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1 System Description

1.1 Resistance Temperature Detector
Temperature is one of the oldest known physical quantities. Temperature is the most essential factor that
needs continuous measurement and monitoring in smart grid. Today, the industry demands accurate,
repeatable, and reliable measurement of temperature, because temperature can have a significant impact
on product cost, quality, efficiency, and safety.

Temperature sensors types include:
• Resistance temperature detector (RTD)
• Thermistor
• Thermocouple

Figure 1. Comparison of Different Temperature Sensors Used for Smart Grid Applications

The focus of this design is to measure temperature using RTD, a sensing element whose resistance
changes with the temperature. The relationship between the resistance and temperature of an RTD is
highly predictable, which allows accurate and repeatable temperature measurement over a wide range.
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1.1.1 RTD Measurement
The basic principle of RTD measurement is based on the Ohm’s law equation:

where
• R = Resistance of the RTD element
• I = Known excitation current
• V = Voltage across RTD element (1)

RTDs require constant current source for its excitation to produce a voltage output proportional to the
resistance of the RTD. The resulting voltage output is measured by the analog-to-digital converter (ADC).
The RTD voltage is amplified based on the requirement. Based on the measured voltage, the RTD
resistance or temperature is calculated. Depending on the RTD type, different excitation currents can be
used. The RTDs are available in different lead wire configurations: 2-, 3-, and 4-wire.

1.1.2 Ratiometric Measurement
A ratiometric approach guarantees more effective number of bits (ENOBs) as the noise in the IDAC
reflects in the reference and as well as in the input and hence tends to cancel off. The effect of the IDAC
current temperature drift also gets canceled off in this ratiometric topology.

ADC requires a reference voltage to convert the input voltage into a digital output. In most applications,
this reference is fixed and generated either internal or external to the ADC. The voltage reference has
direct influence on the accuracy of output. If the measurement can be configured such that the ADC result
is a ratio of the input and a precision element such as a resistor, then much higher precision results can
be obtained. In ratiometric configuration, the excitation current that flows through the RTD returns to
ground through a low-side reference resistor, RREF. The voltage developed across RREF is fed into the
positive and negative reference pins (REFP and REFN) of the ADC and ADS1248 is configured to use this
external reference voltage VREF for the analog-to-digital conversions. Select RREF as a low-tolerance, low-
drift resistor for accurate results.

The voltage drop across the RTD and RREF resistors is produced by the same excitation source and the
ADC output code is a relationship between the input voltage and the reference voltage. Therefore, errors
as a result of the absolute accuracy of the excitation current and the errors because of excitation drift are
virtually eliminated. In addition, the noise of the excitation source at the inputs is also reflected on the
reference path of the ADC and, in this manner, cancels the noise. Therefore, the system becomes
immune to variations in the excitation.

Figure 2. Simplified Circuit for RTD Ratiometric Measurement
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(2)

(3)

(4)

Figure 3. Ratiometric 4-Wire Operation
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1.1.3 Connecting 2-, 3-, and 4-Wire RTD Inputs
This module is compatible with 2-, 3-, and 4-wire RTD inputs. The connection diagrams for connecting
them to the module are shown in Figure 4. The user just needs to connect jumper wires externally as
indicated by the red-colored wires. This arrangement does not call for any change in the hardware on the
module and is quite useful when user can access only the interface connectors.

Figure 4. Different RTD Input Connections

Table 1. RTDs Used in Smart Grid

RTD TYPE TEMPERATURE COEFFICIENT OF RESISTANCE (TCR) / °C
100-Ω platinum 0.00385
250-Ω platinum 0.00385

100-Ω nickel 0.00618
120-Ω nickel 0.00618
10-Ω copper 0.00427

Table 2 shows the resistance versus temperature for different types of RTDs.

Table 2. RTD Resistance versus Temperature

RTD TYPE
TEMPERATURE (°C)

Pt100 Ni100 Ni120 Cu10
300 212.02 — 439.44 —
200 175.84 223.20 303.46 16.78
100 138.50 161.80 200.64 12.90
90 134.70 154.90 191.64 12.51
80 130.89 148.30 182.84 12.12
70 127.07 141.70 174.25 11.74
60 123.24 135.30 165.90 11.35
50 119.40 129.10 157.74 10.97
40 115.54 123.00 149.79 10.58
30 11.67 117.10 142.06 10.19
20 107.79 11.20 134.52 9.81
10 103.90 105.60 127.17 9.42
0 100.00 100.00 120.00 9.04

–10 96.09 94.60 113.00 8.65
–20 92.16 89.30 106.15 8.26
–30 88.22 84.10 99.41 7.88
–40 84.27 79.10 92.76 7.49
–50 80.31 — 86.17 7.10
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1.2 Protection Relay and Need for Temperature Sensing
Smart grid consists of the following sections:
1. Generation
2. Transmission
3. Distribution

Figure 5. Smart Grid — Generation to Distribution

A typical smart grid system consists of generators for power, step-up transformers for transmission, step-
down transformers for distribution, and loads consisting mainly of motors. The voltage and the power
levels across the grid is very high, and any electrical faults on the system can lose a huge amount of
capacity and revenue. To ensure the systems are protected against different electrical faults, use
protection relays at different stages of the transmission system, such as
• Generator protection
• Transformer protection
• Distance protection
• Feeder protection
• Motor protection
• Bus bar protection

The basic purpose of a protection relay is to protect the grid in the event of a malfunction by monitoring
the current and voltage on specific lines on the grid. The inputs into a protection relay are typically
currents and voltages from a sensor on the line plus any communication from other related equipment on
the grid network. The output would be signals to a circuit breaker (to turn open or close) and
communication to the grid network. In case the protection relay detects a fault, the delay commands a
breaker to open the line where the fault is detected, which protects everything down the line from the
protection relay. The accurate measurement of the voltage, current, or other parameter like temperature
pressure or vibration of a power system is a prerequisite to any form of control, ranging from automatic
closed-loop control to the recording of data for statistical purposes. Measuring these parameters can be
accomplished in a variety of ways, including the use of direct-reading instruments and electrical measuring
transducers.
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Protections relays measure the following parameters and based on the set threshold they protect:
1. Currents
2. Voltages
3. Temperature
4. Power direction

Most protection relays monitor temperature of the systems they protect.

Generator or Motor Protection
Generators are designed to run at a high load factor for a large number of years and permit certain
incidences of abnormal working conditions. The machine and its auxiliaries are supervised by monitoring
devices to keep the incidences of abnormal working conditions down to a minimum. Despite the
monitoring, electrical and mechanical faults can occur, and the generators must be provided with
protective relays, which, in case of a fault, quickly disconnect the machine from the system and, if
necessary, completely shut down the machine. Thermal overload protection is one such protection. For
motor protection, the relay monitors temperature of the following: motor winding, motor bearing, load
bearing, and auxiliary winding.

Transformer Protection
Transformers are a critical and expensive component of the power system. Due to the long lead time for
repair of and replacement of transformers, a major goal of transformer protection is to limit the damage to
a faulted transformer. Temperature-based protection can aid this goal by identifying operating conditions
that may cause transformer failure. Transformer protection relay monitors temperature of primary or
secondary winding hot-spots, the oil at the bottom and top of the transformer, and the ambient air. An
RTD input can also be used as a direct resistance measuring input for position tracking of an on-load tap
changer.

The number of sensors depends on the size of the motor, generator, and transformer. Protection relays
provide a certain number of RTDs. Many applications may need to monitor more RTDs and multiple
motors, generators, or transformers using one protection relay. An RTD expansion module is used along
with the protection relay to sense the temperature inputs, compute the temperatures and communicate the
temperature values to the relay for protection. Different types of RTD can be used based on the
applications. The accuracy of measurement for different sensors is expected to be the same and high. An
accurate ADC is required to measure the temperature. An ADC with internal PGA ensures multiple types
of RTD connection. A current source is required to excite the RTDs for measured. If the current source is
integrated with the ADC, the complexity of design reduces and ensured better accuracy.

Some of the protections required in each segment are:
• For power generation: Generator protection, breaker protection, and transformer protections
• For transmission: Transformer protection, line voltage differential protection, and line distance

protections
• For distribution: Transformer protection, motor protection, air circuit breakers, and molded case circuit

breakers

Since a number of RTDs are connected to one expansion module or protection relay the conversion time
of the ADC is important. The temperature is a slow varying signal, so the number of samples to be
measured per second will be less. It is preferred that all the RTD inputs are samples at least once a
second in a module that has 12 RTDs. Higher resolution ADCs with PGA, matched current source and
radiometric measurement techniques, are used to improve accuracy.

TI has a large portfolio of ΔΣ ADCs that suits the requirements for RTD measurements. Additional to the
resolution, TI ΔΣ ADCs have a high level of integration including current source, PGA, and reference. The
ADCs consume a low amount of power.
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Other advantages of ΔΣ ADCs include:
• Better noise performance for DC applications
• High resolution
• No active anti-aliasing filter required
• Good for "slow" signals
• Lower cost
• Lower power
• Small size
• Integration with:

– PGA
– Current sources
– Sensor burn out detection
– Temperature sensor

This design focuses on the following:
• Using TI ΔΣ ADCs for measuring temperature using RTD
• Measuring four RTD inputs
• Multiplexing current source to measure four RTD inputs
• Using internal PGA to achieve higher accuracy
• Using SPI to configure and read data from the ADC
• Using I2C I/O expander for /CS, START, /DRDY, excitation current selection, and LED indications

NOTE: This design can be used inside a protection relay or in expansion modules. For safety, the
user may need to isolate the RTD measurement sub system from the main processing
system.

When there is a need for isolation, this TI design can be interfaced with the TI Design
TIDA-00300. The TIDA-00300 provides isolation for SPI, I2C, and power inputs. The
interface connectors are screw-type connectors enabling the boards to connect easily.

All the relevant design files such as schematics, BOM, layer plots, Altium files, firmware, and Gerber have
also been provided to the user in Section 8.
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2 Design Specifications
Typical requirements for TIDA-00110 are:

Table 3. System Specifications for TIDA-00110

PARAMETERS SPECIFICATIONS AND FEATURES
Temperature sensing range –50°C to 250°C

Measurement accuracy < ±2°C
ADC resolution and type 24-bit, ΔΣ ADC with differential input

ADC interface for digital data SPI compatible
RTD sensor type 2-, 3-, and 4-wire inputs

Number of RTD inputs Four (4)
Dual-matched current source with a current range programmable inCurrent sources and excitation current range defined steps in the range of 50 µA to 1.5 mA

Excitation current selection Using dual single-pole quadruple-throw (4:1) analog switch
Multiplexer (analog switch) selection control Using an I2C I/O expander

Display of measured values GUI
Resistance measurement method Ratiometric

DC input voltage 4 to 6 V
ADC power supply 3.3 V

Indication LED indications for RTD input being sampled
4-pin screw-type terminal block for each RTD input

Interface connectors 4-pin screw-type terminal block for input power supply
8-pin screw-type terminal block for SPI and I2C interface

NOTE: For cost sensitive applications and applications that do not require wide temperature
measurement, the ADS1148 16-bit ΔΣ ADC can be used. The ADS1148 is pin and footprint
compatible with the ADS1248. Modify the firmware accordingly to use the ADS1148.
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3 Block Diagram

Figure 6. System Block Diagram

3.1 ADC
This design demonstrates measurement of four RTDs using a single ADS1248 ADC. ADS1248 is a highly-
integrated, precision, 24-bit ADC.

ADS1248 has following features:
• Four differential inputs
• Matched current source for RTD excitation
• PGA with selectable gain up to 128
• Internal reference with provision to configure for external reference
• SPI for configuration and ADC samples reading
• /CS and START (conversion start) for control of sampling
• GPIOs for user usage

To communicate with the ADS1248, an SPI is provided on 8-pin screw-type terminal blocks. Four-pin
screw-type terminal blocks are available for connecting the RTD inputs.

3.2 Dual 4:1 Analog Switch
This design uses dual-matched current source. This current is switched between four RTDs. TS3A5017D
is used to switch excitation current between RTDs. The TS3A5017 is a dual single-pole quadruple-throw
(4:1) analog switch that operates from 2.3 to 3.6 V and can handle analog signals.
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3.3 I2C I/O Expander
I2C I/O expander is used for following:
• Switching of excitation current for RTD inputs
• For ADC control lines like /DRDY, START, /CS, /RESET
• To control LEDs (for visual indication)

This design uses TCA6408A, a low-voltage, 8-bit I2C I/O expander.

To communicate with the TCA6408A, the required I2C signals are extended to the 8-pin screw-type
terminal block.

3.4 Power Supply
This design requires a 3.3-V supply. TPS7A1633 is used to generate 3.3 V. The TPS7A1633 is an ultra-
low power, low-dropout (LDO) voltage regulator that offers the benefits of ultra-low quiescent current, high
input voltage, and a miniaturized, high thermal-performance packaging. A 4-pin screw-type terminal block
is provided to connect the external DC input.

3.5 LED Indicators
Two LEDs are provided to indicate the RTD input channel currently being scanned.
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4 Circuit Design

4.1 ADC
Figure 7 and Figure 8 display the ADS1248 features:

Figure 7. Pin Configuration of ADS1248

Figure 8. ADS1248 Pin Configuration

The four RTD inputs are connected to four differential inputs of the ADS1248.

The ADS1248 is a highly-integrated, precision, 24-bit ADC. The ADS1248 features an onboard, low-noise,
programmable gain amplifier (PGA), a precision ΔΣ ADC with a single-cycle settling digital filter, and an
internal oscillator. The ADS1248 also provides a built-in, very low-drift voltage reference with a 10-mA
output capacity, and two matched programmable current digital-to-analog converters (DACs). The
ADS1248 provides a complete front-end solution for temperature sensor applications including thermal
couples, thermistors, and RTDs.
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An input multiplexer supports four differential inputs for the ADS1248. In addition, the multiplexer has a
sensor burnout detect, system monitoring, and general-purpose digital I/Os. The onboard, low-noise PGA
provides selectable gains of 1 to 128. The ΔΣ modulator and adjustable digital filter settle in only one
cycle, for fast channel cycling when using the input multiplexer, and support data rates up to 2 kSPS.

Internal reference with provision to configure for external reference is available in ADS1248.

The voltage reference for the ADS1248 is the differential voltage between REFP and REFN:
VREF = VREFP – VREFN

For the ADS1248, there is a multiplexer that selects the reference inputs. The reference input uses a
buffer to increase the input impedance as with the analog inputs, REFP0 and REFN0 can be configured
as digital I/Os on the ADS1248. This design uses external reference.

The ADS1248 is rated over the extended specified temperature range of –40°C to 105°C.

Some of the highlighted features of ADS1248 are:
• 24 bits, no missing codes
• Data output rates up to 2 kSPS
• Single-cycle settling for all data rates
• Four differential or seven single-ended inputs
• Low-noise PGA: 48 nV at PGA = 128
• Matched current source DACs
• Very low drift internal voltage reference: 10 ppm/°C (max)
• Sensor burnout detection
• Eight general-purpose I/Os
• Internal temperature sensor
• Power supply and VREF monitoring
• Self and system calibration
• SPI compatible
• Analog supply: unipolar (2.7 to 5.25 V)
• Digital supply: 2.7 to 5.25 V
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4.1.1 3-Wire RTD Calculations
The ADS1248 integrates all necessary features (such as dual-matched programmable current sources,
buffered reference inputs, PGA, and so forth) to ease the implementation of ratiometric 2-, 3-, and 4-wire
RTD measurements. The 3-wire RTD configuration is most commonly used for industrial temperature
sensors. Figure 9 shows a typical implementation of a ratiometric 3-wire RTD measurement.

Figure 9. 3-Wire RTD Measurement Circuit Diagram

The ADS1248 features two IDAC current sources capable of outputting currents from 50 μA to 1.5 mA.
IDAC1 is routed to one of the excitation leads of the RTD while IDAC2 is routed to the second excitation
lead as shown in Figure 9 by appropriate setting of IDAC1 and IDAC2 in the firmware. Both currents have
the same value, which is programmable. The design of the ADS1248 ensures that both IDAC values are
closely matched, even across temperature.
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4.1.1.1 RREF and PGA Gain
The resistance of the Pt100 changes from 80.31 Ω at –50°C to 194.07 Ω at 250°C. The line resistance
RLEAD depends on the distance of the sensor from the measurement setup. Assuming RLEAD equals 5 Ω,
the positive resistance swing is from 100 to 194.07 Ω, which is about 90.07 Ω. The negative resistance
swing is from 100 to 80.31 Ω, which is about 19.69 Ω. The IDAC current must be 1 mA or less to minimize
the self-heating error. The IDAC current chosen here is 500 μA. Then, maximum and minimum input
voltages to the PGA are 194.07 Ω × 500 μA = 97.04 mV and 80.31 Ω × 500 μA = 40.15 mV, respectively.
The external reference resistor RREF serves two purposes firstly it decides the external reference voltage
for ADC and secondly, it also determines the input common mode voltage of the PGA. Set the common
mode voltage around mid-supply (AVDD – AVSS) / 2 = (3 V – 0 V) / 2 = 1.65 V. Therefore, the reference
voltage chosen here is 2 V, which also depends on easily available resistance value and excitation
current. The sum of both currents flows through a precision low-drift reference resistor, RREF. The voltage,
VREF, generated across the reference resistor is given in Equation 5:

(5)

Because IDAC1 = IDAC2 = 500 μA:
(6)

Solving for RREF:

(7)

For the required gain:

(8)

The nearest gain that can be programmed is 16.
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4.1.1.2 Common-Mode Voltage Compliance Check
The signal of an RTD is of a pseudo-differential nature, where the negative input must be biased at a
voltage other than 0 V and the positive input can then swing up to 97.04 mV above the negative input.

The allowed common-mode input voltage range is as highlighted in Figure 10 (taken from the ADS1248
datasheet [8]):

Figure 10. Common-Mode Input Range Equation

Assume that IDAC1 = IDAC2 and RL (RLEAD) = 5 Ω (depending on length of lead wires).

Calculating VCMI from the equations highlighted in Figure 10:
Placing AVSS = 0 V, VIN = 97.04 mV, Gain = 16, and AVDD = 3.3 V in the equations shown in Figure 10:

VCMI_MIN = 0.876 V and VCMI_MAX = 2.423 V

Now, the common-mode input voltage actually set by the design can be given as:

(9)

Placing IDAC = 500 µA, RLEAD = 5 Ω, RRTD = 194.07 Ω, and RREF = 2 kΩ in Equation 9:
VCMI_MIN_APPLIED = 2.027 V

Placing IDAC = 500 μA, RLEAD = 5 Ω, RRTD = 194.07 Ω, and RREF = 2 kΩ in Equation 9:
VCMI_MAX_APPLIED = 2.056 V

Here, VCMI_MIN_APPLIED > VCMI_MIN and VCMI_MAX_APPLIED < VCMI_MAX

This value is well within the maximum allowed common-mode input voltage range.
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4.1.2 Noise Considerations and Input Filter
RTD voltage output signals are typically in millivolt range which makes them susceptible to noise. A first-
order differential and common-mode RC filter (RF1, RF2, CDIF1, CCM1, and CCM2) is placed on the ADC inputs,
as well as on the reference inputs (RF3, RF4, CDIF2, CCM3, CCM4) to eliminate high-frequency noise in RTD
measurements. For best performance, it is recommended to match the corner frequencies of the input and
reference filters. More detailed information on matching the input and reference filters can be found in
application report RTD Ratiometric Measurements and Filtering Using the ADS1148 and ADS1248.[2]

The differential filters chosen for this application were designed to have a –3-dB corner frequency at least
10 times larger than the bandwidth of ADC. The selected ADS1248 sampling rate of 20 SPS results in a
–3-dB bandwidth of 13.1 Hz. The cut off frequency chosen for this design is higher to account for faster
sampling rate. For proper operation, the differential cutoff frequencies of the reference and input low-pass
filters must be well matched. Matching the frequencies and filters can be difficult because as the
resistance of the RTD changes over the span of the measurement, the filter cutoff frequency changes as
well. To mitigate this effect, the two resistors used in the input filter (RI1 and RI2) were chosen to be more
than an order of magnitude larger than the RTD. Limiting the resistors to at most 20 kΩ to keep DC offset
errors low due to input bias current.

Figure 11. Common Mode and Differential Mode Filters on RTD Input and Reference

RI1 = RI2 = 4.12 kΩ and CI_DIFF = 0.047 μF

The –3-dB cutoff frequency of differential input filter at a 186-Ω RTD resistance (at mid-scale temperature)
can be calculated as given in Equation 10.

(10)
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To ensure that mismatch of the common-mode filtering capacitors is not translated to a differential voltage,
the common-mode capacitors (CI_CM1 and CI_CM2) were chosen to be 10 times smaller than the differential
capacitor. This results in a common-mode cutoff frequency that is roughly 10 times larger than the
differential filter, making the matching of the common-mode cutoff frequencies less critical.

CI_CM1 = CI_CM2 = 4700 pF

Although it is not always possible to exactly match the corner frequencies of all the filters, a good
compromise is to attempt to balance the corner frequencies of the input path differential filter and the
reference path differential filter because these filters have a dominant effect in the performance.

RR1 = RR2 = 4.7 kΩ and CR_DIFF = 0.033 μF

The –3-dB cutoff frequency of differential reference filter can be calculated as given in Equation 11:

(11)

To ensure that mismatch of the common-mode filtering capacitors is not translated to a differential voltage,
the common-mode capacitors (CR_CM1 and CR_CM2) were chosen to be 10 times smaller than the differential
capacitor. This results in a common-mode cutoff frequency that is roughly 10 times larger than the
differential filter, making the matching of the common-mode cutoff frequencies less critical.

CR_CM1 = CR_CM2 = 3300 pF

Figure 12. Common-Mode and Differential-Mode Filters Implemented in Design for RTD
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Furthermore, before taking sensor measurement, the user must ensure that the external RC filters settle
down to ½ LSB after activating the excitation current sources. It may be ensured by implementing
software delay for several RC time constants. For 24-bit resolution measurement, after exciting the
sensor, the user must wait up to 17-RC filter time constants for consistent measurements.

Table 4. 4-Pin Terminal Block TH Connector for External RTD Input

RTD CONNECTOR ON THE BOARD
RTD1 J1
RTD2 J2
RTD3 J4
RTD4 J6

Figure 13 shows the RTD connectors on the board.

Figure 13. J1 Connector of RTD1

The ADS1248 has a simple SPI-compatible serial interface to communicate with the host. In this design,
the SPI is communicating at 2Mbps.

Figure 14 shows the 8-pin terminal block for the SPI and I2C interface.

Figure 14. J3 Connector for SPI and I2C Interface With External Devices

19TIDU575–December 2014 Analog Front End (AFE) for Sensing Temperature in Smart Grid Applications
Using RTDSubmit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU575


1EN
1

IN2
2

1S4
3

1S3
4

1S2
5

1S1
6

1D
7

GND
8

2D
9

2S1
10

2S2
11

2S3
12

2S4
13

IN1
14

2EN
15

V+
16

U3

TS3A5017D

RTD1_IEXC2

IEXC2

RTD2_IEXC2

RTD3_IEXC2

RTD4_IEXC2

RTD1_IEXC1

IEXC1

RTD2_IEXC1

RTD3_IEXC1

RTD4_IEXC1

SGND

SGND

SGND

+3.3V

0.1µF
C19100R37

RTD_Sel0

100R23
RTD_Sel1

SGND

0R22

0R21

0R20

0R19

0R24

0R36

0R35

0R34

0R33

0R29

10µF

C20

10k

R25

10k

R38

1
Logic

Control
Logic

Control

2 15

3 14

4 13

5 12

6 11

7 10

1EN

IN2

1S

1S

1S

1S

1D

4

3

2

1

GND

V

2EN

+

IN1

2S4

2S

2S

2S

2D

3

2

1

8 9

Circuit Design www.ti.com

4.2 Multiplexer
TS3A5017D is used to switch excitation current for all the RTDs. The TS3A5017 is a dual single-pole,
quadruple-throw (4:1) analog switch that is designed to operate from 2.3 to 3.6 V. This device can handle
both digital and analog signals, and signals up to V+ can be transmitted in either direction.

Figure 15. Pin Configuration View of TS3A5017D

Figure 16 shows excitation current multiplexing connections:

Figure 16. Multiplexer Section

Some of the highlighted features of TS3A5017D are:
• Isolation in the powered-down mode, V+ = 0
• Low on-state resistance
• Low charge injection
• Excellent on-state resistance matching
• Low total harmonic distortion (THD)
• 2.3- to 3.6-V single-supply operation
• Latch-up performance exceeds 100 mA per JESD 78, Class II
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4.3 I2C I/O Expander
This design uses the TCA6408A, a low-voltage 8-bit I2C I/O expander.

Figure 17. Pin Configuration of TCA6408A

The TCA6408A performs the following actions in this design:
• Controls switching of excitation current between four channels of RTD
• Communicates with ADC control lines /DRDY, START, /CS, and /RESET
• Controls LEDs (for visual indication)
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Figure 18. I2C I/O Expander

This 8-bit I/O expander for the I2C provides general-purpose remote I/O expansion through the I2C
interface [serial clock (SCL) and serial data (SDA)].

Some of the highlighted features of the TCA6408A are:
• Operating power-supply voltage range of 1.65 to 5.5 V
• I2C to parallel port expander
• Low standby current consumption of 1 μA
• Schmitt-trigger action allows slow input transition and better switching noise immunity at the SCL and

SDA inputs VHYS = 0.33 V typical at 3.3 V
• 5-V tolerant I/O ports
• Active-low reset (RESET) input
• Open-drain active-low interrupt (INT) output
• 400-kHz fast I2C bus
• I/O configuration register
• Polarity inversion register
• Internal power-on reset
• Power up with all channels configured as inputs
• No glitch on power up
• Noise filter on SCL/SDA inputs
• Latch-up performance exceeds 100 mA per JESD 78, Class II
• ESD protection exceeds JESD 22

– 2000-V human-body model (A114-A)
– 1000-V charged-device model (C101)

22 Analog Front End (AFE) for Sensing Temperature in Smart Grid Applications TIDU575–December 2014
Using RTD Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU575


OUT
1

DNC
2

PG
3

4

EN
5

NC
6

DELAY
7

IN
8

9

EP GND

U1
TPS7A1633DGNR

0.1µF
C154.7µF

C16

L1

1000 OHM

TP4
+3.3V

SGNDSGNDSGND

3.8V

D14
PTZTE253.6B

SGND

SGND

SGND

1000pF

C5
0.1µF
C8

SGND

+6V TP1

10µF

C4 1.2k
R26

0
R14

10µF

C14

Green
D13

IN

DELAY

NC

EN

OUT

FB/DNC

PG

GND

1

2

3

4

8

7

6

5

www.ti.com Circuit Design

4.4 Power Supply
The TPS7A1633 is an ultra-low power, LDO voltage regulator that offers the benefits of ultra-low
quiescent current, high input voltage and miniaturized, high thermal-performance packaging.

The TPS7A1633 is designed for continuous or sporadic (power backup) battery-powered applications
where ultra-low quiescent current is critical to extending system battery life.

The TPS7A1633 offers an enable pin (EN) compatible with standard CMOS logic and an integrated open
drain active-high power good output (PG) with a user-programmable delay. These pins are intended for
use in microcontroller-based, battery-powered applications where power-rail sequencing is required.

Not only can this device supply a well-regulated voltage rail, but it can also withstand and maintain
regulation during voltage transients. These features translate to simpler and more cost-effective, electrical
surge-protection circuitry

Table 5. Critical Parameters of TPS7A1633

PARAMETER VALUE
Iout (Max) (A) 0.1
Output options Fixed output
Vin (Min) (V) 3
Vin (Max) (V) 60

Fixed output options (V) 3.3
Vout (Min) (V) 3.3
Vout (Max) (V) 3.3
Iq (Typ) (mA) 0.005

Vdo (Typ) (mV) 60
Accuracy (%) 2

PSRR at 100 KHz (dB) 26

Figure 19. Pin Configuration of TPS7A1633

Figure 20 shows the implementation of a 3.3-V power supply using the TPS7A1633 LDO.

Figure 20. TPS7A1633 Section of the TIDA-00110 Schematic
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Figure 21 shows the 4-pin terminal block for the power supply input.

Figure 21. DC Input Connector

4.5 LED Indicators
The LEDs indicate the present status of the RTD channel that is beg scanned. The indication logic is as
shown in Table 6.

Table 6. LED Indicators

PRESENT SCANNING LED1 (D8) STATUS LED2 (D10) STATUS
Channel 1 Toggle Toggle
Channel 2 OFF ON
Channel 3 ON OFF
Channel 4 ON ON
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4.6 Tiva™ C Series LaunchPad™ Interface
The Tiva C Series LaunchPad (EK-TM4C123GXL) is a low-cost evaluation platform for ARM® Cortex™-
M4F-based microcontrollers. The Tiva C Series LaunchPad design highlights the TM4C123GH6PMI
microcontroller USB 2.0 device interface, hibernation module, and motion control pulse-width modulator
(MC PWM) module. The Tiva C Series LaunchPad also features programmable user buttons and an RGB
LED for custom applications. The stackable headers of the Tiva C Series LaunchPad BoosterPack™ XL
interface demonstrate how easy it is to expand the functionality of the Tiva C Series LaunchPad when
interfacing to other peripherals on many existing BoosterPack add-on boards as well as future products.
Figure 22 shows a photo of the Tiva C Series LaunchPad.

Figure 22. Tiva C Series TM4C123G LaunchPad Evaluation Board
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4.7 PCB Design Guidelines
• An SMD ceramic bypass capacitor of approximately 0.1 μF in value is recommended for all the digital

ICs. Should it be required to use leaded components, keep leads as short as possible to minimize lead
inductance.

• A continuous ground plane is ideal for providing a low-impedance signal return path as well as
generating the lowest EMI signature by reducing phenomena such as unintended current loops.

• Should a continuous ground plane not be possible, it is important to minimize the length of the trace
connecting VCC and ground.

• PCB material: Standard Flame Retardant 4 (FR-4) epoxy-glass as printed-circuit board (PCB) material
is preferred for industrial applications with a speed < 100 Mhz. FR-4 meets the requirements of
Underwriters Laboratories UL94-V0 and is preferred over cheaper alternatives due to its lower
dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and its
self-extinguishing, flammability characteristics.

• Trace routing: Use 45° bends (chamfered corners), instead of right-angle (90°) bends. Right-angle
bends increase the effective trace width, and thus the trace impedance. This creates additional
impedance mismatch, which may lead to higher reflections.

26 Analog Front End (AFE) for Sensing Temperature in Smart Grid Applications TIDU575–December 2014
Using RTD Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU575


RTD2 RTD3

R
T

D
4

6
 V

G
N

D

SPI and I2C

R
T

D
1

www.ti.com Software Description

5 Software Description
For software description and code examples for TIDA-00110, please see TIDU575: Software Code
Examples for TIDA-00110.

6 Test Setup
Tools and equipment used to test ADC measurement accuracy:
• Yokogawa Model GS610 Source Measure Unit with accuracy: ±0.02% (DC voltage generation)
• Agilent 34401A 6½-Digit Multimeter for measuring resistance in four-wire method and measuring mV
• 0.01% tolerance high precision resistor to simulate RTD resistance

Figure 23. Test Setup for TIDA-00110

For Pt100 RTD, Table 7 shows resistance and respective voltage (mV) for different temperatures.

Table 7. Temperature versus Voltage Across RTD

TEMPERATURE (°C) RESISTANCE (Ω) EXPECTED VOLTAGE DROP WITH 500-µA EXCITATION CURRENT (mV)
–50 80.3068 40.15

0 100.0000 50.00
50 119.3951 59.70
100 138.5000 69.25
150 157.3149 78.66
200 175.8396 87.92
250 194.0743 97.04
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7 Test Results

7.1 ADC Linearity
To check the linearity of ADS1248, a DC mV input signal is applied using the Yokogawa Model GS610
Source. ADC bit counts (ADC_CODE) are read for RTD channels 1 to 4. ADC counts are converted to VIN
using Equation 12:

(12)

Use VREF = 2.048 V, GAIN = 16, and ADC_CODE = ADC readings for each RTD channel.
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Table 8. Channel 1: Linearity Performance

VCHANNEL1 (mV) CHANNEL1ERRORVAPPLIED (mV) (WITHOUT GAIN MULTIPLICATION) (AFTER GAIN MULTIPLICATION)
24.972 24.95766 0.07%
29.972 29.94252 0.03%
34.969 34.9265 0.01%
36.969 36.92699 0.01%
38.970 38.9221 0.01%
40.969 40.92225 0.01%
42.969 42.9146 0.00%
44.969 44.90884 –0.01%
46.968 46.91064 0.01%
48.967 48.90668 0.01%
50.970 50.90246 0.00%
52.970 52.89703 –0.01%
54.967 54.89291 –0.01%
56.968 56.88804 –0.01%
58.967 58.885 –0.01%
60.968 60.88195 –0.01%
62.967 62.87782 –0.01%
64.966 64.87613 –0.01%
69.965 69.86636 –0.01%
74.965 74.85669 –0.02%
79.964 79.85213 –0.01%
84.963 84.84324 –0.01%
89.963 89.83919 –0.01%
94.963 94.835 –0.01%
96.960 96.83171 0.00%
99.960 99.82369 –0.01%
102.962 102.8255 0.00%
105.962 105.8196 –0.01%
107.960 107.8193 0.00%
109.960 109.8188 0.00%
111.959 111.8131 0.00%
114.958 114.8095 0.00%
119.957 119.8032 0.00%
124.957 124.7988 0.00%
126.958 126.7952 0.00%
129.956 128.0000 –1.38%

NOTE: Applied gain multiplication factor is 1.00128.
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Table 9. Channel 2: Linearity Performance

VCHANNEL2 (mV) CHANNEL2ERRORVAPPLIED (mV) (WITHOUT GAIN MULTIPLICATION) (AFTER GAIN MULTIPLICATION)
24.972 24.95338 0.06%
29.972 29.93974 0.02%
34.969 34.92714 0.01%
36.969 36.92403 0.01%
38.970 38.91727 0.00%
40.969 40.91727 0.00%
42.969 42.91207 0.00%
44.969 44.90584 –0.01%
46.968 46.91152 0.01%
48.967 48.90452 0.00%
50.970 50.89978 –0.01%
52.970 52.89782 –0.01%
54.967 54.8893 –0.01%
56.968 56.88943 –0.01%
58.967 58.88457 –0.01%
60.968 60.88365 –0.01%
62.967 62.87493 –0.02%
64.966 64.87406 –0.01%
69.965 69.86466 –0.01%
74.965 74.85849 –0.01%
79.964 79.85144 –0.01%
84.963 84.8479 0.00%
89.963 89.83695 –0.01%
94.963 94.83193 –0.01%
96.960 96.82842 0.00%
99.960 99.82069 –0.01%
102.962 102.822 –0.01%
105.962 105.8159 –0.01%
107.960 107.8166 0.00%
109.960 109.8165 0.00%
111.959 111.8078 0.00%
114.958 114.8069 0.00%
119.957 119.8038 0.00%
124.957 124.7929 0.00%
126.958 126.7918 0.00%
129.956 128.0000 –1.38%

NOTE: Applied gain factor is 1.001310.
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Table 10. Channel 3: Linearity Performance

VCHANNEL3 (mV) CHANNEL3ERRORVAPPLIED (mV) (WITHOUT GAIN MULTIPLICATION) (AFTER GAIN MULTIPLICATION)
24.972 24.95697 0.07%
29.972 29.94044 0.02%
34.969 34.92873 0.01%
36.969 36.92693 0.01%
38.970 38.92284 0.01%
40.969 40.91598 0.00%
42.969 42.91109 –0.01%
44.969 44.90875 –0.01%
46.968 46.90954 0.00%
48.967 48.9026 0.00%
50.970 50.9006 –0.01%
52.970 52.89588 –0.01%
54.967 54.89344 –0.01%
56.968 56.88652 –0.01%
58.967 58.88598 –0.01%
60.968 60.88221 –0.01%
62.967 62.87755 –0.01%
64.966 64.8734 –0.01%
69.965 69.86158 –0.02%
74.965 74.85734 –0.02%
79.964 79.8507 –0.01%
84.963 84.84557 –0.01%
89.963 89.8371 –0.01%
94.963 94.83109 –0.01%
96.960 96.83072 –0.01%
99.960 99.82227 –0.01%
102.962 102.8224 –0.01%
105.962 105.8192 –0.01%
107.960 107.8165 0.00%
109.960 109.8157 0.00%
111.959 111.8106 0.00%
114.958 114.8075 0.00%
119.957 119.8013 0.00%
124.957 124.7962 0.00%
126.958 126.7951 0.00%
129.956 128.0000 –1.38%

NOTE: Applied gain factor is 1.001284.
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Table 11. Channel 4: Linearity Performance

VCHANNEL4 (mV) CHANNEL4ERRORVAPPLIED (mV) (WITHOUT GAIN MULTIPLICATION) (AFTER GAIN MULTIPLICATION)
24.972 24.95606 0.07%
29.972 29.94122 0.03%
34.969 34.92886 0.01%
36.969 36.92489 0.01%
38.970 38.92012 0.00%
40.969 40.91657 0.00%
42.969 42.91369 0.00%
44.969 44.90719 –0.01%
46.968 46.9107 0.01%
48.967 48.90607 0.00%
50.970 50.90158 –0.01%
52.970 52.89598 –0.01%
54.967 54.89154 –0.01%
56.968 56.88658 –0.01%
58.967 58.88463 –0.01%
60.968 60.88013 –0.02%
62.967 62.87574 –0.02%
64.966 64.87512 –0.01%
69.965 69.86325 –0.02%
74.965 74.85668 –0.02%
79.964 79.85253 –0.01%
84.963 84.8452 –0.01%
89.963 89.8364 –0.01%
94.963 94.83339 –0.01%
96.960 96.83004 0.00%
99.960 99.82408 –0.01%
102.962 102.8224 –0.01%
105.962 105.8189 –0.01%
107.960 107.8186 0.00%
109.960 109.814 0.00%
111.959 111.8099 0.00%
114.958 114.8075 0.00%
119.957 119.7999 0.00%
124.957 124.796 0.00%
126.958 126.7941 0.00%
129.956 128.0000 –1.38%

NOTE: Applied gain factor is 1.001292.
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When an 130-mV input is applied, for a gain of 16 the output is 2080 mV. The ADC range up to which the
linearity performance is guaranteed is 2048 mV. The ADC measurement saturates above 2048 mV.

Figure 24. ADC Linearity Performance After Applying Gain Factor
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7.2 ADS1248 Characterization in Temperature Measurement Configuration
To test the accuracy of the acquisition circuit alone, a series of high-precision discrete resistors were used
as the input to the system. The offset error can be attributed largely due to the offset of the internal PGA
and ADC, while the gain error can be attributed to the accuracy of the RREF resistor and gain error of the
internal PGA and ADC. The ADC error characterization includes corrections for any mismatch in excitation
currents, offset, and gain errors.

Figure 25. 4-Wire Resistance Measurement Using 6½-Digit Multimeter

The design team followed this procedure for ADD characterization:
1. Chose different resistor values representing the RTD temperature inputs
2. Selected the resistance range equivalent to the temperature range of interest
3. Combined multiple resistors in series and parallel to get the required resistance values
4. Measured the resistance values with a multi-meter using the 4-wire resistance measurement technique
5. Connected the resistors to the RTD input terminals with care to ensure there was no additional

resistance being introduced from the contact by tightening the screws
6. Used a GUI to display the measured values
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Table 12. RTD1 Measurement

TEMPERATURE (°C) TEMPERATURE (°C)RCONNECTED (Ω) RTD1 (Ω) ERROR (°C)EQUIVALENT—ACTUAL EQUIVALENT—MEASURED
81.0755 –48.06 81.1769 –47.81 –0.25
89.3629 –27.11 89.48028 –26.81 –0.32
99.9778 –0.06 100.1098 0.28 0.34
119.9989 51.57 120.1415 51.93 0.36
145.8278 119.38 146.0030 119.83 0.45
163.1770 165.74 163.3946 166.29 0.56
179.8721 210.99 180.0964 211.55 0.55

Table 13. RTD2 Measurement

TEMPERATURE (°C) TEMPERATURE (°C)RCONNECTED (Ω) RTD2 (Ω) ERROR (°C)EQUIVALENT—ACTUAL EQUIVALENT—MEASURED
81.0755 –48.06 81.16632 –47.83 –0.20
89.3629 –27.11 89.46603 –26.84 –0.27
99.9778 –0.06 100.1127 0.29 0.35
119.9989 51.57 120.1418 51.93 0.36
145.8278 119.38 146.0063 119.84 0.46
163.1770 165.74 163.3907 166.28 0.54
179.8721 210.99 180.0973 211.55 0.56

Table 14. RTD3 Measurement

TEMPERATURE (°C) TEMPERATURE (°C)RCONNECTED (Ω) RTD3 (Ω) ERROR (°C)EQUIVALENT—ACTUAL EQUIVALENT—MEASURED
81.0755 –48.06 81.17819 –47.80 –0.20
89.3629 –27.11 89.47675 –26.82 –0.29
99.9778 –0.06 100.1217 0.31 0.37
119.9989 51.57 120.1531 51.96 0.41
145.8278 119.38 146.0188 119.87 0.51
163.1770 165.74 163.3938 166.29 0.55
179.8721 210.99 180.0995 211.56 0.57

Table 15. RTD4 Measurement

TEMPERATURE (°C) TEMPERATURE (°C)RCONNECTED (Ω) RTD4 (Ω) ERROR (°C)EQUIVALENT—ACTUAL EQUIVALENT—MEASURED
81.0755 –48.06 81.16966 –47.83 –0.17
89.3629 –27.11 89.46527 –26.85 –0.26
99.9778 –0.06 100.1159 0.30 –0.36
119.9989 51.57 120.1417 51.93 0.36
145.8278 119.38 146.0065 119.84 0.46
163.1770 165.74 163.3884 166.27 0.53
179.8721 210.99 180.094 211.55 0.56
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Figure 26 shows error for the four RTS after multiplying the measured mV with gain factor.

Figure 26. RTD Measurement Accuracy

7.3 Interfacing With Isolated Synchronous Serial Communication Module (TIDA-00300)
This design is a sub-system for sensing multiple RTD channels inside a protection relay or an RTD
expansion module. For safety in some of the applications, the RTD inputs are isolated from the measuring
system. This design, when interfaced with the Isolated Synchronous Serial Communication Module
(TIDA-00300) is configured as an isolated RTD measurement module. TIDA-00300 provides isolation for
SPI, I2C, and DC voltage inputs. The interface connectors are simple screw-type connectors enabling
easy connection between the two boards.

Isolated RTD functionality is verified with the TIDA-00300 board.

Table 16. Summary

SERIAL NUMBER TITLE OBSERVATION
1 Sensing of RTD inputs ADC measured the inputs as expected
2 ADC, PGA configuration Measurement follows the programmed gain
3 I2C I/O expander All I/Os functions were as expected
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8 Design Files

8.1 Schematics
To download the schematics, see the design files at TIDA-00110.

Figure 27. RTD1 to RTD3 Schematic
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Figure 28. RTD4 and Ratiometric Measurement
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Figure 29. ADS1248 and Analog Switch Circuit
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Figure 30. I2C I/O Expander, Power Supply, and LEDs
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8.2 Bill of Materials
To download the bill of materials (BOM), see the design files at TIDA-00110.

Table 17. BOM

MANUFACTURER PCBQTY REFERENCE PART DESCRIPTION MANUFACTURER DNIPARTNUMBER FOOTPRINT
1 !PCB1 Printed Circuit Board Any TIDA-00110

CAP, CERM, 0.047 µF, 504 C1, C23, C30, C34 TDK C1608X7R1H473K 0603V, ±10%, X7R, 0603
C2, C3, C21, C22, C28, CAP, CERM, 4700 pF, 50 V,8 TDK C1608X8R1H472K 0603C32, C37, C38 ±10%, X8R, 0603
C4, C14, C20, C26, C31, CAP, TA, 10 µF, 16 V,6 AVX F931C106KBA 3528-21C48 ±10%, 2 Ω, SMD

CAP, CERM, 1000 pF, 1001 C5 AVX 06031C102JAT2A 0603V, ±5%, X7R, 0603
C6, C7, C11, C13, C18, CAP, CERM, 0.1 µF, 50 V,0 C24, C25, C27, C33, C35, AVX 06035C104KAT2A 0603 DNI±10%, X7R, 0603C36
C8, C15, C17, C19, C29, CAP, CERM, 0.1 µF, 50 V,7 AVX 06035C104KAT2A 0603C50, C52 ±10%, X7R, 0603

CAP, CERM, 3300 pF, 50 V, C0603C332K5RAC2 C9, C10 Kemet 0603±10%, X7R, 0603 TU
CAP, CERM, 0.033 µF, 50 GRM188R71H3331 C12 MuRata 0603V, ±10%, X7R, 0603 KA61D
CAP, CERM, 4.7 µF, 50 V, C2012X5R1H475K1 C16 TDK 0805±10%, X5R, 0805 125AB
CAP, CERM, 1000 pF, 2 KV Johanson2 C39, C55 202R18W102KV4E 120610% X7R 1206 Dielectrics Inc

C40, C41, C42, C43, C46, CAP CER, 1000 pF, 100 V, CC1206KRX7R0B13 C47, C49, C51, C53, C54, Yageo 120610% X7R 1206 B102C56, C57, C58
CAP, CERM, 0.1 µF, 25 V,2 C44, C45 AVX 06033C104JAT2A 0603±5%, X7R, 0603

D1, D2, D3, D4, D12, D15, TVS Diode 11.1VWM13 D19, D20, D21, D23, D27, Littelfuse Inc P4SMA13CA SMA18.2VC SMDD28, D30
D5, D18, D31, D32, D33, Diode, Schotky, 200 V, 1 A, Diodes8 DFLS1200-7 PowerDI123D34, D35, D36 PowerDI123 Incorporated
D6, D7, D9, D11, D16, D17, TVS Diode,70VVVM, 8VC, Diodes0 DESD1P0RFW-7 SOT-323 DNID22, D24, D25, D26 SOT-323 Incorporated

OSRAM OptoLED, SMARTLED, GREEN, LG L29K-G2J1-24-3 D8, D10, D13 Semiconductors 0603570 NM, 0603 ZInc
Diode Zener, 3.8 V, 1 W, Rohm DO-214AC,1 D14 PTZTE253.6BPMDS Semiconductor SMA
TVS 18-V, 600-W BI-DIR1 D29 Littelfuse Inc SMBJ18CA SMBSMB
Machine Screw, Round, #4- B&F Fastener NY PMS 440 00250 H1, H2, H3, H4 40 × ¼, Nylon, Philips Screw DNISupply PHpanhead

10.62 × 10 ×5 J1, J2, J4, J5, J6 Receptacle, 100-mil, 4×1 TH TE Connectivity 282834-4 6.5 mm
8POSTerminal Block, 8×1, 2.541 J3 Phoenix Contact 1725711 Terminalmm, TH Block

TerminalTerminal Block, 2×1,1 J7 TE Connectivity 282834-2 Block, 2×1,2.54mm, TH 2.54 mm, TH
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Table 17. BOM (continued)
MANUFACTURER PCBQTY REFERENCE PART DESCRIPTION MANUFACTURER DNIPARTNUMBER FOOTPRINT

Ferrite Chip 1000 Ω, 3001 L1 TDK Corporation MMZ1608B102C 0603MA, 0603
Thermal Transfer Printable PCB Label

0 LBL1 Labels, 0.650" W × 0.200" H Brady THT-14-423-10 0.650"H × DNI
- 10,000 per roll 0.200"W
MOSFET, N-CH, 30 V, 22 A,2 Q1, Q2 Texas Instruments CSD17571Q2 DQKSON 2X2 MM

R1, R2, R28, R30, R45, RES, 4.12 kΩ, 0.1%, 0.1 W, RG1608P-4121-B-8 Susumu Co Ltd 0603R51, R54, R55 0603 T5
TNPW12062K00B1 R3 RES 2 KΩ, ¼ W, 0.1% 1206 Vishay-Dale 1206EEA

RES, 4.70 kΩ, 0.1%, 0.1 W, RG1608P-472-B-2 R4, R10 Susumu Co Ltd 06030603 T5
R5, R6, R15, R17, R31, CRCW0603249RF10 RES, 249, 1%, 0.1 W, 0603 Vishay-Dale 0603R32, R48, R49, R52, R53 KEA

RES, 300 Ω, 5%, 0.1 W, CRCW0603300RJ4 R7, R8, R12, R13 Vishay-Dale 06030603 NEA
RES, 0 Ω, 5%, 0.125 W,1 R9 Yageo America RC0805JR-070RL 08050805

CRCW060310K0J0 R11, R46, R50 RES, 10 k, 5%, 0.1 W, 0603 Vishay-Dale 0603 DNINEA
CRCW06030000Z00 R14 RES, 0, 5%, 0.1 W, 0603 Vishay-Dale 0603 DNIEA

R16, R18, R25, R27, R38, CRCW060310K0J6 RES, 10 k, 5%, 0.1 W, 0603 Vishay-Dale 0603R41 NEA
R19, R20, R21, R22, R24, CRCW06030000Z010 RES, 0, 5%, 0.1 W, 0603 Vishay-Dale 0603R29, R33, R34, R35, R36 EA
R23, R37, R39, R40, R42, CRCW0603100RF8 RES, 100, 1%, 0.1 W, 0603 Vishay-Dale 0603R43, R44, R47 KEA

CRCW06031K20J1 R26 RES, 1.2 k, 5%, 0.1 W, 0603 Vishay-Dale 0603NEAHP
2 R56, R57 RES, 2.0 k, 5%, 0.1 W, 0603 Yageo America RC0603JR-072KL 0603

TP1, TP2, TP3, TP4, TP5, Test Point 40-mil pad, 20-mil10 STD STDTP6, TP7, TP8, TP9, TP10 drill
Single Output LDO, 100 mA,
Fixed 3.3-V Output, 3- to 60-
V Input, with Enable and1 U1 Texas Instruments TPS7A1633DGNR DGN0008CPower Good, 8-pin MSOP
(DGN), –40°C to 125°C,
Green (RoHS and no Sb/Br)
Low-Voltage 8-Bit I2C and
SMBus I/O Expander, 1.65

1 U2 to 5.5 V, –40°C to 85°C, 16- Texas Instruments TCA6408APWR PW0016A
pin TSSOP (PW), Green
(RoHS and no Sb/Br)
IC, Dual, 14 Ω, SP4T Analog1 U3 Texas Instruments TS3A5017D SO16Switch
IC, 24-Bit A-D Converters for1 U4 Texas Instruments ADS1248IPW TSSOP-28Temperature Sensors
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8.3 Layer Plots
To download the layer plots, see the design files at TIDA-00110.

Figure 31. Top Overlay Figure 32. Top Solder

Figure 33. Top Layer Figure 34. GND Plane

Figure 35. PWR Plane Figure 36. Bottom Layer
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Figure 37. Bottom Solder Figure 38. Bottom Overlay

8.4 Altium Project
To download the Altium project files, see the design files at TIDA-00110.

Figure 39. Multilayer Composite Print

Figure 40. Top Layer Figure 41. Bottom Layer
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8.5 Gerber Files
To download the Gerber files, see the design files at TIDA-00110.

Figure 42. Fabrication Drawing
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8.6 Assembly Drawings

Figure 43. Top Assembly Drawing Figure 44. Bottom Assembly Drawing

8.7 Software Files
To download the software files, see the design files at TIDA-00110.
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