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TI Designs High Speed JESD204B Interface Link Latency
TI Designs High Speed designs are analog solutions JESD204B links are the latest trend in data-converter
created by TI’s analog experts. Reference Designs digital interfaces. These links take advantage of high-
offer the theory, part selection, simulation, complete speed serial-digital technology to offer many
PCB schematic & layout, bill of materials, and compelling benefits including improved channel
measured performance of useful circuits. Circuit densities. This reference design addresses one of the
modifications that help to meet alternate design goals challenges of adopting the new interface:
are also discussed. understanding and designing the link latency.

Understanding this discussion and example will enable
Design Resources a system designer to:

• Ensure deterministic latency across the
Design FolderDesign Files JESD204B link

OPA2333 Product Folder • Understand the tradeoff between link latency
OPA2188 Product Folder and tolerance to link delay variation

• Use a formulaic and procedure-based
approach to design the link latency

• Implement a JESD204B link using Texas
Instrument's ADC16DX370 or LM97937
ADC and a Xilinx Kintex 7 FPGA

ASK Our Analog Experts
WebBench Calculator Tools

Figure 1. JESD204B Interface Implementation With the LM97937 and LMK04828

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other
important disclaimers and information.
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1 Introduction
The latency through a signal path describes the length of time for the signal to propagate between two
points in the path. Latency can be a critical design detail in applications that are sensitive to long latencies
or latency variation. Applications involving gain control loops can become unstable if the latency is not well
controlled. Systems requiring the synchronization of multiple data converter devices can have conversion-
phase misalignments which result in sub-optimal signal processing if the latency is not properly designed.

Serialized data-converter interfaces offer a tremendous benefit by simplifying the hardware interface to a
logic device, such as an FPGA or ASIC, and by saving PCB space. However, these interfaces typically
have longer latencies than a parallel-type interface and the latencies are potentially unpredictable. With
the introduction of the most recent revision of the JESD204 standard (JESD204B), system architecture
provisions are included that achieve known and constant (deterministic) latency across the serial link when
certain requirements are met. This reference design describes the requirements for achieving deterministic
latency with a Subclass 1 device. The configuration of the link and impact of the link on the total latency
are also discussed. This document also outlines a procedure for achieving a desired latency with the
ADC16DX370, a 16-bit 370-MSPS analog-to-digital converter (ADC) with a JESD204B serial interface
transferring data at 7.4 Gb/s/lane as shown in the example implementation of Figure 1. The analysis also
applies to the LM97937, a 9-bit 370-MSPS ADC with a similar JESD204B interface, as well as to other
data converters from Texas Instruments in a general sense.

2 Latency in the Serial Link
The term latency can be used in many ways to describe different interrelated concepts in systems that
include serial links. These concepts include the following list that are represented on the simplified data-
flow block diagram shown in Figure 2).

Sample-to-Serial Out (S2SO) Latency—S2SO is the latency from when the signal is sampled at the
ADC input until the sample appears in the serial stream at the ADC (TX) output.

Sample-to-Parallel Out (S2PO) Latency—S2PO is the latency from when the signal is sampled at the
ADC input until the sample is released on the parallel bus at the receiving device (RX).

Link Latency—Link latency is the latency from when the sampled parallel data is input to the serializer at
the transmitter (ADC) until the same data is available in parallel form at the receiver. This simplified
description is more accurately described relative to local multi-frame clock (LMFC) boundaries in
the JESD204B standard.

Deterministic Latency—Deterministic latency is the concept that the link latency of a JESD204B link is
always known and constant across varying system conditions including supply voltage,
temperature, and system reset.

Figure 2. Block Diagram of Simplified Latencies in a System Using the LM97937

Ultimately, the S2PO latency is most important at the system level because it affects the processing of
data through the signal path. The S2SO Latency is not a useful value in the JESD204B system design
because it can vary under different conditions. S2SO latency is mentioned only because the sample-to-
data-out latency is a familiar concept for ADCs with parallel output data busses. The link latency is
important as a serial-link design parameter to ensure that deterministic latency is achieved.
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The JESD204B standard defines multiple subclasses that ensure that the latency across the serial data
link is always deterministic. Most Texas Instruments data-converter devices with JESD204B interfaces
implement Subclass 1 because of the relative ease of meeting critical timing requirements that must be
met to synchronize the serial data receivers (RX) and transmitters (TX) together and achieve deterministic
latency.

3 Requirements for Achieving Deterministic Latency
As extracted from the JESD204B standard, the serial link must meet the following requirements across
supported conditions to ensure deterministic latency of a Subclass-1 link.
1. The internal LMFCs of the TX and RX must have a deterministic phase relationship between each

other.
2. Both the time length of a multi-frame (K × TFRAME) and the quantity RBD × TFRAME must be larger than

the maximum possible delay across any link.
3. The elastic buffer at the receiver must accommodate a buffering time greater than the delays in the

link. The buffering time (RBD × TFRAME) can be between TFRAME and K × TFRAME.

3.1 Requirement 1: Aligning the LMFCs and Meeting SYSREF Setup and Hold
Requirements
The phase of the SYSREF signals distributed to each device determines the phase alignment of the
LMFC internal to each device. The first requirement is that the phase relationships between the LMFCs of
each device do not change over time, nor do they differ each time the link must be re-initialized. To
achieve the first requirement, the SYSREF signals distributed to each device must meet setup and hold
requirements relative to their companion device clocks. This is particularly critical when very high
frequency device clocks are distributed.

Techniques for meeting the timing requirements include replication of the routing for the device clocks and
the SYSREF clocks to their destinations, and using duplicate drivers and load circuits with similar
electrical characteristics.

3.2 Requirement 2: Ensure the LMFC Period is Longer than the Link Delay
In the simplest terms, the TX, RX, and the channel in between can have individual latencies that vary
across conditions. However, the sum of all the latencies must be constant and known. A constant sum of
all the latencies is achieved using an adaptable (elastic) buffer at the receiver and a very low frequency
reference signal, namely the LMFC clock, to avoid any ambiguity in the alignment of the data frames
output on the serial lanes. To avoid phase ambiguity, the LMFC clock period must be longer than sum of
all the potential delays across the link. Therefore the K parameter (integer value representing the number
of frames per multi-frame in the serial stream) must be set large enough so that the LMFC period is longer
than the maximum sum of delays across the link.

Larger K values result in increased total latency through the link when deterministic latency is achieved.
Therefore, minimizing the value of this parameter can be beneficial. For system simplicity, the desired K
value can also be influenced by the ability to generate SYSREF pulses, and therefore choosing 2N values
such as 16 or 32 is more convenient.

3.3 Requirement 3: Ensure the RX Elastic Buffer is Large Enough to Buffer the Data
The elastic buffer must be large enough to ensure that all time-synchronized critical data is received at the
various serial lanes and buffered before releasing data from the buffer. The release-buffer delay (RBD)
parameter controls the time at which data is released from the buffer at the receiver.

In the simplest system implementation, RBD is made equal to K which causes the total S2PO link latency
to equal K × TFRAME. If the decided K value results in a latency length that is unacceptable, then the RBD
parameter can be reduced from the value K to a lesser value to reduce the amount of time the data
spends in the elastic buffer which causes the total S2PO link latency to equal RBD × TFRAME.
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4 Dissecting the Link Latency and Link Delay
The link latency is the sum of the TX delay, the lane propagation delay, the RX delay, and the RX-TX
LMFC phase skew. The TX delay (tTX_SER) is the time from when data appears at the serializer input on an
LMFC boundary until the data appears on the serial lanes. The lane delay (tLANE) is the propagation time
period from the transmitter to the receiver across the channel. The RX delay is the delay from when the
data arrives at the receiver until the data is available as a parallel word and is composed of two
components (tRX_BUFF + tRX_DESER):
1. The buffering delay of the elastic buffer of the receiver
2. All other receiver delays required to de-serialize and output the data as a parallel word

The RX-TX LMFC phase skew is the absolute time difference (tTX_LMFC – tRX_LMFC) where tTX_LMFC and tRX_LMFC
represent the SYSREF to LMFC delays in the paths from the common clock reference to the transmitter
and receiver respectively.

The link delay includes the TX delay, lane propagation delay, and the RX delay excluding the RX buffering
delay. The RX Buffering delay is an intentional addition used to counteract the variation in the link delay
and make the link latency constant.

This document has a particular use of the terms latency and delay in regards to the JESD204 link.
Latency is used to describe the propagation time between two points in the system and always includes
the entire link. Delay is used to describe the propagation time across only a portion of the serial link. This
distinction is made to avoid confusion about whether RX elastic buffering is included in the quantity.

The deterministic-latency of Requirement 2 and Requirement 3 is calculated with Equation 1.

(1)

When all of the requirements are satisfied and the parameters are selected, the link latency can be
calculated. The relative link latency through the link is calculated with Equation 2. Relative link latency is
described in units of frame-clock cycles and is referred to in the standard as the delay across the link,
although this phrase can lead to confusion about whether RX buffering is included. This value is relative to
LMFC boundaries and does not account for skew between the RX and TX LMFCs.

(2)
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The absolute link latency through the link includes the skew between the RX and TX boundaries
calculated with Equation 3. Note that additional delay in the transmitter SYSREF to LMFC path reduces
the absolute latency but increases the required RBD at the receiver. Figure 3 shows the involved latency
parameters.

(3)

Figure 3. Latency Timing Diagram

A tradeoff is presented when the value of K is set. A large value of K allows for a large amount of delay in
various parts of the link. However, a large value of K also increases the total latency through the link if
RBD equals K in the simplest case. Setting RBD to a value less than K allows the total latency to be fine-
tuned and independent of the K value. Ultimately, the minimum latency must be slightly greater than the
link delay.

The following lists the design procedure for setting K and RBD, and calculating the system latency:
1. Determine the maximum values of the delays tTX-SER, tLANE, tRX-DESER.
2. Determine the skew between the RX and TX SYSREF-to-LMFC paths (tTX_LMFC – tRX_LMFC).
3. Set K to satisfy Equation 1.
4. Set RBD equal to K. To reduce the total link latency, RBD can also be set to a value less than K.
5. Calculate the absolute link latency.
6. Add the absolute link latency to the latency of the ADC core (tLAT_ADC) to determine the total latency

from sampling instant to parallel data available at the receiver.
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4.1 Latency Design Example
The following example demonstrates the latency design of a JESD204B link between the LM97937 and
Xilinx Kintex 7 FPGA.

The previous design procedure can be followed to determine the latency across a link that includes an
ADC transmitter and logic device receiver, although the naming convention between the generalized name
and the datasheet parameter may differ. Table 1 lists the required parameters for the LM97937 and Kintex
7 FPGA latency design. Note that equations given throughout this text are equated in units of seconds,
but they are evaluated in units of frame clock cycles which do not depend on the frame rate. When
evaluating the equations, the Tframe parameter is factored out.

Table 1. Delay Parameters for the LM97937 and Kintex 7 FPGA
DATASHEET VALUEDEVICE GENERALIZED NAME PARAMETER [Frame Clock Cycles]

tTX_SER tD_DATA 6 ±1
tTX_LMFC tD_LMFC 3.5LM97937 or ADC16DX370 (TX)

14.5 (LM97937)– tLAT_ADC 12.5 (ADC16DX370)
tRX_DESER TRxIN 92 ±2Xilinx Kintex 7 (JESD204 IP Core

v5.1) tRX_LMFC TRxLMFC 28
Other tLANE – ±1

In this case, the link delay (tTX-SER + tLANE + tRX-DESER) is very large and exceeds the standard maximum for
the K parameter, K = 32. The designer has two options, either increasing the K value to satisfy
Requirement 2 or choosing the release moment of the data to be used in a later multi-frame period. The
first option ensures deterministic latency for a very wide range of delay variation but K > 32 is not
supported by all devices, including the LM97937. In this example, the release moment is positioned in a
later multi-frame period as shown in Figure 4.

Figure 4. Elastic-Buffer Release Moment in Later Multi-Frame Period When Link Delay is Greater Than K
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Releasing data in a later multi-frame period changes the inequality of Equation 1 to the inequality bounds
of Equation 4 and Equation 5 where n is an integer value greater than 0 and describes the later multi-
frame period in which the data is released.

(4)

(5)

Applying the given values to the inequalities, assuming that K is set to 32 to maximize the tolerable delay
variation, and assuming the data is released on an LMFC boundary (RBD = K) results in Equation 6 and
Equation 7.

(6)

(7)

The solution n = 2 is an acceptable solution in this case, but some cases may not have a solution because
the link delay variation violates on of the bounds. The available methods to achieve a solution when the
bounds are violated include changing the K value, modifying RBD to be less than K, or changing SYSREF
phases and the relative alignment of the LMFCs. Modifying K to be a different value is a straightforward
method but is not always an available system-level option and is not described further here.

Changing RBD to a value less than K shifts the release moment to an earlier point in time. In this example
where the release moment is in a later multi-frame boundary and RBD is set less than K, both the
intended release moment and the previous release moment are shifted earlier in time as shown in
Figure 5. This shift allows the designer to improve the margin between the time the data enters the elastic
buffer and the LMFC boundary times.

Set RBD < K to shift the release moment and improve the time margin relative to the RX LMFC boundary

Figure 5. Shifting the Release Moment to Improve Timing Margin using RBD<K

Assume that RBD is reduced from 32 down to 24. The inequalities for this case are shown in Equation 8
and Equation 9 and have plenty of margin in the presence of the delay variation for RBD = 24 and n = 2.
One can select this RBD value to maximize the upper and lower margin although RBD can be reduced
further to reduce the total latency.

(8)

(9)

Manipulating the phase of the SYSREF signals delivered to the receiver and transmitter can also be used
to shift the elastic buffer release time to present a solution with adequate margins. This method changes
the alignment of the RX and TX LMFCs and is useful in systems where a device may not have the
flexibility (or feature) to set RBD to a value less than K. This is the recommended solution for the systems
involving the Xilinx JESD204 IP Core. This method changes the analysis by adding delay to the tTX_LMFC or
tRX_LMFC parameters mentioned above. Figure 6 demonstrates how adding delay in the TX LMFC path
shifts the relationship between the LMFCs and improves the margin similar to the method of setting
RBD<K. Ultimately, this influences the total latency by modifying the quantity ( tTX_LMFC – tRX_LMFC ).
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Figure 6. Shifting the Release Moment to Improve Timing Margin Using SYSREF Delays

Continuing with the RBD<K method and the link-delay inequalities satisfied for n = 2, the total link delay
can be calculated according to a modified version of Equation 3 to account for releasing in a later multi-
frame boundary which is calculated with Equation 10. The results are calculated in Equation 11 as 112.5
frame-clock cycles.

(10)

(11)

The absolute link latency only accounts for the latency of the link. To find the latency from the ADC
sampling instant to the output of the link, the latency of the ADC core (tLAT_ADC = 12.5 for the
ADC16DX370) is added to the link latency for a total S2PO latency of 112.5 + 12.5 = 125 frame-clock
cycles.
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4.2 Tips for Implementing the JESD204B Link
Achieving deterministic latency and accurately calculating the total latency requires great attention to detail
when clocking the device and when implementing the Xilinx JESD204B core. The following tips can be
used to ensure a robust, accurate design. The tips related to the Xilinx JESD204 core apply to version 5.1.
• Pay close attention to the synchronization of the various device clocks and SYSREF signals distributed

from the common clock generator (such as Texas Instrument's LMK04828) and any delays that may
have been added to the signals. The phase relationship between these signals may create addition
skew between the RX and TX LMFC's.

• The Xilinx JESD204 logic core registers the SYSREF input on the falling edge of the device clock. This
influences the alignment of the RX and TX LMFC.

• The Xilinx JESD204 logic core has timing restrictions that may limit the frequency of the device clock
going to the FPGA that is used to sample the SYSREF signal. Dividing the device clock down within
the FPGA is not an acceptable solution unless the divided clock phase can be deterministic.

• Advance clocking schemes, different from the default condition of the Xilinx JESD204 core, may be
required to ensure that SYSREF meets setup and hold requirements relative to the input device clock.

• Unpacking the data samples from the octets output from the Xilinx JESD204 core requires additional
clock cycles and may require changing clock domains. These additional cycles must be accounted for
in the total latency.

• The Xilinx JESD204 core outputs four (4) octets during a clock cycle. The earliest arriving octet has
more added latency than the latest arriving octet.

• The 'RX Buffer Delay' parameter in the Xilinx JESD204 core provides a function similar to the RBD
parameter in this text and described in the JESD204B standard, but their meanings are different. RX
Buffer Delay represents the number of frame clock cycles that the data should be released before the
LMFC boundary. Therefore, setting 'RX Buffer Delay' = 4 is equivalent to RBD=28 for a value of K=32.
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4.3 Multi-Device Synchronization
Multi-device synchronization refers to matching the latency through multiple ADC signal paths, aligning the
sampling instant between ADCs, or both.

Matching latencies in systems with multiple LM97937 devices requires deterministic latency and
knowledge of the S2PO latency as previously discussed. If the requirements needed to achieve
deterministic latency are satisfied, then the RBD values of each link can be adjusted or additional buffering
can be added in logic to match the latencies between links. When multiple links are synchronized
together, the K and RBD values must accommodate the link with the longest link delay and all the devices
in the synchronized system must share the same LMFC frequency. Note that if the elastic-buffer release
moment is designed to release in the multi-frame period later than the first instance, care must be taken to
ensure that all similar devices also release in the later multi-frame period.

Synchronizing the sampling instants between multiple LM97937 devices requires matching the distribution
of the critical device clocks to each device CLKIN input such that the delay from the common clock
reference to the CLKIN input is exactly the same and does not vary significantly. Note also that if the link
latency is not matched between the synchronized devices, the phase aligned samples become offset in
time because of the latency mismatch.

Appropriate device clock and SYSREF pairs must be generated for JESD204B devices in the system to
ensure synchronization. Texas Instrument’s LMK04828 low-noise clock generator and jitter cleaner
accommodates up to seven different JESD204B devices. All device clock and SYSREF pair outputs can
be clocked synchronously with programmable phases to achieve well-controlled distribution of the
SYSREF signals and fine tuning of the sampling instants across multiple similar ADC devices. Features of
this clocking chip also allow for synchronization of multiple LMK04828 devices together so that
applications with a very large channel counts can be realized.

5 Conclusion
The robustness of a JESD204B high-speed serial link against latency variation is dependent upon meeting
the deterministic latency criteria. This reference design outlines the criteria in detail, provides equations to
quantify the conditions, and outlines procedures in a step-by-step guide to ensure that the criteria are met.
The example interface between the LM97937 and Kintex 7 FPGA explained in this reference design
demonstrates identification of the individual delays, calculation of the total link delay, appropriate selection
of the K and RBD parameters, and final calculation of the total link latency.
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