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1 Design Summary 

The design requirements are as follows: 

• Bus Voltage: 0 to 36V 

• Load Current: 50mA to 20A 

• Operate from a single 5V power supply 

• Maximum Shunt Voltage: ≤200mV 

Two unique current sensing devices are selected to implement this design.  The INA225 is a precision 
current shunt monitor with pin selectable gain.  The INA300 is a current sensing comparator which can be 
used to switch the gain of the INA225 to increase the dynamic range of the design.  The design goals and 
simulated performance are summarized in Table 1.  Figure 1 depicts the simulated transfer function of the 
design. 

Table 1: Comparison of Design Goals and Simulated Performance 

 Goal Simulated 
Minimum Detectable Current 50mA 25mA 
Maximum Detectable Current 20A 20A 

 
Figure 1: Simulated Transfer Function 
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2 Theory of Operation 

2.1 Low-Side or High-Side Current Sensing 

Accurately measuring current is required in systems when any of the following system attributes must be 
considered by a designer: 

• Circuit Protection 

• Fault Detection 

• Power Efficiency and Control 

• Product Safety 

The most commonly encountered method to measure current is to place a small resistor in series with the 
load and measuring the voltage drop developed across the resistor.  Commonly such a resistor is referred 
to as a “shunt resistor” or RSHUNT.  Figure 2 illustrates this concept. 

Load Current

RSHUNT

Bus Voltage
+
VSHUNT

-

RSHUNT

+
VSHUNT

-

Load Current

Bus Voltage

Low-side 
sensing

High-side 
sensing

 

Figure 2: Current Sensing using a Shunt Resistor 

There are two circuits illustrated in Figure (2).  The circuit on the left hand side illustrates a circuit wherein 
RSHUNT is connected between the load and ground.  The type of connection is referred to as “low-side 
sensing”.  The circuit on the right hand side illustrates a circuit wherein RSHUNT is connected between the 
bus voltage and the load.  This type of connection is referred to as “high-side sensing”.  In either circuit 
configuration the current can be measured accurately, but there are important distinctions that a system 
designer must consider when deciding which configuration will work best in a given application.   Table (2) 
shows a comparison between each configuration in terms of their unique features. 

 

Table 2: Comparison of Features 

 Low-side Sensing High-side sensing 
Can be used to measure current 

accurately 
Yes Yes 

Can detect load shorts No Yes 
Requires high common mode 

rejection amplifier 
Yes/No Yes 

Poor grounding can result in 
measurement error 

Yes No 

Low cost Yes Yes 
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2.1.1 Fault Detection 

The ability to detect a short from the load to ground is an important differentiation between low-side and 
high-side sensing.  When using low-side sensing should a short occur between the system load and 
ground the current that flows from the bus voltage source to ground (via the short) and will not flow through 
the shunt resistor and therefore the fault will not be detected.  This short circuit could be low-level or 
moderate leakage or it could a hard failure representing some catastrophic event.  In a high-side sensing 
configuration, should a similar short or failure occur, the current passes through the shunt resistor and is 
easily detectable.  Figure (3) illustrates this concept.  For circuits where system protection or user 
protection is required high-side sensing is recommended. 
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Figure 3: Fault Sensing using High-side Current Sensing 

 

2.1.2 Common Mode Rejection Ratio 

Common mode rejection ratio describes an amplifiers ability to reject signals that are common to both 
inputs.  Common mode rejection is therefore an important amplifier parameter when attempting to 
measure small differential voltages in the presence of large common mode voltages.  The voltage 
developed across the shunt resistor provides the differential input to an amplifier and it is this voltage that 
is intended to be accurately measured.  When configured in a low-side current sensing solution the 
common mode voltage applied to the amplifier is essentially zero and in many cases can be ignored.  This 
allows the designer to choose an amplifier that may not have very high common mode rejection ratio, and 
thus in some ways allows for a simpler design with fewer error sources to consider.  When striving for 
maximum performance, an analysis which includes the effects of the amplifier common mode rejection 
(even in low-side configurations) is recommended.  When configured in a high-side current sensing 
solution the common mode voltage is equal to the bus voltage.  This requires that the bus voltage be 
rejected by the amplifier and therefore always requires an amplifier with high common mode rejection.   
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2.1.3 Low-side Sensing and Poor Grounding 

Mentioned in Table (2), some low-side sensing configurations are susceptible to poor PCB layout, wiring 
issues and grounding issues.  Figure (4) illustrates a simple low-side current sense circuit using only an 
operational amplifier to monitor the voltage developed across a shunt resistor.  This circuit has a single-
ended input and is susceptible to PCB trace and wiring resistance, ground bounce and noisy grounds.  
Notice that any resistance in series with the current shunt will create a voltage drop due to the load current 
flowing.  Commonly this additional resistance in series with the shunt resistor is due to PCB trace 
resistance and or wiring resistance.  This additional voltage drop across the undesired PCB trace or wiring 
resistance will add to the input signal developed only across the shunt resistor and introduce an error.  
This type of error is most significant at high currents and will vary widely over temperature due to the 
temperature coefficient of the resistance of the copper PCB trace, copper wiring or poor grounding. 

+

Load Current

Bus Voltage
Output

Parasitic resistance due to 
PCB trace, wiring or poor 

grounding

RSHUNT

+
Error voltage
-

 Figure 4: Errors Associated with Single-ended, Low-side Sensing 

The solution to these problems is quite simple.  Rather than using the single-ended type of amplifier circuit 
shown in Figure (4), use instead a current shunt monitor with differential inputs and rely upon the common 
mode rejection ratio to eliminate the errors associated with the PCB trace or wiring resistance and ground 
noise.  Figure (5) illustrates this concept. 
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 Figure 5: Errors are Eliminated by the Current Shunt Monitor in a Low-side Sensing Solution 

2.2 Choosing the Shunt Resistor 

The motivation to use a current shunt monitor for sensing the voltage drop across a shunt resistor is based 
upon the desire for accuracy and low system cost.  The typical current shunt monitor will have low input 
offset voltage, low input offset voltage drift with temperature and high common mode rejection ratio.  
These error sources are most significant at low load currents (low input voltages).  At high currents the 
gain error of the amplifier and shunt resistor tolerance also contributes to errors in the measurement.    
Minimizing these errors allows the use of increasingly smaller shunt resistors, thus reducing power loss in 
the shunt resistor as well as the size and cost of the shunt resistor.  The desired current range for this 
application is given as 50 mA to 20A.  This is a very wide range and consideration to the minimum current 
value and maximum current value is required. 

2.2.1 Error Analysis at the Minimum Current Value 

Consider a current shunt monitor that has an initial input offset voltage maximum of ±150µV and a 
minimum common mode rejection of 95dB. For either low-side or high-side sensing we must analyze the 
effect of these two error sources upon the ability to monitor small levels of shunt current.  Before a proper 
worst case error analysis can be performed the details and conditions surrounding the device 
specifications of offset and common mode rejection must be taken into account.  Such conditions are listed 
in the current shunt monitor device specification.  Of particular interest to note are the conditions under 
which input offset voltage and common mode rejection are given in the data sheet.  For this example it will 
be given that the conditions under which the current shunt monitor is specified are: 

VS = 5 V 

Bus Voltage = 12 V  

These two conditions are important as any deviation from them in the actual current sensing solution must 
be considered and properly calculated.  For the following examples it is assumed that in the application the 
VS is 5 V.  This will minimize errors due to power supply voltage effects from the power supply rejection of 
the amplifier as the amplifier used in this design has its offset voltage specified at a VS equal to 5V. 
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2.2.1.1 Low-side and High-side Sensing Minimum Current Error Analysis 

In a low-side sensing configuration the common mode voltage at the current shunt monitor input is zero.  
But since the current shunt monitor is specified with a Bus Voltage of 12 V, this difference between device 
specification conditions and circuit application conditions must be considered.  In this case there will be an 
effective -12 V common mode voltage “seen” by the current shunt monitor.  To understand the impact from 
this -12 V common mode voltage a calculation of the input referred error must be made.  Equation (1) 
illustrates this calculation. 

             CMV CMVApplication SpecifiedInput error duetocommonmodeeffects
CMRR

−
=  ( 1 ) 

 

Where: 

ApplicationCMV is the common mode voltage in the application…for low-side sensing this is zero, for high-side 
sensing this is equal to the Bus Voltage 

SpecifiedCMV is the common mode voltage at which the devices offset volatge is specified (refer to the device data 
sheet) 

CMRR is the minimum common mode rejection ratio given in the current shunt monitor device specification  

Example:  

 
0 12 12            213

95 56,234
V V VInput error duetocommonmodeeffects µV

dB
− −

= = =  ( 2 ) 

 
This error due to the common mode effect is an input referred voltage error, much like the initial device input 
offset voltage.  Combining the two error terms (common mode error and initial input offset) is required to 
determine the total error from the current shunt monitor.  While it may be tempting to linearly add the two error 
terms together to determine a worst case value, in reality these two errors are uncorrelated to one another and 
therefore can be added as the square root of the sum of the squares.  Equation (3) illustrates this combination of 
error terms. 

 2 2     Total input referred error Vosi CME= +  (3) 

 
Where: 
Vosi is the maximum initial input referred offset given in the current shunt monitor specification 
 
CME is the input referred error due to common mode effects as determined previously 
 
Example: 

 2 2      150 213 261Total input referred error µV µV µV= + =  (4) 

 
This total input referred error is the uncertainty of the input voltage under zero input conditions.  With the desire to 
monitor load currents as small as 50 mA a minimum value of shunt resistor can be determined by Equation (5): 
 

 
             

  
Total input referred errorMinimumvalueof shunt resistor

Minimumload current
=  (5) 

Example: 

 
261          5.2
50

µVMinimumvalueof shunt resistor m
mA

= = Ω  (6) 
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What the example illustrates is that if a 5.2mΩ shunt resistor is selected an uncertainty of up to ±50mA will be 
present even when the load current is zero.  Another way to think about this is to recognize that for the values 
used in the example, having an uncertainty of ±50mA will result in a 100% total measurement error for an ideal 
input current of 50 mA.  Increasing the shunt resistor value will reduce the amount of uncertainty, and therefore 
result in reduced errors.  Increasing the shunt resistor too much will result in overvoltage at the amplifier output as 
well and lead to increased power dissipation when the load current is at a maximum.  Therefore the shunt resistor 
must lie within a range.  Analysis for the case of high-side sensing is performed the same as for low-side sensing 
referenced above. 
 

2.2.1.2 Low-side and high-side Sensing Maximum Current Analysis 

The maximum load current to be sensed should correspond to the maximum output voltage from the 
current shunt monitor.  A current shunt monitor amplifier is configured in either a fixed gain or selectable 
gain.  Choosing a device with a gain = 25V/V and a 5 V maximum output will require a maximum input 
voltage developed across the shunt resistor at the full load current of 200 mV.  Determining the required 
shunt resistor value is performed by dividing the maximum shunt voltage required by the maximum load 
current. 

Example: 

 
    5

25 /        10
    20

MaximumOutputVoltage V
Gain V VMaximumvalueof shunt resistor m

Maximum Load Current A
= = = Ω  

(7) 

 
 

  

Equation (7) defines the maximum value for the shunt resistor, beyond which saturation of the output 
voltage would occur.  A range now has been established for the shunt resistor value bounded on the low 
end by the desired minimum detectable current with 100% error and on the high end by the maximum 
output voltage swing.  Please note that the maximum output voltage swing is a function of power supply 
voltage and the amplifier output swing specification in the device datasheet. 

 
 5.2 10SHUNTm R mΩ ≤ ≤ Ω  (8) 

   

 

The power dissipation from the load current flowing through the shunt resistor is determined as shown in 
Equation (9): 

 
 2                 Maximum power dissipated by shunt resistor Maximum Load Current Shunt Resistor= ×  (9) 

Example: 
 2          20   10 4Maximum power dissipated by shunt resistor A m W= × Ω =  (10) 

It may be tempting to reduce the shunt resistor value from the maximum of 10 mΩ in an effort to reduce 
power dissipated, and this certainly can be performed, but it will come at the expense of the low current 
accuracy. 
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Example: 

Reducing the shunt resistor value from 10 mΩ to 1 mΩ will reduce the power dissipation by the same ratio, 
to 0.4 W.  This will certainly allow for a smaller shunt resistor; however the accuracy on the low end of the 
load current range will be degraded.  The following example illustrates the amount of error in the current 
measurement as a function of reducing the shunt resistor. 

Example: 

 
      261          261

  1
Total input referred error µVMinimumcurrent tobedetected mA

Shut Resistor m
= = =

Ω
 (11) 

Notice that this is also a factor of 10 times larger than the previously calculated value.  There is always a 
tradeoff to be made in terms of low current accuracy and power dissipation at full scale.  Selecting a 
current shunt monitor with minimal errors will allow for the most effective tradeoff, and therefore the most 
optimum choice of shunt resistor size and cost.  All of the above analysis and examples are applicable to 
both low-side sensing and high-side sensing configurations. 

3 Component Selection 
The most critical passive component with regards to performance and accuracy is the shunt resistor.  Factors 
such as initial tolerance, temperature coefficient, power rating, size and cost are all important parameters and 
must be taken under consideration when choosing the shunt resistor.  In this design a CSSH2728 (Stackpole 
Electronics, Inc.), 10mΩ, 4W, 0.5% resistor is assumed.  This resistor offers high initial accuracy, adequate power 
handling capability, a small surface mount footprint, and low temperature drift (15ppm/C).  Lower performance 
options within this same resistor family are also available at the time of this publication which allows an additional 
flexibility between performance and price. 

3.1 Amplifier 

Two amplifiers are used in this design.   

The INA225 is a high-side or low-side current shunt monitor with pin selectable gain. 

The INA300 is a high-side or low-side current shunt comparator with open drain output.  The open drain 
output is used to control the gain selection pins on the INA225. 

Because both amplifiers can be used over a common mode voltage range of 0 V to 36 V a high-side or 
low-side configuration can be utilized with similar performance.  Basic circuit operation is described for the 
low-side configuration shown in Figure (6). 
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Figure 6: Basic Operation of the Low-side Sensing Solution 
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Both inputs from the INA225 and INA300 are used to sense directly across the shunt resistor.  The basic 
operation is described as the INA225 is configured in its maximum gain (200V/V) for small values of load current 
and when the current becomes large enough the INA225 gain is switched to its lowest available setting (25V/V).  
This gain switching is achieved by connecting the alert output (open drain) of the INA300 to both GS0 and GS1 
(gain selection pins) on the INA225.  At very small currents the INA300 output is high and thus drives the INA225 
gain select pins high, resulting in a gain of 200V/V for the INA225.  When the load current increases beyond a 
threshold level, the alert output of the INA300 pulls the gain select pins of the INA225 low, resulting in a gain of 
25V/V, thereby extending the range of current detection. 
 
Setting the threshold at which the INA300 will trip is determined by the voltage at the LIMIT pin of the INA300.  
This voltage can either be applied directly from a DAC output or it can be created by placing the appropriate sized 
resistor from the LIMIT pin to ground.  Placing a resistor between the LIMIT pin and ground creates a voltage 
(VLIMIT) given by Equation (12): 

 20LIMIT LIMITV µA R= ×  (12) 

 
There is a one to one relationship between VLIMIT and the threshold voltage at which the INA300 will trip, as such:  

 THRESHOLD LIMITV V=  (13) 

 
The value at which the INA300 trips (and switches the gain of the INA225) should occur before the output of the 
INA225 reaches its maximum limit.  When powered from a 5V power supply, the maximum value of the output 
voltage of the INA225 is given in the data sheet as 4.8V.  Using a 5 V power supply the desired switch point 
would occur before the INA225 output reaches 4.8 V.  Considering the condition where the input current is small 
and INA225 gain is therefore large (200V/V) requires the input threshold voltage to occur at a maximum value of 
4.8V divided by the gain of the INA225.  This results in a maximum threshold voltage of 24mV.  Choosing a limit 
resistor value of 1.13kΩ results in the limit voltage of 22.6mV.  Using a 10mΩ shunt resistor results in a threshold 
load current value of 2.26A.  What this results in is when the load current is less than 2.26A the INA225 is 
configured in a gain of 200 V/V and when the load current exceeds 2.26 A the INA225 is configured in a gain of 
25 V/V. 

4 Simulation 

Simulation models for both the INA225 and INA300 are available at www.ti.com.  These models can be 
used to simulate the operation of the described circuit. 

4.1 Transfer Function 

Figure (7) illustrates the transfer functions for both the Alert output from the INA300 and the analog output 
from the INA225 as a function of load current.  The INA300 trip point has been set at 2.26 A as previously 
described. 

http://www.ti.com/
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Figure 7: Transfer Function 

 

4.2 The Impact of the Hysteresis setting on the INA300 

The INA300 is a current shunt comparator that has pin selectable hysteresis.  Hysteresis is required to 
prevent multiple or false comparator changes of state due to the presence of noise in the system.  As an 
example of how the amount of hysteresis relates to the transfer function please refer to Figure (8).  Notice 
that as the load current starts to increase from some very small value (below the trip point of 2.26 A) the 
output voltage increases with a gain of 200 V/V until the threshold voltage is reached.  This corresponds to 
an input referred trip point of 22.6 mV as previously described.  The INA225 gain is then reduced to 25 V/V 
and the output continues to increase with increasing load current.  As the load current begins to decrease 
it will eventually decrease to the value of the trip point, however due to the amount of hysteresis set by the 
INA300 the trip point occurs at a slightly lower load current level.  In the simulation case used to create 
Figure (8), the INA300 was configured to have 4 mV of hysteresis.  This was achieved by connecting the 
Hysteresis pin on the INA300 to ground.   

Since the hysteresis refers to the amount of change of threshold voltage at the INA300 input, this 
hysteresis value can be converted to the amount of hysteresis in terms of load current by dividing by the 
value of the shunt resistor value.   

 300  INA
HYSTERESIS

SHUNT

HysteresisLOADCURRENT
R

=  (14) 
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Figure 8: Hysteresis 
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4.3 The Complete Circuit 
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Figure 9: Complete Circuit for Low-side Sensing 



 

www.ti.com 

TIDU447- September 2014-[Keywords]-[Category] 50mA-20A, Single-Supply, Low-Side or High-Side Current Sensing Solution 15 
Copyright © 2013, Texas Instruments Incorporated 

Load

Bus 
Voltage

RSHUNT

INA300

INA225

OUTPUT

ALERT

5V

+

- REF

OUT

GS0 
                    GS1

5V

+

-
LIMIT

ALERT

RLIMIT

ENABLE

RPULL-UP

LATCH
HYS

DELAY

Leave open for 10µS delay

C1

C2

 

Figure 10: Complete Circuit for High-side Sensing 
 

5 Measuring “Zero” Load Current 

Other considerations which can impact performance not discussed in the above analysis are the finite 
output voltage swing to ground limitations of the INA225.  For example when there is zero load current the 
output of the INA225 cannot swing all the way to ground if it is configured in a single supply configuration 
shown in either Figure (9) or Figure (10).  Please refer to the limitations described in the INA225 
specification.  As an example, if the load current is zero and all other error sources are also zero, the 
output may only swing as low as 50 mV due to the output swing to ground limitation.  When in a gain of 
200 V/V it would appear as if there was in input voltage given by Equation (15):  

 
  50 250

200 /
Output swing mV µV

Gain V V
= =  (15) 

This 250µV of input error can be related to an error in load current given by Equation (16): 

 

 
  250    25

10SHUNT

input error µVLoad current error mA
R m

= = =
Ω

 (16) 
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If measuring zero load current is desired it will be required to add a low output impedance voltage input to 
the INA225 REF pin.  Please refer to the INA225 data sheet for additional information.  Other sources 
sources of error can arise from specific PCB layout issues that alter the value of the shunt resistance or 
issues that can arise from self-heating of the shunt resistor if exposed to prolonged periods of excessive 
power dissipation. 

 

6 Maximum Output Voltage Limitations and Power Supply Tolerance 

The output voltage of the INA225 is specified to swing to within 200 mV of the power supply voltage.  This 
implies that with a power supply voltage of 5 V, the maximum output that the INA225 can achieve is 4.8V.  
Assuming a 20 A load current and INA225 gain of 25 V/V the maximum value for the shunt resistor must 
be reduced to 9.6 mΩ.  Further impacting the maximum value for the INA225 output is the tolerance for the 
power supply voltage.  For example if the power supply voltage is specified as 5 V with a 5% tolerance, the 
minimum supply voltage is then 4.75V…this in turn will limit the maximum output voltage of the INA225 to 
4.55 V.  Reducing the shunt resistor to a maximum value of 9.1 mΩ would be required to ensure a full 
scale input of 20 A can be accommodated at the INA225 output.  The alternative is to leave the shunt 
resistor at the 10 mΩ value and have a maximum measureable load current, under the assumption of a 5% 
power supply tolerance, of 18.2A 

7 Verification 

This design was constructed and verified using the INA225EVM  combined with the INA300EVM. 

 
Figure 11: INA225 and INA300 Evaluation Modules 
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or other intellectual property right relating to any combination, machine, or process in which TI components or services are used.
Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE
REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR
COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY
INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE
FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO
OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE
LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY
THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN
ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.
TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per
JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant
information before placing orders and should verify that such information is current and complete. All semiconductor products are sold
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI
deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not
necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is
without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for
such altered documentation. Information of third parties may be subject to additional restrictions.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that
anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate
remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in
Buyer’s safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed an agreement specifically governing such use.
Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that
have not been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory
requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
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