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1 Introduction

The CC2538 device family ROM from Texas Instruments contains a utility function library and a
ROM-based serial boot loader. Applications can use the utility function library to reduce their flash
footprint, thus allowing the flash to be used for other purposes (such as additional features in the
application). The boot loader is used as an initial program loader when the flash is empty.

A table at the beginning of the ROM points to the entry points for the utility function APIs provided
in the ROM. Accessing the API through this table provides scalability; while the API locations may
change in future versions of the ROM, the API table will not. The table is located immediately after
the Cortex-M3® vector table in the ROM.

The CC2538 peripheral driver library contains a file called driverlib/source/rom.h that as-
sists with calling the utility library functions in the ROM. The naming conventions for the table and
APls used in this document match those used in that file.

The following is an example of calling the ROM_ResetDevice() function:
#include "hw_memmap.h"
#include "hw_types.h"
#include "rom.h"
int
main (void)
{
/..

ROM_ResetDevice () ;

VAR

Any compiler can use the API provided by the ROM so long as the compiler complies with the
embedded applications binary interface (EABI), which includes all recent compilers for the CC2538
family of devices.

Documentation Overview

Chapter 2 describes the ROM-based CC2538 boot loader.

Chapter 3 describes the utility function library.
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Introduction

The ROM-based boot loader executes each time the device is reset when no valid image exists
in the flash. The flash is assumed to be empty or without a valid image, if no flash vector table is
configured in the customer configuration area (CCA) in the top flash page. If a valid flash image
exists, the boot loader can still be entered on reset using the boot loader backdoor mechanism,
as long as the mechanism is not disabled by configuration in the CCA. In any case, when run, the
ROM-based boot loader uses one of the following interfaces to update the flash:

m UARTO using a custom serial protocol
m SSI0 using a custom serial protocol

Unable to detect the presence of an attached crystal, the boot loader initially operates from the
internal oscillator, a 16MHz clock. For greater speed, an external 32MHz crystal oscillator can
eventually be selected using a dedicated boot loader command.

Entering the Boot Loader

On reset, the Cortex-M3 executes the following steps as part of the ROM-based start-up sequence:

1. Checks that a valid flash image exists in the flash. If not, jump into a ROM-based boot loader
that allows the flash to be programmed and stays there until a system reset executes.

2. Updates the Vector Location NVIC register with the address of the flash vector table found in
the application entry point field in the CCA. The CCA is in the top flash page.

3. Loads the stack pointer with the initial stack pointer value found in the flash-based vector table.

4. Branches to the address of the flash reset interrupt service routine (ISR) found in the second
entry of the flash vector table.

Note:
While the ROM-based start-up sequence executes, all interrupts are handled by a minimal
vector table in the ROM. As part of transferring control to the flash application (in steps 2
through 4), interrupt responsibility is transferred to the image in flash. A vector table must thus
be part of the image in flash.

2.2.1  Configuration of a Valid Flash Image
To perform a validity check of the flash image, check the Image Validity field and the Application
Entry Point field within the CCA. As the CCA resides in the flash top page, the location of the page
SWRU333A — April 16, 2013 7
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depends on the device flash size. When a valid image is programmed into the flash, the CCA must
configured as follows:

m The 32-bit Image Valid field must have the value of 0x00000000 to indicate a valid image in
flash.

m The 32-bit Application Entry Point field must contain the start address of the vector table re-
siding in flash.

If the Image Validity field indicates a valid image in flash and the Application Entry Point field has
a value within the address range of the flash with an alignment of 0x80 bytes minimum, it is deter-
mined that the flash contains a valid image.

Note:
Once the boot loader is disabled, it can be re-enabled by changing the CCA area that deter-
mines if a valid image is present such that the boot loader is entered after a reset.

2.2.2 Boot Loader Backdoor
A boot loader backdoor can be enabled to force entry of the ROM boot loader on reset even if a
valid image in flash is present. This action is practical during a software development cycle where
programming of a faulty image would potentially lock the device from further programming, unless a
chip erase is executed through JTAG® . If the functionality is enabled the boot loader is entered on
power up or reset if a specified level is applied to a specified pin on pad A no later than 10 us after
reset. An 8-bit field in the CCA area configures the backdoor functionality in the flash top page.
The following table describes the layout of the backdoor configuration byte.
Bit | Field element | Description
7:5 | RESERVED Reserved for future use. Should be all ones.
4 Enable Enables or disables the backdoor and boot loader
functions:
1: Backdoor and boot loader enabled
0: Backdoor and boot loader disabled
3 | Level Sets the active level for the selected pin on pad A
that is used when backdoor is enabled:
1: Active high
0: Active low
2:0 | Pin Number The pin number (7:0) on pad A that is used when
the backdoor is enabled
Table 2.1: Boot loader backdoor configuration
To enter the boot loader after power up or reset using the backdoor, the selected pin on pad A must
externally be set to the configured active level no later than 10us after reset. The pin level is read
only once. Toggling of the pin level will have no effect after the pin has been read.
Note:
If the Enable bit is set to 0 in the CCA area of the flash top page, the CC2538 ROM boot loader
ignores any received boot loader commands, even if no application image is present in the
flash memory. This security feature enhancement makes it impossible for an attacker that has
gained access to the ROM boot loader, to reveal any flash image contents by using the boot
loader commands. If the boot loader is disabled, it ignores any received boot loader command.
8 SWRU333A — April 16, 2013
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2.2.3

The user can disable erasing or writing to certain pages with a page lock bit that is available to
each individual 2k flash page. The lock bits are placed in the uppermost available page (the CCA)
together with the boot loader configuration bytes. The uppermost available page number depends
on the flash size option. For example, for the 512 KB option, the CCA is page number 255. When
a page n is locked (for example LOCK_PAGE_N[n] = 0) it is impossible to erase it or write to it. A
write or erase operation to the page shall be aborted. The debug lock bit (LOCK_DEBUG_N) is
used to lock the debug interface through ICEPick.

The following table shows how the page lock bits and the debug lock bit are laid out in the upper 32
bytes of the CCA page. The table also shows the layout of the boot loader configuration options.

Customer Configuration Area

Note that some of the page lock bits are unused for certain flash size options.

Byte Bit | Name Description
2047 7 | LOCK _DEBUG_N Debug lock bit:
1: Debug access is allowed
0: Debug access is blocked
2047 6:0 | LOCK_PAGE_N[254:248] | Page 254 - 248 lock bits:
1: Write and Erase allowed
0: Write and Erase not allowed
2046 7:0 | LOCK_PAGE_N[247:240] | Page 247 - 240 lock bits:
1: Write and Erase allowed
0: Write and Erase not allowed
2045 7:0 | LOCK_PAGE_N[239:232] | Page 239 - 232 lock bits:
1: Write and Erase allowed
0: Write and Erase not allowed
2016 7:0 | LOCK_PAGE_N[7:0] Page 7 - 0 lock bits:
1: Write and Erase allowed
0: Write and Erase not allowed
2015-2012 | - | Application Entry Point The address of the Vector Ta-
ble present in the flash memory.
Note: The address must be in
little-endian format
2011-2008 | - Image Valid Must have the value of
0x00000000 to indicate valid
image in flash
2007 7:0 | Boot loader backdoor Back door configuration
2006 7:0 | RESERVED Reserved for future use
2005 7:0 | RESERVED Reserved for future use
2004 7:0 | RESERVED Reserved for future use

2.3

The serial interfaces used to communicate with the boot loader share a common protocol and differ
only in the physical connections and signaling used to transfer the bytes of the protocol.

Table 2.2: Customer Configuration Area Layout

Serial Interfaces

SWRU333A — April 16, 2013
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2.3.1

2.3.1.1

2.3.2

2.3.3

UART Interface

The UART pins UARTO Tx and UARTO Rx are used to communicate with the boot loader. The
device communicating with the boot loader drives the UARTO Rx pin on the CC2538 device, while
the CC2538 device drives the UARTO Tx pin.

The serial data format is fixed at 8 data bits, no parity, and one stop-bit. An auto-baud feature is
used to determine the baud rate at which data is transmitted. Because the system clock must be
at least 32 times the baud rate, the maximum baud rate that can be used is 500 Kbaud (16MHz
divided by 32). This data rate number can be doubled if an external 32MHz crystal oscillator is in
use and selected using the COMMAND_SET_XOSC boot loader command.

Auto-Baud

The boot loader provides a method that automatically detects the UART baud rate being used to
communicate with the device. To synchronize with the host the boot loader requires, that two bytes
with the value of 0x55 are received. If synchronization succeeds the Boot Loader will return an
acknowledge consisting of two bytes with the values of 0x00, 0xCC. If synchronization fails the boot
loader will be waiting for another synchronization attempt.

SSI Interface

The SSI pins SSI0 Fss, SSI0 Clk, SSI0 Tx, and SSI0 Rx are used to communicate with the boot
loader. The device communicating with the boot loader drives the SSI0 Rx, SSI0 Clk, and SSI0
Fss pins, while the CC2538 device drives the SSI0 Tx pin.

The serial data format is fixed to the Motorola format with SPH and SPO set to 1 (see the applicable
CC2538 family data sheet for more information on this format). Because the system clock must be
at least 12 times the serial clock rate, the maximum serial clock rate that can be used is 1.3 MHz
(16MHz divided by 12). This data rate number can be doubled if an external 32MHz crystal oscillator
is in use, and if this is selected using the COMMAND_SET_XOSC boot loader command.

Pin Configuration

The boot loader supports updating through the UARTO and SSI0 ports, which are available on the
CC2538 device. The SSI port has the advantage of supporting higher and more flexible data rates,
but it also requires more connections to the device. The UART has the disadvantage of having
slightly lower and possibly less flexible rates. However, the UART requires fewer pins and can
be easily implemented with any standard UART connection. The boot loader configures port A to
include all pins used by the supported serial communication on the UARTO and SSIO peripherals.
This configuration is shown in the following table.

The boot loader selects the first interface accessed by the external device. Once selected, the
module clock for the inactive interface (UARTO or SSI0) is disabled. To switch over to the other
interface, the CC2538 must be reset.

10
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Function Port | Pin [ Direction
UARTORx | A 0 Input
UARTOTx | A 1 Output
SSI0 Clk A 2 Input
SSI0 Fss A 3 Input
SSI0 Rx A 4 Input
SSI0 Tx A 5 Output
Table 2.3: Pin Configuration of Serial Interfaces for Boot Loader
2.3.4  Serial Protocol

The boot loader uses well-defined packets on the serial interfaces to ensure reliable communica-
tions with the update program. The packets are always acknowledged or not acknowledged by the
communicating devices. The packets use the same format for receiving and sending packets. This
format includes the method used to acknowledge successful or unsuccessful reception of a packet.
While the actual signaling on the serial ports is different, the packet format remains independent of
the method of transporting the data.

Byte 1 2 3 N+2
Field | Size | Check Sum | Data1 | ... | Data N

Table 2.4: Packet Format

Perform the following steps to successfully send a packet:

1.

Send the size of the packet that will be sent to the device. The size is always the number of
bytes of data + 2 bytes.

Send the checksum of the data buffer to help ensure proper transmission of the command.
The checksum is simply a sum of the data bytes.

Send the actual data bytes.

Wait for a single-byte acknowledgment from the device indicating either that the data is prop-
erly received or that a transmission error is detected.

Perform the following steps to successfully receive a packet:

1.

Waiting for the device to return non-zero data is important because the device can send zero
bytes between a sent and received data packet. The first nonzero byte received is the size of
the packet being received.

2. Read the next byte (the checksum for the packet).

Read the data bytes from the device. Packet size minus 2 bytes of data are sent during the
data phase. For example, if the packet size is 3, only 1 byte of data is to be received.

Calculate the checksum of the data bytes and ensure that it matches the checksum received
in the packet.

Send an acknowledge (ACK) or not-acknowledge (NAK) to the device to indicate the success-
ful or unsuccessful reception of the packet.

An acknowledge packet is sent whenever the boot loader successfully receives and verifies a
packet. A not-acknowledge packet is sent whenever a sent packet is detected to have an error,

SWRU333A — April 16, 2013 11
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usually as a result of a checksum error or malformed data in the packet. This notifies the sender to
re-transmit the previous packet.

The ACK response consists of 2 bytes with the values of 0x00, 0xCC.

An NACK response consists of 2 bytes with the values of 0x00, 0x33 and is sent if an invalid packet
is received.

Note:
If the SSl interface is used and the host has sent a packet containing a boot loader command
that requires a time consuming code execution, the host must include a delay before clocking
the response out of the device. The delay should be included after step 3 in the send sequence
above. The time consuming commands are:

= COMMAND_SEND_DATA
= COMMAND_ERASE
= COMMAND_CRC32

2.4 Boot Loader Commands

The following commands are used by the custom protocol.

COMMAND_PING This command is used to receive an ACK from the boot loader,
= 0x20 thus indicating that communication has been established. This
command is a single byte.

The format of the command follows:
unsigned char ucCommand([1l];

ucCommand[0] = COMMAND_PING;

12 SWRUS333A — April 16, 2013
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COMMAND_ DOWNLOAD
= 0x21

COMMAND_RUN
= 0x22

This command is sent to the boot loader to indicate where
to store data and how many bytes will be sent by the
COMMAND__SEND_DATA commands that follow. The command
consists of two 32-bit values that are both transferred most-
significant bit (MSB) first. The first 32-bit value is the address
into which to start programming data, while the second is the 32-
bit size of the data that will be sent. The Program Size parameter
must be a multiple of 4. This command should be followed by a
COMMAND_GET_STATUS command to ensure that the program
address and program size were valid for the boot loader. On the
CC2538 device the flash starts at address 0x00200000.

The format of the command follows:

unsigned char ucCommand[9];

ucCommand[0] = COMMAND_DOWNLOAD;
ucCommand[1l] = Program Address [31:24];
ucCommand[2] = Program Address [23:16];
ucCommand[3] = Program Address [15:8];
ucCommand[4] = Program Address [7:0];
ucCommand[5] = Program Size [31:24];
ucCommand[6] = Program Size [23:16];
ucCommand[7] = Program Size [15:8];
ucCommand[8] = Program Size [7:0];

This command is sent to the boot loader to transfer execution
control to the specified address. The command is followed by a
32-bit value, transferred MSB first, that is the address to which
execution control is transferred. Note, this command will not re-
turn to the boot loader command receive loop.

The format of the command follows:
unsigned char ucCommand[5];

ucCommand[0] = COMMAND_RUN;
ucCommand[1l] = Run Address [31:24];
ucCommand[2] = Run Address [23:16];
ucCommand[3] = Run Address [15:8];
ucCommand[4] = Run Address [7:0];

SWRU333A — April 16, 2013
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COMMAND_GET_STATUS
= 0x23

COMMAND_SEND_DATA
=0x24

This command returns the status of the last command issued.
Typically, this command should be received after every com-
mand is sent to ensure that the previous command was suc-
cessful or, if unsuccessful, to properly respond to a failure. The
command requires 1 byte in the data of the packet, and the boot
loader should respond by sending a packet with 1 byte of data
that contains the current status code.

The format of the command follows:
unsigned char ucCommand([1];

ucCommand[0] = COMMAND_GET_STATUS;

The following are the definitions for the possible status
values that can be returned from the boot loader when
COMMAND_GET_STATUS is sent to the the CC2538 device.

COMMAND_RET_SUCCESS
COMMAND_RET_UNKNOWN_CMD
COMMAND_RET_INVALID_CMD
COMMAND_RET_INVALID_ADD
COMMAND_RET_FLASH_FAIL

This command should only follow a COMMAND_DOWNLOAD cOm-
mand or another COMMAND_SEND_DATA command, if more data
is needed. Consecutive send data commands automatically in-
crement the address and continue programming from the previ-
ous location. The transfer size is limited by the maximum size of
a packet, which allows simultaneous transfer of up to 252 data
bytes. The command terminates programming once the number
of bytes indicated by the COMMAND_DOWNLOAD command is re-
ceived. Each time this function is called, it should be followed by
a COMMAND_GET_STATUS command to ensure that the data is
successfully programmed into the flash. If the boot loader sends
a NAK to this command, the boot loader does not increment the
current address, which allows for retransmission of the previous
data.

The format of the command follows:

unsigned char ucCommand([9];

ucCommand[0] = COMMAND_SEND_DATA;
ucCommand[1l] = Datal[0];
ucCommand[2] = Datalll;
ucCommand[3] = Datal2];
ucCommand[4] = Datal3];
ucCommand[5] = Datal4];
ucCommand[6] = Datal[5];
ucCommand[7] = Datal6];
ucCommand[8] = Datal7];

14
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COMMAND_RESET This command tells the boot loader to reset. This is used after
= 0x25 downloading a new image to the CC2538 device to cause the
new application to start from a reset. The normal boot sequence
occurs and the image runs as if from a hardware reset. This
command can also be used to reset the boot loader if a critical
error occurs and the host device wants to restart communication

with the boot loader.

The boot loader responds with an ACK signal to the host device
before executing the software reset on the CC2538 device run-
ning the boot loader. The ACK informs the updater application
that the command is received successfully and the part will be
reset.

The format of the command follows:

unsigned char ucCommand[1l];

ucCommand[0] = COMMAND_RESET;
COMMAND_ERASE This command erases the required flash pages. A single flash
= 0x26 page has the size of 2KB, which is the minimum size that can

be erased. The command consists of two 32-bit values that are
both transferred MSB first. The first 32-bit value is the address in
a flash page from where the erase starts, and the second 32-bit
value is the number of bytes comprised by the erase. The boot
loader responds with an ACK signal to the host device after the
actual erase operation is performed. The page erase operation
always starts erasing at the start address of the page that incor-
porates the input Data Address. The erase ends at the end of
the page, which is determined from the input parameters. On
the CC2538 device the flash starts at address 0x00200000.

The format of the command follows:

unsigned char ucCommand([9];

ucCommand[0] = COMMAND_ERASE;

ucCommand[1l] = Data Address [31:24];
ucCommand[2] = Data Address [23:16];
ucCommand[3] = Data Address [15: 8];
ucCommand[4] = Data Address [ 7: 0];
ucCommand[5] = Data Size [31:24];

ucCommand[6] = Data Size [23:16];

ucCommand[7] = Data Size [15: 8];

ucCommand[8] = Data Size [ 7: 0];

SWRUS333A — April 16, 2013 15
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COMMAND_CRC32
= 0x27

COMMAND_GET_CHIP_ID
= 0x28

This command is used to check a flash area using the CRC32
calculation. The command consists of two 32-bit values that are
both transferred MSB first. The first 32-bit value is the address in
flash from where the CRC32 calculation starts, and the second
32-bit value is the number of bytes comprised by the CRC32
calculation. The command sends the ACK in response to the
command after the actual CRC32 calculation. The result is fi-
nally returned as 4 bytes in a packet. The boot loader then waits
for an ACK from the host as a confirmation that the packet is
received. On CC2538 the flash starts at address 0x00200000.

The format of the command follows:

unsigned char ucCommand[9];
ucCommand[0]= COMMAND_CRC32;
ucCommand[1l]= Data Address [31:24

[ 1;
ucCommand[2]= Data Address [23:16];
ucCommand[3]= Data Address [15: 8];
ucCommand[4]= Data Address [ 7: 0];
ucCommand[5]= Data Size [31:24];
ucCommand[6]= Data Size [23:16];
ucCommand[7]= Data Size [15: 8];
ucCommand[8]= Data Size [7: 0];

This command makes the boot loader return the value of the
Chip ID. The boot loader first respond by sending the ACK in
response to the command and then send a packet with 4 bytes
of data that contains the Chip ID value. The 2 LSB bytes hold
the chip part number while the remaining bytes are reserved for
future use and have the value of 0x00. The boot loader then
waits for an ACK from the host as a confirmation that the packet
received.

The format of the command follows:

unsigned char ucCommand[1l];
ucCommand[0]= COMMAND_GET_CHIP_ID;

16
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COMMAND_SET_XOSC This command is used to switch system clock source from the
= 0x29 internal 16MHz RC oscillator to the external 32MHz crystal os-
cillator. This can be used to increase transfer speed on the boot
loader serial interfaces. The device responds with an ACK on
the command packet before the switch to the external 32MHz
crystal oscillator. If the command is transferred on the UART in-
terface, the host must execute a UART baud rate auto-detection
sequence to establish the baud rate to be used while the device
is running from the external 32MHz crystal oscillator. The device
must be reset to switch back to running from the internal 16MHz
RC oscillator.

The format of the command follows:

unsigned char ucCommand[1l];
ucCommand[0]= COMMAND_SET_XOSC;

COMMAND_MEMORY_READ This command is used to read either an 8-bit or 32-bit word at
= 0x2A a specified address within the device memory map. The com-
mand consists of a 32-bit value that is transferred, MSB first,
followed by an 8-bit value specifying the read access width. The
32-bit value is the address within the device memory map to
be read and the 8-bit value specifies the access width of the
read operation. Allowed values for the access width are 1 and
4 (1 =1 byte / 4 = 4 bytes). The device sends an ACK in re-
sponse to the command after the specified data is read from
memory. The read data is finally returned as 4 bytes (MSB first)
in a packet. The boot loader then waits for an ACK from the
host as a confirmation that the packet is received. For an ac-
cess width value of 1, the read data is located in the LSB of the
4 bytes returned while the MSB bytes have the value of 0x00.
If an invalid access width is specified within the command, the
boot loader will acknowledge the command by sending an ACK
and then respond with 4 bytes with the value 0x00 in a packet.
In this case, any following COMMAND_GET_STATUS commands
report COMMAND_RET_INVALID_CMD.

The format of the command follows:

unsigned char ucCommand[6];
ucCommand[0]= COMMAND_MEMORY_READ;
ucCommand[1]= Data Address [31:24];
ucCommand[2]= Data Address [23:16];
ucCommand[3]= Data Address [15: 8];
ucCommand[4]= Data Address [ 7: 0];
ucCommand[5]= Read access width [7:0];

SWRUS333A — April 16, 2013 17
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COMMAND_MEMORY_WRITE
= 0x2B

This command is used to write either an 8-bit or 32-bit word to
a specified address within the device memory map. The com-
mand consists of two 32-bit values that are transferred, MSB
first, followed by an 8-bit value specifying the write access width.
The first 32-bit value is the address within the device memory
map to be written. The second 32-bit value is the data to be
written. The 8-bit value specifies the access width of the write
operation. Allowed values for the access width are 1 and 4
(1 = 1 byte / 4 = 4 bytes). The device sends an ACK in re-
sponse to the command after the specified data is written to
memory. For an access width value of 1, the data to be writ-
ten must be located in the LSB of the 4 data bytes in the com-
mand. If an invalid access width is specified within the com-
mand, the boot loader acknowledges the command by sending
an ACK but does not perform any memory write operation. In
this case, any following COMMAND_GET_STATUS commands re-
port COMMAND_RET_INVALID_CMD.

The format of the command follows:

unsigned char ucCommand[10];
ucCommand[0]= COMMAND_MEMORY_WRITE;
ucCommand[1l]= Data Address [31:24];
ucCommand[2]= Data Address [23:16];
ucCommand[3]= Data Address [15: 8];
] r

[

[

[
ucCommand[4]= Data Address [ 7:
ucCommand[5]= Data [31:24]
ucCommand[6]= Data [23:16]
ucCommand([7]= Data [15: 8]
ucCommand[8]= Data [7: 0]
ucCommand[9]= Read access width [7:0];

2.4.1 Boot Loader Return Values
The boot loader can return the following values in response to the COMMAND_GET_STATUS
command.
COMMAND_RET_SUCCESS This value is returned in response t0 a COMMAND_GET_STATUS
= 0x40 command and indicates that the previous command completed
successful.
The format of the status value follows:
unsigned char ucStatus([1l];
ucCommand[0] = COMMAND_RET_SUCCESS;
18 SWRUS333A — April 16, 2013
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COMMAND_RET_UNKNOWN_CMDThis is returned in response to a COMMAND_GET_STATUS com-

= 0x41 mand and indicates that the command sent is an unknown com-
mand.

The format of the status value follows:
unsigned char ucStatus([1l];

ucCommand[0] = COMMAND_RET_UNKNOWN_CMD;

COMMAND_RET_INVALID_CMDThis is returned in response to a COMMAND_GET_STATUS com-

= 0x42 mand and indicates that the previous command is formatted in-
correctly.

The format of the status value follows:
unsigned char ucStatus([1l];

ucCommand[0] = COMMAND_RET_INVALID_CMD;

COMMAND_RET_INVALID_ADRThis is returned in response to a COMMAND_GET_STATUS com-

= 0x43 mand and indicates that the previous download command con-
tained an invalid address value.

The format of the status value follows:
unsigned char ucStatus([1l];

ucCommand[0] = COMMAND_RET_INVALID_ADR;

COMMAND_RET_FLASH_FAIL This is returned in response to a COMMAND_GET_STATUS com-

= 0x44 mand and indicates that an attempt to program or erase the flash
has failed.

The format of the status value is as follows:
unsigned char ucStatus[1l];

ucCommand[0] = COMMAND_RET_FLASH_FAIL;

The definitions for these commands are provided as part of the CC2538 peripheral driver library, in
source/bl_commands.h.

SWRU333A — April 16, 2013
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Introduction

The CC2538 ROM contains a utility function library. Applications can use the utility function library to
reduce their flash footprint, thus allowing the flash to be used for other purposes (such as additional
features in the application).

Any compiler can use the API provided by the ROM as long as the compiler complies with the
embedded applications binary interface (EABI), which includes all recent compilers for the CC2538
family of devices.

This implementation is located as object code in the ROM with source/rom.h containing the API
definitions for use by applications.

API Functions

Functions

unsigned long ROM_Crc32 (unsigned char «pucData, unsigned long ulByteCount)

unsigned long ROM_GetChipld (void)

unsigned long ROM_GetFlashSize (void)

int ROM_memcmp (const void xS1, const void xS2, size_t Length)

void * ROM_memcpy (void «Dst, const void «Src, size_t Length)

void * ROM_memmove (void xDst, const void xSrc, size_t Length)

void * ROM_memset (void xDst, int C, size_t Length)

long ROM_PageErase (unsigned long ulStartAddress, unsigned long ulEraseSize)

long ROM_ProgramFlash (unsigned long xpulData, unsigned long ulAddress, unsigned long
ulCount)

m void ROM_ResetDevice (void)

Detailed Description

The Utility API is broken into three groups of functions:

m Those that deal with flash programming
m Those that deal with security and chip configuration
m Those that handle data movement

The flash programming is handled by the ROM_PageErase() function and the
ROM_ProgramFlash() function.
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3.2.2

3.2.2.1

3.2.2.2

3.2.2.3

Device configuration can be accessed using the ROM_GetFlashSize() function. A reset equivalent
to a pin reset can be executed using the ROM_ResetDevice() function.

Easy data memory handling can be implemented using the following functions: ROM_memset(),
ROM_memcpy(), ROM_memcmp(), ROM_memmove() and ROM_Crc32().

Function Documentation

ROM_Crc32

This function calculates CRC32 over a given address range.

Prototype:
unsigned long
ROM_Crc32 (unsigned char xpucData,
unsigned long ulByteCount)

Parameters:
pucData is a pointer to the image data.

ulByteCount is the size of the image in bytes.

Description:
This function calculates the CRC32 over a given address range. The CRC value is calculated
using CRC32 IEEE 802.3 with polynomial x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8
+ X7+ X5+ X4 +X2 +X + 1

Returns:
Calculated CRC-32 value

ROM_GetChipld

This function returns the chip ID.

Prototype:
unsigned long
ROM_GetChipId(void)

Description:
This function returns the chip ID.

Returns:
Chip ID

ROM_GetFlashSize

This function returns the flash size.

Prototype:
unsigned long
ROM_GetFlashSize (void)

22
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Description:
This function returns the flash size in number of bytes.
Returns:
None
3.22.4 ROM_memcmp

This function compares two memory areas.

Prototype:
int
ROM_memcmp (const void =*S1,
const void =*S2,
size_t Length)

Parameters:
S1 is a pointer to the start of a memory area.
S2 is a pointer to the start of a second memory area.
Length is the number of characters to compare.

Description:
This function compares not more than Length characters of the object pointed to by S1 with
the object pointed to by S2.

Returns:
This function returns an integer greater than, equal to or less than 0 according to whether the
object pointed to by S1 is greater than, equal to, or less than the object pointed to by S2.

3.2.2.5 ROM_memcpy
This function copies data from one memory area to another area.
Prototype:
void =*
ROM_memcpy (void =Dst,
const void *Src,
size_t Length)
Parameters:
Dst is a pointer to the start of the destination memory area.
Src is a pointer to the start of the source memory area.
Length is the number of characters to copy.
Description:
This function copies Length bytes from the memory region pointed to by Src to the memory
region pointed to by Dst. If the regions overlap, the behavior is undefined.
Returns:
The function returns a pointer to the first byte of the Dst region.
SWRU333A — April 16, 2013 23
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3.2.2.6

3.2.2.7

3.2.2.8

ROM_memmove

This function moves a block of data from one memory area to another.

Prototype:
void =
ROM_memmove (void =*Dst,
const void =*Src,
size_t Length)

Parameters:
Dst is a pointer to the start of the destination memory area.

Src is a pointer to the start of the source memory area.
Length is the number of characters to copy.

Description:
This function moves Length characters from the block memory pointed to by Src to the memory
region pointed to by Dst. ROM_memmove reproduces the characters correctly at the Dst
region even if the two areas overlap.

Returns:
Returns Dst as passed.

ROM_memset

Set a memory area to a specified value

Prototype:
void =
ROM_memset (void =Dst,
int C,
size_t Length)

Parameters:
Dst is a pointer to start of the memory to be set.

C is the value to set.
Length is the number of characters to set.

Description:
This function converts the argument C into an unsigned char and fills the first Length charac-
ters of the array pointed to by Dst to the value.

Returns:
Returns the value of Dst.

ROM_PageErase

This function erases flash pages.

24
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Prototype:
long
ROM_PageErase (unsigned long ulStartAddress,
unsigned long ulEraseSize)

Parameters:
ulStartAddress is the starting address in flash of the first page to be erased. Must be a
multiple of 4 and within the flash memory map area.
ulEraseSize is the number of bytes that must be erased.

Description:
This function erases the required number of sequential flash pages starting at the page derived
from ulStartAddress and up to the page required by the number of bytes in ulEraseSize. It is
up to the caller to verify the contents after the erase, if such verification is required.

This function does not return until the required flash pages are erased or an error condition
occurs.

Returns:
Returns 0 on success, or -1 if an error is encountered or -2 if invalid input parameters.

3.2.2.9 ROM_ProgramFlash

This function programs the flash.

Prototype:
long
ROM_ProgramFlash (unsigned long =*pulData,
unsigned long ulAddress,
unsigned long ulCount)

Parameters:
pulData is a pointer to the data to be programmed.
ulAddress is the starting address in flash to be programmed. Must be a multiple of 4 and
within the flash memory map area.
ulCount is the number of bytes to be programmed. Must be a multiple of 4.

Description:
This function programs a sequence of 32-bits words into the on-chip flash. Programming each
location consists of the result of an AND operation of the new data and the existing data; in
other words bits that contain 1 can remain 1 or be changed to 0, but bits that are 0 cannot be
changed to 1. Therefore, a word can be programmed multiple times as long as these rules are
followed; if a program operation tries to change a 0 bit to a 1 bit, the value of that bit is not
changed.

Because the flash is programmed one word at a time, the starting address and byte count
must both be multiples of 4. It is up to the caller to verify the programmed contents, if such
verification is required.

This function does not return until the data has been programmed or an access violation has

occurred.
Returns:
Returns 0 on success, or -1 if a programming error is encountered or -2 if invalid input param-
eters.
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3.2.2.10 ROM_ResetDevice

This function performs a system reset of the CC2538 SoC.
Prototype:
void

ROM_ResetDevice (void)

Description:
This function performs a system reset equivalent to an external pin reset.

Returns:
None

3.3 Programming Example
The following example shows how to use the ROM utility API to determine the size of the flash.

unsigned long ulSize;

ulSize = ROM_GetFlashSize();
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