
CC13x0 SimpleLink™ TI 15.4-Stack 2.x.x
Embedded

Developer's Guide

Literature Number: SWRU489A
September 2016–Revised December 2016

2 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Contents

Contents

1 Overview... 9
1.1 Introduction ... 9

2 TI 15.4-Stack Software Development Platform.. 10
2.1 Protocol Stack and Application Configurations... 11
2.2 Solution Platform ... 12
2.3 Directory Structure ... 12
2.4 Projects .. 13
2.5 Setting Up the Integrated Development Environment ... 14

2.5.1 Installing the SDK ... 14
2.5.2 Code Composer Studio .. 15

2.6 Accessing Preprocessor Symbols ... 23
2.7 Top-Level Software Architecture .. 24

3 RTOS Overview .. 25
3.1 RTOS Configuration ... 25
3.2 Semaphores .. 26

3.2.1 Initializing a Semaphore .. 26
3.2.2 Pending a Semaphore ... 27
3.2.3 Posting a Semaphore .. 27

3.3 RTOS Tasks .. 27
3.3.1 Creating a Task ... 27
3.3.2 Creating the Task Function .. 28

3.4 Clocks.. 28
3.4.1 API .. 29
3.4.2 Functional Example ... 29

3.5 Queues .. 30
3.5.1 Queue API.. 30

3.6 Idle Task... 30
3.7 Power Management.. 30
3.8 Hardware Interrupts .. 31
3.9 Software Interrupts ... 31
3.10 Flash ... 32

3.10.1 Using Nonvolatile Memory .. 32
3.11 Memory Management (RAM) ... 34

3.11.1 System Stack ... 34
3.11.2 Dynamic Memory Allocation .. 34
3.11.3 A Note on Initializing RTOS Objects... 35

4 TI 15.4-Stack Overview .. 36
4.1 Beacon Enabled Mode .. 36

4.1.1 Introduction... 36
4.1.2 Network Operations .. 36
4.1.3 Stack Configuration Knobs... 46

4.2 Nonbeacon Mode .. 47
4.2.1 Introduction... 47
4.2.2 Network Operations .. 47
4.2.3 Stack Configuration Knobs... 53

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com

3SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Contents

4.3 Frequency-Hopping Mode .. 54
4.3.1 Introduction... 54
4.3.2 Network Operations .. 55
4.3.3 Stack Configuration Knobs... 64

4.4 Security .. 67
4.5 Configuring Stack: Selecting the Network Mode of Operation .. 68

5 Application Overview .. 70
5.1 Application Architecture ... 70
5.2 Start-Up in main() .. 71
5.3 Indirect Call Framework ... 72

5.3.1 ICALL TI 15.4-MAC Protocol Stack Service ... 72
5.3.2 ICALL Primitive Service .. 73
5.3.3 ICALL Initialization and Registration ... 73
5.3.4 ICALL Thread Synchronization .. 74
5.3.5 Example ICALL Usage ... 75

5.4 General Application Architecture ... 76
5.4.1 Application Initialization Function.. 76
5.4.2 Event Processing in the Task Function .. 77
5.4.3 Callbacks ... 78

6 Example Applications ... 82
6.1 Collector Example Application .. 83

6.1.1 Running the Application .. 83
6.2 Sensor ... 87

6.2.1 Running the Application ... 87
6.3 FH Conformance Certification Application Example .. 89
6.4 Configuration Parameters ... 90
6.5 Coprocessor .. 93
6.6 Linux Example Applications... 93

6.6.1 Linux Collector and Gateway Application ... 93
6.6.2 Linux Serial Bootloader Application .. 94

7 Packet Sniffer .. 95
7.1 Setting Up the Sniffer .. 96

7.1.1 Install the Required Software .. 96
7.1.2 Hardware Setup ... 96
7.1.3 Software Setup .. 97

7.2 Using Wireshark .. 100
7.3 Troubleshooting ... 101

7.3.1 TiWsPc Troubleshooting .. 101
7.3.2 Wireshark Dissector Troubleshooting ... 102

8 Peripherals and Drivers ... 103
8.1 Adding a Driver.. 103
8.2 Board File .. 103
8.3 Available Drivers .. 105

8.3.1 PIN Driver... 105
8.3.2 UART .. 106

9 Sensor Controller ... 107
10 Startup Sequence ... 108

10.1 Programming Internal Flash With the ROM Bootloader ... 108
10.2 Resets .. 108

11 Development and Debugging ... 109
11.1 Debug Interfaces.. 109

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com

4 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Contents

11.1.1 Connecting to the XDS Debugger .. 109
11.1.2 Load Debug Symbols .. 110

11.2 Breakpoints .. 110
11.2.1 Considerations When Using Breakpoints With Frequency Hopping or a Beacon-Enabled Network 111
11.2.2 Considerations on Breakpoints and Compiler Optimization... 111

11.3 Watching Variables and Registers ... 112
11.3.1 Variables in CCS.. 112
11.3.2 Considerations When Viewing Variables .. 112

11.4 Memory Watchpoints ... 112
11.4.1 Watchpoints in CCS .. 113

11.5 TI-RTOS Object Viewer.. 113
11.5.1 Scanning the BIOS for Errors ... 113
11.5.2 Viewing the State of Each Task .. 114
11.5.3 Viewing the System Stack ... 114
11.5.4 Power Manager Information... 114

11.6 Profiling the ICall Heap Manager (heapmgr.h).. 115
11.7 Optimizations .. 116

11.7.1 Project-Wide Optimizations.. 116
11.7.2 Single-File Optimizations .. 116

11.8 Deciphering CPU Exceptions ... 116
11.8.1 Exception Cause.. 116
11.8.2 Using a Custom Exception Handler .. 117
11.8.3 Parsing the Exception Frame ... 117

11.9 Debugging HAL Assert... 118
11.10 Debugging MAC Assert.. 118
11.11 Debugging Memory Problems .. 118

11.11.1 Task and System Stack Overflow... 118
11.11.2 Dynamic Allocation Errors.. 119

11.12 Preprocessor Options.. 119
11.12.1 Modifying ... 119
11.12.2 Options ... 119

11.13 Check System Flash and RAM Usage With a Map File... 120

12 Creating Custom Applications.. 121
12.1 Adding a Board File .. 121
12.2 Configuring Parameters for Custom Hardware ... 121
12.3 Creating Additional Tasks ... 121
12.4 Configuring TI 15.4-MAC Stack... 121

13 TI 15.4-Stack API .. 122
13.1 TIMAC 2.0 API .. 122

13.1.1 Callback Functions ... 122
13.1.2 Common Constants and Structures .. 122
13.1.3 Initialization and Task Interfaces ... 122
13.1.4 Data Interfaces .. 122
13.1.5 Management Interfaces.. 122
13.1.6 Management Attribute Interfaces ... 123
13.1.7 Simplified Security Interfaces ... 123
13.1.8 Extension Interfaces.. 123

13.2 File Documentation – api_mac.h File Reference ... 124
13.2.1 Data Structures ... 124
13.2.2 Macros ... 125
13.2.3 Typedefs ... 126
13.2.4 Enumerations.. 127
13.2.5 Functions .. 129

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com

5SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Contents

13.3 Data Structure Documentation .. 133
13.4 Macro Definition Documentation.. 149
13.5 Typedef Documentation.. 152
13.6 Enumeration Type Documentation ... 153
13.7 Function Documentation ... 162

14 ICALL API .. 174
14.1 Commands .. 174
14.2 Error Codes.. 174

15 References... 175
Revision History .. 176

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com

6 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

List of Figures

List of Figures
2-1. SimpleLink™ CC13x0 Block Diagram ... 10
2-2. Single Device and Coprocessor Configuration ... 11
2-3. TI 15.4-Stack Development System ... 12
2-4. Processor Support Menu Selections... 15
2-5. Import SDK Projects Menu Selection.. 16
2-6. CCS Project Import Pane ... 17
2-7. CCS Project Explorer Pane ... 18
2-8. CCS Project Console Pane ... 19
2-9. Programming Hex Files ... 20
2-10. Debugging Sensor Application ... 21
2-11. Properties for sensor_cc13x0lp .. 22
2-12. Console Verbosity Level Preferences ... 22
2-13. Predefined Symbols Pane .. 23
2-14. Software Architecture .. 24
3-1. RTOS Execution Threads ... 25
3-2. Semaphore Functionality .. 26
3-3. General Task Topology.. 28
3-4. Clock Expiration Flow Diagram... 30
3-5. Queue Messaging Process ... 30
3-6. Preemption Scenario... 31
3-7. Definitions of Functions from the SYS/BIOS API ... 35
4-1. Beacon Mode Network Start-Up Sequence... 37
4-2. Beacon Mode Device Association Sequence .. 39
4-3. Beacon Mode Direct Data Exchange Sequence ... 40
4-4. Beacon Mode Indirect Data Exchange Sequence ... 41
4-5. Beacon Mode Sync Loss Sequence... 42
4-6. Beacon Mode Coordinator Initiated Indirect Disassociation Sequence ... 43
4-7. Beacon Mode Coordinator-Initiated Direct Disassociation Sequence ... 44
4-8. Beacon Mode Device-Initiated Disassociation Sequence... 45
4-9. Nonbeacon Mode Network Start-Up Sequence .. 47
4-10. Nonbeacon Mode Device Association Sequence.. 48
4-11. Nonbeacon Mode Direct Data Exchange Sequence .. 49
4-12. Nonbeacon Mode Indirect Data Exchange Sequence .. 50
4-13. Nonbeacon Mode Orphan Sequence.. 51
4-14. Indirect Disassociation Sequence Initiated by the Nonbeacon Mode Coordinator 52
4-15. Disassociation Sequence Initiated by the Nonbeacon Mode Device.. 53
4-16. Unicast Hopping Sequence ... 54
4-17. Broadcast Channel Hopping Sequence ... 54
4-18. Start-Up Sequence of PAN Coordinator .. 56
4-19. Start-Up Sequence of the Device .. 57
4-20. Joining Procedure for a Sleepy Frequency-Hopping Device ... 60
4-21. Joining Procedure for a Nonsleepy Frequency-Hopping Device... 60
4-22. Data Exchange With TI 15.4-Stack in Frequency-Hopping Configuration .. 61
4-23. Asynchronous Frame Exchange ... 62
4-24. Sleep Mode Operation in Frequency-Hopping Mode.. 63
4-25. Changing TI 15.4 Stack library ... 69
5-1. Example Application Block Diagram ... 70

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com

7SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

List of Figures

5-2. ICALL Application – Protocol Stack Abstraction ... 72
5-3. ICALL Messaging Example ... 75
5-4. Sensor Example Application Task Flow Chart ... 77
6-1. Collector Example Application Folder Project Explorer View... 83
6-2. Debug Option ... 84
6-3. Select Terminate Option... 84
6-4. LCD Display (1 of 2) ... 85
6-5. Hyperterminal When Collector is Started ... 85
6-6. LCD Display (2 of 2) ... 86
6-7. Hyperterminal When Sensor Joins Collector ... 86
6-8. Config.h File... 87
6-9. LCD Sensor Display (1 of 2) .. 88
6-10. Hyperterminal When Sensor is Powered Up ... 88
6-11. LCD Sensor Display (2 of 2) .. 89
6-12. Hyperterminal When Sensor Joins The Network .. 89
7-1. OTA Traffic .. 95
7-2. Update EB Firmware... 96
7-3. Use Pipe... 97
7-4. Shortcut Properties... 98
7-5. Wireshark Plugin ... 99
7-6. Wireshark Preferences .. 99
7-7. Apply Filter... 100
7-8. Filter Selection .. 100
7-9. Get Attribute Name ... 101
7-10. Wireshark Plugin Error ... 102
7-11. Wireshark Debug Error... 102
8-1. LaunchPad Folder .. 104
10-1. Board Reset ... 108
11-1. Debug Output File .. 110
11-2. Breakpoint Set Example ... 110
11-3. View Breakpoints ... 110
11-4. Breakpoint Properties .. 111
11-5. View Expressions ... 112
11-6. View Variables .. 112
11-7. Hardware Watchpoint .. 113
11-8. Breakpoint Properties .. 113
11-9. Scan for Errors .. 113
11-10. Detailed View.. 114
11-11. HWI Module View... 114
11-12. Project-Wide Optimization Menu ... 116
11-13. M3Hwi.excHandlerFunc Property... 117

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com

8 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

List of Tables

List of Tables
2-1. Supported Tools and Software ... 14
4-1. Attribute Configuration for Beacon Mode ... 46
4-2. Configuration Constants... 46
4-3. Attribute Configuration Applicable to Beacon Mode ... 53
4-4. Configuration Constants... 53
4-5. Addressing Modes for Unicast and Broadcast Message With TI 15.4-Stack in Frequency-Hopping

Configuration.. 61
4-6. Unicast Channel-Hopping PIB Parameters ... 64
4-7. Broadcast Channel-Hopping PIB Parameters .. 65
4-8. Frequency-Hopping Parent Address PIB Attribute... 65
4-9. Broadcast Interval PIB Attribute .. 65
4-10. Frequency Hopping Control PIB Attributes ... 66
4-11. Frequency Hopping Neighbor Control PIB Attributes.. 66
4-12. Frequency Hopping Backoff PIB Attributes ... 66
4-13. PIB Attributes for Asynchronous Messages .. 67
4-14. Out-of-Box Collector Example Application Flash and RAM Usage Summary With Various Compile-

Option Combinations... 69
4-15. Out-of-Box Sensor Example Application Flash and RAM Usage Summary With Various Compile-Option

Combinations ... 69
6-1. Configuration Parameters ... 90
8-1. DIO Pin Mapping.. 105
8-2. UART Pin Mapping ... 106
11-1. Application Preprocessor Symbols ... 119
11-2. Stack Preprocessor Symbols.. 120
14-1. Error Codes.. 174

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

9SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Overview

SimpleLink, TI-RTOS, Code Composer Studio, Sensor Controller Studio, SmartRF, BoosterPack are trademarks of Texas Instruments.
ARM, Cortex are registered trademarks of ARM Ltd.
Wireshark is a trademark of CACE Technologies, LLC.
IEEE is a trademark of International Electrical and Electronics Engineers.
Node.js is a registered trademark of Joyent, Inc.
Linux is a registered trademark of Linus Torvalds.
Windows is a registered trademark of Microsoft Corporation.
Wi-SUN is a registered trademark of Wi-SUN Alliance.
All other trademarks are the property of their respective owners.

Chapter 1
SWRU489A–September 2016–Revised December 2016

Overview

The SimpleLink™ TI 15.4-Stack is part of the CC13x0 SimpleLink SDK. The CC13x0 SimpleLink SDK
includes the software stack from Texas Instruments that implements the standard IEEE 802.15.4e and
802.15.4g specification. The TI 15.4-Stack also implements a frequency-hopping scheme adopted from
Wi-SUN® field area network (FAN) specification. The CC13x0 SimpleLink SDK also provides the required
tools, real-time operating system (RTOS), and example applications for the TI 15.4-Stack to help
developers quickly get started developing their own star-topology-based wireless network products.

The purpose of this document is to give an overview of the SimpleLink TI 15.4-Stack to help developers
run the out-of-box example applications and enable creation of custom TI 15.4-Stack-based wireless star-
topology-based networking solutions. This document introduces the essential need-to-know technology
details for developing a wireless network based on the IEEE™ 802.15.4 and Wi-SUN FAN specification
supported by the TI 15.4-Stack.

NOTE: Do not use this document as a substitute for the complete specification. For more details,
see the IEEE 802.15.4 specification and Wi-SUN FAN specification.

1.1 Introduction
The Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 standard defines the physical (PHY)
and media access control (MAC) layers of the Open Systems Interconnection (OSI) model of network
operations. The PHY defines the wireless link conditions like modulation, frequency, and power, while the
MAC defines the format of the data.

TI implementation of this standard combines the following:
• The basic standard (802.15.4-2006) with the most recent updates
• The 802.15.4e for industrial applications and 802.15.4g for the smart utility networks (SUN)
• An implementation of Wi-SUN frequency hopping

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

10 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Software Development Platform

Chapter 2
SWRU489A–September 2016–Revised December 2016

TI 15.4-Stack Software Development Platform

TI’s royalty-free TI 15.4-Stack is a complete software platform for developing applications that require
extremely low-power, long-range, reliable, robust and secure wireless star-topology-based networking
solutions. This kit is based on the CC13x0 SimpleLink ultra-low power wireless microcontroller unit (MCU).
The CC13x0 device combines a sub-1 GHz RF transceiver with 128KB of in-system programmable
memory, 20KB of SRAM, and a full range of peripherals. The CC13x0 device is centered on an ARM®

Cortex®-M3 series processor that handles the application layer, the TI 15.4-Stack, and an autonomous
radio core centered on an ARM Cortex-M0 processor, which handles all the low-level radio control and
processing associated with the physical layer and parts of the link layer. The sensor controller block
provides additional flexibility by allowing autonomous data acquisition and control independent of the
Cortex-M3 processor, which further extends the low-power capabilities of the CC13x0 device.

Figure 2-1 shows the block diagram. For more information on the CC13x0 device, see the CC13xx,
CC26xx SimpleLink Wireless MCU Technical Reference Manual (TRM).

Figure 2-1. SimpleLink™ CC13x0 Block Diagram

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A
http://www.ti.com/lit/pdf/SWCU117
http://www.ti.com/lit/pdf/SWCU117

External MCU

CC1310

 Application

TI 15.4-Stack

CC1310

MAC CoProcessor

Logical link

controller

 Application
Logical link

controller

Copyright © 2016, Texas Instruments Incorporated

(a) (b)

Serial Communication (UART)

www.ti.com Protocol Stack and Application Configurations

11SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Software Development Platform

2.1 Protocol Stack and Application Configurations
Figure 2-2 shows the two different system architectures enabled by the TI 15.4-Stack.
• A single device is shown in Figure 2-2 (a). The application and protocol stack are both implemented on

the CC13x0 device as a true single-chip solution. This configuration is the simplest and most common
when using the CC13x0 device for network nodes and also using the CC13x0 device as a personal
area network (PAN) coordinator node. This configuration is the most cost-effective technique and
provides the lowest-power performance.

• A coprocessor is shown in Figure 2-2 (b). The protocol stack runs on the CC13x0 device while the
application is executed on an external MPU or MCU. The application interfaces with the CC13x0
device using the network protocol interface (NPI) over a serial universal asynchronous
receiver/transmitter (UART) connection. The description of the API interface is provided in the TI-15.4
Stack CoP Interface Guide.pdf document found in the <docs/ti154stack/guides> folder of the TI 15.4-
Stack install. This configuration is useful for applications that must add long-range wireless connectivity
or peripheral applications, which execute on another device (such as an external MCU) or on a PC
without the requirement to implement the complexities associated with a wireless networking protocol.
In these cases, the application can be developed externally on a host processor while running the TI
15.4-Stack on the CC13x0 device, which provides ease of development and quickly adds long-range
wireless connectivity to existing products.

Figure 2-2. Single Device and Coprocessor Configuration

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Tool chain

IDE

Emulators

Application

TI 15.4-Stack DriverLib
TI-5726���
SYS/BIOS

peripheral drivers

CC13x0
evaluation and development boards

Copyright © 2016, Texas Instruments Incorporated

Solution Platform www.ti.com

12 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Software Development Platform

2.2 Solution Platform
This section describes the various components that are installed with the TI 15.4-Stack, the directory
structure of the protocol stack, and any tools required for development. Figure 2-3 shows the TI 15.4-
Stack development system.

Figure 2-3. TI 15.4-Stack Development System

The following components are included in the solution platform:
• Real-time operating system (RTOS) with the TI-RTOS™ SYS/BIOS kernel, optimized power

management support, and peripheral drivers (serial peripheral interface [SPI], UART and so forth)
• The CC13xxware driverLib provides a register abstraction layer that is used by software and drivers to

control the CC1310 MCU.
• The TI 15.4-Stack is provided in library form.
• Example applications make the beginning stages of development easier. Example applications are

provided for the CC13x0 platform and Linux® example applications are provided for the AM335x device
running the processor SDK.

• Code Composer Studio™ (CCS) is the supported IDE for the example applications for the CC13x0
platform.

2.3 Directory Structure
The CC13x0 SimpleLink SDK installer includes all the files needed to start evaluating example
applications and to later create custom applications using the TI 15.4-Stack. The installed SDK provides
the following content at the indicated default locations on the development computer:
• Documents: detailed API, developer’s guide, and user’s guide documentation

– C:\ti\simplelink_cc13x0_sdk_1_00_00_xx\docs\ti154stack
• Examples: complete application examples for collector, sensor, and coprocessor devices, as well as

prebuilt hex files.
– If using a CC1310 then examples are here:

• C:\ti\simplelink_cc13x0_sdk_1_00_00_xx\examples\rtos\CC1310_LAUNCHXL\ti154stack
– If using a CC1350 then examples are here:

• C:\ti\simplelink_cc13x0_sdk_1_00_00_xx\examples\rtos\CC1350_LAUNCHXL\ti154stack
• Tools: support files for the Wireshark protocol analyzer

– C:\ti\simplelink_cc13x0_sdk_1_00_00_xx\tools\ti154stack

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Projects

13SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Software Development Platform

2.4 Projects
The TI 15.4-Stack component within the CC13x0 SimpleLink SDK includes several projects that range
from providing core IEEE 802.15.4 MAC functionality to use-case specific applications such as Collector
and Sensor. The following projects can be used directly out of the box to demonstrate basic wireless
applications and can be used later as a starting point for new application development.

The Coprocessor project can be used to build a MAC coprocessor device that works with a host processor
in a 2-chip scenario. The coprocessor project provides full-function MAC capability over serial interface to
the application running on the host. This device allows TI 15.4-Stack wireless functionality to be added to
systems that are not suited to single-chip solutions. A prebuilt hex file for the coprocessor is provided in
the SDK. If changes are needed, such as addition of a custom API command, the coprocessor project can
be used to generate a new hex file.

The Collector project builds a full-function device (FFD) that performs the functions of a network
coordinator (starting a network and permitting devices to join that network) and also provides an
application to monitor and collect sensor data from one or more sensor devices. Prebuilt hex files for the
collector project (demonstrating several communication scenarios) are provided in the SDK. The collector
project is used to build these hex files and can be modified to alter communication or application
functionality.

The Sensor project builds an reduced-function device (RFD) that performs the functions of a network
device (joining a network and polling the coordinator for messages) and also provides an application to
collect and send sensor data to the collector device. Prebuilt hex files for the sensor project are provided
in the SDK to demonstrate operation in several communication scenarios. The sensor project is used to
build these hex files and can be modified to alter communication or application functionality.

The Linux Collector and Gateway Applications are provided as part of the TI 15.4-Stack Linux SDK
installer. The TI 15.4-Stack Linux SDK is a separate SDK that can be downloaded online at
http://www.ti.com/tool/SIMPLELINK-CC13X0-SDK. The Linux Collector Example Application interfaces
with the CC13x0 device running the MAC coprocessor through UART. The Linux Collector Example
Application provides the same functionality as the Embedded Collector Application with the addition of
providing a socket server interface to the Linux Gateway Application. The Linux Gateway Application
implemented within the Node.js® framework connects as a client to the socket server created by the Linux
Collector Example Application and establishes a local web server to which the user can connect through a
web browser (in the local network) to monitor and control the network devices. The Collector and Gateway
Applications that provide IEEE 802.15.4 to the IP Bridge are a great starting point for creating Internet of
Things (IoT) applications with the TI 15.4-Stack.

The Linux Serial Bootloader Application is included inside the TI 15.4-Stack Linux SDK installer. This
application demonstrates how to upgrade the firmware of the CC13x0 MCU through the CC13x0 ROM
bootloader.

NOTE: Specific documentation for detailed Linux example applications can be found in the
${linux_sdk_root}/doc folder after running the Linux Installer.

The Linux installer requires an x86 64-bit machine running Ubuntu.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A
http://www.ti.com/tool/SIMPLELINK-CC13X0-SDK

Setting Up the Integrated Development Environment www.ti.com

14 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Software Development Platform

2.5 Setting Up the Integrated Development Environment
All embedded software for the TI 15.4-Stack is developed using TI's CCS on a Windows® 7 or later PC.
To browse through the SDK projects and view the code as it is referenced in this document, it is
necessary to install and set up the CCS integrated development environment (IDE). This section provides
information on where to find this software and how to properly configure the workspace for the IDE.

Path and file references in this document assume that the CC13x0 SimpleLink SDK has been installed to
the default path, hereafter referred to as <INSTALL_DIR>. Projects do not build properly if paths below the
top-level directory are modified.

2.5.1 Installing the SDK
To install the CC13x0 SimpleLink SDK, run the installer:

Simplelink-CC13x0-SDK-1.00.00.xx.exe

NOTE: The xx indicates the SDK build revision number at the time of release.

The default TI 15.4-Stack install path is:
C:\ti\simplelink_cc13x0_sdk_1_00_00_xx\examples\rtos\CC1350_LAUNCHXL\ti154stack
or
C:\ti\simplelink_cc13x0_sdk_1_00_00_xx\examples\rtos\CC1310_LAUNCHXL\ti154stack
(if using a CC1310).

In addition to TI 15.4-Stack code, documentation, and projects, installing the SDK also installs the TI-
RTOS bundle and the XDC tools, if not already installed. Table 2-1 lists the software and tools that are
supported and tested with this SDK. Check the TI 15.4-Stack Wiki page [3] for the latest supported tool
versions.

Table 2-1. Supported Tools and Software

Tool Or Software Version Install Path
TI 15.4-Stack
SDK Installer 1_00_00_xx C:\ti\simplelink_cc13x0_sdk_1_00_00_xx\examples\rtos\CC1350_LAUNCHXL\ti154stack

Core SDK 3.01.00.04 C:\ti\simplelink_cc13x0_sdk_1_00_00_xx\kernel\tirtos
XDC Tools 3.32.0.6 C:\ti\xdctools_3_32_00_06_core
CCS IDE 7.0 C:\ti\ccsv7
Sensor Controller
Studio™ 1.0.1 Windows default

SmartRF™ Flash
Programmer 2 1.7.2 Windows default

SmartRF Studio 7 2.1.0 Windows default

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Setting Up the Integrated Development Environment

15SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Software Development Platform

2.5.2 Code Composer Studio
Code Composer Studio (CCS) provides a suite of tools that are used to develop applications that run on
TI’s MCUs and embedded processors. CCS contains many features that go beyond the scope of this
document—more information can be found on the CCS website. Check the CC13x0 SimpleLink SDK
release notes to see which CCS version to use.

The following describes installing and configuring the correct version of CCS and the necessary tools.
1. Download CCS 7.0 from the Download_CCS wiki page.
2. Launch the CCS installer (for example, ccs_setup_win32.exe).
3. On the Processor Support menu (see Figure 2-4), expand SimpleLink Wireless MCUs and select

SimpleLink CC13xx and CC26xx Wireless MCUs

Figure 2-4. Processor Support Menu Selections

4. Click the Next button, then click the Finish button.
5. After CCS has installed, apply all available updates by selecting Help → Check for Updates.

NOTE: This step may require restarting CCS as each update is applied.

2.5.2.1 Configure CCS
This section explains how to configure CCS for development and debugging. It also provides information
on useful CCS IDE settings (see Section 2.5.2.8)

2.5.2.2 Using CCS
This section describes how to open and build an existing project. The Sensor project is used as an
example. However, all of the CCS projects included in the development kit have a similar structure.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A
http://www.ti.com/tool/ccstudio
http://processors.wiki.ti.com/index.php/Download_CCS

Setting Up the Integrated Development Environment www.ti.com

16 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Software Development Platform

2.5.2.3 Importing SDK Projects
Launch the CCS IDE and prepare to import the TI 15.4 projects from the installed SDK:
1. Select Project → Import CCS
2. Select Select search-directory: and click the Browse… button.
3. Navigate to

<INSTALL_DIR\simplelink_cc13x0_sdk_1_00_00_xx\examples\rtos\CC1350_LAUNCHXL\ti154stack
and click the OK button (see Figure 2-5).
If using CC1310, navigate to
C:\ti\simplelink_cc13x0_sdk_1_00_00_xx\examples\rtos\CC1310_LAUNCHXL\ti154stack.

Figure 2-5. Import SDK Projects Menu Selection

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Setting Up the Integrated Development Environment

17SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Software Development Platform

4. The Discovered projects box now lists the projects that have been found. Select the Copy projects into
workspace checkbox, click the Select All button, and last click the Finish button to import a copy of
each SDK project into the workspace (see Figure 2-6).

NOTE: In the following sections, the project names for the CC1310 and CC1350 platforms are
referred to as CC13x0. Replace x with either 1 or 5 depending on the wireless MCU being
used.

Figure 2-6. CCS Project Import Pane

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Setting Up the Integrated Development Environment www.ti.com

18 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Software Development Platform

2.5.2.4 Workspace Overview
The workspace now contains all projects needed to build downloadable images. The following examples
build a Sensor image, to produce a functional sensor device.

In the Project Explorer pane, click on the sensor_cc13x0lp project to make it active. Click on the arrow to
the left of the project to expand its contents, as shown in Figure 2-7.

Figure 2-7. CCS Project Explorer Pane

In Figure 2-7, all folders (under the sensor_cc13x0lp project) except for sensor_cc13x0lp can be
considered input folders, which contain source code files, header files, and configuration files used to
compile and link the application. The sensor_cc13x0lp folder contains output files, which include
programmable images and the linker map.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Setting Up the Integrated Development Environment

19SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Software Development Platform

2.5.2.5 Compiling and Linking
All example projects in the SDK are ready to build out-of-the-box meaning they are preconfigured for use
with a specific target board, in this case the CC13x0 LaunchPad. To build a Sensor Application image that
is ready to program onto a LaunchPad board, select Project → Rebuild Project. The Console pane of the
IDE displays the individual results of source file compilations, followed by the linker results, as shown in
Figure 2-8.

Figure 2-8. CCS Project Console Pane

In Figure 2-8, the output folder sensor_cc13x0lp is populated with results from a successful build of the
Sensor Application. Two programmable output files have been produced, sensor_cc13x0lp.out and
sensor_cc13x0lp.hex, along with a detailed linker map file, sensor_cc13x0lp.map.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Setting Up the Integrated Development Environment www.ti.com

20 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Software Development Platform

2.5.2.6 Downloading Hex Files
As shown in Section 2.5.2.5, the CCS linker produces .hex files that are ready for direct download to the
target hardware. The hex image can be downloaded to a target device by a stand-alone tool, such as the
SmartRF Flash Programmer 2, shown in Figure 2-9.

Figure 2-9. Programming Hex Files

As shown in Figure 2-9, SmartRF Flash Programmer 2 can be used to program the prebuilt hex file using
the Flash image(s) → Single feature. Use the Browse… button to select the following files:

<INSTALL_DIR>\simplelink_cc13x0_sdk_1_00_00_xx\examples\rtos\CC1350_LAUNCHXL\ti154stack\
hexfiles\default\sensor_default.hex

After connecting a CC1310 LaunchPad target board to one of the USB ports of the PC, the CC1310
XDS110 instance becomes listed in the Connected devices panel. Select the listed device by clicking on
the CC1310 icon. Programming the CC1310 LaunchPad is accomplished through the following sequence
(see Figure 2-9).
1. Select the Erase action, using the Pages in image option.
2. Select the Program action, using the Entire source file option.
3. Select the Verify action, using the Readback option.
4. Press the Go button (blue icon at the lower right corner of the Actions panel).
5. Observe the device programming feedback in the Status panel. It shows Success! when finished.
6. Exit the SmartRF Flash Programmer 2 and power cycle the LaunchPad to run the application.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Setting Up the Integrated Development Environment

21SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Software Development Platform

2.5.2.7 Debugging
When debugging is necessary, .out files produced by the linker are downloaded and run from the CCS
IDE. The following procedure would typically be used to debug the program.

Continuing with the Sensor example project, the compiled program can be downloaded to the target and a
debug session initiated by selecting: Run → Debug on the IDE, as shown in Figure 2-10.

Figure 2-10. Debugging Sensor Application

In Figure 2-10, the IDE has switched from the CCS Edit perspective to CCS Debug and shows the
program counter stopped at main(). From this starting point, the developer can single-step through source
code, set and run-to breakpoints, and run the program using icons at the top of the display. During a
debug session, the user can switch between the CCS Edit and CCS Debug perspectives, as necessary, to
view project files and perform debugging operations.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Setting Up the Integrated Development Environment www.ti.com

22 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Software Development Platform

2.5.2.8 Useful CCS IDE Settings
The CCS provides a large number of configurable settings that can be used to customize the IDE and
individual projects. The following examples do not alter the generated program code, but they can improve
the developer’s experience when working with CCS projects. The CCS can reduce project compilation
time by taking advantage of multiple processor cores on the development computer.

To use this feature, navigate to Project → Properties → Build → Behavior and select Enable parallel build,
as shown in Figure 2-11.

Figure 2-11. Properties for sensor_cc13x0lp

CCS users can control the amount of information that is displayed in the Console portion of the screen
during project compilation and linking, ranging from Verbose to Super quiet. To change this setting,
navigate to Window → Preferences → Code Composer Studio → Build and select an entry from the
Console verbosity level drop-down, as shown in Figure 2-12.

Figure 2-12. Console Verbosity Level Preferences

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Accessing Preprocessor Symbols

23SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Software Development Platform

2.6 Accessing Preprocessor Symbols
Throughout this document and in the source code, various C preprocessor symbols may need to be
defined or modified at the project level. Preprocessor symbols (also known as Predefined Symbols) are
used to enable and disable features and set operational values to be considered when the program is
compiled. A common way to disable an item without deleting it is to prefix an x to that item (see
xASSERT_LEDS in Figure 2-13 for an example).

In CCS, preprocessor symbols are accessed by selecting and opening the appropriate Project Properties,
then navigating to CCS Build → ARM Compiler → Predefined Symbols. To add, delete, or edit a
preprocessor symbol, use one of the icons shown in the red box in Figure 2-13.

Figure 2-13. Predefined Symbols Pane

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Top-Level Software Architecture www.ti.com

24 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Software Development Platform

2.7 Top-Level Software Architecture
The TI 15.4-Stack software environment consists of three separate parts:
• A real-time operating system (RTOS)
• An Application
• A Stack

The TI-RTOS is a real-time, pre-emptive, multithreaded operating system that runs the software solution
with task synchronization. Both the Application and MAC protocol stack exist as separate tasks within the
RTOS, with the TI 15.4-Stack having the highest priority. A messaging framework, Indirect Call (ICall), is
used for thread-safe synchronization between the Application and the Stack. Figure 2-14 illustrates the
architecture.

Figure 2-14. Software Architecture

• The Application
– Includes the application code, drivers, TI-RTOS, and the ICall module

• The Stack
– Includes the TI 15.4-Stack

• High-Level MAC is the API with the application, handles protocol messaging and data queues,
controls the personal area network information bases (PIBs).

• Frequency Hopping maintains frequency-hopping schedules and neighbor tracking.
• Low-Level MAC handles low level timing, encryption and decryption, and interfaces to the PHY.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

HWI

Hardware Interrupts

SWI

Software Interrupts

Task

Tasks

Idle

Background

P
ri

o
ri

ty

x� Hardware event triggers HWI to run

x� BIOS handles context save, restore, and nesting

x� HWI triggers follow-up processing

x� Priorities set in silicon

x� Software posts SWI to run

x� Performs HWI follow-up activity (processes data)

x� Up to 32 priority levels

x� Usually enabled to run by posting a semaphore

x� Designed to run concurrently; pauses when waiting for data (semaphore)

x� Up to 32 priority levels

x� Runs as an infinite while (1) loop

x� Users can assign multiple functions to idle

x� Single priority level

25SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

RTOS Overview

Chapter 3
SWRU489A–September 2016–Revised December 2016

RTOS Overview

TI-RTOS is the operating environment for CC13x0 SimpleLink SDK projects. The TI-RTOS kernel is a
tailored version of the SYS/BIOS kernel and operates as a real-time, pre-emptive, multithreaded operating
system with tools for synchronization and scheduling (XDCTools). The SYS/BIOS kernel manages four
distinct levels of execution threads (see Figure 3-1).
• Hardware interrupt service routines (ISRs)
• Software interrupt routines
• Tasks
• Background idle functions

Figure 3-1. RTOS Execution Threads

This chapter describes the four execution threads and various structures used throughout the TI-RTOS for
messaging and synchronization. In some cases in TI 15.4-Stack application projects, the underlying RTOS
functions have been abstracted to higher-level functions (for example, in the timer.c file). The lower-level
RTOS functions are described in the SYS/BIOS module section of the TI SYS/BIOS API Guide. This
document also defines the packages and modules included with the TI-RTOS.

3.1 RTOS Configuration
The SYS/BIOS kernel provided with the installer can be modified using the RTOS configuration file (that is
for example, app.cfg for the collector_cc13x0lp project). In the CCS project, this configuration file is in the
application project workspace. This configuration file defines the various SYS/BIOS and XDCTools
modules in the RTOS compilation, as well as system parameters such as exception handlers and timer-
tick speed. The RTOS must then be recompiled for these changes to take effect by recompiling the
project.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A
http://www.ti.com/lit/pdf/SPRUEX3

pend

Count > 0

Block task Decrement count

Return

TRUE

Return

FALSE

timeout expires

SEM posted

false true

Semaphore structure

x� Non-negative 16-bit counter

x� Pending queue (FIFO)

BIOS_WAIT_FOREVER -1//wait forever
Zero 0//GRQ¶W�ZDLW
value timeout //system ticks

Semaphores www.ti.com

26 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

RTOS Overview

The default project configuration is to use elements of the RTOS from the CC13x0 ROM. In this case,
some RTOS features are unavailable. If any ROM-unsupported features are added to the RTOS
configuration file, use an RTOS in flash configuration. Using RTOS in flash consumes additional flash
memory. The default RTOS configuration supports all the features required by the respective example
projects in the SDK.

See the TI-RTOS documentation for a full description of configuration options.

NOTE: With the CC13x0 SimpleLink SDK 1.0 Release, TI recommends not changing the TI-RTOS
version.

3.2 Semaphores
The kernel package provides several modules for synchronizing tasks such as the semaphore.
Semaphores are the prime source of synchronization in the CC13x0 software and are used to coordinate
access to a shared resource among a set of competing tasks (that is, the application and TI 15.4-Stack).
Semaphores are used for task synchronization and mutual exclusion.

Figure 3-2 shows the semaphore functionality. Semaphores are either counting semaphores or binary
semaphores. Counting semaphores keep track of the number of times the semaphore is posted with
Semaphore_post(). When a group of resources are shared between tasks, this tracking function is useful.
Such tasks might call Semaphore_pend() to see if a resource is available before using it. Binary
semaphores can have only two states: available (count = 1) and unavailable (count = 0). Binary
semaphores can be used to share a single resource between tasks or for a basic-signaling mechanism
where the semaphore can be posted multiple times. Binary semaphores do not keep track of the count;
instead, they track only whether the semaphore has been posted.

Figure 3-2. Semaphore Functionality

3.2.1 Initializing a Semaphore
The following code depicts how a semaphore is initialized in RTOS. An example of this process in the
collector_cc13x0lp project is when a task is registered with the ICall module: ICall_registerApp(), which
eventually calls ICall_primRegisterApp(). These semaphores coordinate task processing. Section 4.2
further describes this coordination.
Semaphore_Handle sem;
sem = Semaphore_create(0, NULL, NULL);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A
http://www.ti.com/tool/TI-RTOS#TechnicalDocuments

www.ti.com Semaphores

27SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

RTOS Overview

3.2.2 Pending a Semaphore
Semaphore_pend() is a blocking call that lets another task run while waiting for a semaphore. The time-
out parameter lets the task wait until a time-out, wait indefinitely, or not wait at all. The return value
indicates if the semaphore was signaled successfully.
Semaphore_pend(sem, timeout);

3.2.3 Posting a Semaphore
Semaphore_post() signals a semaphore. If a task is waiting for the semaphore, this call removes the task
from the semaphore queue and puts it on the ready queue. If no tasks are waiting, Semaphore_post()
increments the semaphore count and returns. For a binary semaphore, the count is always set to 1.
Semaphore_post(sem);

3.3 RTOS Tasks
RTOS tasks are equivalent to independent threads that conceptually execute functions in parallel within a
single C program. In reality, switching the processor from one task to another helps achieve concurrence.
Each task is always in one of the following modes of execution:
• Running: task is currently running
• Ready: task is scheduled for execution
• Blocked: task is suspended from execution
• Terminated: task is terminated from execution
• Inactive: task is on inactive list

Only one task is always running, even if that task is the idle task (see Figure 3-1). The currently running
task can be blocked from execution by calling certain task-module functions as well as functions provided
by other modules like semaphores. The current task can also terminate itself. In either case, the processor
is switched to the highest priority task that is ready to run. See the task module in the package
ti.sysbios.knl section of the TI SYS/BIOS API Guide for more information on these functions.

Numeric priorities are assigned to tasks and multiple tasks can have the same priority. Tasks are readied
to execute by highest-to-lowest priority level (5 is the highest and 1 is the lowest); tasks of the same
priority are scheduled in the order of arrival. The priority of the currently running task is never lower than
the priority of any ready task. The running task is preempted and rescheduled to execute when there is a
ready task of higher priority. In the collector_cc13x0lp application, the TI 15.4-Stack protocol stack task is
given the highest priority (5) and the application task is given the lowest priority (1).

Each RTOS task has an initialization function, an event processor, and one or more callback functions.

3.3.1 Creating a Task
When a task is created, the task has its own runtime stack for storing local variables and further nesting of
function calls. All tasks executing within one program share a common set of global variables that are
accessed according to the standard rules of scope for C functions. This set of memory is the context of
the task. The following is an example of the application task being created in the collector_cc13x0lp
project.
/* Configure task. */
Task_Params_init(&taskParams);
taskParams.stack = myTaskStack;
taskParams.stackSize = APP_TASK_STACK_SIZE;
taskParams.priority = 1;
Task_construct(&myTask, taskFxn, &taskParams, NULL);

The task creation is done in the main() function, before the SYS/BIOS scheduler is started by
BIOS_start(). The task executes at the assigned priority level after the scheduler is started. TI
recommends using the existing application task for application-specific processing. When adding an
additional task to the application project, the priority of the task must be assigned a priority within the
RTOS priority-level range, which is defined in the app.cfg RTOS configuration file.
/* Reduce number of Task priority levels to save RAM */
Task.numPriorities = 6;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A
http://www.ti.com/lit/pdf/SPRUEX3

RTOS Tasks www.ti.com

28 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

RTOS Overview

Do not add a task with a priority equal to or higher than the TI 15.4-Stack protocol stack task. Ensure the
task has a minimum task stack size of 512 bytes of predefined memory. At a minimum, each stack must
be large enough to handle normal subroutine calls and one task preemption context. A task preemption
context is the context that is saved when one task preempts another as a result of an interrupt thread
readying a higher priority task. Using the TI-RTOS profiling tools of the IDE, the task can be analyzed to
determine the peak usage of the task stack.

NOTE: The term created describes the instantiation of a task. The actual TI-RTOS method is to
construct the task. See Section 3.11.3 for details on constructing RTOS objects.

3.3.2 Creating the Task Function
When a task is constructed, a function pointer to a task function (for example, taskFxn) is passed to the
Task_Construct function. When the task first gets a chance to process, this is the function which the
RTOS runs. Figure 3-3 shows the general topology of this task function.

Figure 3-3. General Task Topology

In the collector_cc13x0lp task, the task spends most of its time in the blocked state, where it is pending a
semaphore. When the semaphore of the task is posted to from an ISR, callback function, queue, and so
forth, the task becomes ready, processes the data, and returns to this paused state. See Section 4.2.1 for
more detail on the functionality of the collector_cc13x0lp task.

3.4 Clocks
Clock instances are functions that can be scheduled to run after a certain number of clock ticks. Clock
instances are either one-shot or periodic. These instances start immediately upon creation, are configured
to start after a delay, and can be stopped at any time. All clock instances are executed when they expire
in the context of a software interrupt. The following example shows the minimum resolution is the RTOS
clock tick period set in the RTOS configuration
/* 10us tick period */
Clock.tickPeriod = 10;

Each tick, which is derived from the RTC, launches a clock software interrupt (SWI) that compares the
running tick count with the period of each clock to determine if the associated function should run. For
higher-resolution timers, TI recommends using a 16-bit hardware timer channel or the sensor controller.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Clocks

29SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

RTOS Overview

3.4.1 API
Developers can use the RTOS clock module functions directly (see the clock module in the TI SYS/BIOS
API Guide). For usability, these functions have been extracted to various functions in the timer.c file. Refer
to the timer.h file in the Application folder of the application projects for the available APIs.

3.4.2 Functional Example
The following example from the collector_cc13x0lp project details the creation of a clock instance, and
describes how to handle the expiration of the instance.
1. Define the clock handler function to service the clock expiration SWI. csf.c

/* Join permit timeout handler function */
static void processJoinTimeoutCallback(UArg a0)
{

(void)a0; /* Parameter is not used */

Cllc_events |= CLLC_JOIN_EVT;

/* Wake up the application thread when it waits for clock event */
Semaphore_post(collectorSem);

}

2. Create the clock instance.
STATIC Clock_Struct joinClkStruct;
STATIC Clock_Handle joinClkHandle;
void Csf_initializeJoinPermitClock(void)
{

/* Initialize join permit timer */
joinClkHandle = Timer_construct(&joinClkStruct,

processJoinTimeoutCallback,
JOIN_TIMEOUT_VALUE,
0,
false,
0);

}

3. Wait for the clock handler to expire and process in the application context (in Figure 3-4 green
corresponds to the processor running in the application context and red corresponds to an SWI).
/*csf.c*/
/* join permit clock handler function */
static void processJoinTimeoutCallback(UArg a0)
{

(void)a0; /* Parameter is not used */

Cllc_events |= CLLC_JOIN_EVT;

/* Wake up the application thread when it waits for clock event */
Semaphore_post(collectorSem);

}

/*Cllc.c*/
/* Process join permit event */

if(Cllc_events & CLLC_JOIN_EVT)
{

joinPermitExpired();
/* Clear the event */
Cllc_events &= ~CLLC_JOIN_EVT;

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A
http://www.ti.com/lit/pdf/SPRUEX3
http://www.ti.com/lit/pdf/SPRUEX3

Task A
Msg2Msg1 Msg3

put Task Bget

The clock expiration is

processed in the context

of a SWI in the RTOS. Set

this as an application

event and wake up the

application

Application processes

the clock expiration

event and restarts the

clock

Queues www.ti.com

30 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

RTOS Overview

Figure 3-4. Clock Expiration Flow Diagram

3.5 Queues
Queues let applications process events in sequence by providing a FIFO ordering for event processing. A
project may use a queue to manage internal events coming from application profiles or another task.
Clocks must be used when an event must be processed in a time-critical manner. Queues are more useful
for events that must be processed in a specific sequence.

The Queue module provides a unidirectional method of message passing between tasks using a FIFO. In
Figure 3-5, a queue is configured for unidirectional communication from task A to task B. Task A pushes
messages onto the queue and task B pops messages from the queue in sequence. Figure 3-5 shows the
queue messaging process.

Figure 3-5. Queue Messaging Process

3.5.1 Queue API
Refer to the Queue module in the TI SYS/BIOS API Guide for details on the APIs.

3.6 Idle Task
The Idle module specifies a list of functions to be called when no other tasks are running in the system. In
the CC13x0 software, the idle task runs the Power Policy Manager.

3.7 Power Management
Power-management functionality is handled by the peripheral drivers and the TI 15.4-Stack protocol stack
project. The TI 15.4-Stack protocol stack project is configured to always use low power and allow the
device to enter sleep mode whenever possible. More information on power-management functionality,
including the API and a sample use case for a custom UART driver, are in TI-RTOS Power Management
for CC13x0 included in the RTOS install. These APIs are required only when using a custom driver.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A
http://www.ti.com/lit/pdf/SPRUEX3

Thread Priority

Hardware Interrupt 1
(HWI 1)

In
cr

ea
si

ng
 P

rio
rit

y

Hardware Interrupt 2
(HWI 2)

Software Interrupt A
(SWI A)

Software Interrupt B
(SWI B)

Background
(Idle)

Time

Preempted

Background Preempted

SWi B Preempted

SWI A Ready

Events

B
ac

kg
ro

un
d

P
os

ts
 S

W
I B

H
W

I 2
 O

cc
ur

s

H
W

I 2
 P

os
ts

S
W

I A

H
W

I 1
 O

cc
ur

s

H
W

I 2
 F

in
is

he
s

S
W

I A
 F

in
is

he
s

S
W

I B
 F

in
is

he
s

H
W

I 1
 F

in
is

he
s

www.ti.com Hardware Interrupts

31SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

RTOS Overview

3.8 Hardware Interrupts
Hardware interrupts (HWIs) handle critical processing that the application must perform in response to
external asynchronous events. The SYS/BIOS device-specific HWI modules are used to manage
hardware interrupts. Specific information on the nesting, vectoring, and functionality of interrupts can be
found in the TI CC13xx ,CC26xx SimpleLink Wireless MCU Technical Reference Manual. The SYS/BIOS
User Guide details the HWI API and provides several software examples.

HWIs are abstracted through the peripheral driver to which they pertain (see the relevant driver in
Chapter 6). Chapter 9 provides an example of using GPIOs as HWIs. Abstracting through the peripheral
driver to which they pertain is the preferred method of using interrupts. Using the Hwi_plug() function,
ISRs which do not interact with SYS/BIOS can be written. These ISRs must do their own context
preservation to prevent breaking the time-critical TI 15.4-Stack.

For the TI 15.4-Stack to meet RF time-critical requirements, all application-defined HWIs execute at the
lowest priority. TI does not recommend modifying the default HWI priority when adding new HWIs to the
system. No application-defined critical sections should exist to prevent breaking the RTOS or time-critical
sections of the TI 15.4-Stack. Code that executes in a critical section prevents processing of real-time
interrupt-related events.

3.9 Software Interrupts
See the TI SYS/BIOS API Guide for detailed information about the software interrupts (SWIs) module.
Software interrupts have priorities that are higher than tasks, but lower than the priorities of hardware
interrupts (see Figure 3-6). The amount of processing in an SWI must be limited, because this processing
takes priority over the TI 15.4-Stack task. As described in Section 3.4, the clock module uses SWIs to
preempt tasks. The only processing the clock handler SWI does is set an event and post a semaphore for
the application to continue processing outside of the SWI. Whenever possible, the clock module should be
used to implement SWIs. An SWI can be implemented with the SWI module as described in the TI
SYS/BIOS API Guide.

NOTE: To preserve the RTOS heap, the amount of dynamically created SWIs must be limited as
described in Section 3.11.3.

Figure 3-6. Preemption Scenario

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A
http://www.ti.com/lit/pdf/SWCU117
http://www.ti.com/lit/pdf/SPRUEX3
http://www.ti.com/lit/pdf/SPRUEX3
http://www.ti.com/lit/pdf/SPRUEX3

Flash www.ti.com

32 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

RTOS Overview

3.10 Flash
The flash is split into erasable pages of 4 KB. The various sections of flash and the associated linker
configuration file (cc13x0lp.cmd).
• Application space: contains example application (or your application), MAC stack, RTOS, drivers, and

so on
• Nonvolatile (NV) area used for NV memory storage by the Application. See Section 3.10.1 for

configuring NV.
• Customer Configuration Area (CCA): the last sector of flash used to store customer specific chip

configuration (CCFG) parameters

3.10.1 Using Nonvolatile Memory
The NV area of flash is used for storing persistent data for the application. The last page in flash is the
CCA page, the two pages before the last page (CCA) are defined as the NV area. The NV driver uses one
page to store the persistent data and one page as an erase page, so the application has 4 KB (one page)
of storage. The Collector and Sensor projects use the NV On-Chip Two-Page (NVOCTP) NV driver
(nvoctp.c) with the API defined in nvintf.h

The NV driver is set up in main.c
#ifdef NV_RESTORE

/* Setup the NV driver */
NVOCTP_loadApiPtrs(&Main_user1Cfg.nvFps);

if(Main_user1Cfg.nvFps.initNV)
{

Main_user1Cfg.nvFps.initNV(NULL);
}

#endif

Then the applications use the function pointers in Main_user1Cfg to call the NV functions defined in
nvintf.h
//! Structure of NV API function pointers
typedef struct nvintf_nvfuncts_t
{

//! Initialization function
NVINTF_initNV initNV;
//! Compact NV function
NVINTF_compactNV compactNV;
//! Create item function
NVINTF_createItem createItem;
//! Delete NV item function
NVINTF_deleteItem deleteItem;
//! Read item function
NVINTF_readItem readItem;
//! Write item function
NVINTF_writeItem writeItem;
//! Write existing item function
NVINTF_writeItemEx writeItemEx;
//! Get item length function
NVINTF_getItemLen getItemLen;

} NVINTF_nvFuncts_t;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Flash

33SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

RTOS Overview

The following is an example of a write from csf.c
static void updateDeviceListItem(Llc_deviceListItem_t *pItem)
{

if((pNV != NULL) && (pItem != NULL))
{

int idx;
idx = findDeviceListIndex(&pItem->devInfo.extAddress);
if(idx != DEVICE_INDEX_NOT_FOUND)
{

NVINTF_itemID_t id;

/* Setup NV ID for the device list record */
id.systemID = NVINTF_SYSID_APP;
id.itemID = CSF_NV_DEVICELIST_ID;
id.subID = (uint16_t)idx;

/* write the device list record */
pNV->writeItem(id, sizeof(Llc_deviceListItem_t), pItem);

}
}

}

The following is an example of a read from csf.c
bool Csf_getNetworkInformation(Llc_netInfo_t *pInfo)
{

if((pNV != NULL) && (pNV->readItem != NULL) && (pInfo != NULL))
{

NVINTF_itemID_t id;

/* Setup NV ID */
id.systemID = NVINTF_SYSID_APP;
id.itemID = CSF_NV_NETWORK_INFO_ID;
id.subID = 0;

/* Read Network Information from NV */
if(pNV->readItem(id, 0, sizeof(Llc_netInfo_t), pInfo) == NVINTF_SUCCESS)

{
return(true);

}
}
return(false);

}

The NV system is a collection of NV items. Each item is unique and have the following pieces to it
(defined in nvintf.h).
/**

* NV Item Identification structure
*/

typedef struct nvintf_itemid_t
{

//! NV System ID - identifies system (ZStack, BLE, App, OAD...)
uint8_t systemID;
//! NV Item ID
uint16_t itemID;
//! NV Item sub ID
uint16_t subID;

} NVINTF_itemID_t;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Memory Management (RAM) www.ti.com

34 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

RTOS Overview

3.11 Memory Management (RAM)
Space for RAM is configured in the linker configuration file (cc13x0lp.cmd).

Application Image: RAM space for the Application and shared heaps. This space is configured in the linker
config file of the Application, cc13x0lp.cmd

3.11.1 System Stack
Besides the RTOS and ICall heaps previously mentioned, there are other sections of memory to consider.
As described in Section 3.3.1, each task has its own runtime stack for context switching. Furthermore,
another runtime stack is used by the RTOS for main(), HWIs, and SWIs. This system stack is allocated in
the Application linker file, to be placed at the end of the RAM of the Application.

For CCS, the RTOS system stack is defined by the Program.stack parameter in the app.cfg RTOS
configuration file.
/* main() and Hwi, Swi stack size */
Program.stack = 1280;

Then the RTOS system stack is placed by the linker in the RAM space of the Application:
/* Create global constant that points to top of stack */
/* CCS: Change stack size under Project Properties */
__STACK_TOP = __stack + __STACK_SIZE;

3.11.2 Dynamic Memory Allocation
The system uses two heaps for dynamic memory allocation. It is important to understand the use of each
heap so that the application designer maximizes the use of available memory. The RTOS is configured
with a small heap in the app.cfg RTOS configuration file.
var HeapMem = xdc.useModule('xdc.runtime.HeapMem');

BIOS.heapSize = 1724;

This heap (HeapMem) is used to initialize RTOS objects as well as allocate the TI 15.4-Stack task runtime
stack. This size of this heap has been chosen to meet the system initialization requirements. Due to the
small size of this heap, TI does not recommend allocating memory from the RTOS heap for general
application use. For more information on the TI-RTOS heap configuration, refer to the Heap
Implementations section of the TI-RTOS SYS/BIOS Kernel User's Guide.

Instead, a separate heap must be used by the Application. The ICall module statically initializes an area of
Application RAM, heapmgrHeapStore, which can be used by the various tasks. The size of this ICall heap
is defined by the preprocessor definition of the Application HEAPMGR_SIZE, and is set to 0 by default for
the Collector and Sensor projects; a value of 0 means that all unused RAM is given to the ICall heap.
Although the ICall heap is defined in the Application project, it is also shared with the TI 15.4-Stack APIs
which allocate memory from the ICall heap. To manually change the size of the ICall heap, adjust the
value of the preprocessor symbol HEAPMGR_SIZE in the Application project to a value other than 0.

To profile the amount of ICall heap used, define the HEAPMGR_METRICS preprocessor symbol in the
Application project. Refer to heapmgr.h in Components\applib\heap for available heap metrics. The
following is an example of dynamically allocating a variable length (n) array using the ICall heap.
//define pointer
uint8_t *pArray;

// Create dynamic pointer to array.
if (pArray = (uint8_t*)ICall_malloc(n*sizeof(uint8_t)))
{

//fill up array
}
else
{

//not able to allocate
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Memory Management (RAM)

35SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

RTOS Overview

The following is an example of freeing the previous array.
ICall_free(pMsg->payload);

3.11.3 A Note on Initializing RTOS Objects
Due to the limited size of the RTOS heap, TI strongly recommends that users construct and not create
RTOS objects. To illustrate this recommendation, consider the difference between the Clock_construct()
and Clock_create() functions. Figure 3-7 shows the definitions of these functions from the SYS/BIOS API.

Figure 3-7. Definitions of Functions from the SYS/BIOS API

By declaring a static Clock_Struct object and passing this object to Clock_construct(), the .DATA section
for the actual Clock_Struct is used, not the limited RTOS heap. Conversely, Clock_create() causes the
RTOS to allocate Clock_Struct using the limited heap of the RTOS. As much as possible, this method is
how clocks and RTOS objects in general, should be initialized throughout the project. If creating RTOS
objects must be used, the size of the RTOS heap may need to be adjusted in app.cfg.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

36 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

Chapter 4
SWRU489A–September 2016–Revised December 2016

TI 15.4-Stack Overview

This chapter explains in detail the three different network-configuration modes supported by the TI 15.4-
Stack for application development. Useful information is presented for developers using the TI 15.4-Stack
for their custom application development, which lets developers quickly understand the basics of the
selected configuration mode and develop their end products more quickly.

4.1 Beacon Enabled Mode

NOTE: In the following sections, the project names for the CC1310 and CC1350 platforms are
referred to as CC13x0. Replace x with either 1 or 5 depending on the wireless MCU being
used.

4.1.1 Introduction
The IEEE 802.15.4 specification defines beacon-enabled mode of operation where the personal area
network (PAN) coordinator device transmits periodic beacons to indicate its presence and allows other
devices to perform PAN discovery and synchronization. The beacons provide beacon-related information
and also mark the start of the new superframe. The beacon has information on the superframe
specification, which helps the device intending to join the network to synchronize timing- and network-
related parameters before starting the join process. The beacon helps the existing device in the PAN to
maintain the network synchronization. The superframe is divided into an active and an inactive period.
During the active period, devices communicate using the CSMA/CA procedure. The inactive period allows
the devices in the network to conserve energy.

4.1.2 Network Operations
This section describes critical network operations for the beacon-enabled mode of operation.

4.1.2.1 Network Start-Up
A network is always started by a fully functional device after performing a MAC sublayer reset. The
network operates on a single channel (frequency hopping is not available in this configuration, although
frequency agility may be implemented by application-specific means). To select the most optimal channel
of operation, the fully functional device (before starting the network) can optionally scan for the channels
with the least amount of radio interference by first performing the energy-detect scan to identify the list of
channels with the least amount of RF energy. When a list of channels is identified, the fully functional
device can (optionally) perform active scan to find the channel with the least number of active networks.
When the channel with the least RF energy and lowest number of active networks is selected, the PAN
coordinator must set its short address (the PAN identifier) beacon payload and turn on the associate
permit flag. The network starts upon the following actions:
• Call to ApiMac_mlmeStartReq() API

– With the PAN coordinator parameter set to TRUE
– With the desired superframe configuration
– Coordinator realignment parameter set to FALSE

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

sd BeaconModeNetworkStart

Application MAC

ApiMac_mlmeResetReq(TRUE)

ApiMac_mlmeScanReq()
[energy detect]

(ApiMac_scanCnfFp_t)()

Tune to Channel

ApiMac_mlmeScanReq()
[active scan]

Perform
 Energy Detect Scan

Perform Active
 Scan

(ApiMac_scanCnfFp_t)()

Select The PAN_ID,
Short Address

ApiMac_mlmeSetReqUint16(ApiMac_attribute_panId)

ApiMac_mlmeSetReqUint16(ApiMac_attribute_coordShortAddress)

ApiMac_mlmeSetReqUint8(ApiMac_attribute_beaconPayloadLength)

ApiMac_mlmeStartReq(beacon_order, superframe_order,
channel,phyId,panCoordinator)

Select Superframe
Configuration

(ApiMac_startCnfFp_t)()

ApiMac_mlmeSetReqBool(ApiMac_attribute_associatePermit)

ApiMac_mlmeSetReqArray(ApiMac_attribute_beaconPayload)

ApiMac_mlmeSetReqBool(ApiMac_attribute_RxOnWhenIdle,TRUE)

www.ti.com Beacon Enabled Mode

37SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

Figure 4-1 shows the interaction between the application and the TI 15.4-Stack to start the beacon-
enabled network by the PAN coordinator.

Figure 4-1. Beacon Mode Network Start-Up Sequence

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Beacon Enabled Mode www.ti.com

38 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

4.1.2.2 Network Association
A device that is intended to join the beacon-enabled network must first perform a passive channel scan.
The results of the channel scan can then be used to choose a suitable network. Following the selection of
an association network, the application should set the following PIB items:
• ApiMac_attribute_beaconOrder

– Set to the value received in the beacon superframe specification of the chosen PAN
• ApiMac_attribute_superframeOrder

– Set to the value received in the beacon superframe specification of the chosen PAN
• ApiMac_attribute_panId

– PAN identifier of the PAN
• ApiMac_attribute_coordShortAddress

– Short address of the PAN coordinator

The next step is to perform beacon synchronization to track the beacon and to detect any pending
messages. Synchronization is requested by using the ApiMac_mlmeSyncReq() API call and setting the
following parameters:
• Channel
• PHY identifier
• Channel page
• Setting track beacon to TRUE

To acquire beacon synchronization, the device searches for the maximum time calculated as follows:
aBaseSuperframeDuration* (2n + 1), where n is the value of the beacon order

and
aBaseSuperframeDuration = aBaseSlotDuration × aNumSuperframeSlots = 60*16 = 960 symbols

Refer to the IEEE 802.15.4 specification for the definition of previous constants.

The device must to wait for the previously stated time period for the synchronization process to complete.
Alternatively the device can turn off the Auto Request by setting the ApiMac_attribute_autoRequest
attribute item to FALSE, which forces the MAC sublayer to send the beacon notification to the upper layer.
If the application receives beacon notification indications for the normal beacon and no sync loss
indication, it is a good indication that the device has synchronized with the coordinator beacons. TI
recommends waiting for at least two beacon notifications before turning on the Auto Request.

When the device is synchronized to the network and is tracking the beacon, the application can perform
the network association. The ApiMac_mlmeAssociateReq()api call is used to send the association request
message to the coordinator. The association process is successful when the application receives the
association confirmation.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

sd BeaconModeAssociate

Device Application MAC

ApiMac_mlmeResetReq(TRUE)

ApiMac_mlmeScanReq()
[passive scan]

(ApiMac_beaconNotifyIndFp_t)()

ApiMac_mlmeSetReqUint16(ApiMac_attribute_panId)

ApiMac_mlmeSetReqUint16(ApiMac_attribute_coordShortAddress)

ApiMac_mlmeSetReqUint8(ApiMac_attribute_beaconOrder)

(ApiMac_commStatusIndFp_t)()

ACK

ApiMac_mlmeSetReqBool(ApiMac_attribute_autoRequest= FALSE)

ApiMac_mlmeSetReqUint8(ApiMac_attribute_superframeOrder)

Coordinator
ApplicationMAC

Tune to Channel

MAC_MlmeAssociateRsp()

Beacon

Beacon

Beacon

Beacon

Beacon

Beacon

Tune to Channel
(ApiMac_scanCnfFp_t)()

ApiMac_mlmeSyncReq()
[trackbeacon=TRUE]

Sync to Beacon

(ApiMac_beaconNotifyIndFp_t)()

ApiMac_mlmeSetReqBool(ApiMac_attribute_autoRequest= TRUE)

ApiMac_mlmeAssociateReq()

Association Request (ApiMac_associateIndFp_t)()

(ApiMac_disassociateCnfFp_t)()

Data Request
ACK

Beacon
Associate Response

sd BeaconModeNwkStart

www.ti.com Beacon Enabled Mode

39SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

Figure 4-2 shows a device performing the network association.

Figure 4-2. Beacon Mode Device Association Sequence

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

sd BeaconModeDataExchangeDirect

sd BeaconModeAssociate

Device
Application MAC

ApiMac_mcpsDataReq(msduHandle=0)

MAC_MCPS_DATA_CNF
[MAC_SUCCESS]
[msduHandle=0]

Coordinator
ApplicationMAC

Beacon

Beacon

Beacon

Beacon

Beacon

Beacon

Data Transmitted and Acknowledged

ApiMac_mcpsDataReq(msduHandle=1)

ApiMac_mcpsDataReq(msduHandle=2)

ApiMac_mcpsDataReq(msduHandle=3)

(ApiMac_dataCnfFp_t)()
[MAC_TRANSACTION_OVERFLOW]
[msduHandle=3]

Data Transmitted and Acknowledged(ApiMac_dataCnfFp_t)()
[MAC_SUCCESS]
[msduHandle=1]

ApiMac_mcpsDataReq(msduHandle=3)

Data Transmitted But not Acknowledged
(ApiMac_dataCnfFp_t)()
[MAC_NO_ACK]
[msduHandle=2]

Data Transmitted and Acknowledged
(ApiMac_dataCnfFp_t)()
[MAC_SUCCESS]
[msduHandle=3]

(ApiMac_dataIndFp_t)()

(ApiMac_dataIndFp_t)()

(ApiMac_dataIndFp_t)()

Beacon Enabled Mode www.ti.com

40 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

4.1.2.3 Data Exchange
The sequence diagram in Figure 4-3 depicts the various direct data transactions between an always-on
(mains powered) device and a coordinator in a beacon-enabled network.

Figure 4-3. Beacon Mode Direct Data Exchange Sequence

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

sd BeaconModeIndirectDataExchg

sd BeaconModeAssociate

Coordinator
Application MAC

ApiMac_mcpsDataReq(msduHandle=0, indirect)

(ApiMac_dataCnfFp_t)()
[MAC_SUCCESS]
[msduHandle=0]

Device
ApplicationMAC

Beacon

Beacon

Beacon

(ApiMac_dataIndFp_t)()

Data Queued

Data Request
ACK

Beacon Has Device Address In
Pending Address List and
Device Has AUTO_REQUEST
Turned ON.

Data Frame

ACK

www.ti.com Beacon Enabled Mode

41SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

The sequence diagram in Figure 4-4 depicts the indirect data transaction in a beacon-enabled network.

Figure 4-4. Beacon Mode Indirect Data Exchange Sequence

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

sd BeaconModeSyncLoss

sd BeaconModeAssociate

Coordinator
Application MAC

Device
ApplicationMAC

Beacon

Beacon

(ApiMac_syncLossIndFp_t)()
[BEACON_LOSS]

Device
Synchronized to
Coordinator

Beacon

Beacon

Lost Track of
Beacon Reaches
the Maximum
Allowed Loss
Beacon Count

ApiMac_mlmeSyncReq()
[trackbeacon=TRUE]

Beacon

Beacon

Synchronized

Beacon Enabled Mode www.ti.com

42 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

4.1.2.4 Maintaining a Connection for End Nodes
All devices operating on a beacon-enabled PAN must acquire beacon synchronization with a coordinator.
Synchronization is performed by receiving and decoding the beacon frame information. The beacon frame
contains the superframe specification which lets the device sync its timing information with the coordinator
and detect any pending messages.

During the network association phase, the end device calls the Api_mlmeSyncReq() API with the
trackBeacon parameter set to TRUE to acquire beacon and keep track of it (see Figure 4-5). With the
track beacon set to TRUE, the MAC sublayer shall enable its receiver at a time before the next expected
beacon frame transmission. If the number of consecutive beacons missed by the MAC sub layer reaches
the maximum allowed (four beacons), the TI 15.4-Stack makes a callback ApiMac_syncLossIndFp_t() with
a status of ApiMac_status_beaconLoss to the application. The application tries to resynchronize with the
coordinator by calling Api_mlmeSyncReq() with the trackBeacon set to TRUE.

Figure 4-5. Beacon Mode Sync Loss Sequence

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

sd BeaconModeCoordDisassociateIndirect

sd BeaconModeAssociate

Coordinator
Application MAC

ApiMac_mlmeDisassociateReq()
[txIndirect=TRUE]

(ApiMac_disassociateCnfFp_t)()

Device
ApplicationMAC

Beacon

Beacon

Beacon

(ApiMac_disassociateIndFp_t)()

Command Queued

Data Request
ACK

Beacon Has Device
Address In Pending
Address List and
AUTO_REQUEST
Turned ON

Disassociation Notification

ACK

www.ti.com Beacon Enabled Mode

43SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

4.1.2.5 Network Disassociation
This section describes three scenarios. The first two scenarios are initiated by the coordinator (one for the
mains powered end device and the other for the battery powered end device). In the third scenario, the
end device disassociates itself from the network.

When the coordinator application requires an associated device to leave the network, the coordinator
application requests that the TI 15.4-Stack send the disassociation notification command by using the
ApiMac_mlmeDisassociateReq() call. If the txIndirect parameter is set to TRUE, the TI 15.4-Stack sends
the disassociation notification command to the device using indirect transmission; then, the disassociation
notification command is added to the list of pending transactions stored on the coordinator and pulled by
the device using a data request command (see Figure 4-6).

Figure 4-6. Beacon Mode Coordinator Initiated Indirect Disassociation Sequence

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

sd BeaconModeCoordDisassociteDirect

sd BeaconModeAssociate

Coordinator
Application MAC

ApiMac_mlmeDisassociateReq
[txIndirect=FALSE]

(ApiMac_disassociateCnfFp_t)()

Device
ApplicationMAC

Beacon

Beacon

Beacon

(ApiMac_disassociateIndFp_t)()
Disassociation Notification

ACK

Beacon Enabled Mode www.ti.com

44 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

If the txIndirect parameter is set to FALSE, the TI 15.4-Stack sends the disassociation notification
command frame to the device using direct transmission (see Figure 4-7). The TI 15.4-Stack layer at the
coordinator makes a callback to the application using the registered function pointer of type
ApiMac_disassociateCnfFp_t after completion of the disassociation. The TI 15.4-Stack at the device
makes a callback to the application using the registered function pointer of type
ApiMac_disassociateIndFp_t on reception of the disassociation notification command frame from the
coordinator.

Figure 4-7. Beacon Mode Coordinator-Initiated Direct Disassociation Sequence

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

sd BeaconModeDeviceDisassociate

sd BeaconModeAssociate

Coordinator
Application MAC

ApiMac_mlmeDisassociateReq
[txIndirect=FALSE]

(ApiMac_disassociateCnfFp_t)()

Device
ApplicationMAC

Beacon

Beacon

Beacon

(ApiMac_disassociateIndFp_t)()

Disassociation Notification

ACK

www.ti.com Beacon Enabled Mode

45SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

The end device application can also initiate the disassociation process as described in Figure 4-8.

Figure 4-8. Beacon Mode Device-Initiated Disassociation Sequence

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Beacon Enabled Mode www.ti.com

46 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

4.1.3 Stack Configuration Knobs

4.1.3.1 Attribute Configuration
Table 4-1 lists the attribute configuration for beacon mode.

Table 4-1. Attribute Configuration for Beacon Mode

Name Type Range API Number Description

ApiMac_attribute_associatePermit bool TRUE, FALSE 0x41 TRUE if a coordinator is currently
allowing association

ApiMac_attribute_autoRequest bool TRUE, FALSE 0x42
TRUE if a device automatically
sends a data request if its address
is listed in the beacon frame

ApiMac_attribute_beaconOrder uint8 0–15 0x47 How often the coordinator
transmits a beacon

ApiMac_attribute_RxOnWhenIdle bool TRUE, FALSE 0x52 TRUE if the MAC enables its
receiver during idle periods

ApiMac_attribute_superframeOrder uint8 0–15 0x54 This specifies the length of the
active portion of the superframe.

The ApiMac_attribute_associatePermit is used by the coordinator application to indicate to the joining
devices whether it allows association or not. Setting this attribute item to TRUE by the coordinator
indicates to the joining devices in its beacon frame that the coordinator application allows association.

The ApiMac_attribute_RxOnWhenIdle, if set to TRUE, enables the receiver during the idle period.

The ApiMac_attribute_RxOnWhenIdle, if set to TRUE, enables the receiver during the idle in the
contention period of the superframe. The coordinator application sets this item to TRUE.

The ApiMac_attribute_beaconOrder item is used by the device application to set the beacon order during
the joining phase, after the passive scan of beacons, and after the device makes the decision on which
coordinator to join. This attribute shall be set to the selected coordinators beacon order value.

The ApiMac_attribute_superframeOrder item is used by the device application to set the superframe order
during the joining phase, after the passive scan of beacons, and after the device makes the decision on
which coordinator to join. This attribute shall be set to the selected coordinators beacon order value.

4.1.3.2 Configuration Constants
The TI 15.4-Stack uses a structure containing various user-configurable parameters (at compile time).
This structure, called macCfg_t, is in the mac_cfg.c file. Table 4-2 describes the configuration elements.

Table 4-2. Configuration Constants

Name Description Range Default

txDataMax Maximum number of data frames queued in the transmit
data queue. 1–255 2

txMax Maximum number of frames of all types queued in the
transmit data queue. 1–255 5

rxMax Maximum number of frames queued in the receive data
queue. 1–255 2

dataIndOffset Allocate additional bytes in the data indication for
application-defined headers. 0–127 0

appPendingQueue

When TRUE, registered callback of type
ApiMac_pollIndFp_t will be made to the application when a
data request command frame is received from another
device.

TRUE or FALSE FALSE

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

sd NonBeaconModeNetworkStart

Coordinator
Application MAC

ApiMac_mlmeResetReq(TRUE)

ApiMac_mlmeScanReq()
[energy detect]

(ApiMac_scanCnfFp_t)()

ApiMac_mlmeScanReq()
[active scan]

Perform
 Energy Detect Scan

Perform Active
 Scan

(ApiMac_scanCnfFp_t)()

ApiMac_mlmeSetReqUint16(ApiMac_attribute_panId)

ApiMac_mlmeSetReqUint16(ApiMac_attribute_coordShortAddress)

ApiMac_mlmeSetReqUint8(ApiMac_attribute_beaconPayloadLength)

ApiMac_mlmeStartReq(channel,phyId,panCoordinator)

(ApiMac_startCnfFp_t)()

ApiMac_mlmeSetReqBool(ApiMac_attribute_associatePermit)

ApiMac_mlmeSetReqArray(ApiMac_attribute_beaconPayload)

ApiMac_mlmeSetReqBool(ApiMac_attribute_RxOnWhenIdle,TRUE)

Network

Operational

Select the Channel,
PAN_ID,
Short address

www.ti.com Nonbeacon Mode

47SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

4.2 Nonbeacon Mode

4.2.1 Introduction
The IEEE 802.15.4 specification defines the nonbeacon mode of network operation where the coordinator
does not send out periodic beacons. The nonbeacon mode is an asynchronous network mode of
operation where the devices communicate by using the CSMA/CA mechanism.

4.2.2 Network Operations

4.2.2.1 Network Start-Up
A network is always started by a full function device. The procedure to start the network begins with a
MAC layer reset. The application can directly start the network on a desired channel with a desired or
random PAN-ID, or it can first check for a channel with lowest RF energy by performing a energy detect
scan to select the channel with lowest energy or least interference (see Figure 4-9). The application then
performs an active scan to detect the existing networks in the area, and select network parameters for its
own network which do not conflict. After selecting the channel, the PAN Coordinator application must set
the short address and PAN-ID, and then set the beacon payload and (optionally) turn on the associate
permit flag if it wants new devices to join the network. The network is then started using the API
ApiMac_mlmeStartReq() with the panCoordinator parameter set to TRUE.

Figure 4-9. Nonbeacon Mode Network Start-Up Sequence

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

sd NonBeaconModeAssociate

Device Application MAC

ApiMac_mlmeResetReq(TRUE)

ApiMac_mlmeScanReq()
[activeScan]

ApiMac_mlmeSetReqUint16(ApiMac_attribute_panId)

ApiMac_mlmeSetReqUint16(ApiMac_attribute_coordShortAddress)

ApiMac_mlmeAssociateReq()

(ApiMac_commStatusIndFp_t)()

Coordinator
Application

MAC

Tune to Channel

ApiMac_mlmeAssociateRsp()

Beacon

 ACK

ACK [Frame Pending]

(ApiMac_scanCnfFp_t)()

(ApiMac_associateIndFp_t)()

(ApiMac_associateCnfFp_t)()

Beacon Request

Association Request

Data Request

Associate Response

ACK

sd NonBeaconModeNetworkStart

Nonbeacon Mode www.ti.com

48 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

4.2.2.2 Network Join
When a device is ready to join a nonbeacon network, it must first perform an active scan broadcasting a
beacon request. After receiving the beacon request, the nonbeacon PAN coordinators in the radio range
of the device respond with their beacons. When the scan is complete, the TI 15.4-Stack calls the
registered callback of type ApiMac_scanCnfFp_t with the PAN descriptors of the beacons it has received
during the scan to the device application. The device application examines the PAN descriptors and
selects a coordinator.

The next step is to perform the network association (see Figure 4-10). The device application calls the
ApiMac_mlmeAssociateReq() API to send the association request message to the coordinator. The
association process is successful when the device application receives the association confirmation from
the TI 15.4-Stack layer.

Figure 4-10. Nonbeacon Mode Device Association Sequence

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

sd NonBeaconModeDataExchangeDirect

Device
Application MAC

ApiMac_mcpsDataReq(msduHandle=0)

(ApiMac_dataCnfFp_t)()
[MAC_SUCCESS]
[msduHandle=0]

Coordinator
ApplicationMAC

Data Transmitted and Acknowledged

ApiMac_mcpsDataReq(msduHandle=1)

ApiMac_mcpsDataReq(msduHandle=2)

ApiMac_mcpsDataReq(msduHandle=3)

(ApiMac_dataCnfFp_t)()
[MAC_TRANSACTION_OVERFLOW]
[msduHandle=3]

Data Transmitted and Acknowledged(ApiMac_dataCnfFp_t)()
[MAC_SUCCESS]
[msduHandle=1]

ApiMac_mcpsDataReq(msduHandle=3)

Data Transmitted But not Acknowledged

(ApiMac_dataCnfFp_t)()
[MAC_NO_ACK]
[msduHandle=2]

Data Transmitted and Acknowledged
(ApiMac_dataCnfFp_t)()
[MAC_SUCCESS]
[msduHandle=3]

(ApiMac_dataIndFp_t)()

(ApiMac_dataIndFp_t)()

(ApiMac_dataIndFp_t)()

sd NonBeaconModeAssociate

www.ti.com Nonbeacon Mode

49SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

4.2.2.3 Data Exchange
The sequence diagram in Figure 4-11 depicts the various direct data transactions between a device and a
coordinator in a nonbeacon-enabled network.

Figure 4-11. Nonbeacon Mode Direct Data Exchange Sequence

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

sd NonBeaconModeIndirectDataExchg

Coordinator
Application

MAC
Device

Application
MAC

ACK

(ApiMac_dataIndFp_t)()

Data Request

Timer Cancelled On
Successful Transmission
of Data Frame

Data Frame

ACK

ApiMac_mcpsDataReq(msduHandle=1, indirect)

(ApiMac_dataCnfFp_t)()
[MAC_SUCCESS]
[msduHandle=1]

Data Queued
Transaction Persistence

Timer

ApiMac_mcpsDataReq(msduHandle=0, indirect)

MAC_MCPS_DATA_CNF
[MAC_TRANSACTION_EXPIRED]
[msduHandle=0]

Data Queued

Transaction Persistence
Timer

ApiMac_mimePollReq()

sd NonBeaconModeAssociate

Nonbeacon Mode www.ti.com

50 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

The sequence diagram in Figure 4-12 depicts the indirect data transaction in a nonbeacon-enabled
network.

Figure 4-12. Nonbeacon Mode Indirect Data Exchange Sequence

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

sd OrphanProcedure

Device
Application

MAC
Coordinator
Application

MAC

Orphan Notification

(ApiMac_commStatusIndFp_t)()

Coordinator Realignment

(ApiMac_scanCnfFp_t)()
[success]

Response Wait Timer

ApiMac_mimeScanReq()
[orphan]

Response Wait Timer

ApiMac_mimeOrphanRsp()

Set to First Channel

Set to nth Channel

Orphan Notification

(ApiMac_orphanIndFp_t)()

www.ti.com Nonbeacon Mode

51SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

4.2.2.4 Maintaining a Connection for End Nodes
If the device application receives repeated communication failures following requests to transmit data, the
device application may conclude that it has been orphaned and can initiate an orphaned-device
realignment procedure. Figure 4-13 shows the nonbeacon mode orphan sequence.

In the orphan realignment procedure, the device application requests the TI 15.4-Stack to perform the
orphan scan over a specified set of channels by using the ApiMac_MlmeScanReq() API with the scan-
type parameter set to orphan scan. For each channel specified, the TI 15.4-Stack at the device switches
to the channel and then sends an orphan notification command. After successfully transmitting the orphan
notification command, the MAC layer enables the receiver for at most
ApiMac_attribute_responseWaitTime. If the device successfully receives a coordinator realignment
command, the device terminates the scan and calls the registered callback of type ApiMac_scanCnfFp_t.
At the coordinator side, the reception of the orphan notification command results in the call of the
registered callback of type ApiMac_orphanIndFp_t by the TI 15.4-Stack. If the coordinator application finds
the record of the device, it sends a coordinator realignment command to the orphaned device by using the
ApiMac_MlmeOrphanRsp() call.

Figure 4-13. Nonbeacon Mode Orphan Sequence

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

sd NonBeaconModeCoordDisassociateIndirect

Coordinator
Application

MAC

ApiMac_mlmeDisassociateReq(txIndirect=TRUE)

(ApiMac_disassociateCnfFp_t)()

Device
Application

MAC

(ApiMac_disassociateIndFp_t)()

Command Queued

Data Request
ACK

Disassociation Notification

ACK

ApiMac_mimePollReq()

sd NonBeaconModeAssociate

Nonbeacon Mode www.ti.com

52 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

4.2.2.5 Disassociating
Two scenarios are described in the following: the first is initiated by the coordinator and the second is
initiated by the device. Figure 4-14 shows the indirect disassociation sequence initiated by the nonbeacon
mode coordinator.

When the coordinator application wants one of the associated devices must leave the PAN, the
coordinator application requests that the TI 15.4-Stack send the disassociation notification command by
using the ApiMac_mlmeDiassociateReq() call. If the txIndirect parameter is set to TRUE, the TI 15.4-Stack
sends the disassociation notification command to the device using indirect transmission; then, the
disassociation notification command is added to the list of pending transactions stored on the coordinator
and pulled by the device using data request command.

Figure 4-14. Indirect Disassociation Sequence Initiated by the Nonbeacon Mode Coordinator

The end device application can also initiate the disassociation process as described in Figure 4-15, which
shows the sequence of messages exchanged when the end device initiates the disassociation process in
the non-beacon network.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

sd NonBeaconModeDeviceDisassociate

Coordinator
Application

MAC

ApiMac_mlmeDisassociateReq(txIndirect=FALSE)

(ApiMac_disassociateCnfFp_t)()

Device
Application

MAC

ACK
(ApiMac_disassociateIndFp_t)()

Disassociation Notification

sd NonBeaconModeAssociate

www.ti.com Nonbeacon Mode

53SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

Figure 4-15. Disassociation Sequence Initiated by the Nonbeacon Mode Device

4.2.3 Stack Configuration Knobs

4.2.3.1 Attribute Configuration
The ApiMac_attribute_associatePermit is used by the coordinator application to indicate to the joining
devices whether association is allowed or not. When the coordinator sets this attribute item to TRUE, this
indicates to the joining devices within the beacon frame that association is allowed. Table 4-3 lists the
attribute configurations that apply to beacon mode.

If set to TRUE, the ApiMac_attribute_RxOnWhenIdle enables the receiver during the idle period.

Table 4-3. Attribute Configuration Applicable to Beacon Mode

Name Type Range Number Description

ApiMac_attribute_associatePermit Bool TRUE, FALSE 0x41 TRUE if a coordinator is currently
allowing association.

ApiMac_attribute_RxOnWhenIdle Bool TRUE, FALSE 0x52 TRUE if the MAC enables its
receiver during idle periods.

4.2.3.2 Configuration Constants
The TI 15.4-Stack uses a structure containing various user-configurable parameters (at compile time).
This structure, called macCfg_t, is in the mac_cfg.c file. Table 4-4 lists the configuration elements.

Table 4-4. Configuration Constants

Name Description Range Default

txDataMax Maximum number of data frames queued in the transmit
data queue. 1 – 255 2

txMax Maximum number of frames of all types queued in the
transmit data queue. 1 – 255 5

rxMax Maximum number of frames queued in the receive data
queue. 1 – 255 2

dataIndOffset Allocate additional bytes in the data indication for
application-defined headers. 0 – 127 0

appPendingQueue

When TRUE, registered callback of type
ApiMac_pollIndFp_t will be made to the application when a
data request command frame is received from another
device.

TRUE – FALSE FALSE

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

CH1 CH2

Broadcast

Dwell Interval

Broadcast Interval

CH1 CH2 CH3 CH4

CH2 CH3 CH4 CH1 CH2

CH2 CH3 CH4 CH1 CH2

Time

Node A

Node B

Node C

Frequency-Hopping Mode www.ti.com

54 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

4.3 Frequency-Hopping Mode

4.3.1 Introduction
Applications that are developed using the TI 15.4-Stack can be configured to operate the network in
frequency-hopping configuration where the network devices hop on different frequencies. The TI 15.4-
Stack supports an unslotted channel-hopping feature only in the 902-MHz to 928-MHz frequency band
based on the directed frame exchange (DFE) mode of the Wi-SUN FAN specification v1.0 (see
Chapter 15). This feature can be operated in fixed channel mode at any specified channel, or it can be
operated in channel-hopping mode where the channel hopping sequence is based on direct hash channel
function (DH1CF) (see [8]). DH1CF generates a pseudo-random sequence of channels on which to hop
based on the extended address of the node; thus, the pseudo-random sequence of channels is unique to
each node. Each node supports two types of channel-hopping sequences:
• Unicast
• Broadcast

Frequency hopping for each node is based on the unicast channel hopping sequence of those nodes (see
Figure 4-16).

Figure 4-16. Unicast Hopping Sequence

To enable broadcast transmissions, the coordinator starts a broadcast schedule (see Figure 4-17). Every
other device follows the broadcast-hopping sequence received from the PAN coordinator. A device
performs unicast hopping until the next broadcast dwell time. Then, the device switches to the broadcast-
hopping channel for the broadcast dwell time and resumes unicast hopping at the end of the broadcast
dwell interval.

Figure 4-17. Broadcast Channel Hopping Sequence

The application can specify the broadcast dwell interval (default is 250 ms), channel hopping function
(default is Fixed Channel), and the list of channels to hop (based on PHY Descriptor ID; for example, the
default value of 1 represents 129 channels). Additionally, the broadcast interval (default is 4250 ms) can
be specified on the PAN coordinator. When the hopping function is set to Fixed, the node must stay on the
channel set by ApiMac_FHAttribute_unicastFixedChannel or ApiMac_FHAttribute_broadcastFixedChannel
during the unicast and broadcast dwell times, respectively.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Frequency-Hopping Mode

55SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

NOTE: A set of channels can also be excluded from the hopping channels by using the
ApiMac_FHAttribute_unicastExcludedChannels and
ApiMac_FHAttribute_broadcastExcludedChannels PIBs as defined in Section 4.3.3.

A special type of transmission called async transmission is also supported. In frequency-hopping mode, a
device transmits any one of the Async frame types (as defined in the Wi-SUN FAN specification) in all of
the requested channels (see [8]). This enables a hopping device to receive such a frame irrespective of
the hopping sequence. Thus, the async transmission can be used to exchange channel-hopping
information. This feature is especially useful in initial network formation as explained in Section 4.3.2.3.

When channel-hopping information of a neighbor is received, the TI 15.4-Stack tracks the hopping
sequences of the neighbor hopping devices and enables successful unicast and broadcast transmissions;
thus, hiding the complexities of maintaining synchronization from the application and easing the task of
developing applications with frequency hopping feature. A key difference from operating in nonfrequency
hopping mode is that the devices use only the extended address (that is, not the short address) over the
air. Optionally, the short address can be assigned during the association phase but are not used for data
exchange.

4.3.2 Network Operations
In frequency hopping mode, nodes operate as one of the following device types:
• PAN coordinator
• Nonsleepy device
• Sleepy device

A typical star topology has a single PAN coordinator connected to a set of nonsleepy or sleepy devices.
Each network is identified by a specific network name, which is an ASCII value of 32 bytes and a 16-bit
PAN Identifier. The network name (NetName) is a unique network identifier that is configured by the
application using frequency hopping and PAN information base (FH-PIB) attributes. Maintenance of the
NetName is beyond the scope of the MAC stack and is not used by the stack to filter frames.

Section 4.3.2.1 through Section 4.3.2.7 explain various network operations important to understand when
developing a frequency hopping-enabled network over the TI 15.4-Stack.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Application PAN Coordinator

Enable FH

Set MAC PIBs

Mlme_reset

ApiMac_attribute_RxOnWhenIdle = 1
ApiMac_attribute_associatePermit = 1

Set Network Related FH PIBs

Optional: Set Hopping Related FH PIBs

Mlme_start (macPanCoordinator = 1)

Set MAC security PIBs

ApiMac_FHAttribute_netName, ApiMac_FHAttribute_routingCost = 0 , and
ApiMac_FHAttribute_panSize

Frequency-Hopping Mode www.ti.com

56 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

4.3.2.1 Network Start-Up
Figure 4-18 shows how a frequency-hopping network is started by starting the PAN coordinator in
frequency-hopping mode.

Figure 4-18. Start-Up Sequence of PAN Coordinator

The PIB attributes that are related to frequency-hopping configuration are explained in Section 4.3.3. The
NetName is a 32-bit ASCII value to be set by the application. The routing cost must be set to zero.
Initially, the PAN size must be set to zero; later, the PAN size must be updated based upon the number of
nodes joined.

NOTE: This NetName value is not used by the TI 15.4-Stack to make any decision; instead, the
value is carried in a PAN Advertisement frame that can be parsed by a receiving application.
Similarly, the GTK HASH 0, GTK HASH 1, GTK HASH2, and GTK HASH 3 can be used to
determine the validity of GMK keys that are in use and are beyond the scope of the TI MAC
protocol stack.

Finally, start MAC using the macStart API, which specifies that the node is a coordinator.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Application TI 15.4 MAC Stack

Enable FH

Set MAC PIBs

Mlme_reset

ApiMac_attribute_RxOnWhenIdle = 1
ApiMac_attribute_associatePermit = 1

Set Network Related FH PIBs

Optional: Set Hopping Related FH PIBs

Mlme_start (macPanCoordinator = 0) or FH_Start()

Optional: Set MAC security PIBs

ApiMac_FHAttribute_netName, ApiMac_FHAttribute_routingCost
= 0xFF , and ApiMac_FHAttribute_panSize

For Sleepy Device:
Set ApiMac_FHAttribute_unicastChannelFunction to Fixed

Set ApiMac_FHAttribute_unicastFixedChannel to Desired Channel

www.ti.com Frequency-Hopping Mode

57SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

4.3.2.2 Device Start-Up
Figure 4-19 shows the start-up sequence of the device.

Figure 4-19. Start-Up Sequence of the Device

Wi-SUN FAN v1.0 does not specify sleep mode operation, but the TI 15.4-Stack implements a proprietary
extension over the behavior defined in the Wi-SUN FAN and IEEE 802.15.4 MAC protocols (see
Section 4.3.2.5) to enable sleepy devices in the frequency-hopping networks based on the TI 15.4-Stack.
The channel-hopping function for a sleepy device must be set to Fixed, and the fixed channel can be set
to any desired channel. The security keys can be set at start-up (if the security keys are already
preconfigured for the network), or the security keys can be set after obtaining the same through a key
exchange. The key exchange protocol must be handled above the MAC layer.

The routing cost must be set to a high value (0xFFFF) to indicate that the device has not joined the
network; later, it can be updated by the application based on the routing metric used.

NOTE: The sequence to start the sleepy and nonsleepy devices is the same until they join a
network. A sleepy device is configured to be sleepy by setting the MAC PIB
(macRxOnWhenIdle) to zero only after it joins the network (see Section 4.3.2.3). In other
words, the sleep mode operation uses low-power mode only for data exchange after
successfully joining the network.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Frequency-Hopping Mode www.ti.com

58 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

4.3.2.3 Network Join
To join to a network, a node must go through the two phases described as follows.

4.3.2.3.1 Phase 1: Exchange of Channel-Hopping Sequence Information Through Asynchronous
Messages

Asynchronous messages are sent back-to-back over a specified channel list. This action enables a
receiver to receive such frames with high probability, irrespective of the hopping sequence. Four different
asynchronous messages are supported by the TI 15.4-Stack as defined in the Wi-SUN FAN specification.
All asynchronous frames are transmitted based on a trickle timer [RFC 6206]. The Imin, Imax, and K for the
trickle algorithm are recommended to be set at 1 min, 16 min, and 1, respectively.

Brief descriptions of the four types of asynchronous messages follow:
• PAN Advertisement Solicit (PAS):

– PAS messages are used by a device to request a coordinator or other joined nodes to transmit a
PAN Advertisement frame.

– Upon reception of the PAN Advertisement frame, a joining application can detect the NetName IE
in the frame and then use the name to determine whether or not to reset PA trickle timer.

• PAN Advertisement (PA):
– PA frames can be transmitted by a coordinator or by a joined node to inform neighbors about the

PAN size, Routing cost, and PAN ID.
– The trickle timer associated with PA transmissions is programmed to be reset on reception of a

PAS frame.
– Upon, reception of the PAS frame, nodes communicate with the transmitter of the PA frames (note

the hopping sequence is carried in the PA frame).
– The device can choose one of the source nodes of the PA frame as relay to perform an

Authentication and Secure Key Exchange protocol that must be implemented by the application
running over the TI 15.4-Stack. Example applications (collector and sensor) included in TI 15.4-
Stack do not demonstrate this feature.

• PAN Configuration Solicit (PCS):
– When a device has the group master key (GMK) keys used in the network, the device can request

the transmission of a PAN Configuration frame.
– PCS messages are transmitted by a node to request neighbors or the coordinator transmit a PAN

Config frame.
• PAN Configuration (PC):

– PC messages are transmitted by the coordinator or a joined node based on a trickle timer that must
be reset upon reception of a PCS frame.

– PC frames carry the broadcast-hopping sequence and the hash values of the list of GMK keys that
are actively used.

– Upon reception of a PC frame, a device detects that the channel-hopping exchanges are
completed.

When using the frequency-hopping configuration on star-network topology, TI recommends the following:
• The PAN coordinator transmits PA and PC frames based on separate trickle timers. TI recommends

that developers refer to the collector example application implementation (located under the examples
folder in the TI 15.4-Stack installation directory).

• Devices transmit PAS and PCS frames for the purpose of joining; then, the devices suspend the trickle
timer after a successful join. TI recommends that developers refer to the sensor example application
(located under the examples folder in the CC13x0 SimpleLink SDK installation directory) as a
reference on how to implement this action, or that they use the implementation in the sensor example
application as-is as a starting point for custom applications.

• Devices must also implement the suppression mechanism to limit the number of PAS and PCS frames
transmitted. TI recommends developers refer to the sensor example application (examples folder in the
TI 15.4-Stack installation directory) as a reference for implementing this action, or use the
implementation in the sensor example application as-is as a starting point for custom applications.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Frequency-Hopping Mode

59SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

4.3.2.3.2 Phase 2: Proprietary Association Procedure to Inform Coordinator of the Network Join (This is
an Optional Step)

Because the frequency hopping join procedure (defined by the Wi-SUN specification) is silent, the PAN
coordinator cannot detect if the device has successfully joined the network. The TI 15.4-Stack example
applications use an additional step for network join. The MAC layer association procedure described in the
IEEE 802.15.4 specification is used after the PCS indicates to the PAN coordinator that the device has
successfully joined the frequency-hopping network.

In addition to informing the coordinator that the device has successfully joined the network, the optional
mechanism allows the PAN coordinator to detect if the joining node is sleepy or always-on through the
capability information field of the association request message sent by the device to the PAN coordinator.
This optional mechanism is required for the PAN coordinator application to determine the following:
• If the application must buffer the message until the device polls for some configured amount of time in

case the message is for a sleepy device
• If the application must send the message OTA as soon as the message-transmit request is generated

Although this step is not required for data exchange (because EUI addresses are used instead of short
addresses for communication in frequency-hopping mode), TI recommends using this optional procedure
in the applications using the frequency-hopping configuration of the TI 15.4-Stack to enable the
coordinator application to build the list of joined nodes and to detect if the newly joined device is sleepy or
is an always-on device.

NOTE: The association procedure must be started at least 2 seconds after reception of a PAN
configuration frame. Upon failure, the association procedure can be independently retried up
to the retry limit of the application. For a sleepy device, the ApiMac_attribute_RxOnWhenIdle
should be set to zero only after a successful completion of the mac-association procedure.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

PAN Coordinator RFD

PA Solicit

Association Request

MAC Data Request

Pan Config Solicit

PA

Association Response

MAC ACK (Msg. Pending Bit = 0)

MAC ACK

MAC ACK (Msg. Pending Bit = 1)

Pan Config

Data Exchange

Set macRxOnWhenIdle to Zero

1. Initiate FH Timers
2. Sets FH Channel Mode (Fixed/Hopping)
3. Async Transmitted On All Channels

PAN Coordinator RFD

PA Solicit

Association Request

MAC Data Request

Pan Config Solicit

PA

Association Response

MAC ACK (Msg. Pending Bit = 0)

MAC ACK

MAC ACK (Msg. Pending Bit = 1)

Pan Config

Data Exchange

Set macRxOnWhenIdle to Zero

1. Does Not Initiate FH Timers
2. Sets FH to Fixed-Channel Mode
3. Async Still Transmitted On All Channels

Frequency-Hopping Mode www.ti.com

60 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

Figure 4-20 and Figure 4-21 shows the procedure for sleepy and non-sleepy devices, respectively.

Figure 4-20. Joining Procedure for a Sleepy Frequency-Hopping Device

Figure 4-21. Joining Procedure for a Nonsleepy Frequency-Hopping Device

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Data request for B

Node A

Node B

1 54

1 34

2

5

Resume channel hopping

Data ACK

www.ti.com Frequency-Hopping Mode

61SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

4.3.2.4 Data Exchange
Three types of data-exchange mechanisms are supported by the TI 15.4-Stack:
• Unicast data exchange
• Broadcast data exchange
• Asynchronous frame exchange

All frame exchanges are required to use the address type of 3 (extended addresses). To initiate a unicast
or broadcast frame exchange, the API MAC API (ApiMac_mcpsDataReq) should be used. To transmit an
asynchronous frame, ApiMac_mlmeWSAsyncReq should be used. The determination of whether the
message is unicast or broadcast is done based on the destination address mode used in the data request
parameter type ApiMac_mcpsDataReq_t (see Table 4-5).

Table 4-5. Addressing Modes for Unicast and Broadcast Message With TI 15.4-Stack in Frequency-
Hopping Configuration

Message Type Source Address Mode Destination Address Mode Destination Address
Unicast 3 3 Specified by the application

Broadcast 3 0 Ignored by stack

Unicast Data Exchange
Unicast data exchange in frequency-hopping mode occurs on the channel of the destination node. A node
transmits the frame on the expected receive channel of the destination node. The entire frame exchange
occurs on the same channel (see Figure 4-22). Subsequent data exchange occurs on the channel on
which the receiver is hopping at the time of transmission; this subsequent data exchange is independent
from earlier transmissions.

Figure 4-22. Data Exchange With TI 15.4-Stack in Frequency-Hopping Configuration

To transmit a unicast frame to a neighbor, the hopping information was received by the node in some
earlier frame. The hopping information could have been received through the reception of any type of
asynchronous frames from the destination node. Hence, an application should ensure that such a frame is
received from destination node before initiating a data request.

If a data request is issued to a node whose entry is not in the neighbor table, the error code
ApiMac_status_fhNotInNeighborTable (0x64) specifies that the node that is not in the neighbor table is
returned to the application by the TI 15.4-MAC protocol stack. Also, an expiry is associated with each
neighbor table entry. The default time of the expiry is 2 hours for hopping neighbors. The 2 hour default
expiry is set because the hopping information stored in the neighbor table may not be useful beyond that
time limit for a successful data exchange (due to loss in synchronization caused by inherent clock drifts).
Any data exchange helps the node to resynchronize the entry; thus, the entry is considered active for the
next 2 hours. If a data request is sent for an expired neighbor, the message is not sent to the destination
and a status of ApiMac_status_fhExpiredNode (0x6C) is returned to the application.

NOTE: The lifetime of a hopping neighbor can be changed to any other desired value in the range of
5 minutes to 600 minutes (10 hours) by using the PIB attribute,
ApiMac_FHAttribute_neighborValidTime, which is specified in minutes.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Broadcast CH2 CH4Ch1 Ch2 Ch3 Ch4 Ch5 Ch6Ch6 Ch7

Async Frame Request

Deviation from sequence

Frequency-Hopping Mode www.ti.com

62 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

Broadcast Frame Exchange
Broadcast frames are transmitted only during the broadcast dwell interval as shown in Figure 4-17.
Broadcast frames have a higher priority than unicast frames in such a dwell time and will preempt a
unicast frame when present. This priority difference can lead to situations where frames are out of order
(that is, the order in which frames are requested to be transmitted by the application could be different
from the order in which they are transmitted over the air). Thus, the order in which the
ApiMac_mcpsDataReq confirm is received may be different from the order in which
ApiMac_mcpsDataReq is sent. The msdu-handle should be used to match the request primitive to the
corresponding .confirm primitive by the application.

An application on the PAN coordinator can transmit a broadcast frame any time because the PAN
coordinator starts the broadcast hopping as soon as the application is started. All other nodes should wait
for the reception of a PAN Configuration frame from the PAN coordinator to start the broadcast-hopping
sequence. An application on these other nodes should wait for the reception of the PAN Configuration
frames; then the application can set the source address of the PAN Configuration frame (if it selects to
use that node as a Parent) to the FH_MAC_TRACK_PARENT PIB before issuing a request of broadcast
frame exchange. If an application issues a broadcast data request while the node has not yet started
following a broadcast hopping sequence, the stack returns an ApiMac_status_badState (0x19) error code.
A sleepy FH device does not track broadcast dwell times and therefore cannot receive broadcast frames.
Broadcast frame exchanges are only to be done between nonsleepy devices and coordinators.

Asynchronous Frame Exchange
Asynchronous frames are transmitted by a device on the list of channels specified by user in the Async
request. Figure 4-23 shows that the device deviates from the hopping sequence and performs this
operation.

Figure 4-23. Asynchronous Frame Exchange

The objective of asynchronous frame exchange is to transmit data on all available channels (default =
129); thus, asynchronous frame exchange can take a few seconds to complete (worst case is
approximately 4 seconds). Such transmissions are typically controlled by trickle timers and are not
recommended to be transmitted frequently (refer to [8]). Optionally, a device may issue an Async Request
with a Stop command, which will stop an ongoing Async frame exchange.

4.3.2.5 Sleep Mode Operation
Wi-SUN FAN v1.0 does not define a sleep mode operation. However, the TI 15.4-MAC protocol stack
supports a proprietary sleep mode operation using a mechanism similar to the TI 15.4-MAC protocol stack
nonfrequency-hopping configuration operation, which uses indirect transmissions. TI recommends that the
application change the device's fixed channel of operation before initiating a join request. It can help when
the current fixed channel of operation is affected by interference.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

PAN Coordinator Sleepy Device

PA

Association Response

Data for RFD

MAC ACK (Msg. Pending Bit = 0)

MAC ACK

MAC ACK

MAC ACK (Msg. Pending Bit = 1)

Pan Config

MAC ACK (Msg. Pending Bit = 1)

Data for RFD

MAC ACK

MAC ACK (Msg. Pending Bit = 1)

1. Sets FH to Fixed-Channel Mode
2. Set a Choice of Fixed Channel
3. Async Still Transmitted On All Channels

On successful association, set MAC
PIB macRxOnWhenIdle to Zero

PA Solicit

Association Request

MAC Data Request

Pan Config Solicit

MAC Data Poll

MAC Data Poll

www.ti.com Frequency-Hopping Mode

63SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

The sleep mode operation is explained in Figure 4-24. Because the joining procedure is explained in
Section 4.2.2.2, the data exchange mechanism is emphasized in this section.

On successful association, the MAC PIB macRxOnWhenIdle should be set to zero, which enables the
sleepy device to enter into low-power operation. The sleepy device transmits frames to the PAN
coordinator based on the hopping sequence. The MAC stack on the sleepy device operates on a fixed
channel and will not hop independently.

Figure 4-24. Sleep Mode Operation in Frequency-Hopping Mode

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Frequency-Hopping Mode www.ti.com

64 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

4.3.2.6 Maintaining a Connection for End Nodes
In a typical star network, the devices have to keep track of unicast and broadcast timing of Coordinator’s
hopping sequences while the coordinator has to do for the unicast timing information of all the connected
devices.

The timing information of the unicast and broadcast sequence of a device is carried in unicast timing and
frame type information element (UTT-IE) and broadcast timing Information element (BT-IE), respectively.
All data frames carry UTT-IE and BT-IE. The ACK frames from PAN-Coordinator contain both the UTT-IE
and BT-IE, while those from other devices carry UTT-IE alone. The timing information corresponding to
the source of the received Data/ACK frame is updated based on received frames.

The lifetime of a neighbor table is based on the last time the entry was updated. As long as a frame is
received from a neighbor once every neighbor valid time, it is kept active. The neighbor valid time for a
hopping neighbor is set to 2 hours by default. Neighbor valid time can be changed using the
MAC_FHPIB_NEIGHBOR_VALID_TIME PIB attribute. After that period the entry is considered as expired.
Any neighbor table entry is deleted if it is not updated within the last 10 hours.

The period within which at least one data frame should be exchanged to maintain reliable communication
depends on the dwell time value used by the PAN coordinator. TI recommends keeping this period for at
most 10 minutes or 25 minutes, for a PAN coordinator dwell time of 100 ms and 250 ms respectively.

4.3.2.7 Disassociating
The frequency-hopping mode also supports the disassociation command defined in IEEE 802.15.4, similar
to the nonfrequency-hopping mode.

4.3.3 Stack Configuration Knobs
The frequency-hopping mode features can be controlled through a set of MAC FHPIB attributes. Some of
these PIBs affect the TI 15.4-Stack operation directly, while others are provided to help applications
generate the required Asynchronous frames. This section explains the MAC FHPIB attributes.

4.3.3.1 Parameters Controlling the Unicast Channel-Hopping Sequence of the Node
The parameters controlling the unicast hopping must be set after the FH is enabled and before the MAC
or FH-start API is called (see Table 4-6). These values must not be changed after the node starts the
hopping sequence. To change these values the nodes have to be power cycled or reset.

Table 4-6. Unicast Channel-Hopping PIB Parameters

PIB PIB ID Range Default Description

ApiMac_FHAttribute_unicastDwellInterval 0x2004 15 to 250 (ms) 250 Amount of time spent on
each channel

ApiMac_FHAttribute_unicastChannelFunction 0x2008 0 or 2 0

Whether to hop or not.
Only two values are
supported:
0 – Fixed
2 – DH1CF-based
hopping

ApiMac_FHAttribute_unicastFixedChannel 0x200C

0 – maximum
channel based

on PHY
configuration

0

The channel to use
during unicast hopping
when the channel
function is fixed

ApiMac_FHAttribute_unicastExcludedChannels 0x2002 17 bytes All zeros

The list of channels to
avoid when channel
function is 2. Each bit
represents a channel,
starting from the LSB of
the first byte which,
represents Channel 0

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Frequency-Hopping Mode

65SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

4.3.3.2 Parameters Controlling the Broadcast Channel-Hopping Sequence
These parameters must only be set on the PAN coordinator (see Table 4-7). The parameters must be set
after the FH is enabled and before the MAC or FH-start API is called. Other devices obtain this information
on reception of a PC (an Asynchronous message) message from the PAN- Coordinator. Devices then
perform their broadcast hopping based on the received configuration. The received configuration can be
read from these PIBs after the reception of a PAN Config frame from the parent of a node.

Table 4-7. Broadcast Channel-Hopping PIB Parameters

PIB PIB Id Range Default Description

ApiMac_FHAttribute_broadcastInterval 0x2001 15 to
16777215 ms 4250 The interval between two

different broadcast dwell interval

ApiMac_FHAttribute_broadcastDwellInterval 0x2005 15 to 250 ms 250 Amount of time spent during
broadcast dwell interval

ApiMac_FHAttribute_broadcastChannelFunction 0x2009 0 or 2 0

Whether to hop or not. Only two
values are supported:
0 – Fixed
2 – DH1CF based hopping

ApiMac_FHAttribute_broadcastFixedChannel 0x200D

0 – maximum
channel

based on
PHY

configuration

0
The channel to use during
broadcast dwell interval when
the channel function is fixed

ApiMac_FHAttribute_broadcastExcludedChannels 0x2003 17 bytes All zeros

The list of channels to avoid
when the channel function is 2.
Each bit represents a channel,
starting from the LSB of the first
byte, which represents Channel
0.

NOTE: A large value of broadcast interval implies a higher delay in transmitting broadcast frames.
An application could decide to increase or decrease this interval based on the perceived
requirement for handling broadcast frames.

On the device side, an application must set the source address of the chosen parent to the MAC TRACK
PARENT PIB (see Table 4-8). FH stack follows the broadcast hopping sequence of the chosen parent. An
application can choose a parent based on the received source address of the PAN configuration frames.
However, performance loss may occur due to loss in broadcast synchronization, which is corrected based
on the subsequent PAN Configuration frame received from the new parent.

Table 4-8. Frequency-Hopping Parent Address PIB Attribute

PIB PIB Id Range Default Description
ApiMac_FHAttribute_trackParentEUI 0x2000 Any 0xFFFFFFFF Source address of the parent.

4.3.3.3 Changing Broadcast Sequence Values in the Middle of Network Operation
A PAN coordinator may choose to modify the broadcast interval during a network operation. To do so the
application of the PAN coordinator must set the values as required, and then increment the value of the
MAC_FHPIB_BROCAST_SCHED_ID PIB (see Table 4-9).

Table 4-9. Broadcast Interval PIB Attribute

PIB PIB Id Range Default Description

ApiMac_FHAttribute_broadcastSchedId 0x200B 0 to 65535 0

A value representing a given
broadcast configuration. It must be
incremented when broadcast
configurations are changed.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Frequency-Hopping Mode www.ti.com

66 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

Transmit PAN Config frames more frequently to enable the dissemination of this information to the
network.

NOTE: The performance of the network may be affected during this change in configuration time as
it requires some time for the nodes to update their hopping sequences.

4.3.3.4 Parameters to Control Frequency of the Operation of Hopping Mode
The following parameters can be set to control specific functions, as defined in Table 4-10.

Table 4-10. Frequency Hopping Control PIB Attributes

PIB PIB Id Range Default Description

ApiMac_FHAttribute_clockDrift 0x2006 0 to 255 20
Represents the accuracy of the system
clock in ppm. A value of 255 implies
that the information is not provided.

ApiMac_FHAttribute_timingAccuracy 0x2007 0 to 255 0 Accuracy of provided timing information
in 10s of micro seconds.

ApiMac_FHAttribute_neighborValidTime 0x2019 5 to 600
(minutes) 120

The time in minutes for which a
hopping neighbor is considered valid
after reception of a Data/ACK from it.

TI recommends not changing the values listed in Table 4-10, and using the default values.

4.3.3.5 Parameters to Control Neighbor Table Size
The amount of heap memory occupied by the FH neighbor table can be controlled through FH PIB
attributes. The total number of end devices supported must be less than 50. If a deployment only requires
a lesser number of devices, a lower number of neighbor table entries can be specified, thereby allowing
more heap for the application. When configuring the number of neighbor table entries, both non-sleepy
and sleepy devices must be changed together with MAC_FHPIB_NUM_NON_SLEEPY_DEVICES set
first.

Table 4-11. Frequency Hopping Neighbor Control PIB Attributes

PIB PIB Id Range Default Description

MAC_FHPIB_NUM_NON_SLEEPY_DEVICES 0x201b 0 to 50 2 Total number of non-sleepy
neighbors supported.

MAC_FHPIB_NUM_ SLEEPY_DEVICES 0x201c 0 to 50 48 Total number of sleepy
neighbors supported.

NOTE: The number of non-sleepy and sleepy neighbors can only be configured before issuing a
network start or FHAPI_start API. The total number of end devices supported must be less
than 50. When configuring the number of neighbor table entries, both non-sleepy and sleepy
devices must be changed together with MAC_FHPIB_NUM_NON_SLEEPY_DEVICES set
first.

Table 4-12. Frequency Hopping Backoff PIB Attributes

PIB PIB Id Range Default Description

MAC_FHPIB_BASE_BACKOFF 0x201a 0 to 16 8
Additional back off parameter on
target channel to account for
interference (ms).

MAC_FHPIB_NEIGHBOR_VALID_TIME 0x2019 0 to 65535
(minutes) 120

The time in minutes for which a
hopping neighbor is considered
valid after reception of a Data/ACK
from it.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Security

67SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

The MAC_FHPIB_BASE_BACKOFF enables FH devices to mitigate interference, which causes a higher
delay for packet transmission when interference is observed. The interference mitigation feature can be
disabled by setting this parameter to zero (although it is not recommended to do so). TI recommends not
changing these values and using the default values.

4.3.3.6 Parameters to Enable Application Generate and Process Asynchronous Frames
The following PIB attributes represent different fields of the Asynchronous frames (see Table 4-13). The
attributes are used to generate the required IEs when an async request is made by application based on
the async frame type. The TI 15.4-Stack is responsible for only using these PIBs to encode the async
frames and does not use these values to make any decisions on its operation. It is up to the application to
use these fields if needed to perform any relevant operation.

Table 4-13. PIB Attributes for Asynchronous Messages

PIB PIB Id Range Default Description
ApiMac_FHAttribute_panSize 0x200E 0 to 65535 0 The size of PAN network

ApiMac_FHAttribute_routingCost 0x200F 0 to 255 0

Zero for PAN Coordinator and Non-
Zero for other devices. Actual metric
used is beyond the scope of MAC.
This can be used to choose a parent.

ApiMac_FHAttribute_routingMethod 0x2010 0 or 1 1
Specify the type of routing protocol
used. Typical values are 0 – MHDS,
1 – RPL

ApiMac_FHAttribute_eapolReady 0x2011 0 or 1 1
Specify whether the node can support
EAPOL to perform authentication and
key exchange

ApiMac_FHAttribute_fanTPSVersion 0x2012 0 to 255 1 Wi-SUN FAN version number
ApiMac_FHAttribute_netName 0x2013 32 bytes All zeros Null terminated string

ApiMac_FHAttribute_panVersion 0x2014 0 to 65535 00000

Must be incremented whenever a
configuration changes such as
broadcast information or GTK Hash
values are changed.

ApiMac_FHAttribute_gtk0Hash 0x2015 8 bytes All zeros
The Hash value that can be used by
the application to decide the validity
of an exchanged GMK key with ID 0.

ApiMac_FHAttribute_gtk1Hash 0x2016 8 bytes All zeros
The Hash value that can be used by
the application to decide the validity
of an exchanged GMK key with ID 1.

ApiMac_FHAttribute_gtk2Hash 0x2017 8 bytes All zeros
The Hash value that can be used by
the application to decide the validity
of an exchanged GMK key with ID 2.

ApiMac_FHAttribute_gtk3Hash 0x2018 8 bytes All zeros
The Hash value that can be used by
the application to decide the validity
of an exchanged GMK key with ID 3.

4.4 Security
The TI 15.4-Stack supports AES encryption as defined by the IEEE 802.15.4 Specification. The
application is responsible for management of the keys. The out-of-box example application of the TI 15.4-
Stack demonstrates how to use security with the TI 15.4-Stack.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Configuring Stack: Selecting the Network Mode of Operation www.ti.com

68 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

4.5 Configuring Stack: Selecting the Network Mode of Operation
The TI 15.4-Stack offers three modes of network operations that follow (and as discussed in this chapter):
• Beacon mode
• Nonbeacon mode
• Frequency-hopping mode

The features.h file allows developers to compile-in or compile-out different 15.4-Stack features for different
applications. The TI 15.4-Stack allows support for all three modes or allows user to select just one desired
mode of network operation. The TI 15.4-Stack can be configured in four different modes of operation using
the features.h file. Depending on the mode selection, considerable savings in the executable-image space
can be achieved. Table 4-14 and Table 4-15 provide a summary of Flash and RAM use of the out-of-box
Collector and Sensor Example Application with different compile options enabled.
1. FEATURE_ALL_MODES: When this compile flag is defined, the image is compiled with all the three

modes of operation (frequency-hopping mode, beacon-enabled mode and nonbeacon mode) and the
configuration file (config.h) can be used to select the specific mode for network operation. This feature
allows flexibility to select any mode for the device. For the out-of-box collector and sensor example
application, this feature is enabled.
/*! If defined, builds the image with all the modes of operation (frequency hopping,
beacon mode and non beacon mode) */
#define FEATURE_ALL_MODES

2. FEATURE_FREQ_HOP_MODE: Defining this compile flag will compile only the frequency hopping
mode of operation in the final executable image. For out of box example application, you would need to
disable the compile option FEATURE_ALL_MODES and then enable this compile option as in the
following:
/*! If defined, builds the image with all the modes of operation (frequency hopping,
beacon mode and non beacon mode) */
#undef FEATURE_ALL_MODES

/*! If defined, builds the image with the frequency mode of operation */
#define FEATURE_FREQ_HOP_MODE

3. FEATURE_BEACON_MODE: Defining this compile flag will compile only the beacon mode of
operation in the final executable image. For out of box example application, you would need to disable
the compile option FEATURE_ALL_MODES and then enable this compile option as in the following:
/*! If defined, builds the image with all the modes of operation (frequency hopping,
beacon mode and non beacon mode) */
#undef FEATURE_ALL_MODES

/*! If defined, builds the image with beacon mode of operation */
#define FEATURE_BEACON_MODE

4. FEATURE_NON_BEACON_MODE: Defining this compile flag will compile only the non-beacon mode
of operation in the final executable image.
/*! If defined, builds the image with all the modes of operation (frequency hopping,
beacon mode and non beacon mode) */
#undef FEATURE_ALL_MODES

/*! If defined, builds the image with non beacon mode of operation */
#define FEATURE_NON_BEACON_MODE

In addition to the compile flags listed previously, the FEATURE_FULL_FUNCTION_DEVICE compile flag
is required for the PAN Coordinator device (see the out-of-box Collector Example Application) to perform
the role as a central node in the network.

Also, the FEATURE_MAC_SECURITY compile flag is added in the features.h file to allow the ability to
turn the MAC layer security on and turn off in the compile executable image. If the mac layer security is
turned off, you will need the version of the stack library with no MAC security.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Configuring Stack: Selecting the Network Mode of Operation

69SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack Overview

To build the image with no security, perform the steps that follow:
1. Select the linker File Search Path option.
2. Modify to include the maclib_nosecure.a instead of maclib_secure.a library file (shown in Figure 4-25).

Figure 4-25. Changing TI 15.4 Stack library

Table 4-14. Out-of-Box Collector Example Application Flash and RAM Usage Summary With
Various Compile-Option Combinations

Compile Option Enabled FLASH RAM
FEATURE_ALL_MODES 108k 14k
FEATURE_FREQ_HOP_MODE 104k 13k
FEATURE_NON_BEACON_MODE 89k 13k
FEATURE_BEACON_MODE 94k 13k

Table 4-15. Out-of-Box Sensor Example Application Flash and RAM Usage Summary With Various
Compile-Option Combinations

Compile Option Enabled FLASH RAM
FEATURE_ALL_MODES 103k 13k
FEATURE_FREQ_HOP_MODE 100k 13k
FEATURE_NON_BEACON_MODE 86k 12k
FEATURE_BEACON_MODE 88k 12k

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

6LPSOH/LQN���&&13x0 MCU

CC13x0 Application

Utility Functions:
Timers, Keys, LCD, «

TI-RTOS Start-Up Code

TI 15.4-Stack API Module (ICall Interface)

Example Application
(Collector and Sensor) Logical Link Controller:

Joining, Network
Detection, and Rejoining

Application Specific
Functions

ICall Messages

TI 15.4-Stack

Copyright © 2016, Texas Instruments Incorporated

70 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Application Overview

Chapter 5
SWRU489A–September 2016–Revised December 2016

Application Overview

The TI 15.4-Stack example applications are designed to enable faster end-product development by
providing implementation of various common-protocol stack-specific tasks, and other essential features
such as nonvolatile memory storage, saving information over power cycles, in addition to protocol
functionality. This chapter explains the example application implementation to help developers quickly
modify the TI 15.4-Stack out-of-box example applications for customized development. The following
sections detail the example applications of the TI 15.4-Stack projects.
• Pre-RTOS initialization
• Application architecture: the Application task which is the lowest priority task in the system. The code

for this task resides in the Application IDE folder.
• Indirect Call Framework: an interface module which abstracts communication between the Stack and

other tasks.

Section 5.1 describes overall architecture of the example applications. Section 5.4 provides more specific
information about the application task implementation.

5.1 Application Architecture
Figure 5-1 shows the block diagram of the Sensor and Collector example applications on the CC13x0.
Refer to the Linux Developer's Guide for details on the Linux example applications.

Figure 5-1. Example Application Block Diagram

High-level descriptions of various blocks in Figure 5-1 follow.

Example Application: the platform-independent implementation of the example use case. The TI 15.4-
Stack out-of-box demonstrates two use cases – Collector and Sensor. Developers can modify the code in
this module in out-of-box example applications for custom application requirements, to quickly develop
end products. This is platform-independent code, used as in the Linux example application and also the
CC13x0 platform example applications.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Start-Up in main()

71SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Application Overview

Logical Link Controller: implements various essential IEEE 802.15.4 specific or Wi-SUN (for frequency-
hopping configuration) specific tasks, such as network formation, network joining, and rejoining. This block
intends to offload various protocol-specific implementations from the developers, and enable faster custom
application development. This is platform-independent code, as used in the Linux example application and
also the CC13x0 platform example applications.

TI-RTOS Start-up Code: initializes the application (see Section 5.2 for more details).

Utility Functions: provides various platform utilities which the application can use for example LCD,
timers, keys, and so on.

Application-Specific Functions: implements platform-specific functions such as data storage over power
cycles (nonvolatile), and provides user interface functions such as handling button presses or displaying
essential information on the LCD, and so on.

TI 15.4-Stack API Module (API MAC Module): this module provides an interface to the management and
data services of the 802.15.4 stack through the Indirect Call Framework (ICALL) module. The TI 15.4-
Stack API is listed in Chapter 13, and the ICALL module is described in Section 5.3.

5.2 Start-Up in main()
The main() function inside of main.c in the IDE Start-up folder is the application starting point at runtime.
This point is where the board is brought up with interrupts disabled and board-related components are
initialized. Tasks in this function are configured by initializing the necessary parameters, setting its priority,
and initializing the stack size for the application. In the final step, interrupts are enabled and the SYS/BIOS
kernel scheduler is started by calling BIOS_start(), which does not return. See CC13xx TRM for
information on the start-up sequence before main() is reached.
void main()
{

Task_Params taskParams;

#ifndef USE_DEFAULT_USER_CFG
user0Cfg.pAssertFP = macHalAssertHandler;

#endif

/* enable iCache prefetching */
VIMSConfigure(VIMS_BASE, TRUE, TRUE);

/* Enable cache */
VIMSModeSet(VIMS_BASE, VIMS_MODE_ENABLED);

CPU_WriteBufferDisable();

/* Initialization for board related stuff such as LEDs following TI-
RTOS convention */

PIN_init(BoardGpioInitTable);

/* Configure task. */
Task_Params_init(&taskParams);
taskParams.stack = myTaskStack;
taskParams.stackSize = APP_TASK_STACK_SIZE;
taskParams.priority = 1;
Task_construct(&myTask, taskFxn, &taskParams, NULL);

#ifdef DEBUG_SW_TRACE
IOCPortConfigureSet(IOID_8, IOC_PORT_RFC_TRC, IOC_STD_OUTPUT

| IOC_CURRENT_4MA | IOC_SLEW_ENABLE);
#endif /* DEBUG_SW_TRACE */

BIOS_start(); /* enable interrupts and start SYS/BIOS */
return 0;

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A
http://www.ti.com/lit/pdf/SWCU117

Application

ICALL

Stack

(TI 15.4-Stack, Zigbee, or Bluetooth low energy)

Registration Dispatch

Dispatch

Client

Server

Copyright © 2016, Texas Instruments Incorporated

Indirect Call Framework www.ti.com

72 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Application Overview

In terms of the IDE workspace, main.c exists in the Application project – meaning that when compiled it is
placed in the allocated section of the application's flash.

5.3 Indirect Call Framework
ICALL is a module that provides a mechanism for the Application to interface with the TI 15.4-Stack
services (such as TI 15.4-Stack APIs), as well as certain primitive services (such as thread
synchronization) provided by the real-time operating system (RTOS). ICALL allows both the Application
and protocol stack tasks to efficiently operate, communicate, and share resources in a unified RTOS
environment.

The central component of the ICALL architecture is the dispatcher, which facilitates the application
program interface between the Application and the TI 15.4-Stack task across the dual-image boundary.
Although most of the ICALL interactions are abstracted within the TI 15.4-Stack APIs, it is important for the
application developer to understand the underlying architecture so that proper TI 15.4-Stack protocol stack
operation is achieved in the multithreaded RTOS environment. The source code of the ICALL module is
provided in the ICALL IDE folder in the Application project.

Figure 5-2. ICALL Application – Protocol Stack Abstraction

5.3.1 ICALL TI 15.4-MAC Protocol Stack Service
As depicted in Figure 5-2, the ICALL core use case involves messaging between a server entity (the TI
15.4-Stack task) and a client entity (the Application task). The reasoning for this architecture is twofold: to
enable independent updating of the application and TI 15.4-Stack, and also to maintain API consistency
as the software is ported from legacy platforms (for example OSAL for the CC253x) to the CC13x0 TI-
RTOS. The ICALL TI 15.4-Stack Service serves as the Application interface to all TI 15.4-Stack APIs.
Internally, when a TI 15.4-Stack protocol stack API is called by the Application, the ICALL module routes
(dispatches) the command to the TI 15.4-Stack, and where appropriate, routes messages from the TI
15.4-Stack to the Application.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Indirect Call Framework

73SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Application Overview

Because the ICALL module is part of the Application project, the Application task can access the ICALL
with direct function calls. User modifications to the ICALL source are not encouraged. Also, because the
TI 15.4-Stack executes at the highest priority, the Application task blocks until the response is received.
Certain protocol stack APIs may respond immediately; however, the Application thread blocks because
the API is being dispatched to the TI 15.4-Stack through the ICALL. Other TI 15.4-Stack APIs (such as
event updates) may also respond asynchronously to the Application through the ICALL, with the response
sent to the task event handler of the Application.

5.3.2 ICALL Primitive Service
ICALL includes a primitive service that abstracts various operating system-related functions. Due to
shared resources, and to maintain interprocess communication, the Application must use the following
ICALL primitive service functions.
• Messaging and Thread Synchronization
• Heap Allocation and Management

5.3.2.1 Messaging and Thread Synchronization
The messaging and thread synchronization functions provided by the ICALL let users design an
application to protocol stack interface in the multithreaded RTOS environment. Within the ICALL,
messaging between two tasks is achieved by sending a message block from one thread to the other using
a message queue. The sender allocates memory, writes the content of the message into the memory
block, and then sends (enqueues) the memory block to the recipient. Notification of message delivery is
accomplished using a signaling semaphore. The receiver wakes up on the semaphore, copies the
message memory block (or blocks), processes the message, and returns (frees) the memory block to the
heap.

The Stack uses the ICALL for notifying and sending messages to the Application. These service
messages (such as state change notifications) received by the Application task are delivered by the ICALL
and processed in the task context of the Application.

5.3.2.2 Heap Allocation and Management
The ICALL provides the Application with global heap APIs for dynamic memory allocation. The size of the
ICALL heap is configured with the HEAPMGR_SIZE preprocessor define in the Application project. See
Section Section 3.11.2 for more details on dynamic memory management. ICALL uses this heap for all
protocol stack messaging as well as to obtain memory for other ICALL services. TI recommends that the
Application uses these ICALL APIs for dynamic memory allocation within the Application.

5.3.3 ICALL Initialization and Registration
To instantiate and initialize the ICALL service, the following functions must be called by the application in
main() before starting the SYS/BIOS kernel scheduler.
/* Initialize ICall module */

ICall_init();
/* Start tasks of external images - Priority 5 */
ICall_createRemoteTasks();

Calling ICall_init() initializes the ICALL primitive service (for example, heap manager) and framework.
Calling ICall_createRemoteTasks() creates, but does not start, the TI 15.4-Stack protocol stack task.

Before using ICALL protocol services, both the server and client must enroll and register with the ICALL.
The server enrolls a service which is enumerated at build time. Service function handler registration uses
a globally defined unique identifier for each service. For example, TI 15.4-Stack uses
ICALL_SERVICE_CLASS_TIMAC for receiving TI 15.4-Stack protocol stack messages through the ICALL.

The following is a call to enroll the TI 15.4-Stack protocol stack service (server) with the ICALL in
MacStack.c

// ICall enrollment
/* Enroll the service that this stack represents */
ICall_enrollService(ICALL_SERVICE_CLASS_TIMAC, NULL, &entity, &sem);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Indirect Call Framework www.ti.com

74 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Application Overview

The registration mechanism is used by the client to send and receive messages through the ICALL
dispatcher. For a client (for example, Application task) to use the TI 15.4-Stack APIs, the client must first
register its task with the ICALL. This registration is done for the application in ApiMac_init(), which is called
by the applications initialization functions. The following is the call to the ICALL in ApiMac_init() in
api_mac.c

/* Register the current thread as an ICall dispatcher application
* so that the application can send and receive messages.
*/

ICall_registerApp(&ApiMac_appEntity, &sem);

api_mac.c supplies the ApiMac_appEntity and sem inputs which, upon return of ICall_registerApp(), are
initialized for the client (for example, Application) task. These objects are subsequently used by the ICALL
to facilitate messaging between the Application and server tasks. The sem argument represents the
semaphore used for signaling, whereas the ApiMac_appEntity represents the task destination message
queue. Each task registering with the ICALL has unique sem and ApiMac_appEntity identifiers.

NOTE: TI 15.4-Stack APIs defined in api_mac.c, and other ICALL primitive services, are not
available for use before ICALL registration.

5.3.4 ICALL Thread Synchronization
The ICALL module switches between Application and Stack threads through the use of preemption and
semaphore synchronization services provided by the RTOS. The two ICALL functions to retrieve and
enqueue messages are not blocking functions. They check whether there is a received message in the
queue and if there is no message, the functions return immediately with the ICALL_ERRNO_NOMSG
return value. To allow a client or a server thread to block until it receives a message, ICALL provides the
following function which blocks until the semaphore associated with the caller RTOS thread is posted.
//static inline ICall_Errno ICall_wait(uint_fast32_t milliseconds)
ICall_Errno errno = ICall_wait(ICALL_TIMEOUT_FOREVER);

In the preceding function, milliseconds is the timeout period in ms, after which if the function has not
already returned, the function returns with ICALL_ERRNO_TIMEOUT. If ICALL_TIMEOUT_FOREVER is
passed as ms, the ICall_wait() shall block forever, or until the semaphore is posted. Allowing an
application or a server thread to block is important to yield the processor resource to other lower priority
threads, or to conserve energy by shutting down power and clock domains whenever possible. The
semaphore associated with an RTOS thread is signaled by either of the following conditions.
• A new message is queued to the Application RTOS thread queue.
• ICall_signal() is called for the semaphore.

ICall_signal() is provided so that an application or a server can add its own event to unblock the
ICall_wait() and synchronize the thread. ICall_signal() accepts a semaphore handle as its sole argument
as follows.
//static inline ICall_Errno ICall_signal(ICall_Semaphore msgsem)
ICall_signal(sem);

The semaphore handle associated with the thread is obtained through either the ICall_enrollService() call
or ICall_registerApp() call.

NOTE: It is not possible to call an ICALL function from a stack callback. This action causes the
ICALL to abort (with ICall_abort()) and breaks the system.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

App

ICall_init

ICall

ICall_createRemoteTasks

ICall_registerApp

ApiMac_mlmeSetReqArray()
MAC_SET_REQ

ICall_dispatcher
(sendCmdStatus)

ICall_send
(sendCmdStatus)

App Task
Blocks

TI-15.4
Stack

Stack Executes
MAC_SET_REQ

ICall_dispatcher
(TI-15.4MAC Primitive Service)

www.ti.com Indirect Call Framework

75SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Application Overview

5.3.5 Example ICALL Usage
Figure 5-3 shows an example command being sent from the application to the TI 15.4-Stack through the
ICALL, with a corresponding return value passed back to the application. ICall_init() initializes the ICALL
module instance itself and ICall_createRemoteTasks() creates a task per external image, with an entry
function at a known address. After initializing the ICALL, the Application task registers with the ICALL
using ICall_registerApp. After the SYS/BIOS scheduler starts and the Application task runs, the application
sends a protocol command defined in api_mac.c such as ApiMac_mlmeSetReqArray(). The protocol
command is not executed in the application thread. Instead the command is encapsulated in an ICALL
message, and routed to the TI 15.4-Stack task through the ICALL. In other words, this command is sent to
the ICALL dispatcher where it is dispatched and executed on the server side (TI 15.4-Stack). The
Application thread meanwhile blocks (waits for) the corresponding command status message (status).
When the TI 15.4-Stack protocol stack finishes executing the command, the command status message
response is sent through the ICALL back to the application thread.

Figure 5-3. ICALL Messaging Example

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

General Application Architecture www.ti.com

76 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Application Overview

5.4 General Application Architecture
This section describes how an Application task is structured in more detail.

5.4.1 Application Initialization Function
Section 3.3 describes how a task is constructed. After the task is constructed and the SYS/BIOS kernel
scheduler is started, the function that was passed during task construction is run when the task is ready.
Power-management functions are initialized here and the ICALL module is initialized through ICall_init().
The primary IEEE address (programmed by TI) is obtained from the CCFG area of the flash memory and
NV drivers are initialized. The application task (Sensor application in Figure 5-4) is initialized and started.
Void taskFxn(UArg a0, UArg a1)
{

/* Disallow shutting down JTAG, VIMS, SYSBUS during idle state * since TIMAC requires
SYSBUS during idle. */

Power_setConstraint(PowerCC26XX_IDLE_PD_DISALLOW);

/* Initialize ICall module */
ICall_init();

#ifdef FEATURE_MAC_SECURITY
/* * Copy the extended address from the CCFG area * Assumption: the memory in

CCFG_IEEE_MAC_0 and CCFG_IEEE_MAC_1 * is contiguous and LSB first. */
memcpy(ApiMac_extAddr, (uint8_t *)&*)&(__ccfg.CCFG_IEEE_MAC_0),

(APIMAC_SADDR_EXT_LEN));

/* Check to see if the CCFG IEEE is valid */
if(memcmp(ApiMac_extAddr, dummyExtAddr, APIMAC_SADDR_EXT_LEN) == 0)
{

/* No, it isn't valid. Get the Primary IEEE Address */
memcpy(ApiMac_extAddr, (uint8_t *)(FCFG1_BASE + EXTADDR_OFFSET),

(APIMAC_SADDR_EXT_LEN));
}

#endif

#ifdef NV_RESTORE
/* Setup the NV driver */
NVOCTP_loadApiPtrs(&Main_user1Cfg.nvFps);

if(Main_user1Cfg.nvFps.initNV)
{

Main_user1Cfg.nvFps.initNV(NULL);
}

#endif

/* Start tasks of external images */
ICall_createRemoteTasks();

/* Initialize the application */
Sensor_init();

/* Kick off application - Forever loop */
while(1)
{

Sensor_process();
}

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com General Application Architecture

77SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Application Overview

For example, in the sensor example application file main.c function taskfxn(), the initialization function
Sensor_init() sets several software configuration settings as well as parameters. Some examples are:
• Initializing structures for sensor data
• Initializing TI 15.4-Stack
• Setting up the security and logical link controller
• Registering MAC callbacks

5.4.2 Event Processing in the Task Function
In the initialization function in the previous code snippet, the task function enters an infinite loop so to
continuously process as an independent task and does not run to completion, seen in Figure 5-4.

Figure 5-4. Sensor Example Application Task Flow Chart

Figure 5-4 shows various reasons for posting to the semaphore, causing the task to become active.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

General Application Architecture www.ti.com

78 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Application Overview

5.4.2.1 Events Signaled Through the Internal Event Variable
The Application task uses an event variable bit mask to identify what action caused the process to wake
up, and takes appropriate action. Each bit of the event variable corresponds to a defined event such as:
/*! Event ID - Start the device in the network */
#define SENSOR_START_EVT 0x0001
/*! Event ID - Reading Timeout Event */
#define SENSOR_READING_TIMEOUT_EVT 0x0002

Whichever function sets this bit in the event variable must also ensure to post to the semaphore, to wake
up the application for processing. An example of this is the clock handler which handles clock timeouts.
/* Is it time to send the next sensor data message? */

if(Sensor_events &SENSOR_READING_TIMEOUT_EVT)
{

/* Setup for the next message */
Ssf_setReadingClock(configSettings.reportingInterval);

/* Read sensors */
readSensors();

/* Process Sensor Reading Message Event */
processSensorMsgEvt();

/* Clear the event */
Sensor_events &= ~SENSOR_READING_TIMEOUT_EVT;

}

When adding an event, it must be unique for the given task and be a power of 2 (so that only 1 bit is set).
Because the event variable is initialized as uint16_t, this setup allows for a maximum of 16 internal events.

5.4.3 Callbacks
The application code also likely includes various callbacks from the protocol stack layer and RTOS
modules. To ensure thread safety, processing should be minimized in the actual callback, and the bulk of
the processing should be done in the application context. The following code snippet directs the callbacks
through ApiMac_processIncoming() to the correct MAC API using the ICALL after all the application
events are processed.
void Sensor_process(void)
{
..
..

/* Start the collector device in the network */
if(Sensor_events & SENSOR_START_EVT)
{
}
/* Is it time to send the next sensor data message? */
if(Sensor_events &SENSOR_READING_TIMEOUT_EVT)
{
}

/* Process LLC Events */
Jdllc_process();

/* Allow the Specific functions to process */
Ssf_processEvents();
/* Don't process ApiMac messages until all of the sensor events are processed.

*/
if(Sensor_events == 0)
{

/* Wait for response message or events */
ApiMac_processIncoming();

}
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com General Application Architecture

79SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Application Overview

The previous code snippet directs the callbacks to the correct MAC API using ICALL. Two functions are
defined per callback, one at the application level, the other in the MAC API. For example, consider the
handling of a scan confirm in the following code snippet.
case MAC_MLME_SCAN_CNF:

if(pMacCallbacks->pScanCnfCb)
{

processScanCnf(&(pMsg->scanCnf));
}
else
{

/* If there's no callback, make sure the scanResults are freed */
if(scanResults != NULL)
{

ICall_free(scanResults);
scanResults = NULL;

}
}

break;

The MAC API callback is overwritten by the following application callback.
pMacCbs->pScanCnfCb = scanCnfCb;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

General Application Architecture www.ti.com

80 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Application Overview

At the application level:
/*!

* @brief Process Scan Confirm callback.
*
* @param pData - pointer to Scan Confirm
*/

static void scanCnfCb(ApiMac_mlmeScanCnf_t *pData)
{

if(pData->status == ApiMac_status_success)
{

if(pData->scanType == ApiMac_scantype_active)
{

/* set event to send Association Request */
Jdllc_events |= JDLLC_ASSOCIATE_REQ_EVT;

}
else if(pData->scanType == ApiMac_scantype_passive)
{

/* send sync request for beacon enabled device */
switchState(Jdllc_deviceStates_syncReq);

}
else if(pData->scanType == ApiMac_scantype_orphan)
{

/* coordinator realignment received, set event to process it */
Jdllc_events |= JDLLC_COORD_REALIGN;

}
}

…..

if(macCallbacksCopy.pScanCnfCb != NULL)
{

macCallbacksCopy.pScanCnfCb(pData);
}

}

The following code is at the MAC API level.
/*!

* @brief Process the incoming Scan Confirm callback.
*
* @param pCnf - pointer MAC Scan Confirm info
*/

static void processScanCnf(macMlmeScanCnf_t *pCnf)
{

/* Confirmation structure */
ApiMac_mlmeScanCnf_t cnf;

/* Initialize the structure */
memset(&cnf, 0, sizeof(ApiMac_mlmeScanCnf_t));

/* copy the message to the confirmation structure */
cnf.status = (ApiMac_status_t)pCnf->hdr.status;

cnf.scanType = (ApiMac_scantype_t)pCnf->scanType;
cnf.channelPage = pCnf->channelPage;
cnf.phyId = pCnf->phyID;
memcpy(cnf.unscannedChannels, pCnf->unscannedChannels,
APIMAC_154G_CHANNEL_BITMAP_SIZ);
cnf.resultListSize = pCnf->resultListSize;

if(cnf.resultListSize)
{

if(cnf.scanType == ApiMac_scantype_energyDetect)
{

cnf.result.pEnergyDetect = (uint8_t *)ICall_malloc(
cnf.resultListSize * sizeof(uint8_t));

if(cnf.result.pEnergyDetect)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com General Application Architecture

81SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Application Overview

{
memcpy(cnf.result.pEnergyDetect, pCnf->result.pEnergyDetect,

cnf.resultListSize);
}
else
{

cnf.status = ApiMac_status_noResources;
cnf.resultListSize = 0;

}
}
else
{

cnf.result.pPanDescriptor = (ApiMac_panDesc_t *)ICall_malloc(
cnf.resultListSize * sizeof(ApiMac_panDesc_t));

if(cnf.result.pPanDescriptor)
{

uint8_t x;
ApiMac_panDesc_t *pDstPanDesc = cnf.result.pPanDescriptor;
macPanDesc_t *pSrcPanDesc = pCnf->result.pPanDescriptor;

for(x = 0; x < cnf.resultListSize;
x++, pDstPanDesc++, pSrcPanDesc++)

{
copyMacPanDescToApiMacPanDesc(pDstPanDesc, pSrcPanDesc);

}
}
else
{

cnf.status = ApiMac_status_noResources;
cnf.resultListSize = 0;

}
}

}

/* We processed the scan confirm, so free the results */
if(scanResults != NULL)
{

ICall_free(scanResults);
scanResults = NULL;

}

/*
* Initiate the callback, no need to check pMacCallbacks or the function
* pointer for non-null, the calling function will check the function
* pointer
*/

pMacCallbacks->pScanCnfCb(&cnf);

if(cnf.resultListSize)
{

if(cnf.scanType == ApiMac_scantype_energyDetect)
{

ICall_free(cnf.result.pEnergyDetect);
}
else
{

ICall_free(cnf.result.pPanDescriptor);
}

}
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

82 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Example Applications

Chapter 6
SWRU489A–September 2016–Revised December 2016

Example Applications

This section provides an overview of the TI 15.4-Stack out-of-box example applications and instructions on
how to run them.

The TI 15.4-Stack-based star network consists of two types of logical devices: the PAN-Coordinator, and
network devices (sleepy or nonsleepy). This separation of the device types derives from the IEEE
802.15.4 specification. The TI 15.4-Stack can be configured in either of the two roles by the application.
The PAN-Coordinator is the device that starts the network, is the central node in the star network, and
allows other devices to join the network. The network devices join the network and always communicate
with the PAN-Coordinator.

The collector example application demonstrates how to implement a PAN-Coordinator device, while the
sensor example application demonstrates how to implement the network devices.

The example applications provided in the TI 15.4-Stack are developed for the CC13x0 platform. In
addition, the Linux example applications for the external host (AM335x) + MAC coprocessor configuration
is included in the TI 15.4-MAC Linux SDK installer. All sample applications described in this section are
intended to run on the CC13x0 LaunchPad platform. The Linux example application is described in the TI
15.4-MAC Linux Developers' Guide included in the TI 15.4-MAC Linux SDK installer.

The following hardware is required to run the TI 15.4-Stack OOB example applications:
• Two CC13x0 LaunchPad development kits (http://www.ti.com/tool/launchxl-cc1310)
• Optional – Two LCD BoosterPack™ modules (http://www.ti.com/tool/430boost-sharp96)

The OOB example applications are configured to operate in the nonbeacon configuration with security
enabled. See Section 6.4 to understand the various parameters that application developers can configure
to use the various configuration settings of the example applications.

NOTE: In the following sections, the project names for CC1310 and CC1350 platforms are referred
to as CC13x0. Replace x with either 1 or 5 depending on the wireless MCU being used.

Topic ... Page

6.1 Collector Example Application... 83
6.2 Sensor .. 87
6.3 FH Conformance Certification Application Example .. 89
6.4 Configuration Parameters ... 90
6.5 Coprocessor.. 93
6.6 Linux Example Applications .. 93

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A
http://www.ti.com/tool/launchxl-cc1310
http://www.ti.com/tool/430boost-sharp96

www.ti.com Collector Example Application

83SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Example Applications

6.1 Collector Example Application
This example project implements a collector device: the PAN-Coordinator for the network. This device
creates the TI 15.4-Stack network, allows sensor devices to join the network, collects sensor information
sent by devices running the sensor example application, and tracks if the devices are on the network or
not by periodically sending tracking request messages.

6.1.1 Running the Application
Perform the following steps to run the OOB collector example application.
1. Import the collector_cc13x0lp project as described in Section 2.5.2.3.
2. After importing, configure the following settings in the config.h file. To configure the settings on the

collector application project: Select the collector_cc13x0lp project in the CCS Project Explorer window.
Find the config.h file, as shown in Figure 6-1.

Figure 6-1. Collector Example Application Folder Project Explorer View

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Collector Example Application www.ti.com

84 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Example Applications

_
(a) Set #define CONFIG_PAN_ID to the desired value.
(b) Set the Phy ID according to region of interest:

• For a US or 915-MHz band of operation, use the OOB CONFIG_PHY_ID settings as:
/*! Setting for Phy ID */
#define CONFIG_PHY_ID (APIMAC_STD_US_915_PHY_1)

• For ETSI PHY for Europe (or 868-MHz band operation), configure the CONFIG_PHY_ID
parameter:

/*! Setting for Phy ID */
#define CONFIG_PHY_ID (APIMAC_STD_US_915_PHY_3)

• Set the preferred channel of operation in the CONFIG_CHANNEL_MASK parameter:
/*!

Channel mask used when CONFIG_FH_ENABLE is false
Each bit indicates if the corresponding channel is to be
scanned First byte represents channel 0 to 7 and the last byte represents
channel 128 to 135
*/

#define CONFIG_CHANNEL_MASK { 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00 }

The channel numbers available in each band follow:
• 902 to 928 MHz (50 kbps): 0 to 128, such as when

CONFIG_PHY_ID = APIMAC_STD_US_915_PHY_1
• 863 to 870 MHz (50 kbps): 0 to 33, such as when

CONFIG_PHY_ID = APIMAC_STD_ETSI_863_PHY_3
In addition to the preceding configuration settings, note that when the devices join the network, the
collector application configures the joining devices on how often to report the sensor data. To change
or configure the interval at which the joining sensor devices report the sensor data, set the parameter
CONFIG_REPORTING_INTERVAL to the desired value in milliseconds in the collector.c file. By
default, the sensor reporting interval is set to 30 seconds, as shown by the following code snippet from
the collector.c file:
/* Default configuration reporting interval, in milliseconds */
#define CONFIG_REPORTING_INTERVAL 30000

3. In the CCS Project Explorer, select the collector_cc13x0lp project.
4. Right-click on the collector_cc13x0lp project, and select the Build option. This builds the collector

application project.
5. Download the project onto the CC13x0 LaunchPad by selecting Debug from the Run tab (see Figure 6-

2).

Figure 6-2. Debug Option

6. Terminate the debug session when the download is complete.

Figure 6-3. Select Terminate Option

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Collector Example Application

85SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Example Applications

7. If the AUTO_START compile flag is enabled, press BTN-1 to start the collector. The red LED on the
LaunchPad turns on, and the display on the LCD should appear as in Figure 6-4.

Figure 6-4. LCD Display (1 of 2)

Figure 6-5. Hyperterminal When Collector is Started

NOTE: If you want to use LCD BoosterPack, remove USE_UART_PRINTF in the predefined
symbols.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Collector Example Application www.ti.com

86 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Example Applications

8. Press the BTN-2 button on the collector LaunchPad to allow new devices to join the network. Pressing
the BTN-2 a second time closes the network, and new devices are not be able to join the network.
Press button 2 a third time to allow new devices to join the network. When the network is open to new
devices, the red LED blinks; when it does not blink, the network is closed to new devices. After the
sensor successfully joins the network, the LCD on the collector LaunchPad is as shown in Figure 6-6.

Figure 6-6. LCD Display (2 of 2)

Figure 6-7. Hyperterminal When Sensor Joins Collector

NOTE: For instructions on programming and running the sensor application, see Section 6.2.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Sensor

87SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Example Applications

6.2 Sensor
This sample project implements a sensor, the end device which reads sensor information and sends it to
the coordinator at a configured interval.

6.2.1 Running the Application
Perform these steps to run the out-of-box Sensor Example Application.
1. Import the sensor_cc13x0lp project, as described in Section 2.5.2.3.
2. After importing, configure the following settings in the config.h file. To configure the settings on the

sensor application project:
(a) Select the sensor_cc13x0lp project in the CCS Project Explorer window.
(b) Find the config.h file, as shown in Figure 6-8.

Figure 6-8. Config.h File

(c) Set #define CONFIG_PAN_ID to the desired value to match the collector.
(d) Set the Phy ID according to region of interest:

• For a US or 915-MHz band of operation, use the OOB CONFIG_PHY_ID settings:
/*! Setting for Phy ID */
#define CONFIG_PHY_ID (APIMAC_STD_US_915_PHY_1)

• For ETSI PHY for Europe (or 868-MHz band operation), configure the CONFIG_PHY_ID
parameter:

/*! Setting for Phy ID */
#define CONFIG_PHY_ID (APIMAC_STD_US_915_PHY_3)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Sensor www.ti.com

88 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Example Applications

(e) Set the preferred channel of operation (matching the collector) in CONFIG_CHANNEL_MASK:
/*!

Channel mask used when CONFIG_FH_ENABLE is false
Each bit indicates if the corresponding channel is to be
scanned First byte represents channel 0 to 7 and the last byte represents
channel 128 to 135
*/

#define CONFIG_CHANNEL_MASK { 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00 }

The channel numbers available in each band follow:
• 902 to 928 MHz (50 kbps): 0 to 128, such as when

CONFIG_PHY_ID = APIMAC_STD_US_915_PHY_1
• 863 to 870 MHz (50 kbps): 0 to 33, such as when

CONFIG_PHY_ID = APIMAC_STD_ETSI_863_PHY_3
To configure other parameters, see Section 11.3.

3. Build the stack project, then connect a LaunchPad to the PC, and call it sensor-launchpad.
4. Download the stack project onto the sensor-launchpad, and terminate the debug session when the

download is finished.
5. Build the sensor application project and download it onto the CC13x0 LaunchPad using the method

previously used to download the stack and terminate the debug session once the download is
complete.

6. Terminate the debug session when the download is complete. The initial state of the LCD before the
sensor joins a network is as shown in Figure 6-9.

Figure 6-9. LCD Sensor Display (1 of 2)

Figure 6-10. Hyperterminal When Sensor is Powered Up

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com FH Conformance Certification Application Example

89SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Example Applications

After the sensor successfully joins the network, the LCD on sensor LaunchPad is as shown in
Figure 6-11.

Figure 6-11. LCD Sensor Display (2 of 2)

Figure 6-12. Hyperterminal When Sensor Joins The Network

NOTE: After the sensor node has successfully joined the network, it receives a configuration
request message from the collector application. The node then configures the time interval
on how often to report the sensor data to the collector application, and how often to poll for
buffered messages in case of sleepy devices. After receiving the configuration request
message, the green LED toggles whenever the device sends the message.

6.3 FH Conformance Certification Application Example
The FH conformance certification example application is provided to enable users to perform an FCC or
ETSI compliance tests related to channel occupancy. FCC regulations states that a channel hopping
device can transmit at a high power up to 30 dbm if using more than 50 channels for hopping and
ensuring that the average channel occupancy time over a 20 second period is less than 400 ms per
channel [FCC]. To verify this behavior, test labs perform a channel occupancy test [FCCTest]. The actual
rate at which a node shall occupy a channel depends on the application traffic. To account for a generic
application profile, a back-to-back data transmission mode can be used for the compliance test.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Configuration Parameters www.ti.com

90 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Example Applications

To enable back-to-back transmissions from a device to the collector, the following configurations must be
set:
• CERTIFICATION_TEST_MODE = true
• CONFIG_FH_ENABLE = true

The rest of the configurations can be set to default. In this mode, the device joins the collector and
transmits back to back frames to the collector. The collector does not generate any frames but simply
acknowledges the transmissions from the sensor. The frames can be capture using a spectrum analyzer
to perform the channel occupancy test. The mode can also be used for ETSI testing. Note that the
example application is only provided for a general guidance and for ease in performing regulation tests.
Any other alternate application profiles to better reflect the application needs can also be used for
compliance tests.

[FCC] FCC Part 247 - 47 CFR 15.247 - Operation within the bands 902 to 928 MHz, 2400 to 2483.5 MHz,
and 5725 to 5850 MHz

[FCCTest] C63.10-2013 - American National Standard of Procedures for Compliance Testing

6.4 Configuration Parameters
Table 6-1 lists the various configuration parameters available for the collector and sensor applications.
Features.h allows the user to compile only the features needed for the mode of operation needed, which
facilitates memory savings. Out of the box FEATURE_ALL_MODES is defined which enables all modes of
operation and FEATURE_MAC_SECURITY is define which enable security.

The user can only define one of the features among the following options.
• FEATURE_FREQ_HOP_MODE – frequency hopping mode of operation
• FEATURE_BEACON_MODE – beacon mode of operation
• FEATURE_NON_BEACON_MODE – nonbeacon mode of operation
• FEATURE_MAC_SECURITY – enable security

Table 6-1. Configuration Parameters

Config Parameter Description
Common Configuration Parameters

CONFIG_SECURE Turn security ON or OFF
This value should match for both collector and sensor.

CONFIG_PAN_ID

Used to restrict the network to a certain PAN ID. If left as 0xFFFF,
the collector starts with PAN ID 0x0001.
If this parameter is set to a certain value for the collector, the value
should be set to either the same value or 0xFFF for the sensor
application, so that the sensor joins the intended parent.

CONFIG_FH_ENABLE Used to turn frequency-hopping operation ON or OFF

CONFIG_MAX_BEACONS_RECD Maximum number of received beacons to filter after the scan
request is sent out

CONFIG_LINKQUALITY The device responds to enhanced-beacon requests if
mpduLinkQuality is equal to or higher than this value.

CONFIG_PERCENTFILTER The device randomly determines if it is to respond to enhanced-
beacon requests based on meeting this probability (0 to 100%).

CONFIG_SCAN_DURATION Scan duration for scan request
CONFIG_MAX_DEVICES Maximum number of children for coordinator

CONFIG_MAC_BEACON_ORDER

Beacon order according to mode of operation:
For nonbeacon and frequency-hopping modes, set this value to 15
for both collector and sensor.
For beacon mode, this value can be from 1 to 14, and must match
for both collector and sensor.

CONFIG_MAC_SUPERFRAME_ORDER

Superframe order, according to mode of operation:
For nonbeacon and frequency-hopping modes, set this value to 15
for both collector and sensor.
For beacon mode, this value can be from 1 to 14, and must match
for both collector and sensor.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Configuration Parameters

91SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Example Applications

Table 6-1. Configuration Parameters (continued)
Config Parameter Description
CONFIG_CHANNEL_PAGE The channel page on which to perform the scan

CONFIG_PHY_ID PHY ID corresponding to the PHY descriptor to use based on region
of operation

KEY_TABLE_DEFAULT_KEY Default security key

CONFIG_CHANNEL_MASK

For the collector application:
Each bit indicates if the corresponding channel is to be scanned.
The first byte represents channels 0 to 7, and the last byte
represents channels 128 to 135.
In FH mode: represents the list of channels excluded from hopping.
It is a bit string with LSB representing Ch0; for example, 0x01 0x10
represents Ch0 and Ch12 are excluded. Currently, the same mask is
used for unicast and broadcast-hopping sequences.
For the sensor application:
For nonfrequency-hopping configuration:
Channel mask – each bit indicates if the corresponding channel is to
be scanned. The first byte represents channels 0 to 7, and the last
byte represents channels 128 to 135.
In FH mode:
If CONFIG_RX_ON_IDLE = TRUE: represents the list of channels
excluded from hopping. It is a bit string with LSB representing Ch0;
for example, 0x01 0x10 represents Ch0 and Ch12 are excluded. The
same mask is used for both unicast and broadcast-hopping
sequences.
If CONFIG_RX_ON_IDLE = FALSE: represents the list of channels
to be used for hopping. It is a bit string with LSB representing Ch0;
for example, 0x01 0x10 represents Ch0 and Ch12 are used for
hopping. In this mode, the node hops in increasing order of the
chosen channel.

FH_ASYNC_CHANNEL_MASK

List of channels to target the async frames.
It is represented as a bit string with LSB representing Ch0; for
example, 0x01 0x10 represents Ch0 and Ch12 are included. It must
cover all channels that could be used by a target device in its
hopping sequence. Channels marked beyond number of channels
supported by PHY Config are excluded by stack. To avoid
interference on a channel, remove it from async mask and add it to
the exclude channels (CONFIG_CHANNEL_MASK).

CONFIG_DWELL_TIME Duration of the unicast and broadcast slot of the node (in ms)
CONFIG_FH_NETNAME Default value for FH PIB attribute netname

CONFIG_TRANSMIT_POWER

Value for transmit power in dBm. Default value is 14, allowed values
are any value between 0 dBm to 14 dBm in 1 dB increments, and -
10 dBm. When the nodes in the network are close to each other,
lowering this value helps reduce saturation.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Configuration Parameters www.ti.com

92 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Example Applications

Table 6-1. Configuration Parameters (continued)
Config Parameter Description

CERTIFICATION_TEST_MODE

If set to true, the device joins the collector and transmits back-to-
back frames to it. The collector does not generate any frames, but
simply acknowledges the transmissions from the sensor. The frames
can be captured using a spectrum analyzer to perform the channel
occupancy test. The mode can also be used for ETSI testing. The
example application is only provided for a general guidance and for
ease in performing regulation tests.

NOTE: The FH conformance certification
example application is provided to
allow users to perform a FCC or
ETSI compliance tests related to
channel occupancy. FCC
regulations state that a channel
hopping device can transmit at a
higher power of up to 30 dbm if it
uses more than 50 channels for
hopping and ensures that the
average channel occupancy time
over a 20 second period is less
than 400 ms per channel [FCC]. To
verify this behavior, test labs
perform a channel occupancy test
[FCC Test]. The actual rate at
which a node occupies a channel
depends on the application traffic.
To account for a generic application
profile, a back-to-back data
transmission mode can be used for
the compliance test.

To enable back-to-back transmissions from a device to the collector,
the following configurations are to be set:

• CERTIFICATION_TEST_MODE = true
• CONFIG_FH_ENABLE = true

In this mode, the device will join the collector and transmit back to
back frames to collector. Collector will not generate any frames but
would simply acknowledge the transmissions from sensor. The
frames can be capture using a spectrum analyzer to perform the
channel occupancy test. The mode can also be used for ETSI
testing. Note that the example application is only provided for a
general guidance and for ease in performing regulation tests. Any
other alternate application profiles to better reflect the application
needs can also be used for compliance tests.
[FCC] FCC Part 247 - 47 CFR 15.247 - Operation within the bands
902 to 928 MHz, 2400 to 2483.5 MHz, and 5725 to 5850 MHz
[FCCTest] C63.10-2013 - American National Standard of
Procedures for Compliance Testing

FH_NUM_NON_SLEEPY_NEIGHBOURS

The number of non-sleepy end devices to be supported. This value
is limited to 50. This setting can be used for memory savings so that
the stack allocates memory proportional to the number of end
devices requested.

FH_NUM_SLEEPY_NEIGHBOURS

The number of sleepy end devices to be supported. This value is
limited to 50. This setting can be used for memory savings so that
the stack allocates memory proportional to the number of end
devices requested.

Collector-Specific Configuration Parameters
CONFIG_COORD_SHORT_ADDR Short address for coordinator

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Coprocessor

93SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Example Applications

Table 6-1. Configuration Parameters (continued)
Config Parameter Description

CONFIG_TRICKLE_MIN_CLK_DURATION
The minimum trickle timer window for PAN advertisement and PAN
configuration frame transmissions. Default is 0.5 minute. TI
recommends setting this to half of the PAS/PCS MIN timer.

CONFIG_TRICKLE_MAX_CLK_DURATION The maximum trickle timer window for PAN advertisement and PAN
configuration frame transmissions. Default is 16 minutes.

CONFIG_FH_PAN_SIZE Default value for PAN size PIB

CONFIG_DOUBLE_TRICKLE_TIMER
Enables doubling of PA or PC trickle time: used when the network
has non-sleepy nodes and there is a requirement to use PA or PC to
convey updated PAN information.

Sensor-Specific Configuration Parameters

CONFIG_MAX_DATA_FAILURES Maximum number of data failures before considering sync loss (this
parameter is available only for the sensor)

CONFIG_PAN_ADVERT_SOLICIT_CLK_DURATION PA solicit trickle timer duration in ms (this parameter is available only
for the sensor)

CONFIG_PAN_CONFIG_SOLICIT_CLK_DURATION PAN configuration solicit trickle timer duration in ms (this parameter
is available only for the sensor)

CONFIG_FH_START_POLL_DATA_RAND_WINDOW FH poll/sensor message start time randomization window (this
parameter is available only for the sensor)

CONFIG_POLLING_INTERVAL Polling interval in ms (this parameter is available only for the sensor)

CONFIG_FH_MAX_ASSOCIATION_ATTEMPTS
Maximum number of attempts for association in FH mode after
reception of a PAN configuration frame (this parameter is available
only for the sensor)

CONFIG_SCAN_BACKOFF_INTERVAL Scan back-off interval in ms (this parameter is available only for the
sensor)

CONFIG_RX_ON_IDLE
Used to indicate if a device is sleepy or nonsleepy: FALSE for
sleepy, and TRUE for nonsleepy (this parameter is available only for
the sensor).

CONFIG_ORPHAN_BACKOFF_INTERVAL Delay between orphan notifications

6.5 Coprocessor
The coprocessor project is used to build a MAC coprocessor device that works with a host processor in a
2-chip scenario. The coprocessor provides an interface to the TI 15.4-MAC protocol stack, full-function
MAC capability over serial interface to the application running on the host. This device, programmed with
the coprocessor application and the TI 15.4-MAC protocol stack, allows the addition of TI 15.4-MAC
wireless functionality to systems that are not suited to single-chip solutions. A prebuilt hex file for the
coprocessor is provided in the SDK. If changes are needed, such as an addition of a custom API
command, the coprocessor project can be used to generate a new hex file.

6.6 Linux Example Applications
A brief description of the Linux example applications follows. For more detail, refer to the documentation
included with the TI 15.4-MAC Linux SDK installer at http://www.ti.com/tool/SIMPLELINK-CC13X0-SDK.

6.6.1 Linux Collector and Gateway Application
These two example applications are provided inside the TI 15.4-MAC Linux SDK installer, a component of
the TI 15.4-MAC installation. The Linux collector example application interfaces with the CC13x0 running
the coprocessor and stack image through a UART. The Linux collector example application provides the
same functionality as the embedded collector application, while also providing a socket server interface to
the Linux gateway application. The Linux gateway application implemented within the Node.js framework
connects as a client to the socket server created by the Linux collector example application, and
establishes a local web server to which the user can connect through a web browser (in the local
network), and monitor and control the network devices. The collector and gateway applications can be
great starting points for creating IOT applications. For more details, refer to the Linux Developers Guide
included with the TI 15.4-MAC Linux SDK installer.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A
http://www.ti.com/tool/SIMPLELINK-CC13X0-SDK

Linux Example Applications www.ti.com

94 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Example Applications

6.6.2 Linux Serial Bootloader Application
This example application is included inside the TI 15.4-MAC Linux SDK installer. This application provides
the capability to upgrade the firmware of the CC13x0 MCU through the CC13x0 ROM bootloader. For
more details, refer to the Linux Developers Guide included with the TI 15.4-MAC Linux SDK installer.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

95SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Packet Sniffer

Chapter 7
SWRU489A–September 2016–Revised December 2016

Packet Sniffer

A packet sniffer can be created using the CC1200 mounted over a TRxEB evaluation board. This feature
enables easier development and debugging for those developing products with the TI 15.4-Stack. This
section provides details on the required software, where to get it, and how to set it up to sniff the over-the-
air (OTA) traffic. Wireshark™ is the recommended packet sniffer.

The CC13x0 SimpleLink SDK installs the essential software tools required to set up the packet sniffer. The
TI 15.4-Stack installs the TiWsPc, which uses TI hardware to capture OTA data before sending the
packets to Wireshark or a PCAP file, and provides .dll files to dissect packets that follow the TI 802.15.4ge
protocol to Wireshark. Figure 7-1 is an example of TI 15.4-Stack-based application OTA traffic being
presented as a Wireshark capture.

Figure 7-1. OTA Traffic

Choose a packet to get detailed information on the data in that packet. The installed .dll file lets Wireshark
dissect the information in a TI 802.15.4GE packet for easy debugging.

Topic ... Page

7.1 Setting Up the Sniffer ... 96
7.2 Using Wireshark ... 100
7.3 Troubleshooting ... 101

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Setting Up the Sniffer www.ti.com

96 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Packet Sniffer

7.1 Setting Up the Sniffer

7.1.1 Install the Required Software
1. Install the CC13x0 SimpleLink SDK. This SDK installs:

• TiWsPc at C:/Program Files (x86)/Texas Instruments/TiWsPc-1.12.15
• .DLL files at C:\ti\simplelink_cc13x0_sdk_1_00_00_xx\tools\ti154stack\tiwsds\plugins

2. Install the 2.0.x stable Wireshark release from https://www.wireshark.org/#download. The architecture
version downloaded (64-bit vs 32-bit) effects which plug-in to install.

NOTE: The latest Wireshark version is not compatible, only use v2.0.x

3. Run the Wireshark installer as administrator. If this step is not done and a previous Wireshark version
is installed, the installer can fail with the message:
Error opening the file for writing:
C:\Program Files\Wireshark\uninstall.exe

7.1.2 Hardware Setup

7.1.2.1 Required Hardware
• CC1200EM
• TRxEB

7.1.2.2 Setup
1. Mount the CC1200EM on the TRxEB and connect the board to the PC.
2. Start the SmartRF flash programmer.
3. Select the Program Evaluation Board option.
4. If the Update EB Firmware option is available, update the firmware, as shown in Figure 7-2.

Figure 7-2. Update EB Firmware

TrxEB firmware rev. 0044 is the latest version at the time of this writing, and has been tested with this
sniffer setup.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A
https://www.wireshark.org/#download
http://www.ti.com/tool/cc1200emk-868-930
http://www.ti.com/tool/SMARTRFTRXEBK

www.ti.com Setting Up the Sniffer

97SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Packet Sniffer

7.1.3 Software Setup

7.1.3.1 Texas Instruments Wireshark Packet Converter Setup
The following are ways to transfer data from Texas Instruments Wireshark Packet Converter (TiWsPc) to
Wireshark:
• Pipe – (recommended): data is sent to Wireshark on the local machine. (Vista/Windows 7 or higher

only)
• Socket – (stand-alone mode): data is sent to the Microsoft Loopback Adapter with Wireshark running

on the local machine.
• Socket – (remote mode): data is sent to Wireshark on another machine or the local machine using the

network adapter.
• File – data is sent to a PCAP file that can be opened in Wireshark.

The following guide demonstrates how to use the pipe solution with Windows 7. More advanced users
might want to try a socket; for more details, consult the TiWsPc README for instructions.
1. Run TiWsPc.
2. When the TiWsPc opens and prompts to select a device family, select TIMAC/TI 802.15.4ge.
3. Select Data → Data Out, check Use Pipe, and click Ok as shown in Figure 7-3.

Figure 7-3. Use Pipe

4. Press the Device Configuration button, select a sniffer device and channel to use, then press Done.
Various prebuilt *.prs files for 915-MHz band and 868-MHz band are provided with the CC13x0
SimpleLink SDK. The files are at
C:\ti\simplelink_cc13x0_sdk_1_00_00_xx\tools\ti154stack\tiwspc\PRS.
There are two folders at this location:
• phy1 – for the US 915-MHz band, 50-kbps data rate, 2FSK modulation scheme.
• phy3 – for the ETSI 868-MHz band, 50-kbps data rate, 2FSK modulation scheme.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Setting Up the Sniffer www.ti.com

98 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Packet Sniffer

5. Select the desired .phy and .prs file for the required channel number.
6. Press Start All; incoming data goes green, and outgoing turns blue. The TiWsPc icon is blue.
7. Create a new Wireshark desktop shortcut, modifying the target by adding -i\\.\pipe\tiwspc_data -k to the

end, as shown in Figure 7-4.
Example target entry: "C:\<path>\wireshark.exe" -i\\.pipe\tiwspc_data -k

Figure 7-4. Shortcut Properties

8. Run Wireshark from the new shortcut, which opens the other end of the pipe.

Wireshark now shows captured data (packets sent to UDP address 17757 indicate TI 802.15.4GE
packets, now set up the dissector to enable detailed dissection of this protocol), and the TiWsPc turns
green.

7.1.3.2 Wireshark Dissector Setup
1. Check which architecture version (32-bit or 64-bit) of Wireshark was downloaded. Follow Step 2

according to that choice before going to Step 3.
2. For 32-bit: Copy ti802154ge-x86-2x.dll

From: c:/Program Files (x86)/Texas Instruments/TI 802.15.4ge Wireshark Plugin-
<Version>/Plugins/ti802154ge-x86-2x.dll
To: c:/Program Files (x86)/Wireshark/plugins/2.0.x (x can be any number)
For 64-bit: Copy ti802154ge-x64-2x.dll
From: c:/Program Files (x86)/Texas Instruments/TI 802.15.4ge Wireshark Plugin-
<Version>/Plugins/ti802154ge-x64-2x.dll
To: c:/Program Files/Wireshark/plugins/2.0.x (x can be any number)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Setting Up the Sniffer

99SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Packet Sniffer

3. Open Wireshark, and check that the plug-in is installed by going to Help->About Wireshark and
clicking the Plugins tab. The ti802154ge-x(32/64)-2x.dll file is listed, as shown in Figure 7-5.

If so, the plugin is installed and receives packets from TiWsPc. If not, see the following for
troubleshooting.

Figure 7-5. Wireshark Plugin

4. If using TiWsPc, navigate to Edit → Preferences and select Protocols → TI 802.15.4GE under the left-
hand menu. The first two checkboxes must be checked, as shown in Figure 7-6.

Figure 7-6. Wireshark Preferences

Additionally, to use secured packets, add a decryption key and static address pairings (for pairing short
address and PAN-IDs with long addresses for decryption).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Using Wireshark www.ti.com

100 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Packet Sniffer

7.2 Using Wireshark
1. To filter a certain packet attribute, right-click on the selected packet attribute.
2. Choose Apply as Filter, and then Selected, as shown in Figure 7-7.

Figure 7-7. Apply Filter

3. In the filter textbox, select a filter of the form ti802.15.4ge.<attribute>==0x<XXXX>. Figure 7-8 shows
how to filter the capture to display only TI 802.15.4GE data packets.

Figure 7-8. Filter Selection

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Troubleshooting

101SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Packet Sniffer

4. Get the attribute name of any field in a packet, as well as a description based on the specification, by
looking to the bottom of the screen, underneath the raw packet data viewer, as shown in Figure 7-9.

Figure 7-9. Get Attribute Name

7.3 Troubleshooting

7.3.1 TiWsPc Troubleshooting
• If a Communication error occurs when a device is started, try power-cycling the sniffer hardware to

correct the issue.
• If a Data Buffer Overflow occurs, the TiWsPc program cannot get the data fast enough from the

device. Try any or all of the following: reduce CPU load, network traffic, and disk load from other
programs, or reduce the number of capturing devices.

• If Wireshark reports corrupted memory or throws an assertion and exits, this is a Wireshark issue;
TiWsPc can deliver more messages in a short period of time than Wireshark can handle. Try reducing
the number of sniffer device options in use, to reduce the flow to Wireshark using the file data out.
Alternatively, configure the TiWsPc packet limit option for the selected data output method. When this
limit is reached, TiWsPc automatically stops the current data capture.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Troubleshooting www.ti.com

102 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Packet Sniffer

7.3.2 Wireshark Dissector Troubleshooting
• If after installing Wireshark, the error shown in Figure 7-10 appears, a 64-bit plugin is installed, but you

are using 32-bit Wireshark. To debug, repeat Steps 1 and 2 from Section 7.1.3.2.

Figure 7-10. Wireshark Plugin Error

• If after starting Wireshark, the error shown in Figure 7-11 appears, delete one of the two TI 802.15.4ge
plug-ins in the Wireshark plug-ins folder.

Figure 7-11. Wireshark Debug Error

• When opening Wireshark, you may get an error that opens a command prompt from the Wireshark
Debug Console and reads Err Field (abbrev='Frame Length') does not have a name, and Press any
key to exit. Alternatively, you may get a message that reads The procedure entry point ep_alloc could
not be located in the dynamic link library libwireshark.dll. These start-up errors indicate that the
installed plug-in is for an incompatible version of Wireshark. Check this by going to Help → About
Wireshark, and check that the version number is 2.0.x. If the version number is not 2.0.x., download
and install a 2.0.x release, because the plug-in is not backwards-compatible.

• For any other questions or problems, consult the README at
C:\Program Files (x86)\Texas Instruments\TI 802.15.4ge Wireshark Plugin-<version>\README.txt.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

103SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Peripherals and Drivers

Chapter 8
SWRU489A–September 2016–Revised December 2016

Peripherals and Drivers

The TI-RTOS provides a suite of CC13x0 and CC26xx peripheral drivers that can be added to an
application. The drivers provide a mechanism for the application to interface to the CC13x0 and CC26xx
onboard peripherals, and communicate with external devices.

8.1 Adding a Driver
The TI-RTOS drivers (DRV_PACKAGE) and corresponding DriverLib (CC13XXWARE) are provided in
source and precompiled library form. By default, the TI 15.4-Stack project configuration links to the prebuilt
library in the Project Properties → Resource → Linked Resources, Path Variables tab:
• CC13XXWARE_LOC:

${COM_TI_SIMPLELINK_CC13XX_CC26XX_SDK_INSTALL_DIR}\source\ti\devices\cc13x0
• DRIVER_LOC: ${COM_TI_SIMPLELINK_CC13XX_CC26XX_SDK_INSTALL_DIR}\source

To use a precompiled driver, include the respective driver C include file in the application files where the
driver APIs are referenced.

For example, to add the PIN driver for reading or controlling an output I/O pin:
#include <ti/drivers/pin/PIN.h>

To override a specific prebuilt version of a driver, include the respective C source and include files to the
project within the IDE. The IDE uses the source versions included in the project in lieu of the respective
prebuilt library version. This override option is useful in cases where the prebuilt drivers are used for other
drivers, but source-level debugging is available within the IDE for specific drivers.

For a description of available features and driver APIs, see the TI-RTOS Driver documentation.

8.2 Board File
The board file is used to set fixed driver configuration parameters for a specific board configuration, such
as configuring the GPIO table for the PIN driver or defining which pins are allocated to the I2C, SPI, or
UART driver.

The board files for the LaunchPad are in the following path:

${COM_TI_SIMPLELINK_CC13XX_CC26XX_SDK_INSTALL_DIR}\source\ti\boards

Available CC13x0 options include CC1310_LAUNCHXL and CC1350_LAUNCHXL. The TI 15.4-Stack
uses a tailored board file from TI-RTOS release. The board type source and include file is in the Project
Explorer → sensor_cc13x0lp → launchpad folder, as shown in Figure 8-1.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Board File www.ti.com

104 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Peripherals and Drivers

In CCS, open the launchpad folder. Edit the file as needed.

Figure 8-1. LaunchPad Folder

At a minimum, the board file contains a PIN_Config structure that places all configured and unused pins in
a default, safe state and defines the state when the pin is used:
/*

* ========================= IO driver initialization =========================
* From main, PIN_init(BoardGpioInitTable) should be called to setup safe
* settings for this board.
* When a pin is allocated and then de-allocated, it will revert to the state
* configured in this table.

*/
/* Place into subsections to allow the TI linker to remove items properly */
#if defined(__TI_COMPILER_VERSION__)
#pragma DATA_SECTION(BoardGpioInitTable, ".const:BoardGpioInitTable")
#pragma DATA_SECTION(PINCC26XX_hwAttrs, ".const:PINCC26XX_hwAttrs")
#endif

const PIN_Config BoardGpioInitTable[] = {

Board_RLED | PIN_GPIO_OUTPUT_EN | PIN_GPIO_LOW | PIN_PUSHPULL | PIN_DRVSTR_MAX, /*
LED initially off */

Board_GLED | PIN_GPIO_OUTPUT_EN | PIN_GPIO_LOW | PIN_PUSHPULL | PIN_DRVSTR_MAX, /*
LED initially off */

Board_BTN1 | PIN_INPUT_EN | PIN_PULLUP | PIN_IRQ_BOTHEDGES | PIN_HYSTERESIS, /*
Button is active low */

Board_BTN2 | PIN_INPUT_EN | PIN_PULLUP | PIN_IRQ_BOTHEDGES | PIN_HYSTERESIS, /*
Button is active low */

Board_SPI_FLASH_CS | PIN_GPIO_OUTPUT_EN | PIN_GPIO_HIGH | PIN_PUSHPULL | PIN_DRVSTR_MIN, /*
External flash chip select */

Board_UART_RX | PIN_INPUT_EN | PIN_PULLDOWN, /*
UART RX via debugger back channel */

Board_UART_TX | PIN_GPIO_OUTPUT_EN | PIN_GPIO_HIGH | PIN_PUSHPULL, /*
UART TX via debugger back channel */

Board_DIO1_RFSW | PIN_GPIO_OUTPUT_EN | PIN_GPIO_HIGH | PIN_PUSHPULL | PIN_DRVSTR_MAX, /*
(compatibility with CC1350LP) */

Board_SPI0_MOSI | PIN_INPUT_EN | PIN_PULLDOWN, /*
SPI master out - slave in */

Board_SPI0_MISO | PIN_INPUT_EN | PIN_PULLDOWN, /*
SPI master in - slave out */

Board_SPI0_CLK | PIN_INPUT_EN | PIN_PULLDOWN, /*
SPI clock */

PIN_TERMINATE
};

This structure is then used to initialize the pins in main(), as seen in Section 5.1 and here:
PIN_init(BoardGpioInitTable);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Available Drivers

105SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Peripherals and Drivers

8.3 Available Drivers
This section describes each available driver, and provides a basic example of adding the driver to the
sensor_cc13x0lp project. For more detailed information on each driver, see the TI-RTOS API Reference.

8.3.1 PIN Driver
The PIN driver allows control of the I/O pins for software-controlled general-purpose I/O (GPIO) or
connections to hardware peripherals. Example projects that use the PIN driver are collector_cc13x0lp or
sensor_cc13x0lp.

As stated in Section 8.2, the pins should first be initialized to a safe state in main(). After this occurs, any
module can use the PIN driver to configure a set of pins for use as desired. The following is an example of
configuring the sensor_cc13x0lp task to use one pin as an interrupt and another as an output to an LED.

IOID_x pin numbers directly map to DIO pin numbers, as referenced in the CC1310 Technical Reference
Manual. The pins used are stated in Table 8-1, as well as their mapping on the LaunchPad board.

Table 8-1. DIO Pin Mapping

Signal Name Pin ID LaunchPad Mapping
Board_LED0 IOID_6 Board_RLED
Board_BUTTON0 IDIO_13 Board_BTN1

The following sensor-specific functions, ssf.c, and code modifications are required:
1. Include PIN driver files:

#include <ti/drivers/pin/PIN.h>

2. Declare the pin configuration table and pin state and handle variables to be used by the
sensor_cc13x0lp task:
static PIN_Config SSF_configTable[] =
{

Board_LED0 | PIN_GPIO_OUTPUT_EN | PIN_GPIO_LOW | PIN_PUSHPULL | PIN_DRVSTR_MAX,
Board_BUTTON0 | PIN_INPUT_EN | PIN_PULLUP | PIN_HYSTERESIS,
PIN_TERMINATE

};

static PIN_State ssfPins;
static PIN_Handle hSsfPins;

3. Declare the ISR to be performed in the hwi context. This sets an event in the application task and
wakes it up, to minimize processing in the hwi context.
static void buttonHwiFxn (PIN_Handle hPin, PIN_Id pinId)
{

// set event in SSF task to process outside of hwi context
events |= SSF_BTN_EVT;

// Wake up the application.
Semaphore_post(sem);

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A
http://www.ti.com/lit/pdf/SWCU117
http://www.ti.com/lit/pdf/SWCU117

Available Drivers www.ti.com

106 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Peripherals and Drivers

4. Define the event and related processing (in Sensor_process()) to handle the event from Step 3.
#define SSF_BTN_EVT 0x0001

if (events & SSF_BTN_EVT)
{

events &= ~SSF_BTN_EVT; //clear event

//toggle LED0
if (LED_value)
{

PIN_setOutputValue(hSsfPins, Board_LED0, LED_value--);
}
else
{

PIN_setOutputValue(hSsfPins, Board_LED0, LED_value++);
}

}

5. In Sensor_init(), open the pins for use and configure the interrupt:
// Open pin structure for use

hSsfPins = PIN_open(&ssfPins, SSF_configTable);
// Register ISR
PIN_registerIntCb(hSsfPins, buttonHwiFxn);
// Configure interrupt
PIN_setConfig(hSsfPins, PIN_BM_IRQ, Board_BUTTON0 | PIN_IRQ_NEGEDGE);
// Enable wakeup
PIN_setConfig(hSsfPins, PINCC26XX_BM_WAKEUP, Board_BUTTON0|PINCC26XX_WAKEUP_NEGEDGE);

6. Compile, download, and run. Pushing the Up button on the LaunchPad toggles the red LED. There is
no debouncing implemented here.

8.3.2 UART
There are many possible ways to configure the UART driver. See the TI-RTOS API Reference for more
information. An example project that uses the UART driver is coprocessor_cc13x0lp. The
coprocessor_cc13x0lp project includes, in addition to a UART driver, additional GPIOs for power
management, a packet parser, and other items that are out of the scope of this documentation. In this
section, an example is provided for using the UART driver with the default settings from
UART_Params_init(): blocking mode, baud rate 115200, and so forth.

This example uses the UART peripheral already defined in the board file, as listed in Table 8-2.

Table 8-2. UART Pin Mapping

Signal Name Pin ID LaunchPad Mapping
Board_UART_RX IOID_2 J1.4 (RXD)
Board_UART_TX IDIO_3 J1.3 (TXD)

1. Include the UART driver:
#include <ti/drivers/UART.h>

2. Declare the UART handle and parameter structures as local variables:
static UART_Handle uartHandle;
static UART_Params params;

3. Initialize the UART driver in NPITLUART_initializeTransport():
UART_Params_init(¶ms);
uartHandle = UART_open(Board_UART, ¶ms);

4. Perform a sample 5-byte UART write where desired:
uint8 txbuf[] = {0,1,2,3,4};

UART_write(uartHandle, txbuf, 5);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

107SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Sensor Controller

Chapter 9
SWRU489A–September 2016–Revised December 2016

Sensor Controller

The Sensor Controller Engine (SCE) is an autonomous processor within the CC13x0. The SCE can
control the peripherals in the sensor controller independently of the main CPU. Thus, the main CPU does
not have to wake up to execute an ADC sample or poll a digital sensor over SPI, and saves both current
and wake-up time that would otherwise be wasted. A PC tool enables the user to configure the sensor
controller and choose what peripherals are controlled and what conditions will wake up the main CPU.

The Sensor Controller Studio (SCS) is a stand-alone IDE used to develop and compile microcode for
execution on the SCE. Refer to the SCS webpage (http://www.ti.com/tool/sensor-controller-studio) for
more details on the SCS, including documentation embedded within the SCS IDE.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A
http://www.ti.com/tool/sensor-controller-studio

108 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Startup Sequence

Chapter 10
SWRU489A–September 2016–Revised December 2016

Startup Sequence

For a complete description of the CC13x0 reset sequence, see the CC1310 Technical Reference Manual.

10.1 Programming Internal Flash With the ROM Bootloader
The CC13x0 internal flash memory can be programmed using the bootloader located in device ROM. Both
UART and SPI protocols are supported. See chapter 8 of the CC1310 Technical Reference Manual for
more details on the programming protocol and requirements.

NOTE: Because the ROM bootloader uses predefined DIO pins for internal flash programming,
allocate these pins in the board layout. The CC1310 Technical Reference Manual has more
details on the pins allocated to the bootloader based on the chip package type.

10.2 Resets
Reset the device using only hard resets. From the software, this reset can be accomplished using:
HAL_SYSTEM_RESET();

In CCS, select Board Reset (automatic) from the reset menu (see Figure 10-1).

Figure 10-1. Board Reset

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A
http://www.ti.com/lit/pdf/SWCU117
http://www.ti.com/lit/pdf/SWCU117
http://www.ti.com/lit/pdf/SWCU117

109SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Development and Debugging

Chapter 11
SWRU489A–September 2016–Revised December 2016

Development and Debugging

11.1 Debug Interfaces
The CC13x0 platform supports the cJTAG (2-wire) and JTAG (4-wire) interfaces. Any debuggers that
support cJTAG, such as the TI XDS100v3, XDS110, and XDS200, will work natively. Others, such as the
IAR I-Jet and Segger J-Link, can only be used in JTAG mode, but their drivers can inject a cJTAG
sequence to enable JTAG mode when connecting.

The hardware resources included on the devices that can be used for debugging follow. Not all debugging
functionality is available in all combinations of debugger and IDE.
• Breakpoint unit (FBP) – Six instruction comparators, two literal comparators
• Data watchpoint unit (DWT) – Four watchpoints on memory access
• Instrumentation trace module (ITM) – 32 × 32-bit stimulus registers
• Trace port interface unit (TPIU) – Serialization and time stamping of DWT and ITM events

The LaunchPad board contains an XDS110 debug probe, which the debugger used by default in the
sample projects.

11.1.1 Connecting to the XDS Debugger
If only one debugger is attached, the IDE automatically uses this debugger. If multiple debuggers are
connected, the individual debugger must be chosen manually. The following steps detail how to select a
debugger in CCS.
1. Open the target configuration file and open the Advanced Setup pane.

2. Choose the top-level debugger entry.

3. Choose select by serial number, and then enter in the serial number.

To find the serial number for XDS100v3 debuggers, open a command prompt and run
C:\ti\ccsv6\ccs_base\common\uscif\xds100serial.exe to get a list of connected debugger serial numbers.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Debug Interfaces www.ti.com

110 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Development and Debugging

11.1.2 Load Debug Symbols
The sensor_cc13x0lp output file can be flash downloaded to the target by clicking RUN → Debug (F11),
as shown in Figure 11-1.

Figure 11-1. Debug Output File

11.2 Breakpoints
CCS reserves one of the instruction comparators, leaving five hardware breakpoints available for
debugging. This section describes setting the breakpoints in CCS.

To toggle a breakpoint, either:
• Double-click the area to the left of the line number.
• Press Ctrl+Shift+B.
• Right-click on the line and select Breakpoint → Hardware Breakpoint.

For example, a breakpoint set on line 247 looks like Figure 11-2.

Figure 11-2. Breakpoint Set Example

To get an overview of the active and inactive breakpoints, click on View → Breakpoints, as shown in
Figure 11-3.

Figure 11-3. View Breakpoints

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Breakpoints

111SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Development and Debugging

To set a conditional break, right-click the breakpoint in the overview, and choose Breakpoint Properties, as
shown in Figure 11-4.

Figure 11-4. Breakpoint Properties

Skip Count and Condition can used when debugging to skip a number of breaks, or only break if a
variable is a certain value.

NOTE: Conditional breaks require a debugger response and, although unlikely, may halt the
processor long enough to break a beacon-enabled network, even if the condition is false or
the skip count has not been reached.

11.2.1 Considerations When Using Breakpoints With Frequency Hopping or a Beacon-
Enabled Network
As the frequency-hopping and IEEE802.15.4g protocols are timing sensitive, any breakpoints are likely to
break the execution long enough that network timing is lost and the link breaks. Therefore, it is necessary
to place breakpoints as close as possible to where the relevant debug information can be read or
offending code can be stepped through. Consider experimenting on breakpoint placements by restarting
debugging and repeating the conditions that lead to hitting the breakpoint.

11.2.2 Considerations on Breakpoints and Compiler Optimization
When the compiler is optimizing code, toggling a breakpoint on a line of C-code may not result in the
expected behavior. Some examples include:
• Code is removed or not compiled in: toggling a breakpoint in the IDE results in a breakpoint on some

other unintended place, not on the selected line. Some IDEs can disable breakpoints on nonexisting
code.

• Code block is part of a common subexpression: toggling a breakpoint works, but code also breaks on
an execution path other than the intended one.

• If-clause is represented by a conditional branch in assembly: a breakpoint inside an if-clause always
breaks on the conditional statement, even if not executed.

Because of this, TI recommends selecting as low an optimization level as possible when debugging. See
Section 11.7 for information on modifying optimization levels.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Watching Variables and Registers www.ti.com

112 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Development and Debugging

11.3 Watching Variables and Registers
CCS provides several ways to view the state of a halted program. Global variables are statically placed
during link-time, and can end up anywhere in the RAM available to the project, or potentially in flash if they
are declared as a constant value. These variables can be accessed at any time through the Watch and
Expression windows. Unless removed due to optimization, global variables are always available in these
views. Local variables, or variables that are valid only inside a limited scope, are placed on the active task
stack. Such variables can be viewed with the Watch or Expression views, and can also be automatically
displayed when breaking or stepping through code.

11.3.1 Variables in CCS
Global variables can be viewed by selecting View → Expressions as shown in Figure 11-5, or by selecting
a variable name in code, right-clicking, and selecting Add Watch Expression.

Figure 11-5. View Expressions

Local variables can be automatically viewed by selecting View → Variables, as shown in Figure 11-6.

Figure 11-6. View Variables

11.3.2 Considerations When Viewing Variables
Local variables are often placed in CPU registers and not on the stack. Local variables also typically have
a very limited lifetime, even within the scope in which they are valid, depending on the optimization
performed. Therefore, CCS may struggle to show a particularly interesting variable. The solution when
debugging is to:
• Move the variable to global scope, so that it is always accessible in RAM.
• Make the variable volatile, so that the compiler does not use a limited scope.
• Alternatively make a shadow copy of the variable that is both global and volatile.

11.4 Memory Watchpoints
As mentioned in Section 11.1, the DWT module contains four memory watchpoints which allow
breakpoints on memory access. The hardware match functionality only examines the address, so if this is
intended for use on a variable, the variable must be global.

NOTE: If using a data watchpoint with a value match, two of the four watchpoints are used.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Memory Watchpoints

113SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Development and Debugging

11.4.1 Watchpoints in CCS
Right-click on a global variable and select Breakpoint → Hardware Watchpoint to add it to the breakpoint
overview, as shown in Figure 11-7.

Figure 11-7. Hardware Watchpoint

Similar to code breakpoints, right-click and edit the Breakpoint Properties to configure the watchpoint, as
shown in Figure 11-8.

Figure 11-8. Breakpoint Properties

This example configuration ensures that if 0x0 is written to the memory location for Sensor_msgStats in
the sensor_cc13x0lp example project, the device halts execution.

11.5 TI-RTOS Object Viewer
CCS includes the RTOS Object Viewer (ROV) plug-in, which provides insight into the current state of TI-
RTOS, including task states, stacks, and so forth. CCS has a similar interface, so the following examples
primarily discuss CCS. To access the ROV in CCS, click the Tools menu, then RTOS Object View. This
section discusses some ROV views useful for debugging and profiling.

11.5.1 Scanning the BIOS for Errors
The BIOS → Scan for errors view (see Figure 11-9) sweeps through the available ROV modules and
reports any errors found. This feature can be a good starting point if anything has gone wrong for
unknown reasons. This scan only shows errors related to TI-RTOS modules, and only errors that it can
detect.

Figure 11-9. Scan for Errors

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

TI-RTOS Object Viewer www.ti.com

114 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Development and Debugging

11.5.2 Viewing the State of Each Task
The Task → Detailed view is useful for viewing the state of each task and its related runtime stack usage.
This example shows the state the first time the user-thread is called. The image shows the sensor
application task, the idle task, and the stack task, represented by its ICall_taskEntry, as shown in
Figure 11-10.

Figure 11-10. Detailed View

The columns are explained here (see Section 3.2 for more information on the various runtime stacks):
• address: Memory location of the Task_Struct instance for each task.
• priority: The TI-RTOS priority for the task
• mode: The current state of the task
• fxn: The name of the task entry function
• arg0, arg1: Arbitrary values that can be given to the entry function of the task. In the image, the

ICall_taskEntry is given 0xe001, which is the flash location of the RF stack image entry function, and
0x20001858, which is the location of mscUserCfg_t user0Cfg, defined in main().

• stackPeak: Maximum runtime stack memory used based on watermark in RAM, where the stacks are
prefilled with 0xBE and there is a sentinel word at the end of the runtime stack. Function calls may
push the stack pointer out of the runtime stack, but not actually write to the entire area. Therefore, a
stack peak near stackSize but not exceeding it may still indicate stack overflow.

• stackSize: The size of the runtime stack, configured when instantiating a task.
• stackBase: Logical top of the task runtime stack. Usage starts at stackBase and stackSize, and grows

down to this address.
• blockedOn: Type and address of the synchronization object the thread is blocked on, if available. For

semaphores, the addresses are listed under Semaphore → Basic.

11.5.3 Viewing the System Stack
The HWI → Module view (see Figure 11-11) allows profiling of the system stack used during boot, for
main(), HWI execution, and SWI execution. See Section 3.11.1 for more information on the system stack.

Figure 11-11. HWI Module View

The hwiStackPeak, hwiStackSize, and hwiStackBase can be used to check for system stack overflow.

11.5.4 Power Manager Information
See the TI-RTOS Power Management Guide for more information.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Profiling the ICall Heap Manager (heapmgr.h)

115SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Development and Debugging

11.6 Profiling the ICall Heap Manager (heapmgr.h)
As described in Section 5.3.2, the ICall heap manager and its heap is used to allocate messages between
the TI 15.4-MAC Stack task and the application task, as well as dynamic memory allocations in the
various tasks.

Profiling functionality is provided for the ICall heap, but is not enabled by default. Therefore, it must be
compiled in by adding HEAPMGR_METRICS to the defined preprocessor symbols. This functionality is
useful both for finding potential sources for unexplained behavior, and to optimize the size of the heap.
When HEAPMGR_METRICS is defined, the variables and functions that follow become available:

Global variables:
• HEAPMGR_BLKMAX: maximum amount of simultaneous allocated blocks
• HEAPMGR_BLKCNT: current amount of allocated blocks
• HEAPMGR_BLKFREE: current amount of free blocks
• HEAPMGR_MEMALO: current total memory allocated in bytes
• HEAPMGR_MEMMAX: maximum amount of simultaneous allocated memory in blocks

NOTE: This amount of memory must not exceed the size of the heap.

• HEAPMGR_MEMUB: the furthest memory location of an allocated block, measured as an offset from
the start of the heap

• HEAPMGR_MEMFAIL: amount of memory allocation failure (instances where ICall_malloc() has
returned NULL)

Functions:
• void HEAPMGR_GETMETRICS(hmU16_t *pBlkMax, hmU16_t *pBlkCnt, hmU16_t *pBlkFree,

hmU16_t *pMemAlo, hmU16_t *pMemMax, hmU16_t *pMemUb)
Returns the preceding variables in the pointers passed in as parameters

• int HEAPMGR_SANITY_CHECK(void)
Returns 0 if the heap is ok, nonzero otherwise (such as when an array access has overwritten a
header in the heap)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Optimizations www.ti.com

116 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Development and Debugging

11.7 Optimizations
During debugging, it is sometimes useful to turn off or lower optimizations to ease single-stepping through
code. This is possible at the following levels.

11.7.1 Project-Wide Optimizations
Figure 11-12 shows the menu view for project-wide optimizations. There may not be enough available
flash to accomplish this.

In CCS: Project Properties → CCS Build → ARM Compiler → Optimization

Figure 11-12. Project-Wide Optimization Menu

11.7.2 Single-File Optimizations
In CCS: Right-click on the file in the Workspace pane, and choose Properties. Change the file optimization
level using the same menu, as shown in Figure 11-12.

11.8 Deciphering CPU Exceptions
There are several possible exception causes: if an exception is caught, an exception handler function can
be called. Depending on the project settings, this may be a default handler in the ROM, which is just an
infinite loop, or a custom function called from this default handler instead of a loop. When an exception
occurs, depending on the debugger, it may be caught immediately and the execution halted in debug
mode; or, if the exception is halted manually later through a debugger break, the execution is then
stopped within the exception handler loop.

11.8.1 Exception Cause
With the default setup using TI-RTOS, the exception cause can be found in the system control space
register group (CPU_SCS) in the configurable fault status register (CFSR). This register is described in
detail in the ARM Cortex-M3 Devices Generic User's Guide. Most exceptions causes fall into three
categories:
• Stack overflow or corruption leads to arbitrary code execution: almost any exception is possible
• A NULL pointer has been dereferenced and written to: typically IMPRECISERR exceptions
• A peripheral module (such as UART or Timer) is accessed without being powered: typically

IMPRECISERR exceptions

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Deciphering CPU Exceptions

117SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Development and Debugging

The CFSR is available in View → Registers in CCS.

Normally when an access violation occurs, the exception type is IMPRECISERR because writes to flash
and peripheral memory regions are mostly buffered writes.

Tips:
• If the CFSR:BFARVALID flag is set when the exception occurs, which is typical for PRECISERR, the

BFAR register in CPU_SCS can be read out to determine which memory address caused the
exception.

• If the exception is IMPRECISERR, PRECISERR can be forced by manually disabling buffered writes.
Set [CPU_SCS:ACTRL:DISDEFWBUF] to 1, either by manually setting the bit in the register view in
CCS, or by including <inc/hw_cpu_scs.h> from Driverlib and calling:

HWREG(CPU_SCS_BASE + CPU_SCS_O_ACTLR) = CPU_SCS_ACTLR_DISDEFWBUF;

This will negatively affect performance.

11.8.2 Using a Custom Exception Handler
A custom exception handler can be used instead of the default exception handler from ROM. In the
sample projects, this is configured in app.cfg, through the M3Hwi.excHandlerFunc property, as shown in
Figure 11-13.

Figure 11-13. M3Hwi.excHandlerFunc Property

When this function is called, the Core-M3 has already pushed the core registers R0-3, R12, PC, LR, and
xPSR on the active task run-time stack (when the exception was registered), and the TI-RTOS exception
handler has pushed R4-11 onto the runtime stack.

11.8.3 Parsing the Exception Frame
The custom exception handler must be of the type:
xdc_Void Main_excHandler(UInt *excStack, UInt lr){..}

where lr is the LR value set by the Core-M3, and excStack points to the following structure which
describes the CPU state (core registers) at the time the exception happened:
struct execptionFrame
{

unsigned int _r4;
unsigned int _r5;
unsigned int _r6;
unsigned int _r7;
unsigned int _r8;
unsigned int _r9;
unsigned int _r10;
unsigned int _r11;
unsigned int _r0;
unsigned int _r1;
unsigned int _r2;
unsigned int _r3;
unsigned int _r12;
unsigned int _lr;
unsigned int _pc;
unsigned int _xpsr;

};

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Debugging HAL Assert www.ti.com

118 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Development and Debugging

Due to optimization, these variables are often not shown properly in the IDE watch windows. The
Main_excHandler() implementation is shown here:
xdc_Void Main_excHandler(UInt *excStack, UInt lr)
{

/* User defined function */
Main_assertHandler(MAIN_ASSERT_HWI_TIRTOS);

}

11.9 Debugging HAL Assert
The HAL assert also calls the user-defined assert handler function:
void halAssertHandler(void)
{

/* User defined function */
Main_assertHandler(MAIN_ASSERT_ICALL);

}

This action is likely because the ICall_abort() function was called, which can be caused, among other
things, by:
• Calling an ICALL function from a stack callback
• Misconfiguring additional ICALL tasks and entities
• Registering incorrect ICALL tasks

A breakpoint can be set in the ICall_abort function to locate the origin of this error.

11.10 Debugging MAC Assert
The MAC assert also calls the user-defined assert handler function:
void macHalAssertHandler(void)
{

/* User defined function */
Main_assertHandler(MAIN_ASSERT_MAC);

}

This action is likely because the MAC exception is generated in the TI 15.4-MAC Stack, which can be
caused by:
• An internal MAC error
• A MAC function called with parameters out-of-range

11.11 Debugging Memory Problems
This section describes how to debug a situation in which the program runs out of memory, either on the
heap or on the runtime stack for the individual thread contexts. Also, exceeding array bounds or
dynamically allocating too little memory for a structure can corrupt the memory. If an exception such as
INVPC, INVSTATE, or IBUSERR appears in the CFSR register, this error is a likely cause.

11.11.1 Task and System Stack Overflow
If there is an overflow in a task runtime stack or the system stack (found using the ROV plug-in as
described in Section 11.5.2 and Section 11.5.3), perform the following steps:
1. Note the current size of each task runtime stack, and increase it by a 100 bytes as described in

Section 3.2.1 and Section 3.11.1.
2. Check the stackPeaks using the ROV, as described in Section 11.5.2 and Section 11.5.3. If the peak is

higher than the previous runtime stack size, the issue has been found.
3. If desired, reduce the runtime stack sizes so that they are still larger than their respective stackPeaks,

to save memory.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Debugging Memory Problems

119SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Development and Debugging

11.11.2 Dynamic Allocation Errors
Using the ICALL heap profiling functionality described in Section 11.6, perform the following steps:
1. Check if memAlo or memMax approach the preprocessor-defined HEAPMGR_SIZE.
2. Check memFail to see if allocation failures have occurred.
3. Call the sanity check function.

If the heap is sane, but there are allocation errors, try to increase HEAPMGR_SIZE and see if the problem
goes away. Alternatively, find the failing allocation by setting a breakpoint in heapmgr.h in
HEAPMGR_MALLOC() on the line hdr = NULL;

11.12 Preprocessor Options
Preprocessor symbols are used to configure system behavior, features, and resource usage at compile
time. Some symbols are required as part of the TI 15.4-MAC system, while others are configurable. See
for details on accessing preprocessor symbols within the IDE. Symbols defined in a particular project are
defined in all files within the project.

11.12.1 Modifying
To disable a symbol, put an x in front of the name. To enable a symbol, remove the x in front of the name.
For example, to enable assert LEDs, change xASSERT_LEDS to ASSERT_LEDS.

11.12.2 Options
Table 11-1 lists the preprocessor symbols used by the application in the sensor_cc13x0lp project.
Symbols that must never be modified are marked with an N in the Modify column, while modifiable or
configurable symbols are marked with a Y.

Table 11-1. Application Preprocessor Symbols

Preprocessor Symbol Description Modify
TEMP_SENSOR Required to enable temperature sensor on the LaunchPad board Y
ASSERT_LEDS Allows the LEDs to blink when Main_assertHandler() is called.

The flag is turned off by default by placing an x in front of the
name.

Y

CC1310_LAUNCHXL This flag should be defined for the CC1310 LaunchPad board. N
TI_DRIVERS_LCD_INCLUDED Includes SmartRF06 LCD driver. This define is required to use

the LCD on the CC2650EM 7x7 evaluation module. The SPI
DMA driver is required to use the LCD driver.

Y

BOARD_DISPLAY_EXCLUDE_UART Allows the LCD to display information, but excludes the UART
from sending the same information. Disabling this flag uses
more RAM.

Y

USE_ICALL Required to use ICALL TI15.4 MAC and primitive services. N
HEAPMGR_SIZE=0 Defines the size in bytes of the ICALL heap. Memory is allocated

in .bss section. This is automatically generated and should not
be modified.

N

FEATURE_MAC_SECURITY Required for MAC security N
FEATURE_GREEN_POWER Required for Green Power feature. N
FEATURE_BEACON_MODE Required for IEEE802.15.4g beacon-enabled network N
FEATURE_ENHANCED_ACK Required for IEEE802.15.4g enhanced ACK support N
ICALL_HOOK_ABORT_FUNC
=halAssertHandler

Maps the ICall abort function to halAssertHandler() Y

xdc_runtime_Assert_DISABLE_ALL Disables XDC runtime assert N
xdc_runtime_Log_DISABLE_ALL Disables XDC runtime logging N
MODULE_CC13XX_7X7 Required for CC1310 7 × 7 package Y
NV_RESTORE Allows the sensor application to restore user configuration from

nonvolatile memory.
Y

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Check System Flash and RAM Usage With a Map File www.ti.com

120 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Development and Debugging

Table 11-2 lists the only stack preprocessor options that may be modified.

Table 11-2. Stack Preprocessor Symbols

Preprocessor Symbol Description Modify
MAX_DEVICE_TABLE_ENTRIES=50 Defines the maximum number of secured devices Y
NO_OSAL_SNV Excludes OSAL Simple NV from the build Y
RCN_APP_ASSERT Allows the application to register an assert handler to be called

from stack
Y

FEATURE_MAC_SECURITY Required for MAC security N
FEATURE_GREEN_POWER Required for Green Power feature N
FEATURE_BEACON_MODE Required for IEEE802.15.4g beacon-enabled network N
FEATURE_ENHANCED_BEACON Required for IEEE802.15.4g enhanced beacon support N
FEATURE_ENHANCED_ACK Required for IEEE802.15.4g enhanced ACK support N
DRIVERLIB_NOROM Defines this flag in the project to use flash versions as default.

See the CC13xx Driver Library document.
Y

USE_ICALL Required to use ICall TI 15.4-MAC and primitive services N
HAL_ASSERT_SPIN Maps halAssertHandler() to a spinlock with interrupt disabled Y
HALNODEBUG Defines the HALNODEBUG to disable all assert functions. This

flag works with RCN_APP_ASSERT, EXT_HAL_ASSERT,
ICALL_HAL_ASSERT, and LEGACY_HAL_ASSERT flags.

Y

FEATURE_SYSTEM_STATS Allows TI 15.4-MAC to collect statistics Y
FH_DH1CF Required for DH1CH channel hopping algorithm N

11.13 Check System Flash and RAM Usage With a Map File
Both application and Stack projects produce a map file that can be used to compute the combined flash
and RAM system memory usage. Both projects have their own memory space, therefore both map files
must be analyzed to determine the total system memory usage. The map file is in the Output folder for
each respective project. In CCS, the map file of the respective project gives a summary of flash and RAM
usage. To determine the remaining available memory for each project, see Section 3.10 and Section 3.11.

NOTE: Due to section placement and alignment requirements, some remaining memory may not be
available. The map file memory usage is valid only if the project builds and links successfully.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

121SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Creating Custom Applications

Chapter 12
SWRU489A–September 2016–Revised December 2016

Creating Custom Applications

TI 15.4-MAC-based system designers must have a firm grasp on the general system architecture,
application, and TI 15.4-MAC Stack framework to implement a custom application. This section provides
indications on where and how to start writing a custom application, and to decide which role and purpose
the custom application should have. If an application is to start the network and be the central node in the
network, begin with the Collector Example Application. If the application is to join the network and be a
node in the network that communicates with the central node, begin with the Sensor Example Application.

12.1 Adding a Board File
After selecting the reference application and preprocessor symbol, add a board file that matches the
custom board layout. The following steps provide guidance on adding a custom board file to the project.
1. Create a custom board file (TI recommends using the Launchpad module board file

CC1310_LAUNCHXL.c as a starting reference).
2. Modify the PIN structure.
3. Add peripheral driver initialization objects, according to the board design.
4. Include files from the folder of the start-up application.
5. Add the custom board file to the application project.
6. Update the C compiler search path of the IDE to point to the header file of the new board file.
7. Define an identifier for the new board file.
8. Rebuild the application project.

12.2 Configuring Parameters for Custom Hardware
1. Set the parameters, such as the sleep clock accuracy of the 32.768-kHz crystal.
2. Define the CCFG parameters.

For a description of the CCFG configuration parameters, see the TI CC13xx Technical Reference Manual.

12.3 Creating Additional Tasks
Many implementations can use the RTOS environment to operate in the application task framework.
However, if the system design requires an additional RTOS task, see Section 3.2.1 for guidance on
adding a task.

12.4 Configuring TI 15.4-MAC Stack
Configure the TI 15.4-MAC Stack with parameters and features. Section 4.1, Section 4.2, and Section 4.3
describe the operation and configuration parameters for the stack project for beacon-mode, nonbeacon
mode, and the frequency-hopping configuration mode of the network, respectively.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A
http://www.ti.com/lit/pdf/SWCU117

122 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

Chapter 13
SWRU489A–September 2016–Revised December 2016

TI 15.4-Stack API

13.1 TIMAC 2.0 API
The following is the application programming interface (API) for the Texas Instruments 802.15.4 MAC
software. This API provides an interface to the management and data services of the 802.15.4 stack.

13.1.1 Callback Functions
These functions must be implemented by the application, and are used to pass events and data from the
MAC to the application. Data accessed through callback function parameters (such as a pointer to data)
are only valid for the execution of the function, and should not be considered valid when the function
returns. These functions execute in the context of the MAC. The callback function implementation should
avoid using critical sections and CPU-intensive operations. The callback table structure should be set up
by the application, then ApiMac_registerCallbacks() should be called to register the table.

13.1.2 Common Constants and Structures
• Address type – The common address type used by the MAC is the ApiMac_sAddr_t.
• Status values – The common MAC status type is ApiMac_status_t.
• MAC security level – The security level (ApiMac_secLevel_t) defines the encryption or authentication

methods used on the message frame.
• Key identifier modes – The key identifier mode (ApiMac_keyIdMode_t) defines how the key is

determined from the key index.
• Security type – MAC security structure (ApiMac_sec_t).

13.1.3 Initialization and Task Interfaces
• ApiMac_init()
• ApiMac_registerCallbacks()
• ApiMac_processIncoming()

13.1.4 Data Interfaces
• ApiMac_mcpsDataReq()
• ApiMac_mcpsPurgeReq()

13.1.5 Management Interfaces
• ApiMac_mlmeAssociateReq()
• ApiMac_mlmeAssociateRsp()
• ApiMac_mlmeDisassociateReq()
• ApiMac_mlmeOrphanRsp()
• ApiMac_mlmePollReq()
• ApiMac_mlmeResetReq()
• ApiMac_mlmeScanReq()
• ApiMac_mlmeStartReq()
• ApiMac_mlmeSyncReq()
• ApiMac_mlmeWSAsyncReq()

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com TIMAC 2.0 API

123SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

13.1.6 Management Attribute Interfaces
The MAC attributes can be read and written to by using the following Get and Set functions, organized by
the attributes data type:
• ApiMac_mlmeGetReqBool()
• ApiMac_mlmeGetReqUint8()
• ApiMac_mlmeGetReqUint16()
• ApiMac_mlmeGetReqUint32()
• ApiMac_mlmeGetReqArray()
• ApiMac_mlmeGetFhReqUint8()
• ApiMac_mlmeGetFhReqUint16()
• ApiMac_mlmeGetFhReqUint32()
• ApiMac_mlmeGetFhReqArray()
• ApiMac_mlmeGetSecurityReqUint8()
• ApiMac_mlmeGetSecurityReqUint16()
• ApiMac_mlmeGetSecurityReqArray()
• ApiMac_mlmeGetSecurityReqStruct()
• ApiMac_mlmeSetReqBool()
• ApiMac_mlmeSetReqUint8()
• ApiMac_mlmeSetReqUint16()
• ApiMac_mlmeSetReqUint32()
• ApiMac_mlmeSetReqArray()
• ApiMac_mlmeSetFhReqUint8()
• ApiMac_mlmeSetFhReqUint16()
• ApiMac_mlmeSetFhReqUint32()
• ApiMac_mlmeSetFhReqArray()
• ApiMac_mlmeSetSecurityReqUint8()
• ApiMac_mlmeSetSecurityReqUint16()
• ApiMac_mlmeSetSecurityReqArray()
• ApiMac_mlmeSetSecurityReqStruct()

13.1.7 Simplified Security Interfaces
• ApiMac_secAddDevice()
• ApiMac_secDeleteDevice()
• ApiMac_secDeleteKeyAndAssocDevices()
• ApiMac_secDeleteAllDevices()
• ApiMac_secGetDefaultSourceKey()
• ApiMac_secAddKeyInitFrameCounter()

13.1.8 Extension Interfaces
• ApiMac_randomByte()
• ApiMac_updatePanId()
• ApiMac_startFH()
• ApiMac_enableFH()
• ApiMac_parsePayloadGroupIEs()
• ApiMac_parsePayloadSubIEs()
• ApiMac_freeIEList()

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

File Documentation – api_mac.h File Reference www.ti.com

124 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

• ApiMac_convertCapabilityInfo()
• ApiMac_buildMsgCapInfo()

13.2 File Documentation – api_mac.h File Reference

13.2.1 Data Structures
• struct ApiMac_sAddr_t
• struct ApiMac_sData_t
• struct ApiMac_MRFSKPHYDesc_t
• struct ApiMac_sec_t
• struct ApiMac_keyIdLookupDescriptor_t
• struct ApiMac_keyDeviceDescriptor_t
• struct ApiMac_keyUsageDescriptor_t
• struct ApiMac_keyDescriptor_t
• struct ApiMac_deviceDescriptor_t
• struct ApiMac_securityLevelDescriptor_t
• struct ApiMac_securityDeviceDescriptor_t
• struct ApiMac_securityKeyEntry_t
• struct ApiMac_securityPibKeyIdLookupEntry_t
• struct ApiMac_securityPibKeyDeviceEntry_t
• struct ApiMac_securityPibKeyUsageEntry_t
• struct ApiMac_securityPibKeyEntry_t
• struct ApiMac_securityPibDeviceEntry_t
• struct ApiMac_securityPibSecurityLevelEntry_t
• struct ApiMac_capabilityInfo_t
• struct ApiMac_txOptions_t
• struct ApiMac_mcpsDataReq_t
• struct ApiMac_payloadIeItem_t
• struct ApiMac_payloadIeRec_t
• struct ApiMac_mcpsDataInd_t
• struct ApiMac_mcpsDataCnf_t
• struct ApiMac_mcpsPurgeCnf_t
• struct ApiMac_panDesc_t
• struct ApiMac_mlmeAssociateReq_t
• struct ApiMac_mlmeAssociateRsp_t
• struct ApiMac_mlmeDisassociateReq_t
• struct ApiMac_mlmeOrphanRsp_t struct ApiMac_mlmePollReq_t
• struct ApiMac_mlmeScanReq_t
• struct ApiMac_mpmParams_t
• struct ApiMac_mlmeStartReq_t
• struct ApiMac_mlmeSyncReq_t
• struct ApiMac_mlmeWSAsyncReq_t
• struct ApiMac_secAddDevice_t
• struct ApiMac_secAddKeyInitFrameCounter_t
• struct ApiMac_mlmeAssociateInd_t
• struct ApiMac_mlmeAssociateCnf_t

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com File Documentation – api_mac.h File Reference

125SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

• struct ApiMac_mlmeDisassociateInd_t
• struct ApiMac_mlmeDisassociateCnf_t
• struct ApiMac_beaconData_t
• struct ApiMac_coexist_t
• struct ApiMac_eBeaconData_t
• struct ApiMac_mlmeBeaconNotifyInd_t
• struct ApiMac_mlmeOrphanInd_t
• struct ApiMac_mlmeScanCnf_t
• struct ApiMac_mlmeStartCnf_t
• struct ApiMac_mlmeSyncLossInd_t
• struct ApiMac_mlmePollCnf_t
• struct ApiMac_mlmeCommStatusInd_t
• struct ApiMac_mlmePollInd_t
• struct ApiMac_mlmeWsAsyncCnf_t
• struct ApiMac_callbacks_t
• union ApiMac_sAddr_t.addr
• union ApiMac_mlmeBeaconNotifyInd_t.beaconData
• union ApiMac_mlmeScanCnf_t.result

13.2.2 Macros
• #define APIMAC_KEY_MAX_LEN 16
• #define APIMAC_SADDR_EXT_LEN 8
• #define APIMAC_MAX_KEY_TABLE_ENTRIES 2
• #define APIMAC_KEYID_IMPLICIT_LEN 0
• #define APIMAC_KEYID_MODE1_LEN 1
• #define APIMAC_KEYID_MODE4_LEN 5
• #define APIMAC_KEYID_MODE8_LEN 9
• #define APIMAC_KEY_SOURCE_MAX_LEN 8
• #define APIMAC_KEY_INDEX_LEN 1
• #define APIMAC_FRAME_COUNTER_LEN 4
• #define APIMAC_KEY_LOOKUP_SHORT_LEN 5
• #define APIMAC_KEY_LOOKUP_LONG_LEN 9
• #define APIMAC_MAX_KEY_LOOKUP_LEN APIMAC_KEY_LOOKUP_LONG_LEN
• #define APIMAC_DATA_OFFSET 24
• #define APIMAC_MAX_BEACON_PAYLOAD 16
• #define APIMAC_MIC_32_LEN 4
• #define APIMAC_MIC_64_LEN 8
• #define APIMAC_MIC_128_LEN 16
• #define APIMAC_MHR_LEN 37
• #define APIMAC_CHANNEL_PAGE_9 9
• #define APIMAC_CHANNEL_PAGE_10 10
• #define APIMAC_STANDARD_PHY_DESCRIPTOR_ENTRIES 3
• #define APIMAC_GENERIC_PHY_DESCRIPTOR_ENTRIES 3
• #define APIMAC_STD_US_915_PHY_1 1
• #define APIMAC_STD_US_915_PHY_2 2
• #define APIMAC_STD_ETSI_863_PHY_3 3

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

File Documentation – api_mac.h File Reference www.ti.com

126 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

• #define APIMAC_MRFSK_GENERIC_PHY_ID_BEGIN 128
• #define APIMAC_MRFSK_GENERIC_PHY_ID_END 143
• #define APIMAC_MRFSK_STD_PHY_ID_BEGIN APIMAC_STD_US_915_PHY_1
• #define APIMAC_MRFSK_STD_PHY_ID_END APIMAC_STD_ETSI_863_PHY_3
• #define APIMAC_PHY_DESCRIPTOR 0x01
• #define APIMAC_ADDR_USE_EXT 0xFFFE
• #define APIMAC_SHORT_ADDR_BROADCAST 0xFFFF
• #define APIMAC_SHORT_ADDR_NONE 0xFFFF
• #define APIMAC_RANDOM_SEED_LEN 32
• #define APIMAC_FH_UTT_IE 0x00000002
• #define APIMAC_FH_BT_IE 0x00000008
• #define APIMAC_FH_US_IE 0x00010000
• #define APIMAC_FH_BS_IE 0x00020000
• #define APIMAC_FH_HEADER_IE_MASK 0x000000FF
• #define APIMAC_FH_PROTO_DISPATCH_NONE 0x00
• #define APIMAC_FH_PROTO_DISPATCH_MHD_PDU 0x01
• #define APIMAC_FH_PROTO_DISPATCH_6LOWPAN 0x02
• #define APIMAC_154G_MAX_NUM_CHANNEL 129
• #define APIMAC_154G_CHANNEL_BITMAP_SIZ ((APIMAC_154G_MAX_NUM_CHANNEL + 7) / 8)
• #define APIMAC_HEADER_IE_MAX 2
• #define APIMAC_PAYLOAD_IE_MAX 2
• #define APIMAC_PAYLOAD_SUB_IE_MAX 4
• #define APIMAC_SFS_BEACON_ORDER(s) ((s) & 0x0F)
• #define APIMAC_SFS_SUPERFRAME_ORDER(s) (((s) >> 4) & 0x0F)
• #define APIMAC_SFS_FINAL_CAP_SLOT(s) (((s) >> 8) & 0x0F)
• #define APIMAC_SFS_BLE(s) (((s) >> 12) & 0x01)
• #define APIMAC_SFS_PAN_COORDINATOR(s) (((s) >> 14) & 0x01)
• #define APIMAC_SFS_ASSOCIATION_PERMIT(s) (((s) >> 15) & 0x01)
• #define APIMAC_FH_MAX_BIT_MAP_SIZE 32
• #define APIMAC_FH_NET_NAME_SIZE_MAX 32
• #define APIMAC_FH_GTK_HASH_SIZE 8

13.2.3 Typedefs
• typedef uint8_t ApiMac_sAddrExt_t[APIMAC_SADDR_EXT_LEN]
• typedef ApiMac_mcpsDataInd_t ApiMac_mlmeWsAsyncInd_t
• typedef void(* ApiMac_associateIndFp_t) (ApiMac_mlmeAssociateInd_t *pAssocInd)
• typedef void(* ApiMac_associateCnfFp_t) (ApiMac_mlmeAssociateCnf_t *pAssocCnf)
• typedef void(* ApiMac_disassociateIndFp_t) (ApiMac_mlmeDisassociateInd_t *pDisassociateInd)
• typedef void(* ApiMac_disassociateCnfFp_t) (ApiMac_mlmeDisassociateCnf_t *pDisassociateCnf)
• typedef void(* ApiMac_beaconNotifyIndFp_t) (ApiMac_mlmeBeaconNotifyInd_t *pBeaconNotifyInd)
• typedef void(* ApiMac_orphanIndFp_t) (ApiMac_mlmeOrphanInd_t *pOrphanInd)
• typedef void(* ApiMac_scanCnfFp_t) (ApiMac_mlmeScanCnf_t *pScanCnf)
• typedef void(* ApiMac_startCnfFp_t) (ApiMac_mlmeStartCnf_t *pStartCnf)
• typedef void(* ApiMac_syncLossIndFp_t) (ApiMac_mlmeSyncLossInd_t *pSyncLossInd)
• typedef void(* ApiMac_pollCnfFp_t) (ApiMac_mlmePollCnf_t *pPollCnf)
• typedef void(* ApiMac_commStatusIndFp_t) (ApiMac_mlmeCommStatusInd_t *pCommStatus)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com File Documentation – api_mac.h File Reference

127SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

• typedef void(* ApiMac_pollIndFp_t) (ApiMac_mlmePollInd_t *pPollInd)
• typedef void(* ApiMac_dataCnfFp_t) (ApiMac_mcpsDataCnf_t *pDataCnf)
• typedef void(* ApiMac_dataIndFp_t) (ApiMac_mcpsDataInd_t *pDataInd)
• typedef void(* ApiMac_purgeCnfFp_t) (ApiMac_mcpsPurgeCnf_t *pPurgeCnf)
• typedef void(* ApiMac_wsAsyncIndFp_t) (ApiMac_mlmeWsAsyncInd_t *pWsAsyncInd)
• typedef void(* ApiMac_wsAsyncCnfFp_t) (ApiMac_mlmeWsAsyncCnf_t *pWsAsyncCnf)
• typedef void(* ApiMac_unprocessedFp_t) (uint16_t param1, uint16_t param2, void *pMsg)

13.2.4 Enumerations
• enum ApiMac_assocStatus_t { ApiMac_assocStatus_success = 0,

ApiMac_assocStatus_panAtCapacity = 1, ApiMac_assocStatus_panAccessDenied = 2 }
• enum ApiMac_addrType_t { ApiMac_addrType_none = 0, ApiMac_addrType_short = 2,

ApiMac_addrType_extended = 3 }
• enum ApiMac_beaconType_t { ApiMac_beaconType_normal = 0, ApiMac_beaconType_enhanced =

1 }
• enum ApiMac_disassocateReason_t { ApiMac_disassocateReason_coord = 1,

ApiMac_disassocateReason_device = 2 }
• enum ApiMac_commStatusReason_t { ApiMac_commStatusReason_assocRsp = 0,

ApiMac_commStatusReason_orphanRsp = 1, ApiMac_commStatusReason_rxSecure = 2 }
• enum ApiMac_status_t { ApiMac_status_success = 0, ApiMac_status_subSystemError = 0x25,

ApiMac_status_commandIDError = 0x26, ApiMac_status_lengthError = 0x27,
ApiMac_status_unsupportedType = 0x28, ApiMac_status_autoAckPendingAllOn = 0xFE,
ApiMac_status_autoAckPendingAllOff = 0xFF, ApiMac_status_beaconLoss = 0xE0,
ApiMac_status_channelAccessFailure = 0xE1, ApiMac_status_counterError = 0xDB,
ApiMac_status_denied = 0xE2, ApiMac_status_disabledTrxFailure = 0xE3,
ApiMac_status_frameTooLong = 0xE5, ApiMac_status_improperKeyType = 0xDC,
ApiMac_status_improperSecurityLevel = 0xDD, ApiMac_status_invalidAddress = 0xF5,
ApiMac_status_invalidGts = 0xE6, ApiMac_status_invalidHandle = 0xE7, ApiMac_status_invalidIndex
= 0xF9, ApiMac_status_invalidParameter = 0xE8, ApiMac_status_limitReached = 0xFA,
ApiMac_status_noAck = 0xE9, ApiMac_status_noBeacon = 0xEA, ApiMac_status_noData = 0xEB,
ApiMac_status_noShortAddress = 0xEC, ApiMac_status_onTimeTooLong = 0xF6,
ApiMac_status_outOfCap = 0xED, ApiMac_status_panIdConflict = 0xEE, ApiMac_status_pastTime =
0xF7, ApiMac_status_readOnly = 0xFB, ApiMac_status_realignment = 0xEF,
ApiMac_status_scanInProgress = 0xFC, ApiMac_status_securityError = 0xE4,
ApiMac_status_superframeOverlap = 0xFD, ApiMac_status_trackingOff = 0xF8,
ApiMac_status_transactionExpired = 0xF0, ApiMac_status_transactionOverflow = 0xF1,
ApiMac_status_txActive = 0xF2, ApiMac_status_unavailableKey = 0xF3,
ApiMac_status_unsupportedAttribute = 0xF4, ApiMac_status_unsupportedLegacy = 0xDE,
ApiMac_status_unsupportedSecurity = 0xDF, ApiMac_status_unsupported = 0x18,
ApiMac_status_badState = 0x19, ApiMac_status_noResources = 0x1A, ApiMac_status_ackPending =
0x1B, ApiMac_status_noTime = 0x1C, ApiMac_status_txAborted = 0x1D,
ApiMac_status_duplicateEntry = 0x1E, ApiMac_status_fhError = 0x61,
ApiMac_status_fhIeNotSupported = 0x62, ApiMac_status_fhNotInAsync = 0x63,
ApiMac_status_fhNotInNeighborTable = 0x64, ApiMac_status_fhOutSlot = 0x65,
ApiMac_status_fhInvalidAddress = 0x66, ApiMac_status_fhIeFormatInvalid = 0x67,
ApiMac_status_fhPibNotSupported = 0x68, ApiMac_status_fhPibReadOnly = 0x69,
ApiMac_status_fhPibInvalidParameter = 0x6A, ApiMac_status_fhInvalidFrameType = 0x6B,
ApiMac_status_fhExpiredNode = 0x6C }

• enum ApiMac_secLevel_t { ApiMac_secLevel_none = 0, ApiMac_secLevel_mic32 = 1,
ApiMac_secLevel_mic64 = 2, ApiMac_secLevel_mic128 = 3, ApiMac_secLevel_enc = 4,
ApiMac_secLevel_encMic32 = 5, ApiMac_secLevel_encMic64 = 6, ApiMac_secLevel_encMic128 = 7 }

• enum ApiMac_keyIdMode_t { ApiMac_keyIdMode_implicit = 0, ApiMac_keyIdMode_1 = 1,
ApiMac_keyIdMode_4 = 2, ApiMac_keyIdMode_8 = 3 }

• enum ApiMac_attribute_bool_t { ApiMac_attribute_associatePermit = 0x41,
ApiMac_attribute_autoRequest = 0x42, ApiMac_attribute_battLifeExt = 0x43,

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

File Documentation – api_mac.h File Reference www.ti.com

128 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

ApiMac_attribute_gtsPermit = 0x4D, ApiMac_attribute_promiscuousMode = 0x51,
ApiMac_attribute_RxOnWhenIdle = 0x52, ApiMac_attribute_associatedPanCoord = 0x56,
ApiMac_attribute_timestampSupported = 0x5C, ApiMac_attribute_securityEnabled = 0x5D,
ApiMac_attribute_includeMPMIE = 0x62, ApiMac_attribute_fcsType = 0xE9 }

• enum ApiMac_attribute_uint8_t { ApiMac_attribute_ackWaitDuration = 0x40,
ApiMac_attribute_battLifeExtPeriods = 0x44, ApiMac_attribute_beaconPayloadLength = 0x46,
ApiMac_attribute_beaconOrder = 0x47, ApiMac_attribute_bsn = 0x49, ApiMac_attribute_dsn = 0x4C,
ApiMac_attribute_maxCsmaBackoffs = 0x4E, ApiMac_attribute_backoffExponent = 0x4F,
ApiMac_attribute_superframeOrder = 0x54, ApiMac_attribute_maxBackoffExponent = 0x57,
ApiMac_attribute_maxFrameRetries = 0x59, ApiMac_attribute_responseWaitTime = 0x5A,
ApiMac_attribute_syncSymbolOffset = 0x5B, ApiMac_attribute_eBeaconSequenceNumber = 0x5E,
ApiMac_attribute_eBeaconOrder = 0x5F, ApiMac_attribute_offsetTimeslot = 0x61,
ApiMac_attribute_phyTransmitPowerSigned = 0xE0, ApiMac_attribute_logicalChannel = 0xE1,
ApiMac_attribute_altBackoffExponent = 0xE3, ApiMac_attribute_deviceBeaconOrder = 0xE4,
ApiMac_attribute_rf4cePowerSavings = 0xE5, ApiMac_attribute_frameVersionSupport = 0xE6,
ApiMac_attribute_channelPage = 0xE7, ApiMac_attribute_phyCurrentDescriptorId = 0xE8 }

• enum ApiMac_attribute_uint16_t { ApiMac_attribute_coordShortAddress = 0x4B,
ApiMac_attribute_panId = 0x50, ApiMac_attribute_shortAddress = 0x53,
ApiMac_attribute_transactionPersistenceTime = 0x55, ApiMac_attribute_maxFrameTotalWaitTime =
0x58, ApiMac_attribute_eBeaconOrderNBPAN = 0x60 }

• enum ApiMac_attribute_uint32_t { ApiMac_attribute_beaconTxTime = 0x48,
ApiMac_attribute_diagRxCrcPass = 0xEA, ApiMac_attribute_diagRxCrcFail = 0xEB,
ApiMac_attribute_diagRxBroadcast = 0xEC, ApiMac_attribute_diagTxBroadcast = 0xED,
ApiMac_attribute_diagRxUnicast = 0xEE, ApiMac_attribute_diagTxUnicast = 0xEF,
ApiMac_attribute_diagTxUnicastRetry = 0xF0, ApiMac_attribute_diagTxUnicastFail = 0xF1,
ApiMac_attribute_diagRxSecureFail = 0xF2, ApiMac_attribute_diagTxSecureFail = 0xF3 }

• enum ApiMac_attribute_array_t { ApiMac_attribute_beaconPayload = 0x45,
ApiMac_attribute_coordExtendedAddress = 0x4A, ApiMac_attribute_extendedAddress = 0xE2 }

• enum ApiMac_securityAttribute_uint8_t { ApiMac_securityAttribute_keyTableEntries = 0x81,
ApiMac_securityAttribute_deviceTableEntries = 0x82,
ApiMac_securityAttribute_securityLevelTableEntries = 0x83,
ApiMac_securityAttribute_autoRequestSecurityLevel = 0x85,
ApiMac_securityAttribute_autoRequestKeyIdMode = 0x86,
ApiMac_securityAttribute_autoRequestKeyIndex = 0x88 }

• enum ApiMac_securityAttribute_uint16_t { ApiMac_securityAttribute_panCoordShortAddress = 0x8B }
• enum ApiMac_securityAttribute_array_t { ApiMac_securityAttribute_autoRequestKeySource = 0x87,

ApiMac_securityAttribute_defaultKeySource = 0x89,
ApiMac_securityAttribute_panCoordExtendedAddress = 0x8A }

• enum ApiMac_securityAttribute_struct_t { ApiMac_securityAttribute_keyTable = 0x71,
ApiMac_securityAttribute_keyIdLookupEntry = 0xD0, ApiMac_securityAttribute_keyDeviceEntry =
0xD1, ApiMac_securityAttribute_keyUsageEntry = 0xD2, ApiMac_securityAttribute_keyEntry = 0xD3,
ApiMac_securityAttribute_deviceEntry = 0xD4, ApiMac_securityAttribute_securityLevelEntry = 0xD5 }

• enum ApiMac_FHAttribute_uint8_t { ApiMac_FHAttribute_unicastDwellInterval = 0x2004,
ApiMac_FHAttribute_broadcastDwellInterval = 0x2005, ApiMac_FHAttribute_clockDrift = 0x2006,
ApiMac_FHAttribute_timingAccuracy = 0x2007, ApiMac_FHAttribute_unicastChannelFunction =
0x2008, ApiMac_FHAttribute_broadcastChannelFunction = 0x2009,
ApiMac_FHAttribute_useParentBSIE = 0x200A, ApiMac_FHAttribute_routingCost = 0x200F,
ApiMac_FHAttribute_routingMethod = 0x2010, ApiMac_FHAttribute_eapolReady = 0x2011,
ApiMac_FHAttribute_fanTPSVersion = 0x2012, ApiMac_FHAttribute_numNonSleepDevice = 0x201b,
ApiMac_FHAttribute_numSleepDevice = 0x201c }

• enum ApiMac_FHAttribute_uint16_t { ApiMac_FHAttribute_broadcastSchedId = 0x200B,
ApiMac_FHAttribute_unicastFixedChannel = 0x200C, ApiMac_FHAttribute_broadcastFixedChannel =
0x200D, ApiMac_FHAttribute_panSize = 0x200E, ApiMac_FHAttribute_panVersion = 0x2014,
ApiMac_FHAttribute_neighborValidTime = 0x2019 }

• enum ApiMac_FHAttribute_uint32_t { ApiMac_FHAttribute_BCInterval = 0x2001 }

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com File Documentation – api_mac.h File Reference

129SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

• enum ApiMac_FHAttribute_array_t { ApiMac_FHAttribute_trackParentEUI = 0x2000,
ApiMac_FHAttribute_unicastExcludedChannels = 0x2002,
ApiMac_FHAttribute_broadcastExcludedChannels = 0x2003, ApiMac_FHAttribute_netName = 0x2013,
ApiMac_FHAttribute_gtk0Hash = 0x2015, ApiMac_FHAttribute_gtk1Hash = 0x2016,
ApiMac_FHAttribute_gtk2Hash = 0x2017, ApiMac_FHAttribute_gtk3Hash = 0x2018 }

• enum ApiMac_fhFrameType_t { ApiMac_fhFrameType_panAdvert = 0x00,
ApiMac_fhFrameType_panAdvertSolicit = 0x01, ApiMac_fhFrameType_config = 0x02,
ApiMac_fhFrameType_configSolicit = 0x03, ApiMac_fhFrameType_data = 0x04,
ApiMac_fhFrameType_ack = 0x05, ApiMac_fhFrameType_eapol = 0x06, ApiMac_fhFrameType_invalid
= 0xFF }

• enum ApiMac_payloadIEGroup_t { ApiMac_payloadIEGroup_ESDU = 0x00,
ApiMac_payloadIEGroup_MLME = 0x01, ApiMac_payloadIEGroup_WiSUN = 0x04,
ApiMac_payloadIEGroup_term = 0x0F }

• enum ApiMac_MLMESubIE_t { ApiMac_MLMESubIE_coexist = 0x21,
ApiMac_MLMESubIE_sunDevCap = 0x22, ApiMac_MLMESubIE_sunFSKGenPhy = 0x23 } • enum
ApiMac_wisunSubIE_t { ApiMac_wisunSubIE_USIE = 1, ApiMac_wisunSubIE_BSIE = 2,
ApiMac_wisunSubIE_PANIE = 4, ApiMac_wisunSubIE_netNameIE = 5,
ApiMac_wisunSubIE_PANVersionIE = 6, ApiMac_wisunSubIE_GTKHashIE = 7 }

• enum ApiMac_scantype_t { ApiMac_scantype_energyDetect = 0, ApiMac_scantype_active = 1,
ApiMac_scantype_passive = 2, ApiMac_scantype_orphan = 3, ApiMac_scantype_activeEnhanced =
5 }

• enum ApiMac_wisunAsycnOperation_t { ApiMac_wisunAsycnOperation_start = 0,
ApiMac_wisunAsycnOperation_stop = 1 } • enum ApiMac_wisunAsyncFrame_t {
ApiMac_wisunAsyncFrame_advertisement = 0, ApiMac_wisunAsyncFrame_advertisementSolicit = 1,
ApiMac_wisunAsyncFrame_config = 2, ApiMac_wisunAsyncFrame_configSolicit = 3 }

• enum ApiMac_fhDispatchType_t { ApiMac_fhDispatchType_none = 0,
ApiMac_fhDispatchType_MHD_PDU = 1, ApiMac_fhDispatchType_6LowPAN = 2 }

13.2.5 Functions
• void * ApiMac_init (bool enableFH)

Initialize this module.
• void ApiMac_registerCallbacks (ApiMac_callbacks_t *pCallbacks)

Register for MAC callbacks.
• void ApiMac_processIncoming (void)

Process incoming messages from the MAC stack.
• ApiMac_status_t ApiMac_mcpsDataReq (ApiMac_mcpsDataReq_t *pData)

This function sends application data to the MAC for transmission in a MAC data frame. The MAC can
only buffer a certain number of data request frames. When the MAC is congested and cannot accept
the data request, it initiates a callback (ApiMac_dataCnfFp_t) with an overflow status
(ApiMac_status_transactionOverflow) . Eventually the MAC will become uncongested and initiate the
callback (ApiMac_dataCnfFp_t) for a buffered request. At this point, the application can attempt
another data request. Using this scheme, the application can send data at any time, but it must queue
data to be resent if it receives an overflow status.

• ApiMac_status_t ApiMac_mcpsPurgeReq (uint8_t msduHandle)
This function purges and discards a data request from the MAC data queue. When the operation is
complete, the MAC sends a MCPS Purge Confirm to initiate a callback (ApiMac_purgeCnfFp_t).

• ApiMac_status_t ApiMac_mlmeAssociateReq (ApiMac_mlmeAssociateReq_t *pData)
This function sends an associate request to a coordinator device. The application tries to associate
only with a PAN that is currently allowing association, as indicated in the results of the scanning
procedure. In a beacon-enabled PAN, the beacon order must be set by using ApiMac_mlmeSetReq()
before making the call to ApiMac_mlmeAssociateReq(). When the associate request is complete, the
application receives the ApiMac_associateCnfFp_t callback.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

File Documentation – api_mac.h File Reference www.ti.com

130 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

• ApiMac_status_t ApiMac_mlmeAssociateRsp (ApiMac_mlmeAssociateRsp_t *pData)
This function sends an associate response to a device requesting to associate. This function must be
called after the ApiMac_associateIndFp_t callback. When the associate response is complete, the
callback ApiMac_commStatusIndFp_t is called to indicate the success or failure of the operation.

• ApiMac_status_t ApiMac_mlmeDisassociateReq (ApiMac_mlmeDisassociateReq_t *pData)
This function is used by an associated device to notify the coordinator of its intent to leave the PAN.
This function is also used by the coordinator to instruct an associated device to leave the PAN. When
the disassociate procedure is complete, the application callback ApiMac_disassociateCnfFp_t is called.

• ApiMac_status_t ApiMac_mlmeGetReqBool (ApiMac_attribute_bool_t pibAttribute, bool *pValue)
This direct execute function retrieves an attribute value from the MAC PIB.

• ApiMac_status_t ApiMac_mlmeGetReqUint8 (ApiMac_attribute_uint8_t pibAttribute, uint8_t *pValue)
This direct execute function retrieves an attribute value from the MAC PIB.

• ApiMac_status_t ApiMac_mlmeGetReqUint16 (ApiMac_attribute_uint16_t pibAttribute, uint16_t
*pValue)
This direct execute function retrieves an attribute value from the MAC PIB.

• ApiMac_status_t ApiMac_mlmeGetReqUint32 (ApiMac_attribute_uint32_t pibAttribute, uint32_t
*pValue)
This direct execute function retrieves an attribute value from the MAC PIB.

• ApiMac_status_t ApiMac_mlmeGetReqArray (ApiMac_attribute_array_t pibAttribute, uint8_t *pValue)
This direct execute function retrieves an attribute value from the MAC PIB.

• ApiMac_status_t ApiMac_mlmeGetFhReqUint8 (ApiMac_FHAttribute_uint8_t pibAttribute, uint8_t
*pValue)
This direct execute function retrieves an attribute value from the MAC Frequency Hopping PIB.

• ApiMac_status_t ApiMac_mlmeGetFhReqUint16 (ApiMac_FHAttribute_uint16_t pibAttribute, uint16_t
*pValue)
This direct execute function retrieves an attribute value from the MAC Frequency Hopping PIB.

• ApiMac_status_t ApiMac_mlmeGetFhReqUint32 (ApiMac_FHAttribute_uint32_t pibAttribute, uint32_t
*pValue)
This direct execute function retrieves an attribute value from the MAC Frequency Hopping PIB.

• ApiMac_status_t ApiMac_mlmeGetFhReqArray (ApiMac_FHAttribute_array_t pibAttribute, uint8_t
*pValue)
This direct execute function retrieves an attribute value from the MAC Frequency Hopping PIB.

• ApiMac_status_t ApiMac_mlmeGetSecurityReqUint8 (ApiMac_securityAttribute_uint8_t pibAttribute,
uint8_t *pValue)
This direct execute function retrieves an attribute value from the MAC Security PIB.

• ApiMac_status_t ApiMac_mlmeGetSecurityReqUint16 (ApiMac_securityAttribute_uint16_t pibAttribute,
uint16_t *pValue)
This direct execute function retrieves an attribute value from the MAC Security PIB.

• ApiMac_status_t ApiMac_mlmeGetSecurityReqArray (ApiMac_securityAttribute_array_t pibAttribute,
uint8_t *pValue)
This direct execute function retrieves an attribute value from the MAC Security PIB.

• ApiMac_status_t ApiMac_mlmeGetSecurityReqStruct (ApiMac_securityAttribute_struct_t pibAttribute,
void *pValue)
This direct execute function retrieves an attribute value from the MAC Security PIB.

• ApiMac_status_t ApiMac_mlmeOrphanRsp (ApiMac_mlmeOrphanRsp_t *pData)
This function is called in response to an orphan notification from a peer device. This function must be
called after receiving an Orphan Indication Callback. When the orphan response is complete, the
Comm Status Indication Callback is called to indicate the success or failure of the operation.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com File Documentation – api_mac.h File Reference

131SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

• ApiMac_status_t ApiMac_mlmePollReq (ApiMac_mlmePollReq_t *pData)
This function is used to request pending data from the coordinator. When the poll request is complete,
the Poll Confirm Callback is called. If a data frame of nonzero length is received from the coordinator,
the Poll Confirm Callback has a status ApiMac_status_success, and calls the Data Indication Callback
for the received data.

• ApiMac_status_t ApiMac_mlmeResetReq (bool setDefaultPib)
This direct execute function resets the MAC. This function must be called once at system startup
before any other function in the management API is called.

• ApiMac_status_t ApiMac_mlmeScanReq (ApiMac_mlmeScanReq_t *pData)
This function initiates an energy detect, active, passive, or orphan scan on one or more channels. An
energy detect scan measures the peak energy on each requested channel. An active scan sends a
beacon request on each channel, then listens for beacons. A passive scan is a receive-only operation
that listens for beacons on each channel. An orphan scan is used to locate the coordinator with which
the scanning device had previously associated. When a scan operation is complete, the Scan Confirm
callback is called. For active or passive scans, the application sets the maxResults parameter the
maximum number of PAN descriptors to return. If maxResults is greater than zero, the application
must also set result.panDescriptor to point to a buffer of size maxResults * sizeof(ApiMac_panDesc_t)
to store the results of the scan. The application must not access or deallocate this buffer until the Scan
Confirm Callback is called. The MAC stores up to maxResults PAN descriptors, and ignores duplicate
beacons. An alternative way to get results for an active or passive scan is to set maxResults to zero, or
set PIB attribute ApiMac_attribute_autoRequest to FALSE. Then the MAC will not store results, but
rather call the Beacon Notify Indication Callback for each beacon received. The application does not
need to supply any memory to store the scan results, but the MAC does not filter out duplicate
beacons. For energy detect scans, the application must set result.energyDetect to point to a buffer of
size 18 bytes to store the results of the scan. The application must not access or deallocate this buffer
until the Scan Confirm Callback is called. An energy detect, active, or passive scan may be performed
at any time if a scan is not already in progress. However, a device cannot perform any other MAC
management operation or send or receive MAC data until the scan is complete.

• ApiMac_status_t ApiMac_mlmeSetReqBool (ApiMac_attribute_bool_t pibAttribute, bool value)
This direct execute function sets an attribute value in the MAC PIB.

• ApiMac_status_t ApiMac_mlmeSetReqUint8 (ApiMac_attribute_uint8_t pibAttribute, uint8_t value)
This direct execute function sets an attribute value in the MAC PIB.

• ApiMac_status_t ApiMac_mlmeSetReqUint16 (ApiMac_attribute_uint16_t pibAttribute, uint16_t value)
This direct execute function sets an attribute value in the MAC PIB.

• ApiMac_status_t ApiMac_mlmeSetReqUint32 (ApiMac_attribute_uint32_t pibAttribute, uint32_t value)
This direct execute function sets an attribute value in the MAC PIB.

• ApiMac_status_t ApiMac_mlmeSetReqArray (ApiMac_attribute_array_t pibAttribute, uint8_t *pValue)
This direct execute function sets an attribute value in the MAC PIB.

• ApiMac_status_t ApiMac_mlmeSetFhReqUint8 (ApiMac_FHAttribute_uint8_t pibAttribute, uint8_t
value)
This direct execute function sets an attribute value in the MAC Frequency Hopping PIB.

• ApiMac_status_t ApiMac_mlmeSetFhReqUint16 (ApiMac_FHAttribute_uint16_t pibAttribute, uint16_t
value)
This direct execute function sets an attribute value in the MAC Frequency Hopping PIB.

• ApiMac_status_t ApiMac_mlmeSetFhReqUint32 (ApiMac_FHAttribute_uint32_t pibAttribute, uint32_t
value)
This direct execute function sets an attribute value in the MAC Frequency Hopping PIB.

• ApiMac_status_t ApiMac_mlmeSetFhReqArray (ApiMac_FHAttribute_array_t pibAttribute, uint8_t
*pValue)
This direct execute function sets an attribute value in the MAC Frequency Hopping PIB.

• ApiMac_status_t ApiMac_mlmeSetSecurityReqUint8 (ApiMac_securityAttribute_uint8_t pibAttribute,
uint8_t value)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

File Documentation – api_mac.h File Reference www.ti.com

132 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

This direct execute function sets an attribute value in the MAC Security PIB.
• ApiMac_status_t ApiMac_mlmeSetSecurityReqUint16 (ApiMac_securityAttribute_uint16_t pibAttribute,

uint16_t value)
This direct execute function sets an attribute value in the MAC Security PIB.

• ApiMac_status_t ApiMac_mlmeSetSecurityReqArray (ApiMac_securityAttribute_array_t pibAttribute,
uint8_t *pValue)
This direct execute function sets an attribute value in the MAC Security PIB.

• ApiMac_status_t ApiMac_mlmeSetSecurityReqStruct (ApiMac_securityAttribute_struct_t pibAttribute,
void *pValue)
This direct execute function sets an attribute value in the MAC Security PIB.

• ApiMac_status_t ApiMac_mlmeStartReq (ApiMac_mlmeStartReq_t *pData)
This function is called by a coordinator or PAN coordinator to start or reconfigure a network. Before
starting a network, the device must have set its short address. A PAN coordinator sets the short
address by setting the attribute ApiMac_attribute_shortAddress. A coordinator sets the short address
through association. When parameter panCoordinator is TRUE, the MAC automatically sets attributes
ApiMac_attribute_panID and ApiMac_attribute_logicalChannel to the panId and logicalChannel
parameters. If panCoordinator is FALSE, these parameters are ignored (they would already be set
through association). The parameter beaconOrder controls whether the network is beacon-enabled or
non beacon-enabled. For a beacon-enabled network, this parameter also controls the beacon
transmission interval. When the operation is complete, the Start Confirm Callback is called.

• ApiMac_status_t ApiMac_mlmeSyncReq (ApiMac_mlmeSyncReq_t *pData)
This function requests the MAC to synchronize with the coordinator by acquiring and optionally tracking
its beacons. Synchronizing with the coordinator is recommended before associating in a beacon-
enabled network. If the beacon could not be located on its initial search or during tracking, the MAC
calls the Sync Loss Indication Callback with ApiMac_status_beaconLoss as the reason. Before calling
this function, the application must set PIB attributes ApiMac_attribute_beaconOrder,
ApiMac_attribute_panId, and either ApiMac_attribute_coordShortAddress or
ApiMac_attribute_coordExtendedAddress to the address of the coordinator with which to synchronize.
The application may wish to set PIB attribute ApiMac_attribute_autoRequest to FALSE before calling
this function. Then, when the MAC successfully synchronizes with the coordinator, it will call the
Beacon Notify Indication Callback. After receiving the callback, the application may set
ApiMac_attribute_autoRequest to TRUE to stop receiving beacon notifications. This function is only
applicable to beacon-enabled networks.

• uint8_t ApiMac_randomByte (void)
This function returns a random byte from the MAC random number generator.

• ApiMac_status_t ApiMac_updatePanId (uint16_t panId)
This function updates the Device Table entry and PIB with new Pan ID.

• ApiMac_status_t ApiMac_mlmeWSAsyncReq (ApiMac_mlmeWSAsyncReq_t *pData)
This functions handles a WiSUN async request. The possible operation is Async Start or Async Stop.
For the async start operation, the caller of this function can indicate which WiSUN async frame type to
be sent on the specified channels.

• ApiMac_status_t ApiMac_startFH (void)
This function starts the frequency hopping. Frequency hopping operation should have been enabled
using ApiMac_enableFH() before calling this API. This API does not need to be called if called
ApiMac_mlmeStartReq() has been called with the startFH field set to true.

• ApiMac_status_t ApiMac_parsePayloadGroupIEs (uint8_t *pPayload, uint16_t payloadLen,
ApiMac_payloadIeRec_t **pList)
Parses the Group payload information element. This function creates a linked list (plist) from the
Payload IE (pPayload). Each item in the linked list is a seperate Group IE with its own content. If no
IEs are found, pList is set to NULL. The caller is responsible for releasing the memory for the linked list
by calling ApiMac_freeIEList(). Call this function to create the list of Group IEs, then call
ApiMac_parsePayloadSubIEs() to parse each of the group IE's content into sub IEs.

• ApiMac_status_t ApiMac_parsePayloadSubIEs (uint8_t *pContent, uint16_t contentLen,

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Data Structure Documentation

133SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

ApiMac_payloadIeRec_t **pList)
Parses the payload subinformation element. This function creates a linked list (pList) of sub IEs from
the Group IE content (pContent). Each item in the linked list is a seperate sub IE with its own content.
If no IEs are found, pList is set to NULL. The caller is responsible for releasing the memory for the
linked list by calling ApiMac_freeIEList(). Call this function after calling
ApiMac_parsePayloadGroupIEs().

• void ApiMac_freeIEList (ApiMac_payloadIeRec_t *pList)
Frees the linked list allocated by ApiMac_parsePayloadGroupIEs() or ApiMac_parsePayloadSubIEs().

• ApiMac_status_t ApiMac_enableFH (void)
Enables the Frequency hopping operation. Call this function before setting any FH parameters, or
before calling ApiMac_mlmeStartReq() or ApiMac_startFH(), if using FH.

• uint8_t ApiMac_convertCapabilityInfo (ApiMac_capabilityInfo_t *pMsgcapInfo)
Converts ApiMac_capabilityInfo_t data type to uint8 capInfo.

• void ApiMac_buildMsgCapInfo (uint8_t cInfo, ApiMac_capabilityInfo_t *pPBcapInfo)
Converts from bitmask byte to API MAC capInfo.

• ApiMac_status_t ApiMac_secAddDevice (ApiMac_secAddDevice_t *pAddDevice)
Adds a new MAC device table entry.

• ApiMac_status_t ApiMac_secDeleteDevice (ApiMac_sAddrExt_t *pExtAddr)
Removes MAC device table entries.

• ApiMac_status_t ApiMac_secDeleteKeyAndAssocDevices (uint8_t keyIndex)
Removes the key at the specified key Index and removes all MAC device table enteries associated
with this key. Also removes (initializes) the key lookup list associated with this key.

• ApiMac_status_t ApiMac_secDeleteAllDevices (void)
Removes all MAC device table entries.

• ApiMac_status_t ApiMac_secGetDefaultSourceKey (uint8_t keyId, uint32_t *pFrameCounter)
Reads the frame counter value associated with a MAC security key indexed by the designated key
identifier and the default key source.

• ApiMac_status_t ApiMac_secAddKeyInitFrameCounter (ApiMac_secAddKeyInitFrameCounter_t *pInfo)
Adds the MAC security key, adds the associated lookup list for the key, and initializes the frame
counter to the value provided. The function also duplicates the device table entries (associated with the
previous key if any) if available, based on the flag dupDevFlag value and associates the device
descriptor with this key.

13.3 Data Structure Documentation

struct ApiMac_sAddr_t MAC address type field structure

Data Fields

union ApiMac_sAddr_t addr The address can be either a long
address or a short address depending
the addrMode field.

ApiMac_addrType_t addrMode Address type/mode

struct ApiMac_sData_t Data buffer structure

Data Fields

uint8_t * p pointer to the data buffer
uint16_t len length of the data buffer

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Data Structure Documentation www.ti.com

134 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

struct ApiMac_MRFSKPHYDesc_t Generic PHY descriptor

Data Fields

uint32_t firstChCentrFreq First Channel Center frequency
uint16_t numChannels Number of channels defined for the

particular PHY mode
uint32_t channelSpacing Distance between adjacent center channel

frequencies
uint8_t fskModScheme 2-FSK/2-GFSK/4-FSK/4-GFSK
uint8_t symbolRate Symbol rate selection
uint8_t fskModIndex Modulation index as a value encoded in

MR-FSK Generic PHY Descriptor IE
(IEEE802.15.4g section 5.2.4.20c).
2FSK MI = 0.25 + Modulation Index * 0.05
4FSK MI is a third of 2FSK MI

uint8_t ccaType Channel clearance algorithm selection

struct ApiMac_sec_t Common security type

Data Fields

uint8_t keySource[APIMAC_KEY_SOURCE_MAX
_LEN]

Key source

uint8_t securityLevel Security Level
uint8_t keyIdMode Key identifier mode
uint8_t keyIndex Key index

struct ApiMac_keyIdLookupDescriptor_t Key ID lookup descriptor

Data Fields

uint8_t lookupData[APIMAC_MAX_KEY_LOOKU
P_LEN]

Data used to identify the key

uint8_t lookupDataSize 0x00 indicates 5 octets; 0x01 indicates 9
octets

struct ApiMac_keyDeviceDescriptor_t Key device descriptor

Data Fields

uint8_t deviceDescriptorHandle Handle to the DeviceDescriptor
bool uniqueDevice True if the device is unique
bool blackListed This key exhausted the frame counter.

struct ApiMac_keyUsageDescriptor_t Key usage descriptor

Data Fields

uint8_t frameType Frame type
uint8_t cmdFrameId Command frame identifier

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Data Structure Documentation

135SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

struct ApiMac_keyDescriptor_t Key descriptor

Data Fields

ApiMac_keyIdLookupDescriptor_t * keyIdLookupList A list identifying this KeyDescriptor
uint8_t keyIdLookupEntries The number of entries in KeyIdLookupList
ApiMac_keyDeviceDescriptor_t * keyDeviceList A list indicating which devices are

currently using this key, including their
blacklist status.

uint8_t keyDeviceListEntries The number of entries in KeyDeviceList
ApiMac_keyUsageDescriptor_t * keyUsageList A list indicating which frame types this key

may be used with.
uint8_t keyUsageListEntries The number of entries in KeyUsageList
uint8_t key[APIMAC_KEY_MAX_LEN] The actual value of the key
uint32_t frameCounter PIB frame counter in 802.15.4 is universal

across the key, but should associate a
frame counter with a key.

struct ApiMac_deviceDescriptor_t Device descriptor

Data Fields

uint16_t panID The 16-bit PAN identifier of the device
uint16_t shortAddress The 16-bit short address of the device
ApiMac_sAddrExt_t extAddress The 64-bit IEEE extended address of the

device. This element is also used in
unsecuring operations on incoming
frames.

struct ApiMac_securityLevelDescriptor_t Security level descriptor

Data Fields

uint8_t frameType Frame Type
uint8_t commandFrameIdentifier Command Frame ID
uint8_t securityMinimum The minimal required or expected security

level for incoming MAC frames.
bool securityOverrideSecurityMinimum Indication of whether originating devices

for which the Exempt flag is set may
override the minimum security level
indicated by the Security Minimum
element. If TRUE, this indicates that for
originating devices with Exempt status,
the incoming security level zero is
acceptable.

struct ApiMac_securityDeviceDescriptor_t Security device descriptor

Data Fields

ApiMac_deviceDescriptor_t devInfo Device information
uint32_t frameCounter[APIMAC_MAX_KEY_TABL

E_ENTRIES]
The incoming frame counter of the device.
This value is used to ensure sequential
freshness of frames.

bool exempt Device may override the minimum security
level settings.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Data Structure Documentation www.ti.com

136 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

struct ApiMac_securityKeyEntry_t MAC key entry structure

Data Fields

uint8_t keyEntry[APIMAC_KEY_MAX_LEN] The 128-bit key
uint8_t keyIndex The unique key index
uint32_t frameCounter The key frame counter

struct ApiMac_securityPibKeyIdLookupEntry_t Security PIB Key ID lookup entry for a Get/Set
ApiMac_securityAttribute_keyIdLookupEntry

Data Fields

uint8_t keyIndex Index into the macKeyIdLookupList
uint8_t keyIdLookupIndex Index into macKeyIdLookupList[keyIndex]
ApiMac_keyIdLookupDescriptor_t lookupEntry Place to put the requested data

struct ApiMac_securityPibKeyDeviceEntry_t Security PIB Key ID device entry for a Get/Set
ApiMac_securityAttribute_keyDeviceEntry

Data Fields

uint8_t keyIndex Index into the macKeyDeviceList
uint8_t keyDeviceIndex Index into macKeyDeviceList[keyIndex]
ApiMac_keyDeviceDescriptor_t deviceEntry Place to put the requested data

struct ApiMac_securityPibKeyUsageEntry_t Security PIB Key ID usage entry for a Get/Set
ApiMac_securityAttribute_keyUsageEntry

Data Fields

uint8_t keyIndex Index into the macKeyUsageList
uint8_t keyUsageIndex Index into macKeyUsageList[keyIndex]
ApiMac_keyUsageDescriptor_t usageEntry Place to put the requested data

struct ApiMac_securityPibKeyEntry_t Security PIB Key entry for a Get/Set
ApiMac_securityAttribute_keyEntry

Data Fields

uint8_t keyIndex Index into the macKeyTable
uint8_t keyEntry[APIMAC_KEY_MAX_LEN] Key entry
uint32_t frameCounter Frame counter

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Data Structure Documentation

137SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

struct ApiMac_securityPibDeviceEntry_t Security PIB device entry for a Get/Set
ApiMac_securityAttribute_deviceEntry

Data Fields

uint8_t deviceIndex Index into the macDeviceTable
ApiMac_securityDeviceDescriptor_t deviceEntry Place to put the requested data

struct ApiMac_securityPibSecurityLevelEntry_t Security PIB level entry for a Get/Set
ApiMac_securityAttribute_securityLevelEntry

Data Fields

uint8_t levelIndex Index into the macSecurityLevelTable
ApiMac_securityLevelDescriptor_t levelEntry Place to put the requested data

struct ApiMac_capabilityInfo_t Structure defines the Capabilities Information bit field.

Data Fields

bool panCoord True if the device is a PAN coordinator
bool ffd True if the device is a full function device

(FFD)
bool mainsPower True if the device is mains powered
bool rxOnWhenIdle True if the device RX is on when the

device is idle
bool security True if the device is capable of sending

and receiving secured frames
bool allocAddr True if allocation of a short address in the

associate procedure is needed.

struct ApiMac_txOptions_t Data request transmit options

Data Fields

bool ack Acknowledged transmission. The MAC
attempts to retransmit the frame until it is
acknowledged.

bool indirect Indirect transmission. The MAC queues
the data and waits for the destination
device to poll for it. This can only be used
by a coordinator device.

bool pendingBit This proprietary option forces the pending
bit set for direct transmission.

bool noRetransmits This proprietary option prevents the frame
from being retransmitted.

bool noConfirm This proprietary option prevents a
MAC_MCPS_DATA_CNF event from
being sent for this frame.

bool useAltBE Use PIB value MAC_ALT_BE for the
minimum backoff exponent

bool usePowerAndChannel Use the power and channel values in
macDataReq_t instead of the PIB values

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Data Structure Documentation www.ti.com

138 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

struct ApiMac_mcpsDataReq_t MCPS data request type

Data Fields

ApiMac_sAddr_t dstAddr The address of the destination device
uint16_t dstPanId The PAN ID of the destination device
ApiMac_addrType_t srcAddrMode The source address mode
uint8_t msduHandle Application-defined handle value

associated with this data request
ApiMac_txOptions_t txOptions TX options bit mask
uint8_t channel Transmit the data frame on this channel
uint8_t power Transmit the data frame at this power

level
uint8_t * pIEList Pointer to the payload IE list, excluding

termination IEs
uint16_t payloadIELen Length of the payload IE
ApiMac_fhDispatchType_t fhProtoDispatch Frequency-hopping protocol dispatch -

RESERVED for future use, should be
cleared.

uint32_t includeFhIEs Bitmap indicates which FH IEs must be
included

ApiMac_sData_t msdu Data buffer
ApiMac_sec_t sec Security parameters

struct ApiMac_payloadIeItem_t Structure a payload information item

Data Fields

bool ieTypeLong True if payload IE type is long
uint8_t ieId IE ID
uint16_t ieContentLen IE Content Length – maximum size of

2047 bytes
uint8_t * pIEContent Pointer to the IE content

struct ApiMac_payloadIeRec_t A Payload IE link list record

Data Fields

void * pNext Pointer to the next element in the linked
list, NULL if no more

ApiMac_payloadIeItem_t item Payload IE information item

struct ApiMac_mcpsDataInd_t MCPS data indication type

Data Fields

ApiMac_sAddr_t srcAddr The address of the sending device
ApiMac_sAddr_t dstAddr The address of the destination device
uint32_t timestamp The time, in backoffs, at which the data

were received
uint16_t timestamp2 The time, in internal MAC timer units, at

which the data were received
uint16_t srcPanId The PAN ID of the sending device

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Data Structure Documentation

139SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

uint16_t dstPanId The PAN ID of the destination device
uint8_t mpduLinkQuality The link quality of the received data frame
uint8_t correlation The raw correlation value of the received

data frame
int8_t rssi The received RF power in units dBm
uint8_t dsn The data sequence number of the

received frame
uint16_t payloadIeLen Length of the payload IE buffer

(pPayloadIE)
uint8_t * pPayloadIE Pointer to the start of payload IEs
ApiMac_fhFrameType_t fhFrameType Frequency-hopping frame type
ApiMac_fhDispatchType_t fhProtoDispatch Frequency-hopping protocol dispatch.

RESERVED for future use.
uint32_t frameCntr Frame counter value of the received data

frame (if used)
ApiMac_sec_t sec Security parameters
ApiMac_sData_t msdu Data buffer

struct ApiMac_mcpsDataCnf_t MCPS data confirm type

Data Fields

ApiMac_status_t status Contains the status of the data request
operation

uint8_t msduHandle Application-defined handle value
associated with the data request

uint32_t timestamp The time, in backoffs, at which the frame
was transmitted

uint16_t timestamp2 The time, in internal MAC timer units, at
which the frame was transmitted

uint8_t retries The number of retries required to transmit
the data frame

uint8_t mpduLinkQuality The link quality of the received ack frame
uint8_t correlation The raw correlation value of the received

ack frame
int8_t rssi The RF power of the received ack frame

in units dBm
uint32_t frameCntr Frame counter value used (if any) for the

transmitted frame

struct ApiMac_mcpsPurgeCnf_t MCPS purge confirm type

Data Fields

ApiMac_status_t status The status of the purge request operation
uint8_t msduHandle Application-defined handle value

associated with the data request

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Data Structure Documentation www.ti.com

140 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

struct ApiMac_panDesc_t PAN descriptor type

Data Fields

ApiMac_sAddr_t coordAddress The address of the coordinator sending
the beacon

uint16_t coordPanId The PAN ID of the network
uint16_t superframeSpec The superframe specification of the

network, this field contains the beacon
order, superframe order, final CAP slot,
battery life extension, PAN coordinator bit,
and association permit flag. Use the
following macros to parse this field:
APIMAC_SFS_BEACON_ORDER(),
APIMAC_SFS_SUPERFRAME_ORDER(),
APIMAC_SFS_FINAL_CAP_SLOT()
APIMAC_SFS_BLE(),
APIMAC_SFS_PAN_COORDINATOR(),
and
APIMAC_SFS_ASSOCIATION_PERMIT()
.

uint8_t logicalChannel The logical channel of the network
uint8_t channelPage The current channel page occupied by the

network
bool gtsPermit TRUE if coordinator accepts GTS

requests. This field is not used for
enhanced beacons.

uint8_t linkQuality The link quality of the received beacon
uint32_t timestamp The time at which the beacon was

received, in backoffs
bool securityFailure TRUE if there was an error in the security

processing
ApiMac_sec_t sec The security parameters for the received

beacon frame

struct ApiMac_mlmeAssociateReq_t MLME associate request type

Data Fields

ApiMac_sec_t sec The security parameters for this message
uint8_t logicalChannel The channel on which to attempt

association
uint8_t channelPage The channel page on which to attempt

association
uint8_t phyID Identifier for the PHY descriptor
ApiMac_sAddr_t coordAddress Address of the coordinator with which to

associate
uint16_t coordPanId The identifier of the PAN with which to

associate
ApiMac_capabilityInfo_t capabilityInformation The operational capabilities of this device

struct ApiMac_mlmeAssociateRsp_t MLME associate response type

Data Fields

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Data Structure Documentation

141SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

ApiMac_sec_t sec The security parameters for this message
ApiMac_sAddrExt_t deviceAddress The address of the device requesting

association
uint16_t assocShortAddress The short address allocated to the device
ApiMac_assocStatus_t status The status of the association attempt

struct ApiMac_mlmeDisassociateReq_t MLME disassociate request type

Data Fields

ApiMac_sec_t sec The security parameters for this message
ApiMac_sAddr_t deviceAddress The address of the device with which to

disassociate
uint16_t devicePanId The PAN ID of the device
ApiMac_disassocateReason_t disassociateReason The disassociate reason
bool txIndirect Transmit Indirect

struct ApiMac_mlmeOrphanRsp_t MLME orphan response type

Data Fields

ApiMac_sec_t sec The security parameters for this message
ApiMac_sAddrExt_t orphanAddress The extended address of the device

sending the orphan notification
uint16_t shortAddress The short address of the orphaned device
bool associatedMember TRUE if the orphaned device is

associated with this coordinator

struct ApiMac_mlmePollReq_t MLME poll request type

Data Fields

ApiMac_sAddr_t coordAddress The address of the coordinator device to
poll

uint16_t coordPanId The PAN ID of the coordinator
ApiMac_sec_t sec The security parameters for this message

struct ApiMac_mlmeScanReq_t MLME scan request type

Data Fields

uint8_t scanChannels[APIMAC_154G_CHANNEL
_BITMAP_SIZ]

Bit mask indicating which channels to
scan

ApiMac_scantype_t scanType The type of scan
uint8_t scanDuration The exponent used in the scan duration

calculation
uint8_t channelPage The channel page on which to perform the

scan
uint8_t phyID PHY ID corresponding to the PHY

descriptor to use
uint8_t maxResults The maximum number of PAN descriptor

results; these results are returned in the
scan confirm.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Data Structure Documentation www.ti.com

142 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

bool permitJoining Only devices with permit joining enabled
respond to the enhanced beacon request

uint8_t linkQuality The device responds to the enhanced
beacon request if mpduLinkQuality is
equal or higher than this value.

uint8_t percentFilter The device randomly determines if it is to
respond to the enhanced beacon request,
based on meeting this probability (0 to
100%).

ApiMac_sec_t sec The security parameters for this message
bool MPMScan When TRUE, scanDuration is ignored.

When FALSE, scan duration is set to
scanDuration; MPMScanDuration is
ignored

uint8_t MPMScanType BPAN or NBPAN
uint16_t MPMScanDuration If MPMScanType is BPAN,

MPMScanDuration values are 0-14. It is
used in determining the maximum time
spent scanning for an EB in a beacon-
enabled PAN on the channel.
[aBaseSuperframeDuration * 2^n
symbols], where n is the
MPMScanDuration. If MPMScanType is
NBPAN, valid values are 1 to 16383. It is
used in determining the maximum time
spent scanning for an EB in nonbeacon-
enabled PAN on the channel.
[aBaseSlotDuration * n] symbols, where n
is MPMScanDuration.

struct ApiMac_mpmParams_t MPM (Multi-PHY layer management) parameters

Data Fields

uint8_t eBeaconOrder The exponent used to calculate the
enhanced beacon interval. A value of 15
indicates no EB in a beacon-enabled
PAN.

uint8_t offsetTimeSlot Indicates the time diff between the EB and
the preceeding periodic beacon. The valid
range for this field is 10 to 15.

uint16_t NBPANEBeaconOrder Indicates how often the EB to tx in a
nonbeacon-enabled PAN. A value of
16383 indicates no EB in a nonbeacon-
enabled PAN.

uint8_t * pIEIDs Pointer to the buffer containing the
information element IDs which must be
sent in an enhanced beacon. This field is
reserved for future use and should be set
to NULL.

uint8_t numIEs The number of information elements in the
buffer (size of buffer at pIEIDs). This field
is reserved for future use and should be
set to 0.

struct ApiMac_mlmeStartReq_t MLME start request type

Data Fields

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Data Structure Documentation

143SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

uint32_t startTime The time to begin transmitting beacons
relative to the received beacon

uint16_t panId The PAN ID to use. This parameter is
ignored if panCoordinator is FALSE.

uint8_t logicalChannel The logical channel to use. This
parameter is ignored if panCoordinator is
FALSE.

uint8_t channelPage The channel page to use. This parameter
is ignored if panCoordinator is FALSE.

uint8_t phyID PHY ID corresponding to the PHY
descriptor to use

uint8_t beaconOrder The exponent used to calculate the
beacon interval

uint8_t superframeOrder The exponent used to calculate the
superframe duration

bool panCoordinator Set to TRUE to start a network as PAN
coordinator

bool batteryLifeExt If this value is TRUE, the receiver is
disabled after
MAC_BATT_LIFE_EXT_PERIODS full
backoff periods following the interframe
spacing period of the beacon frame.

bool coordRealignment Set to TRUE to transmit a coordinator
realignment prior to changing the
superframe configuration

ApiMac_sec_t realignSec Security parameters for the coordinator
realignment frame

ApiMac_sec_t beaconSec Security parameters for the beacon frame
ApiMac_mpmParams_t mpmParams MPM (multi-PHY layer management)

parameters
bool startFH Indicates whether frequency hopping must

be enabled

struct ApiMac_mlmeSyncReq_t MAC_MlmeSyncReq type

Data Fields

uint8_t logicalChannel The logical channel to use
uint8_t channelPage The channel page to use
uint8_t phyID PHY ID corresponding to the PHY

descriptor to use
uint8_t trackBeacon Set to TRUE to continue tracking beacons

after synchronizing with the first beacon.
Set to FALSE to only synchronize with the
first beacon.

struct ApiMac_mlmeWSAsyncReq_t MLME WiSUN Async request type

Data Fields

ApiMac_wisunAsycnOperation_t operation Start or Stop Async operation
ApiMac_wisunAsyncFrame_t frameType Async frame type
uint8_t channels[APIMAC_154G_CHANNEL_BITM

AP_SIZ]
Bit mask indicating which channels to
send the Async frames for the start
operation

ApiMac_sec_t sec The security parameters for this message

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Data Structure Documentation www.ti.com

144 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

struct ApiMac_secAddDevice_t Structure to pass information to the ApiMac_secAddDevice().

Data Fields

uint16_t panID PAN ID of the new device
uint16_t shortAddr Short address of the new device
ApiMac_sAddrExt_t extAddr Extended address of the new device
bool exempt Device descriptor exempt field value (true

or false); setting this field to true means
that this device can override the minimum
security level setting.

uint8_t keyIdLookupDataSize Key ID lookup data size as it is stored in
PIB, (that is, 0 for 5 bytes, 1 for 9 bytes).

uint8_t keyIdLookupData[APIMAC_MAX_KEY_L
OOKUP_LEN]

Key ID lookup data, to look for the key
table entry and create proper key device
descriptor for this device.

uint32_t frameCounter Frame counter
bool uniqueDevice Key device descriptor uniqueDevice field

value (true or false)
bool duplicateDevFlag A flag (true or false) to indicate whether

the device entry should be duplicated
even for the keys that do not match the
key ID lookup data. The device
descriptors that are pointed by the key
device descriptors that do not match the
key ID lookup data do not update the
frame counter based on the frameCounter
argument to this function, or set the frame
counter to zero when the entry is newly
created.

struct ApiMac_secAddKeyInitFrameCounter_t Structure to pass information to the
ApiMac_secAddKeyInitFrameCounter().

Data Fields

uint8_t key[APIMAC_KEY_MAX_LEN] Key
uint32_t frameCounter Frame counter
uint8_t replaceKeyIndex Key index of the mac security key table

where the key must be written
bool newKeyFlag If set to true, the function duplicates the

device table entries associated with the
previous key, and associates it with the
key. If set to false, the function does not
alter the device table entries associated
with whatever key that was stored in the
key table location, as designated by
replaceKeyIndex.

uint8_t lookupDataSize Key ID lookup data size as it is stored in
PIB, that is, 0 for 5 bytes, 1 for 9 bytes.

uint8_t lookupData[APIMAC_MAX_KEY_LOOKU
P_LEN]

Key ID lookup data, to look for the key
table entry and create a proper key device
descriptor for this device.

struct ApiMac_mlmeAssociateInd_t MAC_MLME_ASSOCIATE_IND type

Data Fields

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Data Structure Documentation

145SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

ApiMac_sAddrExt_t deviceAddress The address of the device requesting
association

ApiMac_capabilityInfo_t capabilityInformation The operational capabilities of the device
requesting association

ApiMac_sec_t sec The security parameters for this message

struct ApiMac_mlmeAssociateCnf_t MAC_MLME_ASSOCIATE_CNF type

Data Fields

ApiMac_assocStatus_t status Status of associate attempt
uint16_t assocShortAddress If successful, the short address allocated

to this device
ApiMac_sec_t sec The security parameters for this message

struct ApiMac_mlmeDisassociateInd_t MAC_MLME_DISASSOCIATE_IND type

Data Fields

ApiMac_sAddrExt_t deviceAddress The address of the device sending the
disassociate command

ApiMac_disassocateReason_t disassociateReason The disassociate reason
ApiMac_sec_t sec The security parameters for this message

struct ApiMac_mlmeDisassociateCnf_t MAC_MLME_DISASSOCIATE_CNF type

Data Fields

ApiMac_status_t status Status of the disassociate attempt
ApiMac_sAddr_t deviceAddress The address of the device that has either

requested disassociation or been
instructed to disassociate by its
coordinator.

uint16_t panId The pan ID of the device that has either
requested disassociation or been
instructed to disassociate by its
coordinator.

struct ApiMac_beaconData_t MAC Beacon data type

Data Fields

uint8_t numPendShortAddr The number of pending short addresses
uint16_t * pShortAddrList The list of device short addresses for

which the sender of the beacon has data
uint8_t numPendExtAddr The number of pending extended

addresses
uint8_t * pExtAddrList The list of device short addresses for

which the sender of the beacon has data
uint8_t sduLength The number of bytes in the beacon

payload of the beacon frame
uint8_t * pSdu The beacon payload

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Data Structure Documentation www.ti.com

146 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

struct ApiMac_coexist_t Coexistence information element content type

Data Fields

uint8_t beaconOrder Specifies the transmission interval of the
beacon

uint8_t superFrameOrder Specifies the length of time during which
the superframe is active (that is, receiver-
enabled), including the beacon frame
transmission time.

uint8_t finalCapSlot Final CAP slot
uint8_t eBeaconOrder Specifies the transmission interval of the

enhanced beacon frames in a beacon-
enabled network

uint8_t offsetTimeSlot Time offset between periodic beacon and
the enhanced beacon.

uint8_t capBackOff Actual slot position in which the enhanced
beacon frame is transmitted due to the
backoff procedure in the CAP

uint16_t eBeaconOrderNBPAN Specifies the transmission interval
between consecutive enhanced beacon
frames in the nonbeacon-enabled mode

struct ApiMac_eBeaconData_t MAC enhanced beacon data type

Data Fields

ApiMac_coexist_t coexist Beacon coexist data

struct ApiMac_mlmeBeaconNotifyInd_t MAC_MLME_BEACON_NOTIFY_IND type

Data Fields

ApiMac_beaconType_t beaconType Indicates the beacon type: beacon or
enhanced beacon

uint8_t bsn The beacon sequence number or
enhanced beacon sequence number

ApiMac_panDesc_t panDesc The PAN descriptor for the received
beacon

union ApiMac_mlmeBeaconNotifyInd_t beaconData Beacon data union depending on
beaconType, select beaconData or or
eBeaconData.

struct ApiMac_mlmeOrphanInd_t MAC_MLME_ORPHAN_IND type

Data Fields

ApiMac_sAddrExt_t orphanAddress The address of the orphaned device
ApiMac_sec_t sec The security parameters for this message

struct ApiMac_mlmeScanCnf_t MAC_MLME_SCAN_CNF type

Data Fields

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Data Structure Documentation

147SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

ApiMac_status_t status Status of the scan request
ApiMac_scantype_t scanType The type of scan requested
uint8_t channelPage The channel page of the scan
uint8_t phyId PHY ID corresponding to the PHY

descriptor used during scan
uint8_t unscannedChannels[APIMAC_154G_CHA

NNEL_BITMAP_SIZ]
Bit mask of channels that were not
scanned

uint8_t resultListSize The number of PAN descriptors returned
in the results list

union ApiMac_mlmeScanCnf_t result Depending on the scanType the results
are in this union

struct ApiMac_mlmeStartCnf_t MAC_MLME_START_CNF type

Data Fields

ApiMac_status_t status Status of the start request

struct ApiMac_mlmeSyncLossInd_t MAC_MLME_SYNC_LOSS_IND type

Data Fields

ApiMac_status_t reason Reason that the synchronization was lost
uint16_t panId The PAN ID of the realignment
uint8_t logicalChannel The logical channel of the realignment
uint8_t channelPage The channel page of the realignment
uint8_t phyID PHY ID corresponding to the PHY

descriptor of the realignment
ApiMac_sec_t sec The security parameters for this message

struct ApiMac_mlmePollCnf_t MAC_MLME_POLL_CNF type

Data Fields

ApiMac_status_t status Status of the poll request
uint8_t framePending Set if framePending bit in data packet is

set

struct ApiMac_mlmeCommStatusInd_t MAC_MLME_COMM_STATUS_IND type

Data Fields

ApiMac_status_t status Status of the event
ApiMac_sAddr_t srcAddr The source address associated with the

event
ApiMac_sAddr_t dstAddr The destination address associated with

the event
uint16_t panId The PAN ID associated with the event
ApiMac_commStatusReason_t reason The reason the event was generated
ApiMac_sec_t sec The security parameters for this message

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Data Structure Documentation www.ti.com

148 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

struct ApiMac_mlmePollInd_t MAC_MLME_POLL_IND type

Data Fields

ApiMac_sAddr_t srcAddr Address of the device sending the data
request

uint16_t srcPanId Pan ID of the device sending the data
request

bool noRsp indication that no MAC_McpsDataReq() is
required. It is set when
MAC_MLME_POLL_IND is generated, to
indicate that a received data request
frame was acked with the pending bit
cleared.

struct ApiMac_mlmeWsAsyncCnf_t MAC_MLME_WS_ASYNC_FRAME_CNF type

Data Fields

ApiMac_status_t status Status of the Async request

struct ApiMac_callbacks_t Structure containing all the MAC callbacks (indications). To receive the
confirmation or indication, fill in the associated callback with a pointer to the
function that handles that callback. To ignore a callback, set that function pointer
to NULL.

Data Fields

ApiMac_associateIndFp_t pAssocIndCb Associate indicated callback
ApiMac_associateCnfFp_t pAssocCnfCb Associate confirmation callback
ApiMac_disassociateIndFp_t pDisassociateIndCb Disassociate indication callback
ApiMac_disassociateCnfFp_t pDisassociateCnfCb Disassociate confirmation callback
ApiMac_beaconNotifyIndFp_t pBeaconNotifyIndCb Beacon notify indication callback
ApiMac_orphanIndFp_t pOrphanIndCb Orphan indication callback
ApiMac_scanCnfFp_t pScanCnfCb Scan confirmation callback
ApiMac_startCnfFp_t pStartCnfCb Start confirmation callback
ApiMac_syncLossIndFp_t pSyncLossIndCb Sync loss indication callback
ApiMac_pollCnfFp_t pPollCnfCb Poll confirm callback
ApiMac_commStatusIndFp_t pCommStatusCb Comm status indication callback
ApiMac_pollIndFp_t pPollIndCb Poll indication callback
ApiMac_dataCnfFp_t pDataCnfCb Data confirmation callback
ApiMac_dataIndFp_t pDataIndCb Data indication callback
ApiMac_purgeCnfFp_t pPurgeCnfCb Purge confirm callback
ApiMac_wsAsyncIndFp_t pWsAsyncIndCb WiSUN Async indication callback
ApiMac_wsAsyncCnfFp_t pWsAsyncCnfCb WiSUN Async confirmation callback
ApiMac_unprocessedFp_t pUnprocessedCb Unprocessed message callback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Macro Definition Documentation

149SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

union ApiMac_sAddr_t.addr The address can be either a long address or a short address, depending
the addrMode field.

Data Fields

uint16_t shortAddr 16-bit address
ApiMac_sAddrExt_t extAddr Extended address

union ApiMac_mlmeBeaconNotifyInd_t.beaconData Beacon data union; depending on beaconType,
select beaconData or or eBeaconData.

Data Fields

ApiMac_beaconData_t beacon Beacon data
ApiMac_eBeaconData_t eBeacon Enhanced beacon data

union ApiMac_mlmeScanCnf_t.result Depending on the scanType, the results are in this union.

Data Fields

uint8_t * pEnergyDetect The list of energy measurements, one for
each channel scanned

ApiMac_panDesc_t * pPanDescriptor The list of PAN descriptors, one for each
beacon found

13.4 Macro Definition Documentation
• #define APIMAC_KEY_MAX_LEN 16

Key Length
• #define APIMAC_SADDR_EXT_LEN 8 IEEE

Address Length
• #define APIMAC_MAX_KEY_TABLE_ENTRIES 2

Maximum number of key table entries
• #define APIMAC_KEYID_IMPLICIT_LEN 0

Key identifier field length – Implicit mode
• #define APIMAC_KEYID_MODE1_LEN 1

Key identifier field length – mode 1
• #define APIMAC_KEYID_MODE4_LEN 5

Key Identifier field length – mode 4
• #define APIMAC_KEYID_MODE8_LEN 9

Key Identifier field length – mode 8
• #define APIMAC_KEY_SOURCE_MAX_LEN 8

Key source maximum length in bytes
• #define APIMAC_KEY_INDEX_LEN 1

Key index length in bytes
• #define APIMAC_FRAME_COUNTER_LEN 4

Frame counter length in bytes
• #define APIMAC_KEY_LOOKUP_SHORT_LEN 5

Key lookup data length in bytes – short length

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Macro Definition Documentation www.ti.com

150 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

• #define APIMAC_KEY_LOOKUP_LONG_LEN 9
Key lookup data length in bytes – long length

• #define APIMAC_MAX_KEY_LOOKUP_LEN APIMAC_KEY_LOOKUP_LONG_LEN
Key lookup data length in bytes – lookup length

• #define APIMAC_DATA_OFFSET 24
Bytes required for MAC header in data frame

• #define APIMAC_MAX_BEACON_PAYLOAD 16
Maximum length allowed for the beacon payload

• #define APIMAC_MIC_32_LEN 4
Length required for MIC-32 authentication

• #define APIMAC_MIC_64_LEN 8
Length required for MIC-64 authentication

• #define APIMAC_MIC_128_LEN 16
Length required for MIC-128 authentication

• #define APIMAC_MHR_LEN 37
MHR length for received frame
FCF (2) + Seq (1) + Addr Fields (20) + Security HDR (14)

• #define APIMAC_CHANNEL_PAGE_9 9
Channel Page – standard-defined SUN PHY operating modes

• #define APIMAC_CHANNEL_PAGE_10 10
Channel Page – MR-FSK Generic-PHY-defined PHY modes

• #define APIMAC_STANDARD_PHY_DESCRIPTOR_ENTRIES 3
Maximum number of standard PHY descriptor entries

• #define APIMAC_GENERIC_PHY_DESCRIPTOR_ENTRIES 3
Maximum number of generic PHY descriptor entries

• #define APIMAC_STD_US_915_PHY_1 1
PHY IDs – 915-MHz US frequency band operating mode # 1

• #define APIMAC_STD_US_915_PHY_2 2
PHY IDs – 915-MHz US frequency band operating mode # 2

• #define APIMAC_STD_ETSI_863_PHY_3 3
863-MHz ETSI frequency band operating mode #1

• #define APIMAC_MRFSK_GENERIC_PHY_ID_BEGIN 128
PHY IDs – MRFSK generic Phy ID start

• #define APIMAC_MRFSK_GENERIC_PHY_ID_END 143
PHY IDs – MRFSK generic Phy ID end

• #define APIMAC_MRFSK_STD_PHY_ID_BEGIN APIMAC_STD_US_915_PHY_1
PHY IDs – MRFSK standard Phy ID start

• #define APIMAC_MRFSK_STD_PHY_ID_END APIMAC_STD_ETSI_863_PHY_3
PHY IDs – MRFSK standard Phy ID end

• #define APIMAC_PHY_DESCRIPTOR 0x01
PHY descriptor table entry

• #define APIMAC_ADDR_USE_EXT 0xFFFE
Special address value – Short address value indicating extended address is used

• #define APIMAC_SHORT_ADDR_BROADCAST 0xFFFF
Special address value – Broadcast short address

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Macro Definition Documentation

151SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

• #define APIMAC_SHORT_ADDR_NONE 0xFFFF
Special address value – Short address when there is no short address

• #define APIMAC_RANDOM_SEED_LEN 32
The length of the random seed is set for maximum requirement, which is 32

• #define APIMAC_FH_UTT_IE 0x00000002
Frequency-hopping UTT IE selection bit

• #define APIMAC_FH_BT_IE 0x00000008
Frequency-hopping BT IE selection bit

• #define APIMAC_FH_US_IE 0x00010000
Frequency-hopping US IE selection bit

• #define APIMAC_FH_BS_IE 0x00020000
Frequency-hopping BS IE selection bit

• #define APIMAC_FH_HEADER_IE_MASK 0x000000FF
Frequency-hopping header IE mask

• #define APIMAC_FH_PROTO_DISPATCH_NONE 0x00
Frequency-hopping protocol dispatch values – Protocol dispatch none

• #define APIMAC_FH_PROTO_DISPATCH_MHD_PDU 0x01
Frequency-hopping protocol dispatch values – Protocol dispatch MHD-PDU

• #define APIMAC_FH_PROTO_DISPATCH_6LOWPAN 0x02
Frequency-hopping protocol dispatch values – Protocol dispatch 6LOWPAN

• #define APIMAC_154G_MAX_NUM_CHANNEL 129
Maximum number of channels

• #define APIMAC_154G_CHANNEL_BITMAP_SIZ ((APIMAC_154G_MAX_NUM_CHANNEL + 7) / 8)
Bitmap size to hold the channel list

• #define APIMAC_HEADER_IE_MAX 2
Maximum number of header IEs

• #define APIMAC_PAYLOAD_IE_MAX 2
Maximum number of payload-IEs

• #define APIMAC_PAYLOAD_SUB_IE_MAX 4
Maximum number of sub-IEs

• #define APIMAC_SFS_BEACON_ORDER(s) ((s) & 0x0F)
MACRO that returns the beacon order from the superframe specification

• #define APIMAC_SFS_SUPERFRAME_ORDER(s) (((s) >> 4) & 0x0F)
MACRO that returns the superframe order from the superframe specification

• #define APIMAC_SFS_FINAL_CAP_SLOT(s) (((s) >> 8) & 0x0F)
MACRO that returns the final CAP slot from the superframe specification

• #define APIMAC_SFS_BLE(s) (((s) >> 12) & 0x01)
MACRO that returns the battery life extension bit from the superframe specification

• #define APIMAC_SFS_PAN_COORDINATOR(s) (((s) >> 14) & 0x01)
MACRO that returns the PAN coordinator bit from the superframe specification

• #define APIMAC_SFS_ASSOCIATION_PERMIT(s) (((s) >> 15) & 0x01)
MACRO that returns the Associate Permit bit from the superframe specification

• #define APIMAC_FH_MAX_BIT_MAP_SIZE 32
Maximum size of the frequency-hopping channel-map size

• #define APIMAC_FH_NET_NAME_SIZE_MAX 32

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Typedef Documentation www.ti.com

152 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

Maximum size of the frequency-hopping network name
• #define APIMAC_FH_GTK_HASH_SIZE 8

Size of the frequency-hopping GTK hash size

13.5 Typedef Documentation
• typedef uint8_t ApiMac_sAddrExt_t[APIMAC_SADDR_EXT_LEN]

Extended address
• typedef ApiMac_mcpsDataInd_t ApiMac_mlmeWsAsyncInd_t

MAC_MLME_WS_ASYNC_FRAME_IND type
• typedef void(* ApiMac_associateIndFp_t) (ApiMac_mlmeAssociateInd_t *pAssocInd)

Associate Indication Callback function pointer prototype for the callback table
• typedef void(* ApiMac_associateCnfFp_t) (ApiMac_mlmeAssociateCnf_t *pAssocCnf)

Assocate Confirmation Callback function pointer prototype for the callback table
• typedef void(* ApiMac_disassociateIndFp_t) (ApiMac_mlmeDisassociateInd_t *pDisassociateInd)

Disassociate Indication Callback function pointer prototype for the callback table
• typedef void(* ApiMac_disassociateCnfFp_t) (ApiMac_mlmeDisassociateCnf_t *pDisassociateCnf)

Disassociate Confirm Callback function pointer prototype for the callback table
• typedef void(* ApiMac_beaconNotifyIndFp_t) (ApiMac_mlmeBeaconNotifyInd_t *pBeaconNotifyInd)

Beacon Notify Indication Callback function pointer prototype for the callback table
• typedef void(* ApiMac_orphanIndFp_t) (ApiMac_mlmeOrphanInd_t *pOrphanInd)

Orphan Indication Callback function pointer prototype for the callback table
• typedef void(* ApiMac_scanCnfFp_t) (ApiMac_mlmeScanCnf_t *pScanCnf)

Scan Confirmation Callback function pointer prototype for the callback table
• typedef void(* ApiMac_startCnfFp_t) (ApiMac_mlmeStartCnf_t *pStartCnf)

Start Confirmation Callback function pointer prototype for the callback table
• typedef void(* ApiMac_syncLossIndFp_t) (ApiMac_mlmeSyncLossInd_t *pSyncLossInd)

Sync Loss Indication Callback function pointer prototype for the callback table
• typedef void(* ApiMac_pollCnfFp_t) (ApiMac_mlmePollCnf_t *pPollCnf)

Poll Confirm Callback function pointer prototype for the callback table
• typedef void(* ApiMac_commStatusIndFp_t) (ApiMac_mlmeCommStatusInd_t *pCommStatus)

Comm Status Indication Callback function pointer prototype for the callback table
• typedef void(* ApiMac_pollIndFp_t) (ApiMac_mlmePollInd_t *pPollInd)

Poll Indication Callback function pointer prototype for the callback table
• typedef void(* ApiMac_dataCnfFp_t) (ApiMac_mcpsDataCnf_t *pDataCnf)

Data Confirmation Callback function pointer prototype for the callback table
• typedef void(* ApiMac_dataIndFp_t) (ApiMac_mcpsDataInd_t *pDataInd)

Data Indication Callback function pointer prototype for the callback table
• typedef void(* ApiMac_purgeCnfFp_t) (ApiMac_mcpsPurgeCnf_t *pPurgeCnf)

Purge Confirmation Callback function pointer prototype for the callback table
• typedef void(* ApiMac_wsAsyncIndFp_t) (ApiMac_mlmeWsAsyncInd_t *pWsAsyncInd)

WiSUN Async Indication Callback function pointer prototype for the callback table
• typedef void(* ApiMac_wsAsyncCnfFp_t) (ApiMac_mlmeWsAsyncCnf_t *pWsAsyncCnf)

WiSUN Async Confirmation Callback function pointer prototype for the callback table
• typedef void(* ApiMac_unprocessedFp_t) (uint16_t param1, uint16_t param2, void *pMsg)

Unprocessed Message Callback function pointer prototype for the callback table. This function is called
when an unrecognized message is received.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Enumeration Type Documentation

153SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

13.6 Enumeration Type Documentation
• enum ApiMac_assocStatus_t

Associate Response status types
Enumerator
– ApiMac_assocStatus_success: Success, join allowed
– ApiMac_assocStatus_panAtCapacity: PAN at capacity
– ApiMac_assocStatus_panAccessDenied: PAN access denied

• enum ApiMac_addrType_t
Address types – used to set addrMode field of the ApiMac_sAddr_t structure.
Enumerator
– ApiMac_addrType_none: Address not present
– ApiMac_addrType_short: Short address (16 bits)
– ApiMac_addrType_extended: Extended address (64 bits)

• enum ApiMac_beaconType_t
Beacon types in the ApiMac_mlmeBeaconNotifyInd_t structure.
Enumerator
– ApiMac_beaconType_normal: Normal beacon type
– ApiMac_beaconType_enhanced: Enhanced beacon type

• enum ApiMac_disassocateReason_t
Disassociate reasons
Enumerator
– ApiMac_disassocateReason_coord: The coordinator wishes the device to disassociate.
– ApiMac_disassocateReason_device: The device wishes to disassociate.

• enum ApiMac_commStatusReason_t
Comm status indication reasons
Enumerator
– ApiMac_commStatusReason_assocRsp: Reason for comm status indication was in response to an

associate response
– ApiMac_commStatusReason_orphanRsp: Reason for comm status indication was in response to

an orphan response
– ApiMac_commStatusReason_rxSecure: Reason for comm status indication was result of receiving

a secure frame
• enum ApiMac_status_t

General MAC status values
Enumerator
– ApiMac_status_success: Operation successful
– ApiMac_status_subSystemError: MAC co-processor only – subsystem error
– ApiMac_status_commandIDError: MAC co-processor only – command ID error
– ApiMac_status_lengthError: MAC co-processor only – length error
– ApiMac_status_unsupportedType: MAC co-processor only – unsupported extended type
– ApiMac_status_autoAckPendingAllOn: The AUTOPEND pending all is turned on.
– ApiMac_status_autoAckPendingAllOff: The AUTOPEND pending all is turned off.
– ApiMac_status_beaconLoss: The beacon was lost following a synchronization request.
– ApiMac_status_channelAccessFailure: The operation or data request failed because of activity on

the channel.
– ApiMac_status_counterError: The frame counter applied by the originator of the received frame is

invalid.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Enumeration Type Documentation www.ti.com

154 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

– ApiMac_status_denied: The MAC was not able to enter low-power mode.
– ApiMac_status_disabledTrxFailure: Unused
– ApiMac_status_frameTooLong: The received frame or frame resulting from an operation or data

request is too long to be processed by the MAC.
– ApiMac_status_improperKeyType: The key applied by the originator of the received frame is not

allowed.
– ApiMac_status_improperSecurityLevel: The security level applied by the originator of the received

frame does not meet the minimum security level.
– ApiMac_status_invalidAddress: The data request failed because neither the source address nor the

destination address parameters were present.
– ApiMac_status_invalidGts: Unused
– ApiMac_status_invalidHandle: The purge request contained an invalid handle.
– ApiMac_status_invalidIndex: Unused
– ApiMac_status_invalidParameter: The API function parameter is out of range.
– ApiMac_status_limitReached: The scan terminated because the PAN descriptor storage limit was

reached.
– ApiMac_status_noAck: The operation or data request failed because no acknowledgement was

received.
– ApiMac_status_noBeacon: The scan request failed because no beacons were received, or the

orphan scan failed because no coordinator realignment was received.
– ApiMac_status_noData: The associate request failed because no associate response was received,

or the poll request did not return any data.
– ApiMac_status_noShortAddress: The short address parameter of the start request was invalid.
– ApiMac_status_onTimeTooLong: Unused
– ApiMac_status_outOfCap: Unused
– ApiMac_status_panIdConflict: A PAN identifier conflict was detected and communicated to the PAN

coordinator.
– ApiMac_status_pastTime: Unused
– ApiMac_status_readOnly: A set request was issued with a read-only identifier.
– ApiMac_status_realignment: A coordinator realignment command was received.
– ApiMac_status_scanInProgress: The scan request failed because a scan is already in progress.
– ApiMac_status_securityError: Cryptographic processing of the received secure frame failed.
– ApiMac_status_superframeOverlap: The beacon start time overlapped the coordinator transmission

time.
– ApiMac_status_trackingOff: The start request failed because the device is not tracking the beacon

of its coordinator.
– ApiMac_status_transactionExpired: The associate response, disassociate request, or indirect data

transmission failed because the peer device did not respond before the transaction expired or was
purged.

– ApiMac_status_transactionOverflow: The request failed because the MAC data buffers are full.
– ApiMac_status_txActive: Unused
– ApiMac_status_unavailableKey: The operation or data request failed because the security key is

not available.
– ApiMac_status_unsupportedAttribute: The set or get request failed because the attribute is not

supported.
– ApiMac_status_unsupportedLegacy: The received frame was secured with legacy security which is

not supported.
– ApiMac_status_unsupportedSecurity: The security of the received frame is not supported.
– ApiMac_status_unsupported: The operation is not supported in the current configuration.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Enumeration Type Documentation

155SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

– ApiMac_status_badState: The operation could not be performed in the current state.
– ApiMac_status_noResources: The operation could not be completed because no memory

resources were available.
– ApiMac_status_ackPending: For internal use only
– ApiMac_status_noTime: For internal use only
– ApiMac_status_txAborted: For internal use only
– ApiMac_status_duplicateEntry: For internal use only – a duplicated entry is added to the source

matching table.
– ApiMac_status_fhError: Frequency hopping – general error
– ApiMac_status_fhIeNotSupported: Frequency hopping – IE is not supported
– ApiMac_status_fhNotInAsync: Frequency hopping – there is no ASYNC message in the MAC TX

queue.
– ApiMac_status_fhNotInNeighborTable: Frequency hopping – the destination address is not in the

neighbor table.
– ApiMac_status_fhOutSlot: Frequency hopping – not in UC or BC dwell time slot
– ApiMac_status_fhInvalidAddress: Frequency hopping – invalid address
– ApiMac_status_fhIeFormatInvalid: Frequency hopping – IE format is wrong
– ApiMac_status_fhPibNotSupported: Frequency hopping – PIB is not supported
– ApiMac_status_fhPibReadOnly: Frequency hopping – PIB is read only
– ApiMac_status_fhPibInvalidParameter: Frequency hopping – PIB API invalid parameter
– ApiMac_status_fhInvalidFrameType: Frequency hopping – invalid frame type
– ApiMac_status_fhExpiredNode: Frequency hopping – expired node

• enum ApiMac_secLevel_t MAC
Security levels
Enumerator
– ApiMac_secLevel_none: No security is used
– ApiMac_secLevel_mic32: MIC-32 authentication is used
– ApiMac_secLevel_mic64: MIC-64 authentication is used
– ApiMac_secLevel_mic128: MIC-128 authentication is used
– ApiMac_secLevel_enc: AES encryption is used
– ApiMac_secLevel_encMic32: AES encryption and MIC-32 authentication are used
– ApiMac_secLevel_encMic64: AES encryption and MIC-64 authentication are used
– ApiMac_secLevel_encMic128: AES encryption and MIC-128 authentication are used

• enum ApiMac_keyIdMode_t
Key identifier mode
Enumerator
– ApiMac_keyIdMode_implicit: Key is determined implicitly
– ApiMac_keyIdMode_1: Key is determined from the 1-byte key index
– ApiMac_keyIdMode_4: Key is determined from the 4-byte key index
– ApiMac_keyIdMode_8: Key is determined from the 8-byte key index

• enum ApiMac_attribute_bool_t
Standard PIB Get and Set attributes – size bool
Enumerator
– ApiMac_attribute_associatePermit: TRUE if a coordinator is currently allowing association
– ApiMac_attribute_autoRequest: TRUE if a device automatically sends a data request if its address

is listed in the beacon frame
– ApiMac_attribute_battLifeExt: TRUE if battery life extension is enabled

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Enumeration Type Documentation www.ti.com

156 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

– ApiMac_attribute_gtsPermit: TRUE if the PAN coordinator accepts GTS requests
– ApiMac_attribute_promiscuousMode: TRUE if the MAC is in promiscuous mode
– ApiMac_attribute_RxOnWhenIdle: TRUE if the MAC enables its receiver during idle periods
– ApiMac_attribute_associatedPanCoord: TRUE if the device is associated to the PAN coordinator
– ApiMac_attribute_timestampSupported: TRUE if the MAC supports RX and TX timestamps
– ApiMac_attribute_securityEnabled: TRUE if security is enabled
– ApiMac_attribute_includeMPMIE: TRUE if MPM IE must be included
– ApiMac_attribute_fcsType: FCS type

• enum ApiMac_attribute_uint8_t
Standard PIB Get and Set attributes – size uint8_t
Enumerator
– ApiMac_attribute_ackWaitDuration: The maximum number of symbols to wait for an

acknowledgment frame
– ApiMac_attribute_battLifeExtPeriods: The number of backoff periods during which the receiver is

enabled following a beacon in battery-life extension mode
– ApiMac_attribute_beaconPayloadLength: The length in bytes of the beacon payload; the maximum

value for this parameters is APIMAC_MAX_BEACON_PAYLOAD.
– ApiMac_attribute_beaconOrder: How often the coordinator transmits a beacon
– ApiMac_attribute_bsn: The beacon sequence number
– ApiMac_attribute_dsn: The data or MAC command frame sequence number
– ApiMac_attribute_maxCsmaBackoffs: The maximum number of backoffs the CSMA-CA algorithm

attempts before declaring a channel failure
– ApiMac_attribute_backoffExponent: The minimum value of the backoff exponent in the CSMA-CA

algorithm. If this value is set to 0, collision avoidance is disabled during the first iteration of the
algorithm. Also, for the slotted version of the CSMA-CA algorithm with the battery life extension
enabled, the minimum value of the backoff exponent will be at least 2.

– ApiMac_attribute_superframeOrder: This specifies the length of the active portion of the superframe
– ApiMac_attribute_maxBackoffExponent: The maximum value of the backoff exponent in the CSMA-

CA algorithm
– ApiMac_attribute_maxFrameRetries: The maximum number of retries allowed after a transmission

failure
– ApiMac_attribute_responseWaitTime: The maximum number of symbols a device waits for a

response command to be available following a request command in multiples of
aBaseSuperframeDuration

– ApiMac_attribute_syncSymbolOffset: The timestamp offset from SFD in symbols
– ApiMac_attribute_eBeaconSequenceNumber: Enhanced beacon sequence number
– ApiMac_attribute_eBeaconOrder: Enhanced beacon order in a beacon-enabled network
– ApiMac_attribute_offsetTimeslot: Offset time slot from the beacon
– ApiMac_attribute_phyTransmitPowerSigned: Duplicate transmit power attribute in signed (2's

complement) dBm unit
– ApiMac_attribute_logicalChannel: The logical channel
– ApiMac_attribute_altBackoffExponent: Alternate minimum backoff exponent
– ApiMac_attribute_deviceBeaconOrder: Device beacon order
– ApiMac_attribute_rf4cePowerSavings: Valid values are true and false
– ApiMac_attribute_frameVersionSupport: Currently supports 0 and 1. If 0, frame version is always 0

and set to 1 only for secure frames. If 1, frame version is set to 1 only if packet len > 102 or for
secure frames.

– ApiMac_attribute_channelPage: Channel page
– ApiMac_attribute_phyCurrentDescriptorId: PHY descriptor ID, used to support the channel page

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Enumeration Type Documentation

157SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

number and index into the descriptor table.
• enum ApiMac_attribute_uint16_t

Standard PIB Get and Set attributes – size uint16_t
Enumerator
– ApiMac_attribute_coordShortAddress: The short address assigned to the coordinator with which the

device is associated. A value of MAC_ADDR_USE_EXT indicates that the coordinator is using its
extended address.

– ApiMac_attribute_panId: The PAN identifier. If this value is 0xffff, the device is not associated.
– ApiMac_attribute_shortAddress: The short address that the device uses to communicate in the

PAN. If the device is a PAN coordinator, this value is set before calling MAC_StartReq().
Otherwise, the value is allocated during association. Value MAC_ADDR_USE_EXT indicates that
the device is associated but not using a short address.

– ApiMac_attribute_transactionPersistenceTime: The maximum time in beacon intervals that a
transaction is stored by a coordinator and indicated in the beacon.

– ApiMac_attribute_maxFrameTotalWaitTime: The maximum number of CAP symbols in a beacon-
enabled PAN, or symbols in a non beacon-enabled PAN, to wait for a frame intended as a
response to a data request frame.

– ApiMac_attribute_eBeaconOrderNBPAN: Enhanced beacon order in a nonbeacon-enabled network
• enum ApiMac_attribute_uint32_t

Standard PIB Get and Set attributes – size uint32_t
Enumerator
– ApiMac_attribute_beaconTxTime: The time the device transmitted its last beacon frame, in backoff

period units.
– ApiMac_attribute_diagRxCrcPass: Diagnostics PIB – Received CRC pass counter
– ApiMac_attribute_diagRxCrcFail: Diagnostics PIB – Received CRC fail counter
– ApiMac_attribute_diagRxBroadcast: Diagnostics PIB – Received broadcast counter
– ApiMac_attribute_diagTxBroadcast: Diagnostics PIB – Transmitted broadcast counter
– ApiMac_attribute_diagRxUnicast: Diagnostics PIB – Received unicast counter
– ApiMac_attribute_diagTxUnicast: Diagnostics PIB – Transmitted unicast counter
– ApiMac_attribute_diagTxUnicastRetry: Diagnostics PIB – Transmitted unicast retry counter
– ApiMac_attribute_diagTxUnicastFail: Diagnostics PIB – Transmitted unicast fail counter
– ApiMac_attribute_diagRxSecureFail: Diagnostics PIB – Received Security fail counter
– ApiMac_attribute_diagTxSecureFail: Diagnostics PIB – Transmit Security fail counter

• enum ApiMac_attribute_array_t
Standard PIB Get and Set attributes – these attributes are an array of bytes
Enumerator
– ApiMac_attribute_beaconPayload: The contents of the beacon payload
– ApiMac_attribute_coordExtendedAddress: The extended address of the coordinator with which the

device is associated
– ApiMac_attribute_extendedAddress: The extended address of the device

• enum ApiMac_securityAttribute_uint8_t
Security PIB Get and Set attributes – size uint8_t
Enumerator
– ApiMac_securityAttribute_keyTableEntries: The number of entries in macKeyTable
– ApiMac_securityAttribute_deviceTableEntries: The number of entries in macDeviceTable
– ApiMac_securityAttribute_securityLevelTableEntries: The number of entries in

macSecurityLevelTable
– ApiMac_securityAttribute_autoRequestSecurityLevel: The security level used for automatic data

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Enumeration Type Documentation www.ti.com

158 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

requests
– ApiMac_securityAttribute_autoRequestKeyIdMode: The key identifier mode used for automatic data

requests
– ApiMac_securityAttribute_autoRequestKeyIndex: The index of the key used for automatic data

requests
• enum ApiMac_securityAttribute_uint16_t

Security PIB Get and Set attributes – size uint16_t
Enumerator
– ApiMac_securityAttribute_panCoordShortAddress: The 16-bit short address assigned to the PAN

coordinator
• enum ApiMac_securityAttribute_array_t

Security PIB Get and Set attributes – array of bytes
Enumerator
– ApiMac_securityAttribute_autoRequestKeySource: The originator of the key used for automatic

data requests
– ApiMac_securityAttribute_defaultKeySource: The originator of the default key used for key ID mode

0x01
– ApiMac_securityAttribute_panCoordExtendedAddress: The 64-bit address of the PAN coordinator

• enum ApiMac_securityAttribute_struct_t
Security PIB Get and Set attributes – these attributes are structures
Enumerator
– ApiMac_securityAttribute_keyTable: A table of KeyDescriptor entries, each containing keys and

related information required for secured communications. This is a SET-only attribute. Call
ApiMac_mlmeSetSecurityReqStruct() with pValue set to NULL, for the MAC to build the table.

– ApiMac_securityAttribute_keyIdLookupEntry: The key lookup table entry, and part of an entry of the
key table. To GET or SET to this attribute, setup the keyIndex and keyIdLookupIndex fields of
ApiMac_securityPibKeyIdLookupEntry_t, call ApiMac_mlmeGetSecurityReqStruct() or
ApiMac_mlmeSetSecurityReqStruct() with a pointer to the ApiMac_securityPibKeyIdLookupEntry_t
structure. For the GET, the lookupEntry field contains the required data.

– ApiMac_securityAttribute_keyDeviceEntry: The key device entry, and part of an entry of the key
table. To GET or SET to this attribute, setup the keyIndex and keyDeviceIndex fields of
ApiMac_securityPibKeyDeviceEntry_t, call ApiMac_mlmeGetSecurityReqStruct() or
ApiMac_mlmeSetSecurityReqStruct() with a pointer to the ApiMac_securityPibKeyDeviceEntry_t
structure. For the GET, the deviceEntry field contains the required data.

– ApiMac_securityAttribute_keyUsageEntry: The key usage entry, and part of an entry of the key
table. To GET or SET to this attribute, setup the keyIndex and keyUsageIndex fields of
ApiMac_securityPibKeyUsageEntry_t, call ApiMac_mlmeGetSecurityReqStruct() or
ApiMac_mlmeSetSecurityReqStruct() with a pointer to the ApiMac_securityPibKeyUsageEntry_t
structure. For the GET, the usageEntry field contains the required data.

– ApiMac_securityAttribute_keyEntry: The MAC key entry, and an entry of the key table. To GET or
SET to this attribute, setup the keyIndex field of ApiMac_securityPibKeyEntry_t, call
ApiMac_mlmeGetSecurityReqStruct() or ApiMac_mlmeSetSecurityReqStruct() with a pointer to the
ApiMac_securityPibKeyEntry_t structure. For the GET, the rest of the fields contain the required
data.

– ApiMac_securityAttribute_deviceEntry: The MAC device entry, and an entry of the device table. To
GET or SET to this attribute, setup the deviceIndex field of ApiMac_securityPibDeviceEntry_t, call
ApiMac_mlmeGetSecurityReqStruct() or ApiMac_mlmeSetSecurityReqStruct() with a pointer to the
ApiMac_securityPibDeviceEntry_t structure. For the GET, the deviceEntry field contains the
required data.

– ApiMac_securityAttribute_securityLevelEntry: The MAC security level entry, and an entry of the
security level table. To GET or SET to this attribute, setup the levelIndex field of
ApiMac_securityPibSecurityLevelEntry_t, call ApiMac_mlmeGetSecurityReqStruct() or
ApiMac_mlmeSetSecurityReqStruct() with a pointer to the ApiMac_securityPibSecurityLevelEntry_t

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Enumeration Type Documentation

159SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

structure. For the GET, the levelEntry field contains the required data.
• enum ApiMac_FHAttribute_uint8_t

Frequency-hopping PIB Get and Set attributes – size uint8_t
Enumerator
– ApiMac_FHAttribute_unicastDwellInterval: Duration of the unicast slot of the node (in ms) – uint8_t
– ApiMac_FHAttribute_broadcastDwellInterval: Duration of the broadcast slot of the node (in ms) –

uint8_t
– ApiMac_FHAttribute_clockDrift: Clock drift in PPM – uint8_t
– ApiMac_FHAttribute_timingAccuracy: Timing accuracy in 10-µs resolution – uint8_t
– ApiMac_FHAttribute_unicastChannelFunction: Unicast channel-hopping function – uint8_t
– ApiMac_FHAttribute_broadcastChannelFunction: Broadcast channel-hopping function – uint8_t
– ApiMac_FHAttribute_useParentBSIE: Node is propagating parent BS-IE – uint8_t
– ApiMac_FHAttribute_routingCost: Estimate of routing path ETX to the PAN coordinator – uint8_t
– ApiMac_FHAttribute_routingMethod: RPL(1), MHDS(0) – uint8_t
– ApiMac_FHAttribute_eapolReady: Node can accept EAPOL message – uint8_t
– ApiMac_FHAttribute_fanTPSVersion: Wi-SUN FAN version – uint8_t
– ApiMac_FHAttribute_numNonSleepDevice: Number of non-sleepy device – uint8_t
– ApiMac_FHAttribute_numSleepDevice: Number of sleepy device – uint8_t

• enum ApiMac_FHAttribute_uint16_t
Frequency-hopping PIB Get and Set attributes – size uint16_t
Enumerator
– ApiMac_FHAttribute_broadcastSchedId: Broadcast schedule ID for broadcast channel-hopping

sequence – uint16_t
– ApiMac_FHAttribute_unicastFixedChannel: Unicast channel number when no hopping – uint16_t
– ApiMac_FHAttribute_broadcastFixedChannel: Broadcast channel number when no hopping –

uint16_t
– ApiMac_FHAttribute_panSize: Number of nodes in the PAN – uint16_t
– ApiMac_FHAttribute_panVersion: PAN version to notify PAN configuration changes – uint16_t
– ApiMac_FHAttribute_neighborValidTime: Time in minutes during which the node info considered as

valid – uint16_t
• enum ApiMac_FHAttribute_uint32_t

Frequency-hopping PIB Get and Set attributes – size uint32_t
Enumerator
– ApiMac_FHAttribute_BCInterval: Time between the start of two broadcast slots (in ms) – uint32_t

• enum ApiMac_FHAttribute_array_t
Frequency-hopping PIB Get and Set attributes – array of bytes
Enumerator
– ApiMac_FHAttribute_trackParentEUI: The parent EUI address – ApiMac_sAddrExt_t
– ApiMac_FHAttribute_unicastExcludedChannels: Unicast excluded channels –

APIMAC_FH_MAX_BIT_MAP_SIZE
– ApiMac_FHAttribute_broadcastExcludedChannels: Broadcast excluded channels –

APIMAC_FH_MAX_BIT_MAP_SIZE
– ApiMac_FHAttribute_netName: Network name – APIMAC_FH_NET_NAME_SIZE_MAX uint8_t
– ApiMac_FHAttribute_gtk0Hash: Low order 64 bits of SHA256 hash of GTK
– ApiMac_FHAttribute_gtk1Hash: Next low order 64 bits of SHA256 hash of GTK
– ApiMac_FHAttribute_gtk2Hash: Next low order 64 bits of SHA256 hash of GTK
– ApiMac_FHAttribute_gtk3Hash: Next low order 64 bits of SHA256 hash of GTK

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Enumeration Type Documentation www.ti.com

160 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

• enum ApiMac_fhFrameType_t
FH frame types
Enumerator
– ApiMac_fhFrameType_panAdvert: WiSUN PAN advertisement
– ApiMac_fhFrameType_panAdvertSolicit: WiSUN PAN advertisement solicit
– ApiMac_fhFrameType_config: WiSUN PAN config
– ApiMac_fhFrameType_configSolicit: WiSUN PAN config solicit
– ApiMac_fhFrameType_data: WiSUN Data frame
– ApiMac_fhFrameType_ack: WiSUN Ack frame
– ApiMac_fhFrameType_eapol: WiSUN Ack frame
– ApiMac_fhFrameType_invalid: Internal – WiSUN Invalid frame

• enum ApiMac_payloadIEGroup_t
Payload IE group IDs
Enumerator
– ApiMac_payloadIEGroup_ESDU: Payload ESDU IE Group ID
– ApiMac_payloadIEGroup_MLME: Payload MLME IE Group ID
– ApiMac_payloadIEGroup_WiSUN: Payload WiSUN IE Group ID
– ApiMac_payloadIEGroup_term: Payload Termination IE Group ID

• enum ApiMac_MLMESubIE_t
MLME Sub IEs
Enumerator
– ApiMac_MLMESubIE_coexist: MLME Sub IEs – short format – coexistence IE
– ApiMac_MLMESubIE_sunDevCap: MLME Sub IEs – short format – SUN device capabilities IE
– ApiMac_MLMESubIE_sunFSKGenPhy: MLME Sub IEs – short format – SUN FSK generic PHY IE

• enum ApiMac_wisunSubIE_t
WiSUN Sub IEs
Enumerator
– ApiMac_wisunSubIE_USIE: WiSUN Sub IE – long format – unicast schedule IE
– ApiMac_wisunSubIE_BSIE: WiSUN Sub IE – long format – broadcast schedule IE
– ApiMac_wisunSubIE_PANIE: WiSUN Sub IE – short format – PAN IE
– ApiMac_wisunSubIE_netNameIE: WiSUN Sub IE – short format – network name IE
– ApiMac_wisunSubIE_PANVersionIE: WiSUN Sub IE – short format – PAN version IE
– ApiMac_wisunSubIE_GTKHashIE: WiSUN Sub IE – short format – GTK hash IE

• enum ApiMac_scantype_t
Scan types
Enumerator
– ApiMac_scantype_energyDetect: Energy detect scan. The device tunes to each channel and

performs an energy measurement. The list of channels and their associated measurements is
returned at the end of the scan.

– ApiMac_scantype_active: Active scan. The device tunes to each channel, sends a beacon request,
and listens for beacons. The PAN descriptors are returned at the end of the scan.

– ApiMac_scantype_passive: Passive scan. The device tunes to each channel and listens for
beacons. The PAN descriptors are returned at the end of the scan.

– ApiMac_scantype_orphan: Orphan scan. The device tunes to each channel and sends an orphan
notification to try and find its coordinator. The status is returned at the end of the scan.

– ApiMac_scantype_activeEnhanced: Enhanced active scan. In addition to active scan, this
command is also used by a device to locate a subset of all coordinators within its POS during an

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Enumeration Type Documentation

161SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

active scan.
• enum ApiMac_wisunAsycnOperation_t

WiSUN Async operations
Enumerator
– ApiMac_wisunAsycnOperation_start: Start Async
– ApiMac_wisunAsycnOperation_stop: Stop Async

• enum ApiMac_wisunAsyncFrame_t
WiSUN Async frame types
Enumerator
– ApiMac_wisunAsyncFrame_advertisement: WiSUN Async PAN advertisement frame type
– ApiMac_wisunAsyncFrame_advertisementSolicit: WiSUN Async PAN advertisement solicitation

frame type
– ApiMac_wisunAsyncFrame_config: WiSUN Async PAN configuration frame type
– ApiMac_wisunAsyncFrame_configSolicit: WiSUN Async PAN configuration solicitation frame type

• enum ApiMac_fhDispatchType_t
Frequency-hopping dispatch values
Enumerator
– ApiMac_fhDispatchType_none: No protocol dispatch
– ApiMac_fhDispatchType_MHD_PDU: MHD-PDU protocol dispatch
– ApiMac_fhDispatchType_6LowPAN: 6LowPAN protocol dispatch

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Function Documentation www.ti.com

162 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

13.7 Function Documentation

void* ApiMac_init (bool enableFH) Initialize this module.

Parameters enableFH – True to enable frequency hopping, false to not.

Returns Pointer to a wakeup variable (semaphore in some systems)

void ApiMac_registerCallbacks (ApiMac_callbacks_t * pCallbacks) Register for MAC callbacks.

Parameters pCallbacks – Pointer to callback structure

void ApiMac_processIncoming (void) Process incoming messages from the MAC stack.

Parameters TBD

ApiMac_status_t ApiMac_mcpsDataReq (ApiMac_mcpsDataReq_t * pData) This function sends
application data to the MAC for transmission in a MAC data frame. The MAC can
only buffer a certain number of data request frames. When the MAC is congested
and cannot accept the data request, it initiates a callback (ApiMac_dataCnfFp_t)
with an overflow status (ApiMac_status_transactionOverflow) . Eventually the
MAC will become uncongested and initiate the callback (ApiMac_dataCnfFp_t) for
a buffered request. At this point, the application can attempt another data request.
Using this scheme, the application can send data at any time, but it must queue
data to be resent if it receives an overflow status.

Parameters pData – Pointer to parameter structure

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_noResources – Resources not available

ApiMac_status_t ApiMac_mcpsPurgeReq (uint8_t msduHandle) This function purges and
discards a data request from the MAC data queue. When the operation is
complete, the MAC sends a MCPS Purge Confirm, which initiates a callback
(ApiMac_purgeCnfFp_t).

Parameters msduHandle – The application-defined handle value

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_noResources – Resources not available

ApiMac_status_t ApiMac_mlmeAssociateReq (ApiMac_mlmeAssociateReq_t * pData) This
function sends an associate request to a coordinator device. The application tries
to associate only with a PAN that is currently allowing association, as indicated in
the results of the scanning procedure. In a beacon-enabled PAN, the beacon order
must be set by using ApiMac_mlmeSetReq() before making the call to
ApiMac_mlmeAssociateReq(). When the associate request is complete, the
application receives the ApiMac_associateCnfFp_t callback.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Function Documentation

163SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

Parameters pData – Pointer to parameters structure

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_noResources – Resources not available

ApiMac_status_t ApiMac_mlmeAssociateRsp (ApiMac_mlmeAssociateRsp_t * pData) This
function sends an associate response to a device requesting to associate. This
function must be called after the ApiMac_associateIndFp_t callback. When the
associate response is complete, the callback ApiMac_commStatusIndFp_t is
called to indicate the success or failure of the operation.

Parameters pData – Pointer to parameters structure

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_noResources – Resources not available

ApiMac_status_t ApiMac_mlmeDisassociateReq (ApiMac_mlmeDisassociateReq_t * pData)
This function is used by an associated device to notify the coordinator of its intent
to leave the PAN. It is also used by the coordinator to instruct an associated
device to leave the PAN. When the disassociate procedure is complete, the
applications callback ApiMac_disassociateCnfFp_t is called.

Parameters pData – Pointer to parameters structure

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_noResources – Resources not available

ApiMac_status_t ApiMac_mlmeGetReqBool (ApiMac_attribute_bool_t pibAttribute, bool *
pValue) This direct execute function retrieves an attribute value from the MAC
PIB.

Parameters pibAttribute – The attribute identifier

pValue – Pointer to the attribute value

Returns The status of the request

ApiMac_status_t ApiMac_mlmeGetReqUint8 (ApiMac_attribute_uint8_t pibAttribute, uint8_t *
pValue) This direct execute function retrieves an attribute value from the MAC
PIB.

Parameters pibAttribute – The attribute identifier

pValue – Pointer to the attribute value

Returns The status of the request

ApiMac_status_t ApiMac_mlmeGetReqUint16 (ApiMac_attribute_uint16_t pibAttribute, uint16_t *
pValue) This direct execute function retrieves an attribute value from the MAC
PIB.

Parameters pibAttribute – The attribute identifier

pValue – Pointer to the attribute value

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Function Documentation www.ti.com

164 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

Returns The status of the request

ApiMac_status_t ApiMac_mlmeGetReqUint32 (ApiMac_attribute_uint32_t pibAttribute, uint32_t *
pValue) This direct execute function retrieves an attribute value from the MAC
PIB.

Parameters pibAttribute – The attribute identifier

pValue – Pointer to the attribute value

Returns The status of the request

ApiMac_status_t ApiMac_mlmeGetReqArray (ApiMac_attribute_array_t pibAttribute, uint8_t *
pValue) This direct execute function retrieves an attribute value from the MAC
PIB.

Parameters pibAttribute – The attribute identifier

pValue – Pointer to the attribute value

Returns The status of the request

ApiMac_status_t ApiMac_mlmeGetFhReqUint8 (ApiMac_FHAttribute_uint8_t pibAttribute,
uint8_t * pValue) This direct execute function retrieves an attribute value from
the MAC frequency-hopping PIB.

Parameters pibAttribute – The attribute identifier

pValue – Pointer to the attribute value

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_unsupportedAttribute – Attribute not found

ApiMac_status_t ApiMac_mlmeGetFhReqUint16 (ApiMac_FHAttribute_uint16_t pibAttribute,
uint16_t * pValue) This direct execute function retrieves an attribute value from
the MAC frequency-hopping PIB.

Parameters pibAttribute – The attribute identifier

pValue – Pointer to the attribute value

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_unsupportedAttribute – Attribute not found

ApiMac_status_t ApiMac_mlmeGetFhReqUint32 (ApiMac_FHAttribute_uint32_t pibAttribute,
uint32_t * pValue) This direct execute function retrieves an attribute value from
the MAC frequency-hopping PIB.

Parameters pibAttribute – The attribute identifier

pValue – Pointer to the attribute value

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_unsupportedAttribute – Attribute not found

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Function Documentation

165SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

ApiMac_status_t ApiMac_mlmeGetFhReqArray (ApiMac_FHAttribute_array_t pibAttribute,
uint8_t * pValue) This direct execute function retrieves an attribute value from
the MAC frequency-hopping PIB.

Parameters pibAttribute – The attribute identifier

pValue – Pointer to the attribute value

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_unsupportedAttribute – Attribute not found

ApiMac_status_t ApiMac_mlmeGetSecurityReqUint8 (ApiMac_securityAttribute_uint8_t
pibAttribute, uint8_t * pValue) This direct execute function retrieves an
attribute value from the MAC security PIB.

Parameters pibAttribute – The attribute identifier

pValue – Pointer to the attribute value

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_unsupportedAttribute – Attribute not found

ApiMac_status_t ApiMac_mlmeGetSecurityReqUint16 (ApiMac_securityAttribute_uint16_t
pibAttribute, uint16_t * pValue) This direct execute function retrieves an
attribute value from the MAC security PIB.

Parameters pibAttribute – The attribute identifier

pValue – Pointer to the attribute value

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_unsupportedAttribute – Attribute not found

ApiMac_status_t ApiMac_mlmeGetSecurityReqArray (ApiMac_securityAttribute_array_t
pibAttribute, uint8_t * pValue) This direct execute function retrieves an
attribute value from the MAC security PIB.

Parameters pibAttribute – The attribute identifier

pValue – Pointer to the attribute value

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_unsupportedAttribute – Attribute not found

ApiMac_status_t ApiMac_mlmeGetSecurityReqStruct (ApiMac_securityAttribute_struct_t
pibAttribute, void * pValue) This direct execute function retrieves an attribute
value from the MAC security PIB.

Parameters pibAttribute – The attribute identifier

pValue – Pointer to the attribute value

Returns The status of the request, as follows:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Function Documentation www.ti.com

166 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

• ApiMac_status_success – Operation successful
• ApiMac_status_unsupportedAttribute – Attribute not found

ApiMac_status_t ApiMac_mlmeOrphanRsp (ApiMac_mlmeOrphanRsp_t * pData) This function is
called in response to an orphan notification from a peer device. This function
must be called after receiving an Orphan Indication Callback. When the orphan
response is complete, the Comm Status Indication Callback is called to indicate
the success or failure of the operation.

Parameters pData – Pointer to parameters structure

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_unsupportedAttribute – Attribute not found

ApiMac_status_t ApiMac_mlmePollReq (ApiMac_mlmePollReq_t * pData) This function is used to
request pending data from the coordinator. When the poll request is complete, the
Poll Confirm Callback is called. If a data frame of nonzero length is received from
the coordinator, the Poll Confirm Callback has a status ApiMac_status_success,
then calls the Data Indication Callback for the received data.

Parameters pData – Pointer to parameters structure

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_unsupportedAttribute – Attribute not found

ApiMac_status_t ApiMac_mlmeResetReq (bool setDefaultPib) This direct execute function resets
the MAC. This function must be called once at system startup before any other
function in the management API is called.

Parameters setDefaultPib – Set to TRUE to reset the MAC PIB to its default values.

Returns Always ApiMac_status_success

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Function Documentation

167SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

ApiMac_status_t ApiMac_mlmeScanReq (ApiMac_mlmeScanReq_t * pData) This function
initiates an energy detect, active, passive, or orphan scan on one or more
channels. An energy detect scan measures the peak energy on each requested
channel. An active scan sends a beacon request on each channel and then
listening for beacons. A passive scan is a receive-only operation that listens for
beacons on each channel. An orphan scan is used to locate the coordinator with
which the scanning device had previously associated. When a scan operation is
complete, the Scan Confirm callback is called.

For active or passive scans, the application sets the maxResults parameter the
maximum number of PAN descriptors to return. If maxResults is greater than zero,
the application must also set result.panDescriptor to point to a buffer of size
maxResults * sizeof(ApiMac_panDesc_t) to store the results of the scan. The
application must not access or deallocate this buffer until the Scan Confirm
Callback is called. The MAC stores up to maxResults PAN descriptors and ignores
duplicate beacons.

An alternative way to get results for an active or passive scan is to set maxResults
to zero or set PIB attribute ApiMac_attribute_autoRequest to FALSE. Then the
MAC will not store results, but rather call the Beacon Notify Indication Callback"
for each beacon received. The application does not need to supply any memory to
store the scan results, but the MAC does not filter out duplicate beacons.

For energy detect scans, the application must set result.energyDetect to point to a
buffer of size 18 bytes to store the results of the scan. The application must not
access or deallocate this buffer until the Scan Confirm Callback is called.

An energy detect, active, or passive scan may be performed at any time if a scan
is not already in progress. However, a device cannot perform any other MAC
management operation or send or receive MAC data until the scan is complete.

Parameters pData – Pointer to parameters structure

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_scanInProgress – Already scanning
• ApiMac_status_noResources – Memory allocation error

ApiMac_status_t ApiMac_mlmeSetReqBool (ApiMac_attribute_bool_t pibAttribute, bool value)
This direct execute function sets an attribute value in the MAC PIB.

Parameters pibAttribute – The attribute identifier

value – The attribute value

Returns The status of the request

ApiMac_status_t ApiMac_mlmeSetReqUint8 (ApiMac_attribute_uint8_t pibAttribute, uint8_t
value) This direct execute function sets an attribute value in the MAC PIB.

Parameters pibAttribute – The attribute identifier

value – The attribute value

Returns The status of the request

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Function Documentation www.ti.com

168 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

ApiMac_status_t ApiMac_mlmeSetReqUint16 (ApiMac_attribute_uint16_t pibAttribute, uint16_t
value) This direct execute function sets an attribute value in the MAC PIB.

Parameters pibAttribute – The attribute identifier

value – The attribute value

Returns The status of the request

ApiMac_status_t ApiMac_mlmeSetReqUint32 (ApiMac_attribute_uint32_t pibAttribute, uint32_t
value) This direct execute function sets an attribute value in the MAC PIB.

Parameters pibAttribute – The attribute identifier

value – The attribute value

Returns The status of the request

ApiMac_status_t ApiMac_mlmeSetReqArray (ApiMac_attribute_array_t pibAttribute, uint8_t *
pValue) This direct execute function sets an attribute value in the MAC PIB.

Parameters pibAttribute – The attribute identifier

value – The attribute value

Returns The status of the request

ApiMac_status_t ApiMac_mlmeSetFhReqUint8 (ApiMac_FHAttribute_uint8_t pibAttribute,
uint8_t value) This direct execute function sets an attribute value in the MAC
frequency-hopping PIB.

Parameters pibAttribute – The attribute identifier

value – The attribute value

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_unsupportedAttribute – Attribute not found

ApiMac_status_t ApiMac_mlmeSetFhReqUint16 (ApiMac_FHAttribute_uint16_t pibAttribute,
uint16_t value) This direct execute function sets an attribute value in the MAC
frequency-hopping PIB.

Parameters pibAttribute – The attribute identifier

value – The attribute value

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_unsupportedAttribute – Attribute not found

ApiMac_status_t ApiMac_mlmeSetFhReqUint32 (ApiMac_FHAttribute_uint32_t pibAttribute,
uint32_t value) This direct execute function sets an attribute value in the MAC
frequency-hopping PIB.

Parameters pibAttribute – The attribute identifier

value – The attribute value

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Function Documentation

169SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_unsupportedAttribute – Attribute not found

ApiMac_status_t ApiMac_mlmeSetFhReqArray (ApiMac_FHAttribute_array_t pibAttribute,
uint8_t * pValue) This direct execute function sets an attribute value in the MAC
frequency-hopping PIB.

Parameters pibAttribute – The attribute identifier

value – The attribute value

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_unsupportedAttribute – Attribute not found

ApiMac_status_t ApiMac_mlmeSetSecurityReqUint8 (ApiMac_securityAttribute_uint8_t
pibAttribute, uint8_t value) This direct execute function sets an attribute value
in the MAC security PIB.

Parameters pibAttribute – The attribute identifier

value – The attribute value

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_unsupportedAttribute – Attribute not found

ApiMac_status_t ApiMac_mlmeSetSecurityReqUint16 (ApiMac_securityAttribute_uint16_t
pibAttribute, uint16_t value) This direct execute function sets an attribute value
in the MAC security PIB.

Parameters pibAttribute – The attribute identifier

value – The attribute value

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_unsupportedAttribute – Attribute not found

ApiMac_status_t ApiMac_mlmeSetSecurityReqArray (ApiMac_securityAttribute_array_t
pibAttribute, uint8_t * pValue) This direct execute function sets an attribute
value in the MAC security PIB.

Parameters pibAttribute – The attribute identifier

value – The attribute value

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_unsupportedAttribute – Attribute not found

ApiMac_status_t ApiMac_mlmeSetSecurityReqStruct (ApiMac_securityAttribute_struct_t
pibAttribute, void * pValue) This direct execute function sets an attribute value
in the MAC security PIB.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Function Documentation www.ti.com

170 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

Parameters pibAttribute – The attribute identifier

value – The attribute value

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_noResources – Resources not available

ApiMac_status_t ApiMac_mlmeStartReq (ApiMac_mlmeStartReq_t * pData) This function is
called by a coordinator or PAN coordinator to start or reconfigure a network.
Before starting a network, the device must have set its short address. A PAN
coordinator sets the short address by setting the attribute
ApiMac_attribute_shortAddress. A coordinator sets the short address through
association.

When parameter panCoordinator is TRUE, the MAC automatically sets attributes
ApiMac_attribute_panID and ApiMac_attribute_logicalChannel to the panId and
logicalChannel parameters. If panCoordinator is FALSE, these parameters are
ignored (they would already be set through association).

The parameter beaconOrder controls whether the network is beacon-enabled or
nonbeacon-enabled. For a beacon-enabled network, this parameter also controls
the beacon transmission interval. When the operation is complete, the Start
Confirm Callback is called.

Parameters pData – Pointer to parameters structure

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_noResources – Resources not available

ApiMac_status_t ApiMac_mlmeSyncReq (ApiMac_mlmeSyncReq_t * pData) This function
requests the MAC to synchronize with the coordinator by acquiring and optionally
tracking its beacons. Synchronizing with the coordinator is recommended before
associating in a beacon-enabled network. If the beacon could not be located on its
initial search or during tracking, the MAC calls the Sync Loss Indication Callback
with ApiMac_status_beaconLoss as the reason.

Before calling this function, the application must set PIB attributes
ApiMac_attribute_beaconOrder, ApiMac_attribute_panId, and either
ApiMac_attribute_coordShortAddress or
ApiMac_attribute_coordExtendedAddress to the address of the coordinator with
which to synchronize.

The application may wish to set PIB attribute ApiMac_attribute_autoRequest to
FALSE before calling this function. Then, when the MAC successfully
synchronizes with the coordinator, it calls the Beacon Notify Indication Callback.
After receiving the callback, the application may set
ApiMac_attribute_autoRequest to TRUE to stop receiving beacon notifications.
This function is only applicable to beacon-enabled networks.

Parameters pData – Pointer to parameters structure

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_noResources – Resources not available

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Function Documentation

171SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

uint8_t ApiMac_randomByte (void) This function returns a random byte from the MAC random
number generator.

Returns A random byte

ApiMac_status_t ApiMac_updatePanId (uint16_t panId) Updates device table entry and PIB with
new PAN ID.

Parameters panID – The new PAN ID

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_noResources – Resources not available

ApiMac_status_t ApiMac_mlmeWSAsyncReq (ApiMac_mlmeWSAsyncReq_t * pData) This
functions handles a WiSUN async request. The possible operation is Async Start
or Async Stop. For the async start operation, the caller of this function can
indicate the WiSUN async frame type to be sent on the specified channels.

Parameters pData – Pointer to the asynchronous parameters structure

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_noResources – Resources not available

ApiMac_status_t ApiMac_startFH (void) This function starts the frequency hopping. Frequency-
hopping operations should have been enabled using ApiMac_enableFH() before
calling this API. Do not call this API if ApiMac_mlmeStartReq() has been called
with the startFH field set to true.

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_noResources – Resources not available

ApiMac_status_t ApiMac_parsePayloadGroupIEs (uint8_t * pPayload, uint16_t payloadLen,
ApiMac_payloadIeRec_t ** pList) Parses the Group payload information
element. This function creates a linked list (plist) from the Payload IE (pPayload).
Each item in the linked list is a separate Group IE with its own content.

If no IEs are found, pList is set to NULL.

The caller is responsible to release the memory for the linked list by calling
ApiMac_freeIEList(). Call this function to create the list of Group IEs, then call
ApiMac_parsePayloadSubIEs() to parse each of the group IE's content into sub
IEs.

Parameters pPayload – Pointer to the buffer with the payload IEs

payloadLen – Length of the buffer with the payload IEs

pList – Pointer to link list pointer

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_noData – pPayload or payloadLen is NULL

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

Function Documentation www.ti.com

172 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

• ApiMac_status_unsupported – Invalid field found
• ApiMac_status_noResources – If memory allocation fails

ApiMac_status_t ApiMac_parsePayloadSubIEs (uint8_t * pContent, uint16_t contentLen,
ApiMac_payloadIeRec_t ** pList) Parses the payload sub information element.
This function creates a linked list (pList) of sub IEs from the Group IE content
(pContent). Each item in the linked list is a separate sub IE with its own content.

If no IEs are found pList will be set to NULL.

The caller is responsible to release the memory for the linked list by calling
ApiMac_freeIEList(). Call this function after calling
ApiMac_parsePayloadGroupIEs().

Parameters pContent – Pointer to the buffer with the sub IEs

contentLen – Length of the buffer with the sub IEs

pList – Pointer to link list pointer

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_noData – pContent or contentLen is NULL
• ApiMac_status_unsupported – Invalid field found
• ApiMac_status_noResources – If memory allocation fails

void ApiMac_freeIEList (ApiMac_payloadIeRec_t * pList) Frees the linked list allocated by
ApiMac_parsePayloadGroupIEs() or ApiMac_parsePayloadSubIEs().

Parameters pList – Pointer to the linked list

ApiMac_status_t ApiMac_enableFH (void) Enables the frequency-hopping operation. Call this
function before setting any FH parameters, or before calling
ApiMac_mlmeStartReq() or ApiMac_startFH(), if using FH.

Returns The status of the request, as follows:
• ApiMac_status_success – Operation successful
• ApiMac_status_unsupported – Feature not available.

uint8_t ApiMac_convertCapabilityInfo (ApiMac_capabilityInfo_t * pMsgcapInfo) Converts
ApiMac_capabilityInfo_t data type to uint8 capInfo.

Parameters pMsgcapInfo – CapabilityInfo pointer

Returns capInfo bit mask byte

void ApiMac_buildMsgCapInfo (uint8_t cInfo, ApiMac_capabilityInfo_t * pPBcapInfo) Converts
from bitmask byte to API MAC capInfo.

Parameters cInfo – Source

pPBcapInfo – Destination

ApiMac_status_t ApiMac_secAddDevice (ApiMac_secAddDevice_t * pAddDevice) Adds a new
MAC device table entry.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Function Documentation

173SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TI 15.4-Stack API

Parameters pAddDevice – Add device information

Returns ApiMac_status_success if successful, other status value if not.

ApiMac_status_t ApiMac_secDeleteDevice (ApiMac_sAddrExt_t * pExtAddr) Removes a MAC
device table entry.

Parameters pExtAddr – Extended address of the device table entries to be removed

Returns ApiMac_status_success if successful, other status value if not.

ApiMac_status_t ApiMac_secDeleteKeyAndAssocDevices (uint8_t keyIndex) Removes the key at
the specified key index, and removes all MAC device table entries associated with
this key. Also removes(initializes) the key lookup list associated with this key.

Parameters keyIndex – MAC security key table index of the key to be removed.

Returns ApiMac_status_success if successful, other status value if not.

ApiMac_status_t ApiMac_secDeleteAllDevices (void) Removes all MAC device table entries.

Returns ApiMac_status_success if successful, other status value if not.

ApiMac_status_t ApiMac_secGetDefaultSourceKey (uint8_t keyId, uint32_t * pFrameCounter)
Reads the frame counter value associated with a MAC security key indexed by the
designated key identifier and the default key source.

Parameters keyID – Key ID

pFrameCounter – Pointer to a buffer to store the outgoing frame counter of the key.

Returns ApiMac_status_success if successful, other status value if not.

ApiMac_status_t ApiMac_secAddKeyInitFrameCounter (ApiMac_secAddKeyInitFrameCounter_t
* pInfo) Adds the MAC security key, adds the associated lookup list for the key,
and initializes the frame counter to the value provided. It also duplicates the
device table entries (associated with the previous key if any) if available, based on
the flag dupDevFlag value, and associates the device descriptor with this key.

Parameters pInfo – Structure needed to perform this function

Returns ApiMac_status_success if successful, other status value if not.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

174 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

ICALL API

Chapter 14
SWRU489A–September 2016–Revised December 2016

ICALL API

14.1 Commands
The ICall commands used for application tasks are defined in Section 5.3.

14.2 Error Codes
Table 14-1 lists the error codes associated with ICall failures. These codes can be returned from any
function defined in icall.h.

Table 14-1. Error Codes

Value Error Name Description
0x04 MSG_BUFFER_NOT_AVAIL Allocation of ICall message failed
0xFF ICALL_ERRNO_INVALID_SERVICE The service corresponding to a passed service ID is not

registered
0xFE ICALL_ERRNO_INVALID_FUNCTION The function ID is unknown to the registered handler of

the service
0xFD ICALL_ERRNO_INVALID_PARAMETER Invalid parameter value
0xFC ICALL_ERRNO_NO_RESOURCE Not available entities, tasks, or other ICall resources
0xFB ICALL_ERRNO_UNKNOWN_THREAD The task is not a registered task of the entity; ID is not a

registered entity
0xFA ICALL_ERRNO_CORRUPT_MSG Corrupt message error
0xF9 ICALL_ERRNO_OVERFLOW Counter overflow
0xF8 ICALL_ERRNO_UNDERFLOW Counter underflow

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

175SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

References

Chapter 15
SWRU489A–September 2016–Revised December 2016

References

• [1] TI SYS/BIOS API Guide
C:\ti\ tirtos_cc13xx_cc26xx_2_16_01_14\products\ bios_6_45_02_31 \docs\Bios_APIs.html

• [2] TI-RTOS Power Management
C:\ti\ tirtos_cc13xx_cc26xx_2_16_01_14 \docs\Power_Management.pdf

• [3] TI-15.4MAC Wiki
• [4] TI-RTOS API Reference

C:/ti/tirtos_cc13xx_cc26xx_2_16_01_14/docs/Documentation_Overview_cc13xx_cc26xx.html
• [5] Sensor Controller Studio
• [6] ARM Cortex-M3 Devices Generic User's Guide

http://infocenter.arm.com/help/topic/com.arm.doc.dui0552a/DUI0552A_cortex_m3_dgug.pdf
• [7] TI-RTOS SYS/BIOS Kernel User's Guide

C:\ti\tirtos_cc13xx_cc26xx_2_16_01_14\products\bios_6_45_02_31\docs\Bios_User_Guide.pdf
• [8] Wi-SUN FAN Specification

Wi-SUN FAN Specification, version 1v00, May 2016, Wi-SUN Alliance

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A
http://processors.wiki.ti.com/index.php/TIMAC
http://www.ti.com/tool/sensor-controller-studio
http://infocenter.arm.com/help/topic/com.arm.doc.dui0552a/DUI0552A_cortex_m3_dgug.pdf

Revision History www.ti.com

176 SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Revision History

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (September 2016) to A Revision ... Page

• Changed collector_cc13xx_lp to collector_cc13x0lp throughout.. 9
• Changed sensor_cc13xx_lp to sensor_cc13x0p throughout .. 9
• Changed text in Protocol Stack and Application Configurations (Section 2.1)... 11
• Updated TI 15.4-Stack Development System image (Figure 2-3)... 12
• Updated paths in Directory Structure (Section 2.3) ... 12
• Changed C:\ti\simplelink_cc13x0_sdk_1_00_00_xx\examples\rtos\CC1310_LAUNCHXL\154stack to

C:\ti\simplelink_cc13x0_sdk_1_00_00_xx\examples\rtos\CC1310_LAUNCHXL\ti154stack 12
• Changed C:\ti\simplelink_cc13x0_sdk_1_00_00_xx\examples\rtos\CC1350_LAUNCHXL\154stack to

C:\ti\simplelink_cc13x0_sdk_1_00_00_xx\examples\rtos\CC1350_LAUNCHXL\ti154stack 12
• Changed http://www.ti.com/tool/ti-15.4-stack to http://www.ti.com/tool/SIMPLELINK-CC13X0-SDK......................... 13
• Updated note paths in Installing the SDK (Section 2.5.1) .. 14
• Updated version and install path information in Supported Tools and Software (Table 2-1) 14
• Updated CCS information in Section 2.5.2. .. 15
• Updated paths in Importing SDK Projects (Section 2.5.2.3) ... 16
• Updated import SDK projects menu selection image (Figure 2-5) .. 16
• Updated CCS Project Import Pane image (Figure 2-6)... 17
• Updated CCS Project Console Pane image (Figure 2-8) .. 19
• Updated Programming Hex Files image (Figure 2-9) ... 20
• Updated path in Downloading Hex Files (Section 2.5.2.6) ... 20
• Updated Debugging Sensor Application image (Figure 2-10) ... 21
• Updated Properties for sensor_cc13x0lp image (Figure 2-11) .. 22
• Predefined Symbols Pane image (Figure 2-13) ... 23
• Added text to Section 4.3.2.4 .. 62
• Updated Sleep Mode Operation in Frequency-Hopping Mode image (Figure 4-24).. 63
• Added Section 4.3.3.5... 66
• Added Frequency Hopping Neighbor Control PIB Attributes table (Table 4-11) .. 66
• Added Frequency Hopping Backoff PIB Attributes table (Table 4-12).. 66
• Added Configuring Stack: Selecting the Network Mode of Operation (Section 4.5) .. 68
• Updated Example Application Block Diagram image (Figure 5-1) .. 70
• Updated ICALL Application – Protocol Stack Abstraction image (Figure 5-2)... 72
• Updated Sensor Example Application Task Flow Chart image (Figure 5-4)... 77
• Updated instructions in Running the Application (Section 6.1.1) .. 83
• Updated Collector Example Application Folder Project Explorer View image (Figure 6-1) 83
• Added Hyperterminal When Collector is Started image (Figure 6-5) ... 85
• Added Hyperterminal When Sensor Joins Collector image (Figure 6-7) ... 86
• Updated Config.h File image (Figure 6-8) .. 87
• Edited instrutions in Running the Application (Section 6.2.1).. 88
• Added Hyperterminal When Sensor is Powered Up image (Figure 6-10).. 88
• Added Hyperterminal When Sensor Joins The Network image (Figure 6-12)... 89
• Added FH Conformance Certification Application Example Section 6.3 ... 89
• Updated Configuration Parameters (Section 6.4) ... 90
• Added CONFIG_TRANSMIT_POWER parameter ... 91
• Added CERTIFICATION_TEST_MODE parameter .. 92
• Added FH_NUM_NON_SLEEPY_NEIGHBOURS parameter .. 92
• Added FH_NUM_SLEEPY_NEIGHBOURS parameter .. 92
• Added CONFIG_ORPHAN_BACKOFF_INTERVAL parameter .. 93
• Updated paths in Install the Required Software (Section 7.1) ... 96
• Added note to Section 7.1.1.. 96

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

www.ti.com Revision History

177SWRU489A–September 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Revision History

• Updated path in Texas Instruments Wireshark Packet Converter Setup (Section 7.1.3.1) 97
• Updated paths in Adding a Driver (Section 8.1).. 103
• Updated path in Board File (Section 8.2) ... 103
• Updated registers in Section 13.2.4 and Section 13.6 .. 133

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU489A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Table of Contents
	1 Overview
	1.1 Introduction

	2 TI 15.4-Stack Software Development Platform
	2.1 Protocol Stack and Application Configurations
	2.2 Solution Platform
	2.3 Directory Structure
	2.4 Projects
	2.5 Setting Up the Integrated Development Environment
	2.5.1 Installing the SDK
	2.5.2 Code Composer Studio
	2.5.2.1 Configure CCS
	2.5.2.2 Using CCS
	2.5.2.3 Importing SDK Projects
	2.5.2.4 Workspace Overview
	2.5.2.5 Compiling and Linking
	2.5.2.6 Downloading Hex Files
	2.5.2.7 Debugging
	2.5.2.8 Useful CCS IDE Settings

	2.6 Accessing Preprocessor Symbols
	2.7 Top-Level Software Architecture

	3 RTOS Overview
	3.1 RTOS Configuration
	3.2 Semaphores
	3.2.1 Initializing a Semaphore
	3.2.2 Pending a Semaphore
	3.2.3 Posting a Semaphore

	3.3 RTOS Tasks
	3.3.1 Creating a Task
	3.3.2 Creating the Task Function

	3.4 Clocks
	3.4.1 API
	3.4.2 Functional Example

	3.5 Queues
	3.5.1 Queue API

	3.6 Idle Task
	3.7 Power Management
	3.8 Hardware Interrupts
	3.9 Software Interrupts
	3.10 Flash
	3.10.1 Using Nonvolatile Memory

	3.11 Memory Management (RAM)
	3.11.1 System Stack
	3.11.2 Dynamic Memory Allocation
	3.11.3 A Note on Initializing RTOS Objects

	4 TI 15.4-Stack Overview
	4.1 Beacon Enabled Mode
	4.1.1 Introduction
	4.1.2 Network Operations
	4.1.2.1 Network Start-Up
	4.1.2.2 Network Association
	4.1.2.3 Data Exchange
	4.1.2.4 Maintaining a Connection for End Nodes
	4.1.2.5 Network Disassociation

	4.1.3 Stack Configuration Knobs
	4.1.3.1 Attribute Configuration
	4.1.3.2 Configuration Constants

	4.2 Nonbeacon Mode
	4.2.1 Introduction
	4.2.2 Network Operations
	4.2.2.1 Network Start-Up
	4.2.2.2 Network Join
	4.2.2.3 Data Exchange
	4.2.2.4 Maintaining a Connection for End Nodes
	4.2.2.5 Disassociating

	4.2.3 Stack Configuration Knobs
	4.2.3.1 Attribute Configuration
	4.2.3.2 Configuration Constants

	4.3 Frequency-Hopping Mode
	4.3.1 Introduction
	4.3.2 Network Operations
	4.3.2.1 Network Start-Up
	4.3.2.2 Device Start-Up
	4.3.2.3 Network Join
	4.3.2.3.1 Phase 1: Exchange of Channel-Hopping Sequence Information Through Asynchronous Messages
	4.3.2.3.2 Phase 2: Proprietary Association Procedure to Inform Coordinator of the Network Join (This is an Optional Step)

	4.3.2.4 Data Exchange
	4.3.2.5 Sleep Mode Operation
	4.3.2.6 Maintaining a Connection for End Nodes
	4.3.2.7 Disassociating

	4.3.3 Stack Configuration Knobs
	4.3.3.1 Parameters Controlling the Unicast Channel-Hopping Sequence of the Node
	4.3.3.2 Parameters Controlling the Broadcast Channel-Hopping Sequence
	4.3.3.3 Changing Broadcast Sequence Values in the Middle of Network Operation
	4.3.3.4 Parameters to Control Frequency of the Operation of Hopping Mode
	4.3.3.5 Parameters to Control Neighbor Table Size
	4.3.3.6 Parameters to Enable Application Generate and Process Asynchronous Frames

	4.4 Security
	4.5 Configuring Stack: Selecting the Network Mode of Operation

	5 Application Overview
	5.1 Application Architecture
	5.2 Start-Up in main()
	5.3 Indirect Call Framework
	5.3.1 ICALL TI 15.4-MAC Protocol Stack Service
	5.3.2 ICALL Primitive Service
	5.3.2.1 Messaging and Thread Synchronization
	5.3.2.2 Heap Allocation and Management

	5.3.3 ICALL Initialization and Registration
	5.3.4 ICALL Thread Synchronization
	5.3.5 Example ICALL Usage

	5.4 General Application Architecture
	5.4.1  Application Initialization Function
	5.4.2 Event Processing in the Task Function
	5.4.2.1 Events Signaled Through the Internal Event Variable

	5.4.3 Callbacks

	6 Example Applications
	6.1 Collector Example Application
	6.1.1 Running the Application

	6.2 Sensor
	6.2.1 Running the Application

	6.3 FH Conformance Certification Application Example
	6.4 Configuration Parameters
	6.5 Coprocessor
	6.6 Linux Example Applications
	6.6.1 Linux Collector and Gateway Application
	6.6.2 Linux Serial Bootloader Application

	7 Packet Sniffer
	7.1 Setting Up the Sniffer
	7.1.1 Install the Required Software
	7.1.2 Hardware Setup
	7.1.2.1 Required Hardware
	7.1.2.2 Setup

	7.1.3 Software Setup
	7.1.3.1 Texas Instruments Wireshark Packet Converter Setup
	7.1.3.2 Wireshark Dissector Setup

	7.2 Using Wireshark
	7.3 Troubleshooting
	7.3.1 TiWsPc Troubleshooting
	7.3.2 Wireshark Dissector Troubleshooting

	8 Peripherals and Drivers
	8.1 Adding a Driver
	8.2 Board File
	8.3 Available Drivers
	8.3.1 PIN Driver
	8.3.2 UART

	9 Sensor Controller
	10 Startup Sequence
	10.1 Programming Internal Flash With the ROM Bootloader
	10.2 Resets

	11 Development and Debugging
	11.1 Debug Interfaces
	11.1.1 Connecting to the XDS Debugger
	11.1.2 Load Debug Symbols

	11.2 Breakpoints
	11.2.1 Considerations When Using Breakpoints With Frequency Hopping or a Beacon-Enabled Network
	11.2.2 Considerations on Breakpoints and Compiler Optimization

	11.3 Watching Variables and Registers
	11.3.1 Variables in CCS
	11.3.2 Considerations When Viewing Variables

	11.4 Memory Watchpoints
	11.4.1 Watchpoints in CCS

	11.5 TI-RTOS Object Viewer
	11.5.1 Scanning the BIOS for Errors
	11.5.2 Viewing the State of Each Task
	11.5.3 Viewing the System Stack
	11.5.4 Power Manager Information

	11.6 Profiling the ICall Heap Manager (heapmgr.h)
	11.7 Optimizations
	11.7.1 Project-Wide Optimizations
	11.7.2 Single-File Optimizations

	11.8 Deciphering CPU Exceptions
	11.8.1 Exception Cause
	11.8.2 Using a Custom Exception Handler
	11.8.3 Parsing the Exception Frame

	11.9 Debugging HAL Assert
	11.10 Debugging MAC Assert
	11.11 Debugging Memory Problems
	11.11.1 Task and System Stack Overflow
	11.11.2 Dynamic Allocation Errors

	11.12 Preprocessor Options
	11.12.1 Modifying
	11.12.2 Options

	11.13 Check System Flash and RAM Usage With a Map File

	12 Creating Custom Applications
	12.1 Adding a Board File
	12.2 Configuring Parameters for Custom Hardware
	12.3 Creating Additional Tasks
	12.4 Configuring TI 15.4-MAC Stack

	13 TI 15.4-Stack API
	13.1 TIMAC 2.0 API
	13.1.1 Callback Functions
	13.1.2 Common Constants and Structures
	13.1.3 Initialization and Task Interfaces
	13.1.4 Data Interfaces
	13.1.5 Management Interfaces
	13.1.6 Management Attribute Interfaces
	13.1.7 Simplified Security Interfaces
	13.1.8 Extension Interfaces

	13.2 File Documentation – api_mac.h File Reference
	13.2.1 Data Structures
	13.2.2 Macros
	13.2.3 Typedefs
	13.2.4 Enumerations
	13.2.5 Functions

	13.3 Data Structure Documentation
	13.4 Macro Definition Documentation
	13.5 Typedef Documentation
	13.6 Enumeration Type Documentation
	13.7 Function Documentation

	14 ICALL API
	14.1 Commands
	14.2 Error Codes

	15 References
	Revision History
	Important Notice

