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1 Circuit Description
This TIDA-00799 TI Design is based on the quad-channel ADC3422. This design showcases an analog-
to-digital converter (ADC) with three different input paths. The first and second channels have both been
DC coupled using the THS4541 wideband, fully differential amplifier (FDA). Both channels can be
configured for single-ended input or differential inputs with modifications to the bill of materials (BOM).
Channel 3 can be used as a scope input because it uses the junction gate field-effect transistor (JFET)
OPA656 as a high input impedance amplifier followed by the THS4541 fully differential amplifier. Channel
4 of the ADC has been configured as a passive path through a transformer (AC coupled). Channel 4
accepts single-ended inputs by default but can be modified to accept differential signals by doing a BOM
modification.

2 ADC3422
The ADC3422 is a member of the ADC3xxx family. At the time of this writing, the ADC3xxx family features
the lowest-power ADCs in the industry, capable of running 25 MSPS to 160 MSPS. The ADC3xxx family
provides flexibility and scalability with 12- and 14-bit, 2- and 4-channel, and JESD204B and serial LVDS
options ranging from 50 mW to 200 mW of power consumption per channel. The focus of this design is on
the ADC3422, which is a quad-channel, 12-bit, 50-MSPS ADC; however, the same circuit can be applied
across the entire ADC3xxx family with minimal modifications.

3 Channel 1 and Channel 2—DC Coupled
Channel 1 and channel 2 are DC coupled with the THS4541 fully-differential wideband amplifier. By
default (jumper JP7 and JP8 at pin 1 and 2), both channels have been designed to accept 50-Ω
impedance, single-ended inputs; however, these channels can be modified (jumper JP7 and JP8 at pin 2
and 3) to accept AC-coupled signals. This modification can be performed by installing J5 and D6 and
removing the jumper JP7 for channel 1, followed by installing J7 and D7 and removing the jumper JP8 for
channel 2 to accept differential inputs. The schematic design is shown in Figure 1.

Several methods are available for calculating the resistors around an FDA to convert from a single-ended
input to differential output. The following assumptions simplify the results:
1. Start the design by selecting the feedback resistors and making them equal on both sides.
2. The DC and AC impedances from the summing junctions back to the signal source and the ground (or

a bias voltage on the non-signal input side) are set to retain a feedback divider balance on each side of
the FDA.

Using the feedback resistors, solve for RT (termination resistor to ground on the signal input side), RG+
(input gain resistor for the signal path), and RG– (matching gain resistor on the non-signal input side). The
same resistor solution can be applied to either AC or DC coupled paths. Adding blocking caps in the input
signal chain is a simple option where adding it after the RT element has the advantage of removing any
DC currents in the feedback path from the output VOCM to ground. Earlier approaches to the solutions for
RT and RG+ (when the input must be matched to the source impedance, RS) have followed an iterative
approach. This complexity arises from the active input impedance looking into the RG+ element. When the
FDA is used to convert a single-ended signal to differential, the common-mode input voltage at the FDA
inputs must move with the input signal to generate the inverted output signal as a current in the RG–
element, which is just one way to view the situation. Equation 1 shows a more recent solution where a
quadratic in RT can be solved for an exact required value. This quadratic emerges from the simultaneous
solution for a matched input impedance and target gain. The only required inputs are:
1. The selected RF value.
2. The target voltage gain (AV) from the input of RT to the differential output voltage
3. The desired input impedance looking into RT and RG+ to match the source impedance RS
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Solving this quadratic for RT starts the solution sequence (see Equation 1):

(1)

Being a quadratic, there are limits to the range of solutions. Specifically, when RF and RS have been
chosen, there is physically a maximum gain that starts to solve for the negative RT values (if input
matching is a requirement). With RF selected, check Equation 2 to verify that the maximum gain is less
than the desired gain:

(2)

If the achievable AV_MAX is less than desirable, increase the RF value. As soon as RT has been derived
from the preceding Equation 1, the RG+ element can be calculated by the following Equation 3:

(3)

Then the simplest approach is to use a single RG– = RT || RS + RG+ on the non-signal input side. These
solutions are shown as separate elements here, but a single resistor to GND as given by Equation 4 is
also acceptable. Equation 4 calculates a direct solution for RG–.

(4)

This design proceeds from a target input impedance matched to RS, signal gain AV, and a selected RF
value. The nominal RF value for this THS4541 implementation is 402 Ω. Decreasing the RF value improves
noise and phase margin but reduces the total output load impedance, which can degrade harmonic
distortion. Increasing the value increases the output noise and may reduce the loop phase margin
because of the feedback pole to the parasitic input capacitance back to the input pins; however,
increasing the value also reduces the total loading on the outputs.

This design starts with a 402-Ω feedback resistor and has been designed for a DC-coupled, 50-Ω input
match providing a gain of 2.35 V/V to the THS4541 output pins. The third order, inter-stage, low-pass filter
provides a 20-MHz Bessel low-pass response with a 0.85-V/V insertion loss to the ADC, resulting in a net
gain of 2 V/V from the board edge to the ADC inputs. Even though the THS4541 can absorb overdrives,
an added external protection element has been added using the BAV99 low-capacitance diodes, as
Figure 1 shows. Pin 1 and pin 2 can be jumpered together to enable DC-coupled testing. When the source
is an AC-coupled, 50-Ω source, pin 2 and pin 3 are jumpered to maintain the differential balance. FFT
testing normally uses a AC-coupled bandpass filter into the board and requires an AC-coupled connection
at pin 2 and pin 3 of jumpers JP7 and JP8.

The results for this implementation use 1% standard resistor values: Choose RF = 402, Assume RS = 50,
AV = 2.35 V/V, and then solve for RT = 61.9, RG+ = 162, RG– = 190 (162 + 61.9 / 49.9 for balance).
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Figure 1. THS4541 Circuit Implementation With 20-MHz Cutoff Bessel LPF Driving ADC3422
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4 THS4541 and ADC3422 Results
The results for the implementation of the THS4541 and ADC3422 show a good combined response. In a
simple test in which a clean, filtered signal was fed into the THS4541 and ADC3422 circuit, the signal-to-
noise ratio (SNR) was better than 70 dB, which is a slight degradation from the 70.3 dB of the ADC3244
device using a transformer interface. The spurious-free dynamic range (SFDR) that the following Figure 2
shows in the left-side measurement panel is slightly lower (3 dB) than the transformer interface input path
(channel 4). In summary, a clean active interface can be implemented using the THS4541 device to drive
the high-performance requirements of the 12- and 14-bit ADC3xxx data converter family. For applications
below 5 MHz, consider the 1-mA precision THS4551 FDA. For applications above 50 MHz, consider the
2.8-GHz, low-noise LMH6554 FDA as a viable option.

Figure 2. FFT Performance of THS4541 and ADC3422 Active Interface
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5 Channel 3—High Input Impedance
Channel 3 has been designed with an OPA656 device which has a JFET input stage followed by a single-
ended to differential amplifier (THS4541) and the second-order, low-pass (19-MHz) Bessel filter.

There are two main parameters to consider for channel 3:
1. The allowed maximum analog input voltage for the ADC is –1 dBFS (1.8 VP-P).
2. The maximum first Nyquist zone bandwidth is 25 MHz.

Based on these requirements, the acceptable input signal can be 2 VP-P. For this design, the user sets up
the OPA656 device to accept ±1 V and with a gain of 2 V/V. This setup provides 4 VP-P to the fully
differential amplifier (FDA) stage, which then decreases to 1.8 VP-P max for the ADC. The OPA656 device
is used in a non-inverting configuration, where the gain of the non-inverting amplifier is shown in
Equation 5 (R2 = R1 = 200 Ω, which results in a gain of 2 V/V and a 400-Ω load at the amplifiers output).

(5)

The input has been designed to provide a 1-MΩ termination with an optional 50-Ω input resistance for a
50-Ω source. The input resistance can be selected by installing (50 Ω) and uninstalling (1 MΩ) a jumper
(JP1) on the board. After the input termination resistors, a 150-Ω resistor in series is added to limit the
current into the overdrive protection BAV99. The BAV99 diode pair is added after the 150-Ω series resistor
on the positive input terminal, which is connected to the positive and negative supplies to protect the input.
The BAV99 diode pair is capable of protecting against 300 mA of current and provides protection up to
±50-V input transients. The diodes add about 2.5 pF of capacitance to the circuit. A 50-Ω resistor is added
after the BAV99 to ensure that the majority of any fault current flows into the protection diodes (BAV99)
and not the internal electrostatic discharge (ESD) diodes of the OPA656 device. An external capacitance
is added after the 50-Ω resistor at the positive input. This additional external capacitance provides a 100-
MHz bandwidth into this stage from the source and limits the high-frequency signals and broadband noise.

Figure 3 and Figure 4 show the simulation circuit and transfer character for the OPA656 stage. As shown
by the transfer function, the OPA656 provides the gain of 6 dB or 2 V/V and capacitor C1 provides the
100-MHz bandwidth.

Figure 3. Simulation Circuit for OPA656
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Figure 4. Transfer Function for OPA656 Stage

The fully differential amplifier (FDA) stage uses a THS4541 amplifier. To get from 4 VP-P to 1.8 VP-P a total
insertion loss of 7 dB is required, as shown in Equation 6.

(6)

Assuming a 2-dB insertion in the final RLC low-pass filter stage, the FDA stage must be designed for an
insertion loss of 5 dB or a gain of 0.567 V/V. Figure 5 shows a simplified diagram of the FDA stage:

Figure 5. Single-Ended to Differential Amplifier
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Figure 5 derives the relationship between input voltage (VIN) and output voltage (VOUT.) and using the
relationship between VIN and VOUT, the values for RIN and RF can be calculated. Solving for voltage at node
1 shows the relationship between VOUT+ and VIN–, as Equation 7 shows. Solving for voltage at node 2
shows the relationship between VOUT– and VIN+, as Equation 8 shows. To calculate the differential output
voltage, VOUT– is subtracted from VOUT+, as Equation 9 shows.

(7)

(8)

(9)

(10)

(11)

VIN+ is connected to ground which means VIN+ = 0; substitute VIN+ into Equation 10 to further simplify the
equation. Equation 11 represents the relationship between single-ended input voltage (VIN–) and
differential output voltage (VOUT_DIFF). The values of RF = 248 Ω and RIN = 438 Ω have been selected to
calculate a gain of 0.567 V/V from the FDA stage. These output signals are offset to the VOCM control pin
voltage.
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Figure 6 and Figure 7 show the simulation circuit and transfer character for the FDA stage. As the transfer
function shows, the THS4541 device provides a gain of –5 dB or 0.567 V/V. If the peaking is not desired,
refer to the designing attenuations section of the THS4541 data sheet ([1]). The second-order RLC filter
attenuates this peaking.

Figure 6. Simulation Circuit for Single-Ended to Differential Amplifier

Figure 7. Transfer Function for Single-Ended to Differential Amplifier

The maximum input signal in the FDA stage is 4 VP-P. With a gain of 0.567 V/V the output is 2.268 VP-P,
which means the signal swings ±1.134 V around the common-mode voltage (VCM). To prevent –1.134 V
from clipping into the negative rail (0 V), set VCM to 1.2 V. The common-mode voltage from the THS4541
output must be level-shifted from 1.2 V to 0.95 V in the low-pass filter stage to meet the input common
requirements of the ADC.

The low-pass filter stage has been designed using a second-order, low-pass Bessel filter with the
following parameters:
• FO (cutoff frequency) –3 dB = 19 MHz
• Q = 0.58
• DC gain (filter attenuation) = 0.8 V/V (–2 dB)
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This filter design starts with a single-ended input and single-ended output to derive the equations to
convert to differential at a later stage. The design begins with the use of an RLC filter, as Figure 8 shows.

Figure 8. Single-Ended, Low-Pass RLC Filter

Equation 12 calculates the general Laplace transfer function for the circuit in Figure 8 . Refer to the RLC
Filter Design for ADC Interface Applications application report for the full design details [2].

(12)

Calculating the DC attenuation (α) from Equation 12 results in Equation 13:

(13)

The total DC impedance that VI experiences is calculated using Equation 14:
(14)

Rewrite Equation 12 by substituting α and RT in the following Equation 15:

(15)

From Equation 15, the key elements for the second-order filter can be derived, as the following
Equation 16 and Equation 17 show:

(16)

(17)
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WO represents the cutoff frequency in radians and Q represents the quality factor. WO and Q describe the
frequency response of the second-order filter. Start the design process by selecting RT and α according to
design requirements and then solve for R1, R2 , L, and C for the provided values of WO and Q. Use
Equation 16 and Equation 17 to solve for L. Two possible solutions are available for deriving L: a greater
value and a lesser value solution, as Equation 18 and Equation 19 show, respectively. Using the greater
value for L (from Equation 18) results in a decreased required C value, whereas using Equation 19 results
in an increased C value.

(18)

(19)

Equation 17 can be rewritten to solve Equation 20. By using Equation 18 or Equation 19, the value of C
can then be calculated.

(20)

By using Equation 12 through Equation 20 and following the design requirements, the values for R1, R2, L,
and C can be calculated.
• R1 = 80 Ω
• R2 = 320 Ω

High L, low C solution:
• L = 5.36 µH
• C = 16.4 pF

Low L, high C solution:
• L = 419 nH
• C = 209 pF

When all the required values have been calculated, the single-ended filter design can be converted to a
differential filter. To convert the example filter design shown in Figure 8 to a differential filter, first refer to
Figure 9, where each element has been duplicated.

Figure 9. Differential Low-Pass RLC Filter

One important difference in understanding the operation of Figure 9 is to consider both the common-mode
and differential-mode characteristics. For the differential signals, which matter most to the ADC input, this
circuit is exactly the same as Figure 8 in that the midpoint ground for R2 and C is transparent to the
differential signal. The common-mode part of VI still experiences the DC load provided by R2 and also has
the same frequency response as the differential input signal.
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Figure 10 shows a simpler solution for achieving DC biasing without common-mode filtering. In this
diagram, the two-series capacitors are combined into one capacitor of equivalent series capacitance.

Figure 10. Simplified Differential Low-Pass Filter

The input common-mode signal still experiences a common-mode DC level shift through R2, but now
receives no filtering effect as a result of C. The differential capacitor now filters the differential signal and
is transparent to any common-mode AC signal. This configuration is acceptable because VI only allows a
limited presence of AC common-mode signal and modern differential input ADCs reject the common-mode
very well over frequency.

In most cases an external capacitor C, as shown in Figure 10, designs the filter because the ADC internal
capacitance specification is unknown. In some cases where the input capacitance of the ADC is known,
this capacitor may be implemented by the input parasitic capacitance of the ADC itself and an external
capacitor is not required. In other applications, the ADC input capacitance may exceed the requirement of
the circuit in Figure 10. In that case, the alternate solution for L and C must be used to reduce the L but
increase the C to the point where an implementation including the effect of the ADC input capacitance is
possible.

The value of L and C have been modified such that standard available value of L and C can be used. A
series 5-Ω resistor has been added before the ADC input. These resistors help with sampling glitch and
damp out ringing caused by the package parasitic. Figure 11 shows the circuit with modified values and its
transfer function. In the transfer function, the filter is providing a –2-dB attenuation in passband with a
19.5-MHz bandwidth.
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Figure 11. Simulation Circuit and Transfer Function for RLC Low-Pass Filter

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBS9A


Channel 3—High Input Impedance www.ti.com

14 TIDUBS9A–August 2016–Revised October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Quad-Channel, 12-bit, 50-MSPS ADC Reference Design With Low-Noise,
Low-Distortion, DC and AC Inputs

Figure 12 is the simulation circuit for the single-ended-to-differential amplifier (THS4541) and the RLC low-
pass filter. The ADC can accept an input common-mode voltage of 0.95 V ±0.025 V. As Figure 12 shows,
the common-mode voltage at the ADC input is 0.96 V, which is within an acceptable range for the ADC.

Figure 13 shows the simulation of SNR performance for the THS4541 and RLC low-pass filter stages.
Figure 13 also shows that the circuit in Figure 12 is capable of 90-dB SNR, so adding this stage does not
impact the SNR of the ADC.

Figure 12. Simulation Circuit Differential Amplifier With RLC Low-Pass Filter

Figure 13. SNR for Differential Amplifier With RLC Low-Pass Filter
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Figure 14 shows all three stages (OPA656, THS4541 and RLC low-pass filter) cascaded. Figure 15 shows
the simulation of the SNR performance of the OPA656, THS4541, and the RLC low-pass filter stages. As
Figure 15 shows, the input channel is capable of SNR at 80 dB, so the input channel does not significantly
impact the SNR performance of the ADC.

Figure 14. Simulation Circuit for Complete Channel 3

Figure 15. SNR for Complete OPA656 (JFET), Differential Amplifier (THS4541) With RLC Low-Pass Filter
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The following Figure 16 shows the ±1-V input step (5-MHz square wave) and the correct differential
amplitude of 1.8 VP-P.

Figure 16. Simulation With ±1-V, 5-MHz Input Square Wave

6 OPA656, THS4541, and ADC3422 Results
The results for the implementation of the OPA656, THS4541, and ADC3422 devices show a good
combined response. In a test where a clean filtered signal was fed into the combined circuit, the SNR was
better than 70 dB, which is a slight degradation from the 70.6 dB of the ADC3244 device while using a
transformer interface. The SFDR, as Figure 17 shows, is lower than expected. The SFDR is limited by the
HD performance of the OPA656 device at a ±4-V output voltage swing parameter. Figure 18 shows the
results when a 1-MHz ±1-V square wave has been applied at the input of channel 3. In summary, an
active interface can be implemented using the OPA656 and THS4541 to drive the high performance
requirements of the 12- and 14-bit ADC3xxx data converter family. For applications below 5 MHz, the
1-mA precision THS4551 FDA is a considerable option. For applications above 50 MHz, the 2.8-GHz, the
low-noise LMH6554 FDA is a viable option.
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Figure 17. FFT Performance of Combined OPA656, THS4541, and RLC Low-Pass Filter

Figure 18. 1-MHz, ±1-V Square Wave Input
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7 Channel 3 With Gain Redistribution Between OPA656 and THS4541 Stages
As the previous Section 6 shows, the SFDR performance is limited by the output swing parameter of the
OPA656 device. The focus of this section is redistributing the gain through the OPA656 and THS4541
stages in such as way to improve the performance on HD2 and HD3. The overall gain of the path remains
the same.

For this process, change the gain for the OPA656 stage from 2 V/V to 1.5 V/V. With the gain change, the
OPA656 still accepts ±1 V at the input but outputs 3 VP-P(max) instead of 4 VP-P to the FDA (THS4541). To
implement the gain change in the circuit, update the values of R4 = 500 Ω and R3 = 250 Ω. The following
Figure 19 shows the updated schematic.

Figure 19. Simulation Circuit for OPA656 With Updated Gain of 1.5 V/V

To compensate for the lowered gain in the OPA656 stage, the gain for THS4541 must be increased (lower
the insertion loss) to maintain the overall gain of the path, as in the preceding Section 6. Again, assuming
a 2-dB insertion loss in the final RLC stage, the FDA stage must be designed for an insertion low of 2.5
dB or a gain of 0.750 V/V. Use Equation 11 to calculate the value of RF = 499 Ω and RIN = 665 Ω given
the gain of 0.750 V/V. The following Figure 20 shows the updated schematic.

Figure 20. Simulation Circuit for THS4541 With Updated Gain of 0.750 V/V

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBS9A


www.ti.com Channel 3 With Gain Redistribution Between OPA656 and THS4541 Stages

19TIDUBS9A–August 2016–Revised October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Quad-Channel, 12-bit, 50-MSPS ADC Reference Design With Low-Noise,
Low-Distortion, DC and AC Inputs

7.1 OPA656, THS4541, and ADC3422 Results With Updated Gain
The results for updated gain for the OPA656, THS4541, and ADC3422 devices show a good combined
response (see Figure 21). In this test a clean-filtered, 5-MHz single tone was fed into the combined circuit.
The resulting SNR was 70.2 dB which is only a slight degradation in comparison to the 70.3 dB in the
previous case; however, the SFDR improved by 6 dB. The HD2 improved by 6 dB and HD3 improved by 5
dB from a measured value of 95 dB. In summary, the SFDR performance can be improved by
redistributing the gain through different stages without any significant reduction in SNR performance.

Figure 21. FFT Performance of Combined OPA656, THS4541, and RLC Low-Pass Filter With Updated Gain
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8 Channel 3 With Gain Redistribution Between OPA656 and THS4541 Stages and
Active Filtering on THS4541
This section addresses adding an active, second-order, multiple-feedback (MFB) low-pass filter stage as
part of single-ended-to-differential (THS4541) amplifier design (see Figure 22). This stage provides a
fourth-order Bessel filter for this path: two poles in the active MFB stage and two poles in the RLC low-
pass filter stage.

Figure 22. Channel 3 With Active, Second-Order, MFB Low-Pass Filter Stage

The schematic in Figure 22 shows that the precision JFET input stage is the same as the previous section
and has a gain of 1.5 V/V. An active second-order filter with a cutoff frequency of 31.82 MHz is part of the
single-ended-to-differential amplifier stage. The filter has been set up for a gain of 0.756 and a quality
factor of 0.81. The passive low-pass filter stage is also the same as the previous section and has a cutoff
frequency of 28.38 MHz and a quality factor of 0.52. As with the previous section, the input path has an
overall gain of 0.9 V/V such that when inputting the 2 VP-P signal at JFET it becomes 1.8 VP-P by the time it
reaches the ADC. For detailed information on how to design the active filter stage, view the Design
Methodology for MFB filters in ADC Interface Applications application report [3].

The results for an active, second-order filter addition show a good combined response. In this test, a
clean-filtered, 5-MHz single tone was fed into the combined circuit. The resulting SNR was 69.9 dB which
is only a slight degradation in comparison to the 70.3 dB in the previous case; however, the SFDR shows
a degradation of 3 dB. In summary, tests concluded that it is possible to implement the second active filter
to provide a sharper filter response without much degradation of the overall performance (see Figure 23
and Figure 24).
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Figure 23. FFT Performance of Combined OPA656, THS4541 With Second-Order Active Filter, and RLC
Low-Pass Filter

Figure 24. 1-MHz, ±1-V Square Wave Input
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9 Channel 4—(Transformer)
Figure 25 shows the transformer-coupled input circuit of the ADC3422 ADC. Channel D has a dual, 1:1
impedance ratio transformer input circuit to achieve better phase and amplitude balance of the signal. The
input termination is 50 Ω, which is formed by two 25-Ω resistors connected to the ADC VCM node.

Figure 26 shows the FFT for the transformer interface input path (channel 4). Channel 4 provides the SNR
of 70.4 dB and SFDR of 87 dB.

Figure 25. Transformer Coupled Input (Channel 4)

Figure 26. FFT Performance of Transformer Input

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUBS9A


LDO 
U10

TPS7A4901

INV CHARGE PUMP 
U11

TPS60403

DC-DC 
U8

TPS6223x

LDO
U12

TPS7A3001

LDO
U9

TPS7A8300

5 V

±4.7 V 
(negative)

FB5

4.7 V
FB4

FB3

FB6

FB7

1.8 V2.1 V

±5 V 
(negative)

OPA656(U1)

Vccio 

ADC3422(U5)

FT245L(U6)

THS4541(U4)

VEE 

DVDD

AVDD 

VCC 

OPA656(U1)

THS4541(U2)

THS4541(U3)

THS4541(U4)

VCC 

VCC 

VCC 

Copyright © 2016, Texas Instruments Incorporated

www.ti.com Power Supplies

23TIDUBS9A–August 2016–Revised October 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Quad-Channel, 12-bit, 50-MSPS ADC Reference Design With Low-Noise,
Low-Distortion, DC and AC Inputs

10 Power Supplies
The overall power supply networks for the TSW3422 is shown in Figure 27. The main rail for the entire
EVM is a 5-V input through either a power brick connection to J14 or through test points TP2. The EVM
design includes both DC-DC converters and low noise LDOs.

The ADC3422 requires 1.8 V for both analog (AVDD) and digital (DVDD) supply rails. The typical current
for AVDD and DVDD is 71 mA and 56 mA, respectively. The TSW3422 board utilizes the TPS62234 (DC-
DC converter), which is capable of providing 500 mA of current to convert from 5 V to 2.1 V. By using the
TPS7A8300 LDO, this 2.1-V rail is brought down to 1.8 V.

An implementation of three THS4541 devices and one OPA656 device requires 4.7 V to power the
combined positive supply rail (VCC). The typical quiescent current for the THS4541 is 10.1 mA and the
OPA656 requires 16.3 mA. The total current required for the 4.7-V rail is:
3 × 10.1 mA + 16.3 mA = 46.6 mA. For a 4.7-V supply rail, the TPS7A4901 is used to drop the voltage
down from 5 V to 4.7 V and the device is capable of providing 150 mA of output current.

The OPA656 requires –4.7 V with 16.3 mA of current for its negative supply rail (VEE). The TPS60403
converts 5 V to –5 V and then the TPS7A3001 delivers –4.7 V to power the VEE of the OPA656. Ferrite
beads (FBx) are added before each load to clean up high frequency signals.

Figure 27. Power Supply Tree
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11 Design Files

11.1 Schematics
To download the schematics, see the design files at TIDA-00799.

11.2 Bill of Materials
To download the bill of materials (BOM), see the design files at TIDA-00799.

11.3 PCB Layout Recommendations
To download detailed layout guidelines for each respective part, consult the respective data sheets.

11.3.1 Layout Prints
To download the layer plots, see the design files at TIDA-00799.

11.4 Design Project
To download the design project files, see the design files at TIDA-00799.

11.5 Assembly Drawings
To download the assembly drawings, see the design files at TIDA-00799.

11.6 Gerber Files
To download the Gerber files, see the design files at TIDA-00799.

12 Software Files
To download the software files, see the design files at TIDA-00799.
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