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ABSTRACT
In many embedded systems, an MSP430™ microcontroller is connected to an application processor
running a version of Linux® such as Android™ or Debian®. The MSP430 manages low-level peripherals
such as power devices or sensors and communicates relevant information to the application processor
over I2C. In these applications, the Linux-based host must be able to update the firmware running on the
MSP430. This document provides a portable software base to update an MSP430 device with an I2C
bootloader (BSL) by using standard Linux I2C calls.
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1 Introduction
Applications such as consumer electronics often have a setup where an application processor running a
Linux-based operating system is controlling an MSP430 attached by I2C. The MSP430 device might be
managing a sensor or performing other low-power centric tasks for the Linux host. In applications like this,
the Linux host must be able to update the firmware running on the MSP430 through I2C. This document
provides example code and implementation examples to provide users a reference for how to update on
an MSP430 device with an I2C BSL over Linux.

This document assumes the user understands how the MSP430 I2C BSL operates. This operation is
explained in detail in the varying BSL documents for each MSP430 platform (see Section 7 for details).
This document also assumes that the user understands how to use Linux and how to compile code on
Linux using the GCC tool chain.

No special software libraries are required to compile the provided code, but having a formal GCC
development environment capable of compiling C code is required. An MSP430 with an I2C BSL is
required for the provided code to function as expected. For testing, the sample code uses an
MSP430FR59691 with an MSP-TS430RGZ48C target board. For the host side, a TI BeagleBone Black is
used running the Debian distribution of Linux. To determine which version of the BSL that your device is
using, see the data sheet of the device.

For the software for this application report, see http://software-
dl.ti.com/msp430/msp430_public_sw/mcu/msp430/i2c_bsl_linux_tools/latest/index_FDS.html.

2 BSL Commands and Firmware Parsers
TI designed this application to segregate the core I2C communication code and the user implementation.
This segregation was done to foster a device agnostic architecture and offer the opportunity to expand the
functionality to different host architectures. The i2cbsl.c source file contains all BSL command APIs and
low-level I2C physical communication. The external functions in this file contain the APIs that directly
correspond to the specific BSL commands such as mass erase and program segment. Low-level I2C
communication functions are included in this file such as send data and read data. Table 1 lists the
supported BSL commands in this implementation and a brief description of each command. Figure 1
shows a high-level block diagram of the code organization.

Table 1. Supported BSL Commands

BSL Command Description
MSP430BSL_sendData Sends data to be programmed to the memory of the MSP430

device
MSP430BSL_readData Returns X bytes of data at the specified address and prints them

on screen. This command requires the BSL password to be
provided through the MSP430BSL_unlockDevice command.

MSP430BSL_unlockDevice Provides a 32-byte BSL password to unlock the device for
memory reads or CRC calculations.

MSP430BSL_massErase Erases nonprotected memory of the MSP430 device
MSP430BSL_checkCRC Returns the CRC of the provided memory range. This command

requires the BSL password to be provided through the
MSP430BSL_unlockDevice command.

MSP430BSL_invokeBSL Sends the provided software invoke sequence to the MSP430
device

MSP430BSL_setProgramCounter Sets the program counter of the MSP430 device. This function
can reset the device after the firmware update completes.
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Figure 1. Overall I2C BSL Update Block Diagram

In addition to the core I2C communication APIs, a set of firmware parser functions are also provided.
These functions take a variety of different firmware formats and parse them into a linked list structure that
can be passed into the core I2C communication functions. Figure 2 shows the linked list structure that
represents the firmware.

Figure 2 shows a standard linked list structure that represents a series of noncontiguous segments of
memory in the MSP430.

Figure 2. Firmware Linked List Structure

The ui32MemoryStartAddr variable is the start address of the segment, the ui32MemoryLength is the
length of the current segment, the ui8Buffer variable is a pointer to the array containing the memory
contents, and the pNextSegment pointer is a link to the next memory segment in the linked list. For the
last memory segment the pNextSegment is a value of NULL. TI designed this structure to be generic and
easily sourced from a variety of firmware formats. TI provides the following example parsers with this
document: a TI-TXT parser and a SRecord Array parser. The following sections describe these parsers.

http://www.ti.com
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3 Terminal Program
TI created the terminal program as an interactive way for users to completely customize the method by
which the firmware update is handled. The msp430-i2cbsl-tool folder includes this implementation. By
using the terminal program, users can specify BSL options such as BSL password and payload size.
Users can also perform special BSL commands such as reading data or calculating CRC through the
terminal program. For the firmware format, the terminal program accepts a standard TI-TXT file. This file is
automatically parsed and converted into the linked list structure defined in Section 2. Figure 3 shows a
printout of the terminal options.

Figure 3. Terminal Application Options
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The I2C path, slave address, and firmware file must be provided for basic BSL functionality. Figure 4
shows an example invocation.

Figure 4. I2C BSL Update Through Terminal Application

In this example, the I2C path is /dev/i2c-1, the slave address is 0x48, and the firmware file to program is
firmware.txt. In this instance, the password file is omitted. If the password file is omitted, the device
performs a mass erase (resetting the password to all 0xFFs) and the device is unlocked. If a password is
provided, it must be specified as a space delimited ASCII file similar to the TI-TXT file. The password file
must be provided with no addresses and just the hex values of the BSL password (usually the contents in
memory from 0xFFE0 to 0xFFFF). Figure 5 shows an example of the password file.

Figure 5. Example BSL Password File

In addition to updating the firmware, the terminal application can read and return the memory contents of
the device or calculate the CRC value of a specified range of memory. These commands are available by
the use of the –r and –y flags appropriately. These functions require a password to prevent a mass erase.
If an invalid password or no password is provided, a mass erase occurs and memory is reset to 0xFF
(making a read or CRC calculation meaningless). The chunk size of the payload can also be specified by
using the –c flag. The –c flag is an advanced setting that changes the maximum payload size when
sending data to program memory on the MSP430 device. By default, the maximum payload size is set to
16 bytes but can be increased to the maximum supported buffer size of the device. The maximum
supported buffer size varies from device to device. To find the optimal value, see the device-specific BSL
guide.
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Another important design requirement of performing a BSL update is having a method to invoke the BSL
mode on the MSP430 device. For MSP430, the following are ways to invoke the BSL: hardware invocation
and software invocation. Hardware invocation requires the user to apply a specific timing pulse to the
TEST and RESET pins. Software invocation requires the user to have a custom I2C command handler that
changes the program counter to enter BSL mode. For specifics on software and hardware BSL
invocations, see the specific BSL design guide (see MSP430FR57xx, MSP430FR58xx, MSP430FR59xx,
MSP430FR68xx, and MSP430FR69xx Bootloader (BSL) User's Guide [SLAU550]). For hardware
invocation, the timing pulse must be applied on the TEST and RESET pins before calling the terminal
application. If the hardware invocation is used, specify the –n option to omit the software invocation. If the
–n flag is not specified before any BSL command is issued, the terminal program sends an I2C write
transaction of the bytes specified in the invokeString array of the main.c file. By default, this invoke string
is represented by a character sequence of {0xCA, 0xFE, 0xDE, 0xAD, 0xBE, 0xEF, 0xBA, 0xBE}.

4 Simplified Package Program
In addition to a fully functional terminal application, this document also provides a simplified package
implementation that is fully contained and requires no external input. The source code in this program
contains the I2C slave information and a SRecord C-array representation of the firmware. This
implementation is useful for automated system updates for consumer electronics such as tablets or smart
phones where user input is inconvenient. The source for this implementation is included within the
msp430-i2cbsl-package folder. The firmware in this implementation is represented in a C-Array format,
which is exported by the SRecord tool (see SRecord Firmware Parser Tool,
http://srecord.sourceforge.net/). SRecord is an open source tool to convert and manage various formats of
embedded firmware. This tool can convert a TI-TXT file to a standard C-Array implementation. To do this
conversion, the SRecord program must be invoked with the options shown in Figure 6.

Figure 6. SRecord Invocation
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In this example, SRecord accepts the firmware.txt file in TI-TXT format as a parameter and outputs a
standard C file with a constant character array representation of the firmware. Information about the size
of the firmware, number of segments, and size of each segment is also generated. Figure 7 shows an
example output of this firmware information.

Figure 7. Output of SRecord

The MSP430BSL_parseSRecordArray function in the firmware_parser.c file accepts each of these
parameters (including the firmware array) and generates the memory segment linked list structure. This
linked list can then be parsed into any of the standard BSL functions provided in the i2cbsl.c file. Having
the firmware integrated into a compiled C file is ideal for this package implementation because it does not
require any user input or external file manipulation. The I2C password is also integrated into the main.c file
of this solution in the bslPassword array.

http://www.ti.com
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5 Testing on BeagleBone Black
For testing, a TI BeagleBone Black running the stock Debian distribution of Linux was used. Included in
the root src/ directory of the software package is a Makefile. This Makefile is recursive and compiles the
individual components of the project when the make command is invoked. The hardware setup of the
BeagleBone Black is ideal because the external pullup resistors required for I2C communication are
integrated on the BeagleBone hardware. For the device testing, an MSP430FR59691 connected to an
MSP-TS430RGZ48C target board was used. Figure 8 shows this setup.

Figure 8. BeagleBone Black and MSP430 Test Setup
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The I2C BSL command set varies between MSP430 devices, and certain commands that are available on
one variant of the I2C BSL may not be available on a different variant. While functionality was fully tested
and verified on MSP430FR59691, a certain level of integration might be required for another MSP430
device. For information on the variations of command structures and command availability between
MSP430 devices, see the device-specific BSL documentation. For Linux distributions, any standard
distribution of Linux works with the BSL tools without issue. No special external software libraries are used
other than standard C libraries coupled with Linux ioctl calls. Figure 9 shows compilation through the GCC
compiler on the BeagleBone Black.

Figure 9. Compilation Through GCC

6 Porting to Other Platforms
TI designed the overall structure of this code to be portable to any embedded host system that can
compile standard C code. Only standard C libraries are used and there are no references to nonstandard
or proprietary libraries. When porting to other platforms, the only code that must be modified is the core
I2C communication code included in the MSP430BSL_I2CWriteRead and MSP430BSL_I2CWrite functions
of the i2cbsl.c file. These functions contain the low-level I2C calls that send or read bytes over the I2C line.
This code is platform specific and must be changed according to the I2C communication method of the
host. In this implementation, simple ioctl calls to the I2C_RDWR functionality of Linux are used to perform
I2C transactions.

This code is focused on user space Linux calls. For porting to Linux kernel space, the simplified package
program example implementation is the best reference. This implementation is beneficial for kernel-level
modules because there is no user interaction and all update parameters and BSL parameters can be
contained in a single encapsulated program. For a kernel space implementation, the low-level I2C ioctl
calls must be changed to the i2c_transfer implementation. If a user wants to port the I2C code over to a
Windows® or UEFI implementation, the low-level I2C communication code in the i2cbsl.c file must be
changed to match the I2C APIs of the new platform.

http://www.ti.com
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