers

Was last bit written to
VODYH�µ1¶?

Trigger change in multiplex
value of SDA

(Output to Input)

Clear Interrupt flags in
INTC of ICSS0/1

www.ti.com System Design Theory

19TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

2.3.4.9 Check_ACK_RX
This function is similar to the Check_ACK_TX function. The difference is only in terms of EDMA triggering
to change the value of the SDA pin multiplex. This function makes sure that the value of the SDA pin
multiplex is input upon exit. Figure 24 shows this behavior.

Figure 24. Check_ACK_RX Flowchart

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

STOP_BIT_GENERATION_RX

Return

Generate stop bit condition
on the bus

Clear Interrupt flags in
INTC of ICSS0/ICSS1

Trigger change in
multiplex value of SDA

(Output to Input)

Clear Interrupt flags in
INTC of ICSS0/ICSS1

Trigger change in
multiplex value of SDA

(Output to Input)

System Design Theory www.ti.com

20 TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

2.3.4.10 Stop_Bit_Generation_RX
This function is similar to the Stop_Bit_Generation function. The difference is in terms of the value of the
SDA pin multiplex upon entry to the function. The SDA pin is always input upon entry to this function
whereas the Stop_bit_Generation function is always output upon entry. Figure 25 shows the behavior of
the function.

Figure 25. Stop_Bit_Generation_RX Flowchart

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

MASTER_SEND_ACK_TO_SLAVE

Return

CLR SDA to indicate an
ACK to Slave

Clear Interrupt flags in
INTC of ICSS0/ICSS1

Trigger change in
multiplex value of SDA

(Output to Input)

Trigger change in multiplex
value of SDA

(Input to Output)

www.ti.com System Design Theory

21TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

2.3.4.11 Master_Send_ACK_To_Slave
This function is used by the master to send the acknowledgment (ACK) bit to the slave. The master pulls
the SDA line to '0' during the negative period of the clock. The slave registers this bit value during the
positive period of the clock. The slave interprets the ACK bit as an acknowledgment of the correct data
byte reception the slave sent to the master. The SDA pin multiplex value is input upon entry of this
function and changed to output for asserting SDA line to '0'. The function changes back the pin multiplex
value to input upon exit. Figure 26 shows the functionality of this function.

Figure 26. Master_Send_ACK_To_Slave Flowchart

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

MASTER_SEND_NACK_TO_SLAVE

Return

SET SDA to indicate a
NACK to Slave

Clear Interrupt flags in
INTC of ICSS0/ICSS1

Trigger change in
multiplex value of SDA

(Input to Output)

System Design Theory www.ti.com

22 TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

2.3.4.12 Master_Send_NACK_To_Slave
The structure of this function is similar to the function Master_Send_ACK_To_Slave. This function is used
at the end of a SMBus read operation – it sends a no-acknowledgment (NACK) bit to the slave from the
master. The master pulls the SDA line to '1' during the negative period of the clock. The slave registers
this value during the positive period of the clock and interprets it as no-acknowledgment signaling the end
of SMBus read operation. The value of the SDA pin multiplex value is input upon entry to this function and
output upon exit. Figure 27 shows the behavior of this function.

Figure 27. Master_Send_NACK_To_Slave Flowchart

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

EDMAICSS1-INTCICSS0-INTCICSS0-PRU1
Event 16

PRU_ICSS0_EVTOUT5

Event 56

PRU_ICSS1_EVTOUT6

Event 1

OPT

SRC

BCNT ACNT

DST

DSTBIDX SRCBIDX

BCNTRLD LINK

DSTCIDX SRCCIDX

RSVD CCNT

0x0

0x54442000

0x2 0x4

0x44E19F04

0x4 0x4

0x0 0x44E0

0x0 0x0

² 0x1

PaRAM set

PRU-ICSS0 data RAM 0

Pinmux register

www.ti.com System Design Theory

23TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

2.3.5 EDMA Configuration
• This TI Design needs to change the data direction of SDA dynamically. This is performed by PRU

firmware through use of register mapped GPI (R31) and GPO (R30) registers.
• The direction of the pin is changed through the Control Module register, selecting pr0_pru1_ gpi11 for

input and pr0_pru1_ gpo11 for output.
• The PRU firmware cannot change the direction of the pin as it cannot write to the Control Module. This

TI Design uses EDMA to achieve this.
• Because an EDMA transfer can only be triggered by ICSS1, a mapping of INTC event from ICSS0 to

ICSS1 has to be set up. See Section 2.3.6 for more details.
• The EDMA PaRAM set is set up to write the pin multiplex value for SDA from the ICSS0-PRU1-

DRAM0 into the Control Module register (shown in Figure 28):

Figure 28. EDMA Configuration

2.3.6 INTC Configuration
• ICSS0-PRU1 cannot generate an event for the EDMA module directly. Therefore, the interrupt

controller (INTC) of ICSS0 and ICSS 1 are configured in the following way:
– ICSS0-PRU1 issues an event (16) to ICSS0-INTC
– INTC-ICSS0 interrupt maps an event (56) to ICSS1-INTC
– INTC-ICSS1 event triggers the EDMA to make the transfer

• Figure 29 shows the INTC configuration:

Figure 29. INTC Configuration

• ICSS0-PRU1 issues an event (17), which maps to PRU_ICSS0_EVTOUT0 at the ARM side to let the
ARM know that SMBus transaction is completed.

• ARM issues an event (18), which is mapped to Host 0 through Channel 0 and shows up in R31
register of ICSS0-PRU1 so that PRU can begin execution of an SMBus operation.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

System Design Theory www.ti.com

24 TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

2.3.7 PRU Registers Used
The PRU registers used by firmware are shown in Table 2:

Table 2. PRU Registers Used

REGISTER REGISTER NAME IN CODE REGISTER USAGE
R3.w0 delay_count_reg_quater_cycle Delay value for quarter cycle
R3.w2 delay_count_reg_half_cycle Delay value for half cycle
R4.b0 SMBus_frequency_sel Stores the selected frequency
R4.b1 pnmx_val Stores the pinmux value of SDA
R4.b2 SMBus_protocol_sel_reg Stores the selected SMBus Command
R4.b3 slave_addr Stores the slave address

R5 temp_reg Temporary register
R6 pru1_intc Stores address of PRU1 INTC

R7.b0 tx_data Data to be written to slave
R7.b1 bit_count Number of bits (counter)
R7.b2 byte_count Number of bytes (counter)
R7.b3 total_byte_count_N Stores Block Count (N) for Block Write
R8.b0 rx_data Data received from slave
R8.b2 rx_total_byte_count_N Stores Block Count (N) for Block Read

R9 sda_pin_reg Stores address of CTRL_CONF_CAM1_DATA3, GPIO pin used as SDA
R10.b0 rd_wr_bit Stores Read/Write direction bit for Quick Command
R10.b2 last_bit_sent Stores value of the last bit sent
R10.b3 bit_count_and_last_bit_sent Stores sum of the bit_count and last_bit_sent
R11.w0 ack_reg Stores ACK bit information from slave
R12.w0 ack_reg Stores the data sent in testing mode

R13 mem_idx_tx_data Stores address of PRU Memory area where TX data is located
R14 mem_idx_rx_data Stores address of PRU Memory area where RX data is stored

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

www.ti.com System Design Theory

25TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

2.3.8 PRU Memory Map
• ICSS0-PRU1 Data RAM 0 is used as register interface between ARM and PRU.
• Table 3 shows the address and corresponding register information.
• The register interface emulates the I2C interface of an I2C peripheral (here AM437x) in order to reuse

an existing I2C ARM driver. As this is a shared memory interface, the ARM driver cannot start any
SMBus command by writing into the register interface. Instead, the ARM has to issue a PRU event to
start an SMBus operation.

Table 3. Addresses and Corresponding Registers

ICSS0-PRU1 DATA
RAM (OFFSET) LOCATION NAME IN CODE CONTAINED INFORMATION

0x24 I2C_IRQSTS_RAW I2C status raw register; bit ARDY = 2, bit NACK = 1
0x28 I2C_IRQSTS I2C status register; bit ARDY = 2, bit NACK = 1

0x2C I2C_IRQEN_SET I2C interrupt enable set register;
bit ARDY = 2, bit NACK = 1

0x98 I2C_CNT Data count for Write_block and Read_block

0xA4 I2C_CON I2C configuration register, 9th bit (TRX) used as Rd/Wr
direction

0xAC I2C_SA Slave address
0xE0 SDA_PINMMUX_VALUE_OUTPUT Pinmux value for setting SDA to output
0xE4 SDA_PINMMUX_VALUE_INPUT Pinmux value for setting SDA to input
0xE8 CLOCK_HALF_CYCLE_DELAY_VALUE Delay value for half clock cycle
0xEC COMMAND_CODE Command code
0xF0 SELECTED_SMBUS_COMMAND Selected SMBus command
0x100 TX_DATA_LOCATION Data to be transmitted to slave by master (max 256 bytes)
0x200 RX_DATA_LOCATION Data read from the slave by master (max 256 bytes)

2.4 ARM Driver Description
The ARM driver calls different functions to achieve desired functionality. The functions are:
• I2c_init()
• I2c_write()
• I2c_read()

The detail about these functions is given in the following subsections. Section 2.4.1 describes in detail
how the ARM driver functions. Furthermore, Section 2.4.2, Section 2.4.3, and Section 2.4.4 describe in
detail the role of their respective functions.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

User Application

SMBus Driver

Register Interface

SMBus Master

P
R

U
2A

R
M

 E
ve

nt

A
R

M
2P

R
U

 E
ve

nt

ARM

PRU

Shared
Memory

PRU
Firmware

System Design Theory www.ti.com

26 TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

2.4.1 ARM Driver Functionality
The ARM driver first sets up the PRU and the pin multiplex values and then configures the EDMA. It then
initializes the I2C and SMBus with the required frequency by calling the I2c_init() function. Then it calls
either the I2c_write() or I2c_read() function depending on the respective command received from user
application. After executing the function, it sends the status back to the user application. Figure 30 shows
how different components of the design interact on the system level:

Figure 30. Interaction Between SMBus Design Components

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

Start

I2C and SMBus command
succeeded

Is Status == 0?

Error

Send the response to
user application

Receive Status

No

Setup PRU

Set right Pinmux
Values of pins

Configure EDMA

Initialize I2C and SMBus with
right frequency and enable
interrupt based response

Get I2C and SMBus command
from user application

Is it for Read or
Write?

Write Read

Call I2C_read()Call I2C_write()

Yes

www.ti.com System Design Theory

27TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

Figure 31 shows the ARM driver’s functionality as previously described:

Figure 31. ARM Driver Functionality

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

System Design Theory www.ti.com

28 TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

2.4.2 I2c_init() Function
The I2c_init() function is a parameter-less function that initializes the frequency that will be used for
communication between the SMBus master and slave. It also sets interrupt enable flags in case the
design is interrupt based instead of polling based.

2.4.3 I2c_write() Function
The I2c_write() function takes the following parameters:
• smbus_format: An enumeration type; the values it can contain are shown in Table 4:

Table 4. smbus_format Values

VALUE INTERPRETATION
0 no_command
1 quick_command
2 Send_byte
3 receive_byte
4 write_byte
5 write_word
6 read_byte
7 read_word
8 write_block
9 read_block

• slave_addr: 8-bit unsigned integer that contains 7 bits of slave address appended with 1 bit for the
read or write direction

• command_code: 8-bit unsigned integer for the command code byte
• byte_count: 8-bit unsigned integer that is used with the Block_Write SMBus frame to let the slave

device know how many data bytes will be transmitted in this transaction
• tx_data_ptr: A pointer to the type of 8 bits unsigned integer for the tx_data_array; contains the data

bytes that are to be transmitted to the slave

The I2c_write() function first checks whether it is allowed to access the I2C and SMBus register interface
by checking the second bit, which is the access ready bit (ARDY) in register PRU_I2C_IRQSTS_RAW at
offset 0x24. If it is not allowed to access the I2C and SMBus register, the function error code is returned by
the function. Otherwise the function first configures the I2C and SMBus register interface in PRU shared
memory. After that the function copies the data bytes from the transmit data array into the
TX_DATA_LOCATION in PRU memory, clears the interrupt flag, and sends an event to the PRU. Then
the function waits for an event from PRU, which indicates the completion of the SMBus command. After
receiving the event, the I2c_write() function reads the status register and returns a success code (0) or
error code (–1) to the function caller. Figure 32 shows the functionality of the I2c_write() function:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

I2C_write()

Is Access to register
interface allowed?

Return Error Code

Configure I2C and
SMBUS PRU

memory Interface

Clear Interrupt Flag

Send event to PRU to
execute current
I2C and SMBUS

Command

Wait for PRU Event
(Interrupt Flag)

Read status

Is Status == 0?

Return Error Code

Return Success
Code

Copy data from
Transmit Data Array

to PRU memory
Interface

Interrupt Flag = 1

www.ti.com System Design Theory

29TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

Figure 32. I2c_write() Function

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

System Design Theory www.ti.com

30 TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

2.4.4 I2c_read() Function
The I2c_read() function has the same parameters as in the I2c_write() function like smbus_format,
slave_addr, and command_code, but there is no byte_count parameter; instead of tx_data_ptr, there is
rx_data_ptr, which points to rx_data_array that contains the data bytes received from the slave.

The I2c_read() function first checks whether it is allowed to access the I2C and SMBus register interface
by checking the second bit, which is access ready bit (ARDY) in register PRU_I2C_IRQSTS_RAW at
offset 0x24. If it is not allowed to access the I2C and SMBus register, the function error code is returned by
the function. Otherwise the function first configures the I2C and SMBus register interface in PRU shared
memory. After that, the function clears the interrupt flag and sends an event to the PRU. Then the function
waits for an event from the PRU, which indicates the completion of the SMBus command. After receiving
the event, the I2c_write() function reads the status register, copies the data bytes from the
TX_DATA_LOCATION in PRU memory into the receive data array if transaction with slave is successful,
and then returns a success code (0) or error code (–1) to the function caller. Figure 33 shows the
functionality of I2c_write() function:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

I2C_read()

Is Access to register
interface allowed?

Return Error Code

Configure I2C and
SMBUS PRU

memory Interface

Clear Interrupt Flag

Send Event to PRU
to execute current
I2C and SMBUS

Command

Wait for PRU Event
i.e. Interrupt Flag

Read status

Is Status == 0?

Copy data to Receive
Data Array from PRU

memory interface

Return Error Code

Return Success
Code

Interrupt Flag = 1

www.ti.com System Design Theory

31TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

Figure 33. I2c_read() Function

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

Getting Started Hardware and Software www.ti.com

32 TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

3 Getting Started Hardware and Software

3.1 Hardware

3.1.1 TMDSIDK437X IDK Board
Figure 34 shows the TMDSIDK437X board.

Figure 34. TMDSIDK437X Board

The I2C and SMBus master interface can be accessed through the following signals:
• J16, pin 17 → SDA
• J16, pin 19 → SCL
• J16, pin 60 → GND

3.1.2 I2C and SMBus Slave Board
Connect any I2C slave board with the I2C and SMBus interface to the I2C signals on J16. The slave board
needs to get powered separately.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

www.ti.com Getting Started Hardware and Software

33TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

3.2 Software

3.2.1 CCS
The following hardware and software are required:
• TMDSIDK437X board
• I2C or SMBus slave board
• CCSv6 or higher
• PRU Compiler for CCSv6 (install through CCS add-on)
• Industrial SDK 2.1.0.1

– SYS-BIOS (refer to Industrial SDK release notes)
– XDC-Tools (refer to Industrial SDK release notes)

• TI Design TIDEP0065 software download files

After installing the development tools, extract the TIDEP0065 project in the C:/TI folder. Import the PRU
and ARM project into CCS from the downloaded source code file folder.

3.2.2 PRU Firmware
Once the project has been imported the PRU firmware can be compiled. The outcome of the PRU
compiler is an .out file. The .out file must get converted into a C-Header file, which is then included by the
ARM application. The ARM application loads the PRU firmware header at run time into the PRU core.

Follow these steps to convert the PRU .out file into a C-Header file.
1. Go to the SMbus_PRU folder.
2. Read the readme.txt in header_gen folder.

• If required, adopt file names and paths in build_header_pru1.bat.
3. Copy the following files from header_gen to the debug folder.

• build_header_pru1.bat
• pru_header.cmd

4. Open a CMD DOS box and navigate to the debug folder.
5. Execute the build_header_pru1.bat file: This generates the C-Header file and copies this into the ARM

project include folder.

For development and testing purposes, download the .out file through JTAG to the PRU core. Note that if
the ARM application is reloaded and executed, it will in general rewrite the PRU firmware into the PRU
code.

3.2.3 ARM Application
The ARM application initializes the PRU-ICSS subsystem, sets the external pinmux for SMBus, and loads
the PRU firmware. The example application uses the I2C function API to make access to the I2C
peripheral. In addition, the example application configures the register I2C and SMBus interface in PRU-
ICSS memory.

Note that I2C slave address must match with the actual slave address to successfully communicate with
the I2C slave board.

Compile the ARM project and load the .out file into the ARM code. Execute the application to start I2C and
SMBus communication. Use an oscilloscope to validate bus communication. Use breakpoints in the ARM
software and read out the I2C function return variables to validate the expected results.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

TUSB8041RGC EVM Board

Teledyne LeCroy
 LogicStudio 16TMDSIDK437X IDK Board

PC

J16 Pin 17 (used as SDA)

J16 Pin 19 (used as SCL)

S
C

L

S
D

A

U
S

B

Testing and Results www.ti.com

34 TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

4 Testing and Results

4.1 Test Setup
The following test setup is used (as shown in Figure 35):
• TMDSIDK437X IDK Board
• TUSB8041RGCEVM Board Rev D (used as slave)
• Digital Logic Analyzer LogicStudio 16 from Teledyne LeCroy
• Windows® 7 PC with LogicStudio

Figure 35. Test Setup

4.2 Test Data
Two types of testing and validation were performed. Firstly, validation of all individual SMBus frames was
performed using LogicStudio; the results are shown in Section 4.2.1. Secondly, long-term testing was
performed where the SMBus master and slave communicated with each other for almost two days and
results were analyzed (as seen in Section 4.2.2).

4.2.1 Validation with Logic Studio
A variety of measurements have been performed with all the SMBus frame formats at 100 kHz to validate
the SMBus master PRU firmware implementation. The I2C signals have been measured with a digital logic
analyzer (LogicStudio from Teledyne LeCroy). The measurement results are shown in the following
subsections.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

www.ti.com Testing and Results

35TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

4.2.1.1 Quick Command
Figure 36 and Figure 37 shows the results obtained on LogicStudio when Quick Command is executed
with a Write bit and Read bit, respectively.

Figure 36. Validation of Quick Command Frame Format With Write Bit

Figure 37. Validation of Quick Command Frame Format With Read Bit

4.2.1.2 Send Byte
Figure 38 shows the results obtained on LogicStudio when the Send Byte command is executed.

Figure 38. Validation of Send Byte Frame Format

4.2.1.3 Receive Byte
Figure 39 shows the results obtained on LogicStudio when the Receive Byte command is executed.

Figure 39. Validation of Receive Byte Frame Format

4.2.1.4 Write Byte
Figure 40 shows the results obtained on LogicStudio when the Write Byte command is executed.

Figure 40. Validation of Write Byte Frame Format

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

Testing and Results www.ti.com

36 TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

4.2.1.5 Read Byte
Figure 41 shows the results obtained on LogicStudio when Read Byte command is executed.

Figure 41. Validation of Read Byte Frame Format

4.2.1.6 Write Word
Figure 42 shows the results obtained on LogicStudio when the Write Word command is executed.

Figure 42. Validation of Write Word Frame Format

4.2.1.7 Read Word
Figure 43 shows the results obtained on LogicStudio when the Read Word command is executed.

Figure 43. Validation of Read Word Frame Format

4.2.1.8 Block Write
Figure 44 shows the results obtained on LogicStudio when the Block Write command with Block Count (N)
= 8 is executed.

Figure 44. Validation of Block Write Frame Format

4.2.1.9 Block Read
Figure 45 shows the results obtained on LogicStudio when the Block Read command is executed and
received Block Count (N) = 4 from the slave.

Figure 45. Validation of Block Read Frame Format

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

www.ti.com Testing and Results

37TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

4.2.2 Long-Term Test
Figure 46 shows the results for a long-term test (two days) between the PRU master and slave. The user
application is calling I2c_write() and I2c_read() for SMBus Quick_Command, Write/Read_Byte,
Write/Read_Word, and Write/Read_Block in a repeated manner with different data sets. After the
command execution the results are compared from the counter values, which shows how many times a
specific SMBus format was sent and how many ACKs and NACKs were received. It also shows how many
data bytes were sent and how many of them were correctly or incorrectly received back.

For example, the values of the three variables quick_cmd_sent, quick_cmd_ACKs and quick_cmd_NACKs
sent a total of 46,768,238 Quick_Command frames by the master to the slave where slave acknowledged
all of them and there was no instance when there was no acknowledgment because its counter value is 0.
Similarly, by comparing other values, the long-term test ran successfully without any errors.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

Testing and Results www.ti.com

38 TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

Figure 46. ARM Driver Long-Term Testing Results

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

www.ti.com Design Files

39TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

5 Design Files

5.1 Schematics
To download the schematics, see the design files at TIDEP0065.

5.2 Bill of Materials
To download the bill of materials (BOM), see the design files at TIDEP0065.

5.3 Gerber Files
To download the Gerber files, see the design files at TIDEP0065.

5.4 Assembly Drawings
To download the assembly drawings, see the design files at TIDEP0065.

6 Software Files
To download the software files, see the design files at TIDEP0065.

7 References

1. Texas Instruments, Download CCS, Code Composer Studio TI Wiki
(http://processors.wiki.ti.com/index.php/Download_CCS)

2. Texas Instruments, AM437x Sitara™ Processors, AM4379 Datasheet (SPRS851)
3. Texas Instruments, AM437x ARM® Cortex™-A9 Processors, AM4379 Technical Reference Manual

(SPRUHL7)

8 Terminology

CCS— Code Composer Studio

ICSS— Industrial communication subsystem

PLC— Programmable logic controller

PRU— Programmable real-time unit

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A
http://www.ti.com/tool/TIDEP0065
http://www.ti.com/tool/TIDEP0065
http://www.ti.com/tool/TIDEP0065
http://www.ti.com/tool/TIDEP0065
http://www.ti.com/tool/TIDEP0065
http://processors.wiki.ti.com/index.php/Download_CCS
http://www.ti.com/lit/pdf/SPRS851
http://www.ti.com/lit/pdf/SPRUHL7

About the Authors www.ti.com

40 TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Enhanced I2C and SMBus Master Interface Reference Design With PRU-
ICSS

9 About the Authors
MUHAMMAD HAISEM KHAN is a master student at University of Stuttgart, Germany. He is pursuing
specialization in embedded systems under the INFOTECH program at his university. He has significant
knowledge in the fields of industrial automation, embedded systems, real-time systems and real-time
programming. As per his curriculum and interests, he was a master intern in the Factory Automation and
Control Team in Texas Instruments Freising, Germany. He was responsible for implementation of PRU
firmware and ARM driver in SMBus project. Haisem acquired his bachelor’s degree in electrical
(telecommunication) engineering from National University of Sciences & Technology (NUST) in Islamabad,
Pakistan.

PHANINDRA SHYLENDRA is a master student at Hochschule Darmstadt University Of Applied Sciences,
Germany in the field of embedded systems and microelectronics. As part of his curriculum, he was a
master intern in the Factory Automation and Control Team in Texas Instruments in Freising, Germany. He
was responsible for the reference design for developing SMBus interface. Phanindra gained his bachelor's
degree in electronics and communications from Sapthagiri College of Engineering (VTU), Bangalore,
India.

THOMAS MAUER is a system engineer in the Factory Automation and Control Team at Texas
Instruments Freising, where he is responsible for developing reference design solutions for the industrial
segment. Thomas brings to this role his extensive experience in industrial communications like industrial
Ethernet and fieldbuses and industrial applications. Thomas earned his electrical engineering degree (Dipl.
Ing. (FH)) at the University of Applied Sciences in Wiesbaden, Germany.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

www.ti.com Revision A History

41TIDUBY1A–July 2016–Revised August 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Revision History

Revision A History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (July 2016) to A Revision ... Page

• Changed from preview page... 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBY1A

IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated (‘TI”) reference designs are solely intended to assist designers (“Designer(s)”) who are developing systems
that incorporate TI products. TI has not conducted any testing other than that specifically described in the published documentation for a
particular reference design.
TI’s provision of reference designs and any other technical, applications or design advice, quality characterization, reliability data or other
information or services does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and
no additional obligations or liabilities arise from TI providing such reference designs or other items.
TI reserves the right to make corrections, enhancements, improvements and other changes to its reference designs and other items.
Designer understands and agrees that Designer remains responsible for using its independent analysis, evaluation and judgment in
designing Designer’s systems and products, and has full and exclusive responsibility to assure the safety of its products and compliance of
its products (and of all TI products used in or for such Designer’s products) with all applicable regulations, laws and other applicable
requirements. Designer represents that, with respect to its applications, it has all the necessary expertise to create and implement
safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the
likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any systems
that include TI products, Designer will thoroughly test such systems and the functionality of such TI products as used in such systems.
Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special
contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause
serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such
equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and
equivalent classifications outside the U.S.
Designers are authorized to use, copy and modify any individual TI reference design only in connection with the development of end
products that include the TI product(s) identified in that reference design. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR
INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right,
copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or
services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products
or services, or a warranty or endorsement thereof. Use of the reference design or other items described above may require a license from a
third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual
property of TI.
TI REFERENCE DESIGNS AND OTHER ITEMS DESCRIBED ABOVE ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS
ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING THE REFERENCE DESIGNS OR USE OF
THE REFERENCE DESIGNS, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE
WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-
INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNERS AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS AS
DESCRIBED IN A TI REFERENCE DESIGN OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT,
SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH
OR ARISING OUT OF THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, AND REGARDLESS OF WHETHER TI
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
TI’s standard terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated
circuit products. Additional terms may apply to the use or sale of other types of TI products and services.
Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-
compliance with the terms and provisions of this Notice.IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm

	Enhanced I2C and SMBus Master Interface Reference Design With PRU-ICSS
	1 System Overview
	1.1 System Description
	1.1.1 I2C and SMBus
	1.1.2 Difference Between SMBus and I2C Bus

	1.2 Block Diagram
	1.3 Highlighted Products
	1.3.1 AM4379 Processor
	1.3.2 AM437X IDK EVM Hardware Specification

	2 System Design Theory
	2.1 SMBus Function and Frame Format
	2.1.1 Quick Command
	2.1.2 Send Byte
	2.1.3 Receive Byte
	2.1.4 Write Byte
	2.1.5 Read Byte
	2.1.6 Write Word
	2.1.7 Read Word
	2.1.8 Block Write
	2.1.9 Block Read

	2.2 PRU Hardware Description for I2C and SMBus Master
	2.3 PRU Firmware Description
	2.3.1 PRU Firmware Flowchart
	2.3.2 PRU Firmware Functions
	2.3.3 Definition of PRU Action Points
	2.3.4 PRU Firmware Functions Description and Flowchart
	2.3.4.1 Init_Comm_Link
	2.3.4.2 Check_Set_Pinmux
	2.3.4.3 Start_Bit_Generation
	2.3.4.4 Write_One_Byte_To_Slave
	2.3.4.5 Check_ACK_TX
	2.3.4.6 Stop_Bit_Generation
	2.3.4.7 Repeated_Start_Bit_Condition
	2.3.4.8 Read_One_Byte_From_Slave
	2.3.4.9 Check_ACK_RX
	2.3.4.10 Stop_Bit_Generation_RX
	2.3.4.11 Master_Send_ACK_To_Slave
	2.3.4.12 Master_Send_NACK_To_Slave

	2.3.5 EDMA Configuration
	2.3.6 INTC Configuration
	2.3.7 PRU Registers Used
	2.3.8 PRU Memory Map

	2.4 ARM Driver Description
	2.4.1 ARM Driver Functionality
	2.4.2 I2c_init() Function
	2.4.3 I2c_write() Function
	2.4.4 I2c_read() Function

	3 Getting Started Hardware and Software
	3.1 Hardware
	3.1.1 TMDSIDK437X IDK Board
	3.1.2 I2C and SMBus Slave Board

	3.2 Software
	3.2.1 CCS
	3.2.2 PRU Firmware
	3.2.3 ARM Application

	4 Testing and Results
	4.1 Test Setup
	4.2 Test Data
	4.2.1 Validation with Logic Studio
	4.2.1.1 Quick Command
	4.2.1.2 Send Byte
	4.2.1.3 Receive Byte
	4.2.1.4 Write Byte
	4.2.1.5 Read Byte
	4.2.1.6 Write Word
	4.2.1.7 Read Word
	4.2.1.8 Block Write
	4.2.1.9 Block Read

	4.2.2 Long-Term Test

	5 Design Files
	5.1 Schematics
	5.2 Bill of Materials
	5.3 Gerber Files
	5.4 Assembly Drawings

	6 Software Files
	7 References
	8 Terminology
	9 About the Authors

	Revision A History
	Important Notice

