Test Report: PMP23391 300W, 12V Output ZVS Full-Bridge Converter Reference Design for 100kRad Applications

Description

This reference design is a full-bridge topology that is comprised of a TPS7H5005-SEP referenced on secondary ground that controls three TPS7H6005-SEP half-bridge gate drivers. The two drivers referenced to the primary side operate in PWM mode which allows for the design to achieve zerovoltage switching (ZVS) at higher loading conditions. On the secondary side the other driver controls a pair of secondary rectifiers to further improve the conversion efficiency. In this design the controller, half-bridge drivers and GaN field-effect transistors (FET) are chosen to meet radiation for geostationary orbit (GEO). These components can be swapped out to meet other mission specifications.

Top of Board

Features

- · GEO class radiation performance
- GaN FETs on primary and secondary side to increase efficiency
- Secondary-side controller for faster control loop
- < 1% voltage ripple on output
- Single-side assembly, two-layer, 3.25 in × 5.5 in PCB

Applications

- Command and data handling (C and DH)
- · Optical imaging payload
- Radar imaging payload

Bottom of Board

Angled Image

1

1 Test Prerequisites

1.1 Voltage and Current Requirements

Table 1-1. Voltage and Current Requirements

Parameter	Specifications		
Input voltage	22V to 36V		
Output voltage	12V		
Maximum output current	25V		
Switching frequency	500kHz (primary side)		

1.2 Considerations

- Unless noted, all tests were conducted with 25A loading on the output
- Local airflow used
- External 12V bias applied to primary and secondary sides

1.3 Dimensions

Board size: 3.25in × 5.5in, tallest component = 0.67in (bridge transformer).

1.4 Test Setup

2

Air flow is recommended to test at full load conditions. Thermal image shows relative temperature rise across the PCBA.

Figure 1-1. Test Setup

2 Testing and Results

2.1 Efficiency Graphs

Figure 2-2. Efficiency Across Input Range

2.2 Efficiency Data

Table 2-1. Efficiency Data With 28V Input

	Input		Output			Total		
Voltage (V)	Current (A)	Power (W)	Voltage (V)	Current (A)	Power (W)	Loss (W)	Efficiency (%)	
27.994	0.572	16.012	12.01	0.993	11.926	4.086	74.481	
27.991	1.0557	29.551	12.009	1.998	23.994	5.557	81.195	
27.99	1.9498	54.57	12.006	3.99	47.904	6.666	87.784	
27.988	2.8657	80.21	12.004	5.997	71.988	8.222	89.749	
27.985	3.791	106.1	12.001	7.99	95.888	10.212	90.375	
27.983	4.727	132.26	11.999	9.983	119.786	12.474	90.569	
27.979	5.68	158.91	11.996	11.991	143.844	15.066	90.519	
27.979	6.636	185.68	11.993	13.985	167.722	17.958	90.329	
27.984	7.588	212.34	11.991	15.979	191.604	20.736	90.235	
27.986	8.564	239.66	11.988	17.988	215.640	24.020	89.978	
27.985	9.544	267.11	11.986	19.981	239.492	27.618	89.661	
27.983	10.555	295.36	11.983	21.976	263.338	32.022	89.158	
27.976	11.582	324.01	11.98	23.984	287.328	36.682	88.679	
27.978	12.095	338.38	11.979	24.974	299.164	39.216	88.411	

Table 2-2. Efficiency Data With 32V Input

	Input		Output			Total		
Voltage (V)	Current (A)	Power (W)	Voltage (V)	Current (A)	Power (W)	Loss (W)	Efficiency (%)	
31.946	0.5264	16.816	12.009	0.993	11.925	4.891	70.914	
31.942	0.9616	30.714	12.008	1.998	23.992	6.722	78.114	
31.941	1.7566	56.106	12.005	3.99	47.900	8.206	85.374	
31.939	2.5581	81.703	12.003	5.998	71.994	9.709	88.117	
31.937	3.3671	107.53	12.001	7.991	95.900	11.630	89.184	
31.935	4.1841	133.62	11.998	9.984	119.788	13.832	89.648	
31.932	5.0176	160.22	11.996	11.992	143.856	16.364	89.787	
31.929	5.8563	186.99	11.993	13.987	167.746	19.244	89.709	
31.928	6.706	214.1	11.991	15.98	191.616	22.484	89.498	
31.931	7.557	241.3	11.988	17.988	215.640	25.660	89.366	
31.934	8.408	268.51	11.986	19.982	239.504	29.006	89.198	
31.935	9.274	296.16	11.983	21.976	263.338	32.822	88.918	
31.933	10.167	324.67	11.981	23.984	287.352	37.318	88.506	
31.932	10.618	339.05	11.979	24.974	299.164	39.886	88.236	

4

	Input		Output			Total		
Voltage (V)	Current (A)	Power (W)	Voltage (V)	Current (A)	Power (W)	Loss (W)	Efficiency (%)	
35.947	0.4923	17.696	12.009	0.99	11.889	5.807	67.184	
35.944	0.8883	31.928	12.008	1.994	23.944	7.984	74.994	
35.942	1.6079	57.79	12.006	3.987	47.868	9.922	82.831	
35.941	2.3199	83.378	12.003	5.994	71.946	11.432	86.289	
35.941	3.0358	109.11	12.001	7.987	95.852	13.258	87.849	
35.938	3.7726	135.58	11.998	9.98	119.740	15.840	88.317	
35.937	4.519	162.4	11.996	11.989	143.820	18.580	88.559	
35.934	5.2639	189.15	11.993	13.983	167.698	21.452	88.659	
35.932	6.0207	216.33	11.991	15.977	191.580	24.750	88.559	
35.931	6.791	244	11.988	17.985	215.604	28.396	88.362	
35.933	7.559	271.42	11.986	19.978	239.456	31.964	88.224	
35.935	8.322	299.06	11.983	21.971	263.278	35.782	88.035	
35.936	9.111	327.43	11.98	23.98	287.280	40.150	87.738	
35.936	9.508	341.69	11.979	24.97	299.116	42.574	87.540	

Table 2-3. Efficiency Data With 36V Input

2.3 Thermal Images

The thermal image was captured after operating at full load for 15 minutes with airflow.

Figure 2-3. Thermal Image

Table	2-4	Tem	nerature	hv	Section
Iable	Z-4.	Telli	perature	IJУ	Section

Area	Component	Maximum Temperature (°C)
Bx1	Primary FETs	85.3
Bx2	Shim Inductor	89.8
Bx3	Bridge Transformer	32.9
Bx4	Output Inductor	46.2
Bx5	Secondary Clamp	66.0
Bx6	Secondary Snubbers	100.4

2.4 Bode Plots

The Bode plot is measured at full load with nominal input voltage. Phase margin = 94.22° at 23.86kHz. Gain margin = -18.37dB at 131.92kHz.

Figure 2-4. Bode Plot

3 Waveforms

3.1 Switching

Switching behavior is shown in Figure 3-1 and Figure 3-3.

Figure 3-2. Primary Switch Node With High-Side and Low-Side Gate Drive Signals 36V Input

7

Figure 3-3. Secondary Switch Nodes

3.2 Output Voltage Ripple

Output voltage ripple is shown in Figure 3-4.

3.3 Load Transients

Load transient response is shown for a 5A to 20A step.

Figure 3-5. Load Transient

3.4 Start-up Sequence

Start-up behavior is shown in Figure 3-6.

Figure 3-6. Start-up Timing

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated