AWR1443, AWR1243 Evaluation Module (AWR1443BOOST, AWR1243BOOST) mmWave Sensing Solution # **User's Guide** Literature Number: SWRU507C May 2017-Revised May 2020 # **Contents** | 1 | Getting | g Started | 5 | | | |------|------------------------|--|---|--|--| | | 1.1 | Introduction | 5 | | | | | 1.2 | Key Features | 5 | | | | | 1.3 | What is Included | 5 | | | | 2 | Hardwa | are | 6 | | | | | 2.1 | Block Diagram | 7 | | | | | 2.2 | Connecting BoosterPack™ to LaunchPad™ or MMWAVE-DEVPACK | 7 | | | | | 2.3 | Power Connections | 8 | | | | | 2.4 | Connectors | 8 | | | | | 2.5 | PC Connection | 2 | | | | | 2.6 | Antenna 1 | 3 | | | | | 2.7 | Jumpers, Switches, and LEDs1 | 5 | | | | 3 | Design | Files and Software Tools 1 | 7 | | | | | 3.1 | Software, Development Tools, and Example Codes for AWR1443 | 7 | | | | 4 | Design | Revision History1 | 8 | | | | 5 | Mecha | nical Mounting of PCB1 | 8 | | | | 6 | | torage and Handling Recommendations | | | | | 7 | Regulatory Information | | | | | | Dovi | eion Hief | • | | | | #### www.ti.com # **List of Figures** | 1 | EVM Front View | 6 | |----|---|----| | 2 | EVM Rear View | 6 | | 3 | BoosterPack™ Block Diagram | 7 | | 4 | 3V3 and 5-V Mark on the LaunchPad™ (White Triangle) | 7 | | 5 | Power Connector | 8 | | 6 | 20-Pin BoosterPack™ Connectors (J5 and J6) | 8 | | 7 | High Density Connector (60 Pin) | 10 | | 8 | CAN Connector | 11 | | 9 | XDS110 Ports | 12 | | 10 | PCB Antenna | 13 | | 11 | Antenna Pattern in H-Plane | 13 | | 12 | Antenna Pattern in E-Plane | 14 | | 13 | SOP Jumpers | 15 | | 14 | Current Measurement Point | 15 | | 15 | S1 Switch to Select Between SPI or CAN Interface | 17 | | 16 | LDO Bypass Enable | 18 | | 17 | Vertical Assembly of the EVM | 19 | | | List of Tables | | | 1 | 20-Pin Connector Definition (J6) | ç | | 2 | 20-Pin Connector Definition (J5) | ç | | 3 | HD Connector Pin Definition | 10 | | 4 | SOP Modes | 15 | | 5 | Push Buttons | 16 | | 6 | LEDs | 16 | | 7 | | 18 | # AWR1443BOOST, AWR1243BOOST Evaluation Module mmWave Sensing Solution www.ti.com Getting Started #### **Getting Started** #### 1.1 Introduction The AWR1443 BoosterPack™ is an easy-to-use evaluation board for the single-chip AWR1443 mmWave sensing device from TI, with direct connectivity to the TI MCU LaunchPad™ ecosystem. The evaluation board contains everything needed to start developing on a low-power ARM®-R4F controller. The evaluation board includes onboard emulation for programming and debugging, onboard buttons, and LEDs, for guick integration of a simple user interface. The standard 20-pin BoosterPack headers make the evaluation board compatible with a wide variety of TI MCU LaunchPads and enables easy prototyping. The AWR1243 BoosterPack is an evaluation board for the AWR1243 mmWave high-performance front end. The evaluation platform enables raw capture of ADC data from the front end and evaluation of RF performance. #### 1.2 Key Features - 40-pin LaunchPad standard that leverages the LaunchPad ecosystem - XDS110-based JTAG emulation with serial port, for onboard QSPI flash programming (for AWR1443) - Backchannel UART through USB to PC, for logging purposes - Onboard antenna - 60-pin high density (HD) connector, for raw ADC data over CSI, or the high-speed debug interface - Onboard CAN transceiver (for AWR1443) - One button and two LEDs, for user interaction - 5-V power jack, to power the board #### 1.3 What is Included #### 1.3.1 Kit Contents - AWR1443BOOST or AWR1243BOOST - Mounting brackets, screws, and nuts, to allow placing the PCB vertical - Micro USB cable to connect to the PC NOTE: Not included: 5 V, >2.5-A supply brick with 2.1-mm barrel jack (center positive). TI recommends using an external power supply that complies with applicable regional safety standards such as UL, CSA, VDE, CCC, PSE, and so on. The cable length of the power cord must be < 3 m. #### 1.3.2 mmWave Proximity Demo TI provides sample demo codes to easily get started with the AWR1443 evaluation module and experience the functionality of the AWR1443 mmWave sensor. For details on getting started with these demos, see the mmWave SDK User Guide. BoosterPack, LaunchPad are trademarks of Texas Instruments. ARM is a registered trademark of ARM Limited. Windows is a registered trademark of Microsoft Corporation. ## 2 Hardware Figure 1 and Figure 2 show the front and rear views of the evaluation board, respectively. Figure 1. EVM Front View Figure 2. EVM Rear View #### 2.1 Block Diagram Figure 3. BoosterPack™ Block Diagram # 2.2 Connecting BoosterPack™ to LaunchPad™ or MMWAVE-DEVPACK This BoosterPack can be stacked on top of the Launchpad, or the MMWAVE-DEVPACK, using the two 20-pin connectors. The connectors do not have a *key* to prevent the misalignment of the pins or reverse connection. Therefore, ensure reverse mounting does not take place. On the AWR1443 BoosterPack, we have provided 3V3 marking near pin 1 (see Figure 4). This same marking is provided on compatible LaunchPads which must aligned before powering up the boards. Figure 4. 3V3 and 5-V Mark on the LaunchPad™ (White Triangle) #### 2.3 Power Connections The BoosterPack is powered by the 5-V power jack (>2.5-A current limit). As soon as the power is provided, the NRST and 5-V LEDs glow, indicating that the board is powered up (see Figure 5). Figure 5. Power Connector **NOTE:** After the 5-V power supply is provided to the EVM, TI recommends pressing the NRST switch (SW2) once to ensure a reliable boot up state. #### 2.4 Connectors #### 2.4.1 20-Pin BoosterPack™ Connectors The BoosterPack has the standard LaunchPad connectors (J5 and J6) which enable the BoosterPack to be directly connected to all TI MCU LaunchPads (see Table 1). While connecting the BoosterPack to other LaunchPads, ensure the pin 1 orientation is correct by matching the 3V3 and 5-V signal marking on the boards (see Figure 6). Figure 6. 20-Pin BoosterPack™ Connectors (J5 and J6) Table 1 and Table 2 provide the connector-pin information. Table 1. 20-Pin Connector Definition (J6) | Pin Number | Description | Pin Number | Description | |------------|-------------|------------|-------------| | 1 | NERROUT | 2 | GND | | 3 | NERRIN | 4 | NC | | 5 | MCUCLK OUT | 6 | SPI_CS | | 7 | NC | 8 | GPIO1 | | 9 | MSS LOGGER | 10 | nRESET | | 11 | WARMRST | 12 | SPI_MOSI | | 13 | BSS LOGGER | 14 | SPI_MISO | | 15 | SOP2 | 16 | HOSTINT | | 17 | SOP1 | 18 | GPIO2 | | 19 | SOP0 | 20 | NC | Table 2. 20-Pin Connector Definition (J5) | Pin Number | Description | Pin Number | Description | |------------|---------------------|------------|------------------------------| | 1 | 5 V | 2 | 3V3 | | 3 | GND | 4 | GND | | 5 | ANA1 | 6 | RS232TX (Tx from IWR device) | | 7 | ANA2 | 8 | RS232RX (Rx into IWR device) | | 9 | ANA3 | 10 | SYNC_IN | | 11 | ANA4 | 12 | NC | | 13 | PGOOD (onboard VIO) | 14 | SPI_CLK | | 15 | PMIC Enable | 16 | GPIO0 | | 17 | SYNC_OUT | 18 | SCL | | 19 | PMIC CLK OUT | 20 | SDA | - PGOOD This signal indicates the state of the onboard VIO supply for the AWR device coming from the onboard PMIC. A high on the PGOOD signal (3.3 V) indicates that the supply is stable. Because the IOs are not failsafe, the MCU must ensure that it does not drive any IO signals to the AWR device before this IO supply is stable. Otherwise, there could be leakage current into the IOs. - PMIC Enable This signal goes onboard PMIC enable. The MCU can use this signal to completely shut down the PMIC and AWR device to save power. The power up of the PMIC takes approximately 5 ms once the Enable signal is released. **NOTE:** To enable this feature, the R102 resister must be populated on the EVM. ANA1/2/3/4 – These are inputs to the GPADCs (general purpose ADC) available on the AWR1443 device. ## 2.4.2 60-Pin High Density (HD) Connector The 60-pin HD connector provides high speed data over CSI or the HS_DEBUG interface, and controls signals (SPI, UART, I2C, NRST, NERR, and SOPs) and JTAG debug signals (see Table 3). This connector can be connected to the MMWAVE-DEVPACK board and interface with the TSW1400 (see Figure 7). Figure 7. High Density Connector (60 Pin) **Table 3. HD Connector Pin Definition** | Pin Number | Description | Pin Number | Description | |------------|---------------------|------------|--------------| | 1 | 5 V | 2 | 5 V | | 3 | 5 V | 4 | TDO | | 5 | TDI | 6 | TCK | | 7 | SPI_CS | 8 | TMS | | 9 | SPI_CLK | 10 | HOSTINT | | 11 | SPI_MOSI | 12 | SPI_MISO | | 13 | PGOOD (onboard VIO) | 14 | NERROUT | | 15 | NC | 16 | SYNC_IN | | 17 | NC | 18 | GND | | 19 | NC | 20 | DEBUG_VALIDP | | 21 | NC | 22 | DEBUG_VALIDM | | 23 | NC | 24 | GND | | 25 | NC | 26 | DEBUG_FRCLKP | | 27 | NC | 28 | DEBUG_FRCLKM | | 29 | NC | 30 | GND | | 31 | NC | 32 | DEBUG/CSI_3P | | 33 | NC | 34 | DEBUG/CSI_3M | | 35 | NC | 36 | GND | | 37 | NC | 38 | DEBUG/CSI_2P | | 39 | NC | 40 | DEBUG/CSI_2M | | 41 | NC | 42 | GND | | Pin Number | Description | Pin Number | Description | |------------|------------------------------|------------|----------------| | 43 | NC | 44 | DEBUG/CSI_CLKP | | 45 | NC | 46 | DEBUG/CSI_CLKM | | 47 | NC | 48 | GND | | 49 | NC | 50 | DEBUG/CSI_1P | | 51 | I2C_SDA | 52 | DEBUG/CSI_1M | | 53 | I2C_SCL | 54 | GND | | 55 | RS232RX (Rx into AWR device) | 56 | DEBUG/CSI_0P | | 57 | RS232TX (Tx from AWR device) | 58 | DEBUG/CSI_0M | Table 3. HD Connector Pin Definition (continued) PGOOD – This signal indicates that the state of the onboard VIO supply for the AWR device coming from the onboard PMIC. A high on the PGOOD signal (3.3 V) indicates the supply is stable. Because the I/Os are not failsafe, the MCU must ensure that it does not drive any I/O signals to the AWR device before this I/O supply is stable, to avoid leakage current into the I/Os. 60 **GND** #### 2.4.3 CAN Interface Connector (for AWR1443) 59 nRESET The J3 connector provides the CAN_L and CAN_H signals (see Figure 8) from the onboard CAN transceiver (SN65HVDA540). These signals can be directly wired to the CAN bus. Because the digital CAN signals (TX and RX) are muxed with the SPI interface signals on the AWR device, one of the two paths must be selected. This is done by placing the switch S2 on the "CAN" position. Figure 8. CAN Connector #### 2.5 PC Connection Connectivity is provided using the micro USB connector over the onboard XDS110 (TM4C1294NCPDT) emulator. This connection provides the following interfaces to the PC: - JTAG for CCS connectivity - UART1 for flashing the onboard serial flash, downloading FW using RADAR studio, and getting application data sent over the UART - MSS logger UART, which can be used to get MSS code logs on the PC When the USB is connected to the PC the device manager recognizes the following COM ports, as shown in Figure 9: - XDS110 Class Application/User UART → the UART1 port - XDS110 Class Auxiliary Data port → the MSS logger port Figure 9. XDS110 Ports If Windows® is unable to recognize the COM ports previously shown, install the emupack available here #### 2.5.1 Erasing Onboard Serial Flash Before loading the code to the serial flash or connecting the board to RADAR Studio, TI recommends completely erasing the onboard serial flash. The instructions to erase the onboard serial flash are in the *mmWave SDK User Guide*. #### 2.5.2 Connection With MMWAVE-DEVPACK Mmwave SDK demos and released labs do not require the DevPack to be used with the BoosterPack. Users may be required to use the DevPack along with the BoosterPack for the following use cases: - Connecting to RADAR studio. This tool provides capability to configure the mmWave front end from the PC. This tool is available in the DFP package. - Capturing high-speed LVDS data using the TSW1400 platform from TI. This device allows the user to capture raw ADC data over the high-speed debug interface and post process it in the PC. The RADAR Studio tool provides an interface to the TSW1400 platform as well, so that the front end configurations and data capture can be done using a single interface. Details on this board can be found at http://www.ti.com/tool/tsw1400evm For details on these use cases, see the mmWave-DevPack User Guide. #### 2.5.3 Connecting the BoosterPack to the DCA1000 The BoosterPack can be connected to the DCA1000 FPGA platform for LVDS streaming over Ethernet. For detailed information on how to capture LVDS data using the DCA1000, see the following resources: - DCA1000 Product Page - DCA1000 User's Guide - DCA1000 Training Video #### 2.6 Antenna The BoosterPack includes onboard etched antennas for the four receivers and three transmitters, which enables tracking multiple objects with their distance and angle information. This antenna design enables estimation of both azimuth and elevation angles, which enables object detection in a 3-D plane (see Figure 10). Figure 10. PCB Antenna The antenna peak gain is > 10.5 dBi across the frequency band of 76 to 81 GHz. The radiation pattern of the antenna in the horizontal plan (H-plane) and elevation plan (E-plane) is as shown in Figure 11 and Figure 12. Figure 11. Antenna Pattern in H-Plane Figure 12. Antenna Pattern in E-Plane #### 2.7 Jumpers, Switches, and LEDs #### 2.7.1 Sense On Power Jumpers The AWR1443 and AWR1243 devices can be set to operate in three different modes, based on the state of the SOP (sense on power) lines (see Figure 13). These lines are *only* sensed during boot up of the AWR device. The state of the device is described by Table 4. A closed jumper refers to a 1 and an open jumper refers to a 0 state of the SOP signal going to the AWR device. **Table 4. SOP Modes** | Reference | Use | Comments | |------------|-----|--------------------------------------| | P3 (SOP 2) | | 101 (SOP mode 5) = Flash programming | | P2 (SOP 1) | | 001 (SOP mode 4) = Functional mode | | P4 (SOP 0) |] | 011 (SOP mode 2) = Dev mode | Figure 13. SOP Jumpers #### 2.7.2 Current Measurement The P5 jumper enables measurement of the current being consumed by the reference design (AWR device + PMIC + LDOs) at the 5-V level. To measure the current, R118 must be removed and a series ammeter can be put across the P5 pins (see Figure 14). **Figure 14. Current Measurement Point** #### 2.7.3 Push Buttons and LEDs Table 5 and Table 6 list the push button and LED uses, respectively. **Table 5. Push Buttons** | Reference | Use | Comments | Image | |-----------|--------|--|--| | SW2 | RESET | This button is used to reset the radar device. This signal is also brought out on the 20-pin connector and 60-pin HD connector, so that an external processor can control the AWR device. The onboard XDS110 can also use this reset. | DZ 本本 DI 本本 DI IIIIIIIIIIIIIIIIIIIIIIIII | | SW1 | GPIO_1 | When this button is pushed, the GPIO_1 is pulled to $V_{\rm cc}$. | GP IO1 BE | Table 6. LEDs | Reference | Color | Use | Comments | Image | |-----------|--------|-----------------------|--|---| | DS2 | Red | 5-V supply indication | This LED indicates the presence of the 5-V supply. | NERR_OL
SPENSON
SPENSON
SOP
SOP | | DS4 | Yellow | nRESET | This LED is used to indicate the state of nRESET pin. If this LED is on, the device is out of reset. This LED glows only after the 5-V supply is provided. | DIA BE | | DS1 | Red | NERR_OUT | This LED turns on if there is any hardware error in the AWR device. | MERR_OUT | | DS3 | Yellow | GPIO_1 | This LED turns on when the GPIO is logic-1. | -0-053
13-15 R176
0-15 R176
NERR_C | #### 2.7.4 Selection Between SPI and CAN Interface The SPI and CAN interface are muxed on the same lines on the AWR1243BOOST. Based on the configuration, the user can select if the pins P5 and R8 must be connected to the 20-pin/HD connectors to provide the SPI interface OR the on board CAN PHY (U3). This selection is done by setting the S1 switch. Figure 15. S1 Switch to Select Between SPI or CAN Interface #### 3 Design Files and Software Tools For Rev A boards: - AWR1243BOOST Schematics, Assembly, and BOM Details - AWR1243BOOST Design Database and Layout Details - AWR1443BOOST Schematics, Assembly and BOM Details - AWR1443BOOST Design Database and Layout Details #### For Rev B boards: - AWR1243BOOST Schematics, Assembly, and BOM Details - AWR1443BOOST Schematics, Assembly and BOM Details - AWR1x43BOOST Design Database and Layout Details **NOTE:** Boards with a Rev 'C' sticker have had capacitor C56 (VBGAP decoupling capacitor) changed from 0.22 µF to 0.047 µF (part number CGA2B3X7R1H473K050RB). TI changed from 0.22 μ F to 0.047 μ F (part number CGA2B3X7R1H473K050BB). TI recommends that customers incorporate this change with an equivalent capacitor in their designs. #### 3.1 Software, Development Tools, and Example Codes for AWR1443 To enable quick development of an end application on the R4F core in the AWR1443, TI provides a software development kit (SDK) which includes demo codes, software drivers, an emulation package for debug, and so on. The SDK is available at mmwave-sdk. #### 3.1.1 LDO Bypass Requirement The AWR1243BOOST and AWR1443BOOST use a 1.0-V supply on the RF1 and RF2 power rails. To support the third transmitter, the VOUT_PA output is connected to the RF2 power rail. For best performance and to prevent damage to the device, select the 'RF LDO Bypass Enable' and 'PA LDO I/P Disable' options in the Static Configuration when using mmWave Studio. Additionally, the LDO bypass can be configured using the AWR_RF_LDO_BYPASS_SB API. To enable the RF LDO Bypass and PA LDO I/P Disable through the API, issue an ar1.RfLdoBypassConfig(0x3) command. STRUMENTS Figure 16. LDO Bypass Enable #### 4 Design Revision History Table 7. | PCB Revision | Notes | |--------------|--| | | Added switch control to move between SPI and CAN interface | | | Enabled, by default, the 5-V supply from the 60-pin HD connector | | | Enabled, by default, the SYNC_IN signal connection to the J6 connector | | В | Serial flash part number updated to MX25V1635FZNQ | | | Added series resistors on I2C lines | | | Removed the series diode on the NRST signal | | | Enabled, by default, the LDO bypass option | #### 5 Mechanical Mounting of PCB The field of view of the radar sensor is orthogonal to the PCB. The L-brackets provided with the AWR1443 and AWR1243 EVM kit, along with the screws and nuts help in the vertical mounting of the EVM. Figure 17 shows how the L-brackets can be assembled. Figure 17. Vertical Assembly of the EVM #### 6 **PCB Storage and Handling Recommendations** The immersion silver finish of the PCB provides a better high-frequency performance but is also prone to oxidation in an open environment. This oxidation causes the surface around the antenna region to blacken. To avoid this effect, store the PCB in an ESD cover and keep it at controlled room temperature with low humidity conditions. All ESD precautions must be taken while using and handling the EVM. #### 7 **Regulatory Information** The AWR1443 and AWR1243 evaluation modules (AWR1443BOOST and AWR1243BOOST) are in compliance with Directive 2014/53/EU. The full text of TI's EU Declaration of Conformity is available here. The compliance has been verified in the operating bands 76 – 77 GHz and 77 – 81 GHz. Should the user choose to configure the EVM to operate outside the test conditions, it should be operated inside a protected or controlled environment, such as a shielded chamber. This evaluation board is intended only for development, and is not for use in an end product or part of an end product. Developers and integrators that incorporate the chipset in any end products are responsible for obtaining applicable regulatory approvals for such an end product. The European RF exposure radiation limit is fulfilled if a minimum distance of 5 cm between the users body and the radio transmitter is respected. NOTE: The EUT has been tested in the 76 - 77 GHz band (2 Tx at a time) at a maximum peak power of 26 dBm EIRP, and in the 77 - 81 GHz band (1 Tx at a time) with maximum peak power of 21 dBm EIRP across the temperature range of -20°C to 60°C. www.ti.com Revision History # **Revision History** NOTE: Page numbers for previous revisions may differ from page numbers in the current version. | Cł | Changes from B Revision (January 2019) to C Revision | | | | |----|---|----|--|--| | • | Updated J5 and J6 20-Pin Connector Definition tables. | 9 | | | | • | Added Note | 17 | | | #### IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated