
TI Designs
MSP430® Orientation Tracker Design Guide

TI Designs Design Features
TI Designs provide the foundation that you need • MSP430 G2 LaunchPad (MSP-EXP430G2) +
including methodology, testing and design files to CircuitCo Educational BoosterPack + Fuel Tank
quickly evaluate and customize and system. TI BoosterPack enables orientation tracking and tilt
Designs help you accelerate your time to market. detection

• IQmathLib fixed-point software provides optimizedDesign Resources math performance
• The MSP430 samples an accelerometer andTool Folder Containing Design Fileswww.ti.com/tool/TIDU265

interprets the data as x,y,z components of gravity
• Arc Tangent is calculated to determine current

orientation, including pitch and roll
• Source code is provided with projects for Code

Composer Studio and IAR Embedded Workbench
(for the MSP430)

Featured Applications
• Orientation-aware smart devices
• Asset tracking for shipments or items in a large

warehouse (can be further enhanced with a
wireless add-on)

• Packaging labels, to track shipment orientation and
damage due to a drop.

• Toys and devices that track orientation and drop
detection, where low cost or low power are at a
premium.

• Drop detection for hard drives or other sensitive
equipment and electronics.

ASK Our EP Experts
WebBench Calculator Tools

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other
important disclaimers and information.

1TIDU265–March 2014 MSP430® Orientation Tracker Design Guide
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://e2e.ti.com
http://e2e.ti.com/support/development_tools/webench_design_center/default.aspx
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU265

Description www.ti.com

1 Description
This design guide shows how to combine a value-line MSP430 device, fixed point software math libraries,
and an accelerometer for a low cost, ultra-low-power, simple Orientation Tracking solution. The MSP430
samples an accelerometer and performs calculations in real time to determine its orientation and detect
when it is in free-fall. This application uses a MSP430G2 LaunchPad Evaluation Kit, QmathLib software
libraries and an Educational BoosterPack plug-in module. The source code is provided with projects for
Code Composer Studio and IAR Embedded Workbench for MSP430.

This user’s guide will provide steps to run the application and an overview of the hardware and software
requirements.

2 MSP430® Orientation Tracker Design Guide TIDU265–March 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU265

www.ti.com Quickstart Guide

2 Quickstart Guide

2.1 Getting Started
This chapter will briefly cover the steps required to prepare the hardware, load the software and run the
application.

2.2 Hardware Setup
The application source code requires a MSP430G2553 LaunchPad and Educational BoosterPack.
Optionally a FuelTank BoosterPack can be used to provide battery power. The following jumper settings
are required on the LaunchPad and BoosterPack:
• Remove the P1.0 jumper from MSP430 LaunchPad
• Remove the P1.6 jumper from MSP430 LaunchPad
• Place the J5 jumper on "ACC Y" on the Educational BoosterPack
• Place the J6 jumper on "ACC Z" on the Educational BoosterPack

If using the FuelTank BoosterPack to provide battery power to the MSP430 LaunchPad, resistors R11,
R12 and R13 need to be removed from the BoosterPack. These connect pins on the BoosterPack header
to provide control of the on board BQ24210 Li-Ion battery charger when charging from the MCU, however
they directly interfere with the Educational BoosterPack. The BoosterPack is still capable of charging via
the USB connector labelled "CHARGE IN". Additionally, The following jumper settings must be applied:
• Remove the "I2C PULLUP" jumper from FuelTank BoosterPack
• Remove the "5V Out" jumper from the FuelTank BoosterPack
• Place the "3.3V Out" jumper on the FuelTank BoosterPack

2.3 Software Setup
The source code includes projects for Code Composer Studio (CCS) and IAR Embedded Workbench for
MSP430 (IAR) that can be imported to your IDE of choice. Import the project, build and load the
executable onto the MSP430G2 LaunchPad.

The LCD on the Educational BoosterPack is hard wired to the 3.3V pin and will turn on when power is
applied. The LCD must be configured by the MCU after power is applied to operate normally. When the
code is loaded onto the MSP430G2 LaunchPad the LCD configuration will fail since power has already
been applied to the LCD. Once the code is loaded, end the debugger session and remove the USB cable
supplying power to the board. The device will be ready for operation the next time power is applied by the
USB emulator on the LaunchPad or the FuelTank BoosterPack.

When the application is started on a new device the accelerometer must first be calibrated. The software
will check for calibration values stored in the INFO-D section of flash. If no values are present the
calibration routine will start. If values are already stored, the calibration routine can be manually initiated
by holding down S2 on the MSP430G2 LaunchPad when the program is started.

2.4 Calibration Process
The calibration process requires two measurements along each accelerometer axis, one in the positive
direction and one in the negative direction. The LCD screen will display an arrow that must point opposite
the direction of gravity. Once the LaunchPad is oriented correctly and steady, press the switch S2 on the
MSP430G2 LaunchPad to begin calibration. The RGB LED will turn red while samples are being collected
and then change back to green to signal the calibration for that direction is finished. The LCD will update
with a new calibration direction and the step is repeated. In total this step is repeated six times, twice for
each axis of the accelerometer.

Note: The "o" character represents the +Z axis and the LCD screen should face directly up. The "x"
character represents the -Z axis and the LCD screen should face directly down.

3TIDU265–March 2014 MSP430® Orientation Tracker Design Guide
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU265

Quickstart Guide www.ti.com

Figure 1. Calibrate the Positive X-axis

Figure 2. Calibrate the Positive Y-axis

Figure 3. Calibrate the Positive Z-axis

When the calibration process is complete the calibration values will be saved to the INFO-D section of
flash and the application will begin displaying the current pitch and roll angles along with the magnitude of
gravity to the LCD screen.

The calibration process only needs to be run once per device. If necessary the calibration process can be
manually invoked by starting the application with S2 on the MSP430G2 LaunchPad pressed down.

4 MSP430® Orientation Tracker Design Guide TIDU265–March 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU265

www.ti.com Benchmarks

3 Benchmarks

3.1 Timing Benchmarks
The application performance can be benchmarked by measuring the time consumed to sample the
accelerometer and calculate the results. The application code includes calls to benchmark functions and
can be turned on by defining ENABLE_BENCHMARK in the HAL_board.h header file. The benchmark
does not include calls to display data to the LCD as this is not typically part of the application and is only
included for demonstration purposes.

The MSP430G2553 board file provided in the application source code implements the benchmark
functions by controlling GPIO pin P1.1. The pin is driven high at the start of the benchmark and then low
when the benchmark completes. This pin can be used to measure the time spent sampling the
accelerometer and performing the math calculations.
• Timing benchmarks are run with MCLK_FREQ set to 1000000 (1MHz MCLK).
• Timing benchmarks for Code Composer Studio (CCS) are obtained using the TI MSP430 compiler

version 4.2.3 with compiler options set to -O3 -opt_for_speed=0.
• Timing benchmarks for IAR Embedded Workbench (IAR) are obtained using IAR EW for MSP430

version 5.60.2 with compiler options set to -Ohz.

Table 1. Application Timing Benchmarks
IDE Sample Frequency Calculations Duty Cycle

Code Composer 22.230 Hz 5.630 ms 12.515%Studio
IAR Embedded 22.199 Hz 5.371 11.922%Workbench

3.2 Size Benchmarks
This section details the application code, data and constant data sizes required for both the TI and IAR
Embedded Workbench compilers. Data size included all global variables, stack, RTS library variables and
other data structures. Constant data includes strings for the LCD display functions, lookup tables for the
QmathLib and RTS library constant data. Code size is the full application code and is the total used flash
size minus the constant data.

The code size and constant data size benchmarks include functions to calibrate the accelerometer and
display data to the LCD. These functions exist to demonstrate the application and provide an easy to use
interface but do not need to be included in a complete application.
• Sizes for Code Composer Studio are obtained using the TI MSP430 compiler version 4.2.3 with

compiler options set to -O3 -opt_for_speed=0.
• Sizes for IAR are obtained using IAR EW for MSP430 version 5.60.2 with compiler options set to -Ohz.

Table 2. Application Data and Code Sizes
IDE Data Constant Data Code

Code Composer 118 bytes 636 bytes 4138 bytesStudio
IAR Embedded 117 bytes 640 bytes 3158 bytesWorkbench

5TIDU265–March 2014 MSP430® Orientation Tracker Design Guide
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU265

API Documentation www.ti.com

4 API Documentation

4.1 Main

4.1.1 Main Functions
• int main (void)

4.1.2 Main Variables
• Vector3D i16RawData
• _q12 q12Gravity Magnitude
• Vector3D q12 Gravity Vector
• _q12 q12PitchAngle
• _q12 q12RollAngle

4.1.3 Main Detailed Description
The following functions are provided in main.c and provide the core application data structures and
routine.

4.1.4 Main Function Documentation
main — Main routine of the application.

Prototype:
int
main (void)

Description:
The main application routine will initialize all of the board and hardware layers for operation. The
calibration routine is called and will program calibration data if it is not present.
The application will loop forever, reading data from the accelerometer and calculating the
magnitude of gravity and current orientation of the board with pitch and roll angles. This data is
output to the LCD every other sample.

Returns:
This function never returns.

4.1.5 Main Variable Documentation
i16RawData —

Definition:
struct Vector3D i16RawData

Description:
Raw measurement from the 3D-accelerometer.

q12GravityMagnitude —
Definition:

_q12 q12GravityMagnitude

Description:
Magnitude of the gravity vector in Q12 format.

6 MSP430® Orientation Tracker Design Guide TIDU265–March 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU265

www.ti.com API Documentation

q12GravityVector —
Definition:

struct Vector3D q12GravityVector

Description:
Vector corresponding to gravity in Q12 format.

q12PitchAngle —
Definition:

_q12 q12PitchAngle

Description:
Pitch angle in Q12 format.

q12RollAngle —
Definition:

_q12 q12RollAngle

Description:
Roll angle in Q12 format.

4.2 Calculation

4.2.1 Calculation Data Structures
• Vector3D

4.2.2 Calculation Defines
• DROP_THRESHOLD
• RADD_TO_DEG

4.2.3 Calculation Functions
• void calculate_angles (struct Vector3D *q12VInput, _q12 *q12pitch, _q12 *q12roll)
• void calculate_dropDetection (_q12 *q12magnitude)
• void calculate_gravityVector (struct Vector3D *i16VInput, struct Vector3D *q12VOutput)
• void calculate_magnitude (struct Vector3D *q12VInput, _q12 *q12magnitude)

4.2.4 Calculation Detailed Description
The following functions are provided in calculation.c and are used to process the accelerometer data and
calculate orientation and magnitude.

7TIDU265–March 2014 MSP430® Orientation Tracker Design Guide
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU265

API Documentation www.ti.com

4.2.5 Calculation Data Structure Documentation
Vector3D —

Definition:
typedef struct
{
int16_t x;
int16_t y;
int16_t z;
}
Vector3D

Members:
x
y
z

Description:
Structure definition for a 3D vector.
3D vector structure with x, y and z fields of type int16_t. The int16_t type is equivalent to the _q
data types and are interchangeable.

4.2.6 Calculation Define Documentation
DROP_THRESHOLD —

Definition:
#define DROP_THRESHOLD

Description:
Threshold for drop detection.
When in perfect free fall, the magnitude of gravity will be zero. If any rotation is present when
the device is in free fall, the magnitude will be greater than zero, due to the orientation of the
sensor with respect to the center of mass. This threshold can be adjusted to fine-tune the
sensitivity of the drop detection. Increasing this value will increase the sensitivity of the
detection.

RAD_TO_DEG —
Definition:

#define RAD_TO_DEG

Description:
Constant value for converting radians to degrees.

8 MSP430® Orientation Tracker Design Guide TIDU265–March 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU265

2 2pitch = atan(x/ y +z)

roll = atan(y / z)

www.ti.com API Documentation

4.2.7 Calculation Function Documentation
calculate_angles — Calculate pitch and roll angles from a 3D input vector in q12 format.

Prototype:
void
calculate_angles(struct Vector3D *q12VInput,
_q12 *q12pitch,
_q12 *q12roll)

Description:
Calculate the pitch and roll angles in q12 format using the 3D input vector and the arc tangent
function provided by the QmathLib. The roll angle is calculated first and is limited to a range of -
PI to +PI. The pitch angle is calculated second and has a range of -PI/2 to +PI/2. The two
calculations are shown below.

(1)

(2)
Parameters:

q12VInput – Pointer to gravity vector in Q12 format.
q12pitch – Pointer to write the Q12 format pitch result.
q12roll – Pointer to write the Q12 format roll result.

Returns:
none

calculate_dropDetection — Turn on the buzzer if the magnitude is below the drop threshold.
Prototype:

void
calculate_dropDetection(_q12 *q12magnitude)

Description:
Compare the q12 magnitude input against the drop threshold. If the magnitude is below the
threshold turn on the buzzer.

Parameters:
q12magnitude – Pointer to magnitude in Q12 format.

Returns:
none

9TIDU265–March 2014 MSP430® Orientation Tracker Design Guide
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU265

()2 2 2

2

x + y + zmagnitude=

2 2 2
magnitude= x +y +z

x x x x

y y y y

z z z z

result = (input - offset)/scale

result = (input - offset)/scale

result = (input - offset)/scale

API Documentation www.ti.com

calculate_gravityVector — Calculate the gravity vector from raw accelerometer data.
Prototype:

void
calculate_gravityVector(struct Vector3D *i16VInput,
struct Vector3D *q12VOutput)

Description:
Calculate the 3D gravity vector in q12 format using the stored calibration offset and scale values
from the raw accelerometer data. The calibration data is scaled by 16 so the input must be
scaled up to calculate the result. This is accomplished by solving the following equations for
each axis.

(3)
Parameters:

i16VInput – Pointer to raw accelerometer readings.
q16VOutput – Pointer to gravity vector in Q12 format.

Returns:
none

calculate_magnitude — Calculate the magnitude of a 3D input vector in q12 format
Prototype:

void
calculate_magnitude(struct Vector3D *q12VInput,
_q12 *q12magnitude)

Description:
This function calculates the magnitude of a 3D vector using the following equation:

(4)
The QmathLib does not include a three input magnitude function so the function is implemented
in the following way with two calls to the QmathLib magnitude function.

(5)
Parameters:

q12VInput – Pointer to gravity vector in Q12 format.
q12magnitude – Pointer to write the magnitude result.

Returns:
none

10 MSP430® Orientation Tracker Design Guide TIDU265–March 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU265

www.ti.com API Documentation

4.3 Calibration

4.3.1 Calibration Functions
• void calibrate_accelerometer (void)

4.3.2 Calibration Variables
• const accelerometer_channel calibrateAxis[3]
• char calibrateDirection[6]
• const int16_t i16CalibrationOffset[3]
• const int16_t i16CalibrationScale[3]
• int16_t i16Offset[3]
• int16_t i16Scale[3]

4.3.3 Calibration Detailed Description
The following functions are provided in calibration.c and are used to calibrate the accelerometer readings.

4.3.4 Calibration Function Documentation
calibrate_accelerometer — Calibrate the accelerometer with measurements along all six axis

Prototype:
void
calibrate_accelerometer(void)

Description:
Calibrate the accelerometer with measurements along all six axis.

Returns:
none

4.3.5 Calibration Variable Documentation
calibrateAxis —

Definition:
const accelerometer_channel calibrateAxis[3]

Description:
Accelerometer channels to use for calibration readings.

11TIDU265–March 2014 MSP430® Orientation Tracker Design Guide
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU265

API Documentation www.ti.com

calibrateDirection —
Definition:

char calibrateDirection[6]

Decription:
Characters to display orientation during calibration process.
These characters represent the direction to align the sensor during the calibration process. The
direction pointed should be opposite the direction or gravity.
The calibration characters in order: +X, -X, +Y, -Y, +Z, -Z

i16CalibrationOffset —
Definition:

const int16_t i16CalibrationOffset[3]

Calibration offset data for accelerometer readings.
Calibration offset data for the accelerometer readings. The data is scaled by by 16 to retain
accuracy. These values will need to be stored in information memory and are dependant on the
implementation of the HAL_flash layer.

i16CalibrationScale —
Definition:

const int16_t i16CalibrationScale[3]

Description:
Calibration scale data for accelerometer readings.
Calibration scale data for the accelerometer readings. The data is scaled by 16 to retain
accuracy. These values will need to be stored in information memory and are dependant on the
implementation of the HAL_flash layer.

i16Scale —
Definition:

int16_t i16Scale[3]

Description:
Scale measurements to store calibration data before writing to flash.

4.4 Display

4.4.1 Display Functions
• void display_update (_q12 *q12Pitch, _q12 *q12Roll, _q12 *q12GravityMagnitude)

4.4.2 Display Detailed Description
The following functions are provided in display.c and provide methods for displaying information on the
LCD.

12 MSP430® Orientation Tracker Design Guide TIDU265–March 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU265

www.ti.com API Documentation

4.4.3 Display Function Documentation
display_update — Write the measurements to the display.

Prototype:
void
display_update(_q12 *q12Pitch,
_q12 *q12Roll,
_q12 *q12GravityMagnitude)

Description:
Update the LCD screen with the pitch, roll and magnitude calculations in q12 format. The angles
are converted to q6 format and degrees and then to ASCII characters with three integer digits
and sign. The magnitude is converted to ASCII characters with a single integer and single
fractional digit.

Parameters:
q12Pitch – Pointer to pitch angle measurement.
q12Roll – Pointer to roll angle measurement.
q12GravityMagnitude – Pointer to gravity magnitude measurement.

Returns:
none

4.5 Board

4.5.1 Board Defines
• __delay_ms(n)
• __delay_us(n)
• board_benchmarkStart()
• board_benchmarkStop()
• board_buttonPressed()
• ENABLE_BENCHMARK
• MCLK_FREQ

4.5.2 Board Functions
• void board_gotoSleep (void)
• void board_init (void)
• __interrupt void board_watchdogISR (void)

4.5.3 Board Detailed Description
The following functions are provided in HAL_board.c and provide methods for initialize the LaunchPad
MCU.

13TIDU265–March 2014 MSP430® Orientation Tracker Design Guide
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU265

API Documentation www.ti.com

4.5.4 Board Define Documentation
__delay_ms — Delay by n milliseconds.

Definition:
#define __delay_ms(n)

Description:
Delay by n milliseconds

Parameters:
n – Number of milliseconds to delay by.

Returns:
none

__delay_us — Delay by n microseconds.

Definition:
#define __delay_us(n)

Description:
Delay by n microseconds.

Parameters:
n – Number of microseconds to delay by.

Returns:
none

board_benchmarkStart — Set P1.1 high to start the benchmark.

Definition:
#define board_benchmarkStart()

Description:
Set P1.1 high to start the benchmark.

Returns:
none

board_benchmarkStop — Set P1.1 low to end the benchmark.

Definition:
#define board_benchmarkStop()

Description:
Set P1.1 low to end the benchmark.

Returns:
none

board_buttonPressed — Return the state of the button switch.

Definition:
#define board_buttonPressed()

Description:
Return the state of the button switch.

Returns:
True, if the button is pressed.

14 MSP430® Orientation Tracker Design Guide TIDU265–March 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU265

www.ti.com API Documentation

ENABLE_BENCHMARK —
Definition:

#define ENABLE_BENCHMARK

Description:
Allow calls to the benchmark functions

MCLK_FREQ —
Definition:

#define MCLK_FREQ

Description:
MCLK frequency to run at.
MCLK will be configured with the calibration values stored in INFO flash. Acceptable values are
1000000, 8000000, 12000000 and 16000000.

4.5.5 Board Function Documentation
board_gotoSleep — Enter LPM3 and return, when the WDT wakes the device up.

Prototype:
void
board_gotoSleep(void)

Description:
Enter LPM3 and return when the WDT wakes the device up.

Returns:
none

board_init — Initialize the Launchpad for operation.
Prototype:

void
board_init(void)

Description:
Initialize the Launchpad for operation.

Returns:
none

board_watchdogISR — WDT interrupt to wake up the CPU at fixed sample intervals.
Prototype:

__interrupt void
board_watchdogISR(void)

Description:
WDT interrupt to wake up the CPU at fixed sample intervals.

Returns:
none

4.6 Flash

4.6.1 Flash Functions
• void flash_init (void)
• bool flash_isCalibrated (void)
• void flash_writeCalibration (int16_t *i16Scale, int16_t *i16Offset)

15TIDU265–March 2014 MSP430® Orientation Tracker Design Guide
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU265

API Documentation www.ti.com

4.6.2 Flash Variables
• const int16_t i16CalibrationOffset[3]
• const int16_t i16CalibrationScale[3]
• const uint16_t ui16CalibrationPassword

4.6.3 Flash Detailed Description
The following functions are provided in HAL_flash.c and provide methods for initializing flash and storing
calibration data.

4.6.4 Flash Function Documentation
flash_init — Initialize flash controller.

Prototype:
void
flash_init(void)

Description:
Initialize flash controller.

Returns:
none

flash_isCalibrated — State of the flash calibration data.
Prototype:

bool
flash_isCalibrated(void)

Description:
State of the flash calibration data.

Returns:
True if the flash has been calibrated.

flash_writeCalibration — Write calibration data to flash.
Prototype:

void
flash_writeCalibration(int16_t *i16Scale,
int16_t *i16Offset)

Description:
Write calibration data to flash.

Parameters:
i16Scale – Pointer to the calibration scale data to copy to flash.
i16Offset – Pointer to the calibration offset data to copy to flash.

Returns:
none

4.6.5 Flash Variable Documentation
i16CalibrationOffset —

Definition:
const int16_t i16CalibrationOffset[3]

Description:
Calibration offset data for accelerometer readings.
Calibration offset data for the accelerometer readings. The data is scaled by by 16 to retain
accuracy. These values will need to be stored in information memory and are dependant on the
implementation of the HAL_flash layer.

16 MSP430® Orientation Tracker Design Guide TIDU265–March 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU265

www.ti.com API Documentation

i16CalibrationScale —
Definition:

const int16_t i16CalibrationScale[3]

Description:
Calibration scale data for accelerometer readings.
Calibration scale data for the accelerometer readings. The data is scaled by 16 to retain
accuracy. These values will need to be stored in information memory and are dependant on the
implementation of the HAL_flash layer.

ui16CalibrationPassword —
Definition:

const uint16_t ui16CalibrationPassword

Description:
Calibration password to check if data is already stored.
Use a unique key to check if info memory has already been calibrated for this device. The first
time the program is loaded the calibration routine will need to be run to add data.

4.7 Accelerometer

4.7.1 Accelerometer Enumerations
• accelerometer_channel

4.7.2 Accelerometer Functions
• void accelerometer_init (void)
• int16_t accelerometer_read (accelerometer_channel channel)

4.7.3 Accelerometer Detailed Description
The following functions are provided in HAL_accelerometer.c and provide methods for reading data from
the accelerometer.

4.7.4 Accelerometer Enumeration Documentation
accelerometer_init — Initialize the accelerometer for operation.

Prototype:
void
accelerometer_init(void)

Description:
Initialize the accelerometer for operation. The boosterpack shares pins with the button so the
ADC10 will be initialized even time the accelerometer is read and then turned off.

Returns:
none

17TIDU265–March 2014 MSP430® Orientation Tracker Design Guide
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU265

API Documentation www.ti.com

accelerometer_read — Read a single channel from the accelerometer.
Prototype:

int16_t
accelerometer_read(accelerometer_channel channel)

Description:
Read a channel from the accelerometer corresponding to an axis passed in as an argument.

Parameters:
channel – Which channel of the accelerometer to read

Returns:
raw ADC reading of the accelerometer channel requested

4.8 Buzzer Functions

4.8.1 Buzzer Defines
• BUZZER_FREQ

4.8.2 Buzzer Functions
• void buzzer_init (void)
• void buzzer_off (void)
• void buzzer_on (void)

4.8.3 Buzzer Detailed Description
The following functions are provided in HAL_buzzer.c and provide methods for using the buzzer.

4.8.4 Buzzer Define Documentation
BUZZER_FREQ —

Definition:
#define BUZZER_FREQ

Description:
Buzzer PWM frequency.

4.8.5 Buzzer Function Documentation
buzzer_init — Setup buzzer for TA0 PWM output.

Prototype:
void
buzzer_init(void)

Description:
Setup buzzer for TA0 PWM output.

Returns:
none

buzzer_off — Turn off the buzzer
Prototype:

void
buzzer_off(void)

Description:
Turn off the buzzer.

Returns:
none

18 MSP430® Orientation Tracker Design Guide TIDU265–March 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU265

www.ti.com API Documentation

buzzer_on — Turn on the buzzer using TA0 and CCR1 for PWM.
Prototype:

void
buzzer_on(void)

Description:
Turn on the buzzer using TA0 and CCR1 for PWM.

Returns:
none

4.9 LCD

4.9.1 LCD Defines
• SPI_FREQ

4.9.2 LCD Functions
• void LCD_clear (void)
• void LCD_init (void)
• void LCD_setPosition (uint8_t ui8Row, uint8_t ui8Column)
• void LCD_writeData (char *pcData, uint16_t ui16Count)
• void LCD_writeString (char *pcData)

4.9.3 LCD Detailed Description
The following functions are provided in HAL_LCD.c and provide methods for writing to the LCD.

4.9.4 LCD Define Documentation
SPI_FREQ — Definition:

#define SPI_FREQ

Description:
SPI clock frequency.

4.9.5 LCD Function Documentation
LCD_clear — Clear the display of characters.

Prototype:
void
LCD_clear(void)

Description:
Clear the display of characters.

Returns:
none

LCD_init — Initialize the LCD screen.
Prototype:

void
LCD_init(void)

Description:
Initialize the pins and peripherals for LCD operation. Perform basic setup of the LCD required
for operation.

Returns:
none

19TIDU265–March 2014 MSP430® Orientation Tracker Design Guide
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU265

API Documentation www.ti.com

LCD_setPosition — Set LCD to a row and column position.
Prototype:

void
LCD_setPosition(uint8_t ui8Row,
uint8_t ui8Column)

Description:
Set LCD to a row and column position.

Parameters:
ui8Row – Row to set the LCD position, 0-1
ui8Column – Column to set the LCD position, 0-39

Returns:
none

LCD_writeString — Send a string of characters to the LCD display.
prototype:

void
LCD_writeString(char *pcData)

Description:
Send a string of characters to the LCD display.

Parameters:
pcData – Pointer to the string to write to the LCD.

Returns:
none

4.10 RGB LED

4.10.1 RGB LED Enumerations
• RGB_LED_channel

4.10.2 RGB LED Functions
• void RGB_LED_init (void)
• void RGB_LED_off (RGB_LED_channel channel)
• void RGB_LED_on (RGB_LED_channel channel)
• void RGB_LED_set (RGB_LED_channel channel)

4.10.3 RGB LED Detailed Description
The following functions are provided in HAL_RGB_LED.c and provide methods for controlling the RGB
LED.

4.10.4 RGB LED Enumeration Documentation
RGB_LED_channel — Description:

Enum type for acceptable RGB channels.
Enumerators:

RGB_LED_none – Off
RGB_LED_red – Red channel
RGB_LED_green – Green channel
RGB_LED_blue – Blue channel
RGB_LED_white – White channel
RGB_LED_all – All channels

20 MSP430® Orientation Tracker Design Guide TIDU265–March 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU265

www.ti.com API Documentation

4.10.5 RGB LED Function Documentation
RGB_LED_init — Initialize the pins for RGB LED operation

Prototype:
void
RGB_LED_init(void)

Description:
Initialize the pins for RGB LED operation.

Returns:
none

RGB_LED_off — Turn off an LED color channel.
Prototype:

void
RGB_LED_off(RGB_LED_channel channel)

Description:
Turn off an LED color channel.

Parameters:
channel – RGB channel to turn off.

Returns:
none

RGB_LED_on — Turn on an LED color channel.
Prototype:

void
RGB_LED_on(RGB_LED_channel channel)

Description:
Turn on an LED color channel.

Parameters:
channel – RGB channel to turn on.

Returns:
none

RBG_LED_set — Set the LED state.
Prototype:

void
RGB_LED_set(RGB_LED_channel channel)

Description:
Set the LED state.

Parameters:
channel – RGB channel to set the state to.

Returns:
none

21TIDU265–March 2014 MSP430® Orientation Tracker Design Guide
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU265

IMPORTANT NOTICE FOR TI REFERENCE DESIGNS
Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers (“Buyers”) who are developing systems that
incorporate TI semiconductor products (also referred to herein as “components”). Buyer understands and agrees that Buyer remains
responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.
TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any
testing other than that specifically described in the published documentation for a particular reference design. TI may make
corrections, enhancements, improvements and other changes to its reference designs.
Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the
reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY
OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right,
or other intellectual property right relating to any combination, machine, or process in which TI components or services are used.
Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE
REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR
COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY
INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE
FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO
OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE
LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY
THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN
ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.
TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per
JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant
information before placing orders and should verify that such information is current and complete. All semiconductor products are sold
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI
deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not
necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is
without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for
such altered documentation. Information of third parties may be subject to additional restrictions.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that
anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate
remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in
Buyer’s safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed an agreement specifically governing such use.
Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that
have not been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory
requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated

	MSP430® Orientation Tracker Design Guide
	1 Description
	2 Quickstart Guide
	2.1 Getting Started
	2.2 Hardware Setup
	2.3 Software Setup
	2.4 Calibration Process

	3 Benchmarks
	3.1 Timing Benchmarks
	3.2 Size Benchmarks

	4 API Documentation
	4.1 Main
	4.1.1 Main Functions
	4.1.2 Main Variables
	4.1.3 Main Detailed Description
	4.1.4 Main Function Documentation
	4.1.5 Main Variable Documentation

	4.2 Calculation
	4.2.1 Calculation Data Structures
	4.2.2 Calculation Defines
	4.2.3 Calculation Functions
	4.2.4 Calculation Detailed Description
	4.2.5 Calculation Data Structure Documentation
	4.2.6 Calculation Define Documentation
	4.2.7 Calculation Function Documentation

	4.3 Calibration
	4.3.1 Calibration Functions
	4.3.2 Calibration Variables
	4.3.3 Calibration Detailed Description
	4.3.4 Calibration Function Documentation
	4.3.5 Calibration Variable Documentation

	4.4 Display
	4.4.1 Display Functions
	4.4.2 Display Detailed Description
	4.4.3 Display Function Documentation

	4.5 Board
	4.5.1 Board Defines
	4.5.2 Board Functions
	4.5.3 Board Detailed Description
	4.5.4 Board Define Documentation
	4.5.5 Board Function Documentation

	4.6 Flash
	4.6.1 Flash Functions
	4.6.2 Flash Variables
	4.6.3 Flash Detailed Description
	4.6.4 Flash Function Documentation
	4.6.5 Flash Variable Documentation

	4.7 Accelerometer
	4.7.1 Accelerometer Enumerations
	4.7.2 Accelerometer Functions
	4.7.3 Accelerometer Detailed Description
	4.7.4 Accelerometer Enumeration Documentation

	4.8 Buzzer Functions
	4.8.1 Buzzer Defines
	4.8.2 Buzzer Functions
	4.8.3 Buzzer Detailed Description
	4.8.4 Buzzer Define Documentation
	4.8.5 Buzzer Function Documentation

	4.9 LCD
	4.9.1 LCD Defines
	4.9.2 LCD Functions
	4.9.3 LCD Detailed Description
	4.9.4 LCD Define Documentation
	4.9.5 LCD Function Documentation

	4.10 RGB LED
	4.10.1 RGB LED Enumerations
	4.10.2 RGB LED Functions
	4.10.3 RGB LED Detailed Description
	4.10.4 RGB LED Enumeration Documentation
	4.10.5 RGB LED Function Documentation

	Important Notice

