
1SWRA500–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430™ Firmware Updates Over I2C Using Linux®

Debian is a registered trademark of Software in the Public Interest, Inc.
MSP430 is a trademark of Texas Instruments.
Android is a trademark of Google Inc.
Linux is a registered trademark of Linus Torvalds.
Windows is a registered trademark of Microsoft Inc.
All other trademarks are the property of their respective owners.

Application Report
SWRA500–January 2016

MSP430™ Firmware Updates Over I2C Using Linux®

TimothyLogan

ABSTRACT
In many embedded systems, an MSP430™ microcontroller is connected to an application processor
running a version of Linux® such as Android™ or Debian®. The MSP430 manages low-level peripherals
such as power devices or sensors and communicates relevant information to the application processor
over I2C. In these applications, the Linux-based host must be able to update the firmware running on the
MSP430. This document provides a portable software base to update an MSP430 device with an I2C
bootloader (BSL) by using standard Linux I2C calls.

Contents
1 Introduction ... 2
2 BSL Commands and Firmware Parsers .. 2
3 Terminal Program.. 4
4 Simplified Package Program ... 6
5 Testing on BeagleBone Black.. 8
6 Porting to Other Platforms .. 9
7 References .. 10

List of Figures

1 Overall I2C BSL Update Block Diagram... 3
2 Firmware Linked List Structure... 3
3 Terminal Application Options... 4
4 I2C BSL Update Through Terminal Application .. 5
5 Example BSL Password File ... 5
6 SRecord Invocation.. 6
7 Output of SRecord ... 7
8 BeagleBone Black and MSP430 Test Setup... 8
9 Compilation Through GCC ... 9

List of Tables

1 Supported BSL Commands .. 2

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA500

Introduction www.ti.com

2 SWRA500–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430™ Firmware Updates Over I2C Using Linux®

1 Introduction
Applications such as consumer electronics often have a setup where an application processor running a
Linux-based operating system is controlling an MSP430 attached by I2C. The MSP430 device might be
managing a sensor or performing other low-power centric tasks for the Linux host. In applications like this,
the Linux host must be able to update the firmware running on the MSP430 through I2C. This document
provides example code and implementation examples to provide users a reference for how to update on
an MSP430 device with an I2C BSL over Linux.

This document assumes the user understands how the MSP430 I2C BSL operates. This operation is
explained in detail in the varying BSL documents for each MSP430 platform (see Section 7 for details).
This document also assumes that the user understands how to use Linux and how to compile code on
Linux using the GCC tool chain.

No special software libraries are required to compile the provided code, but having a formal GCC
development environment capable of compiling C code is required. An MSP430 with an I2C BSL is
required for the provided code to function as expected. For testing, the sample code uses an
MSP430FR59691 with an MSP-TS430RGZ48C target board. For the host side, a TI BeagleBone Black is
used running the Debian distribution of Linux. To determine which version of the BSL that your device is
using, see the data sheet of the device.

For the software for this application report, see http://software-
dl.ti.com/msp430/msp430_public_sw/mcu/msp430/i2c_bsl_linux_tools/latest/index_FDS.html.

2 BSL Commands and Firmware Parsers
TI designed this application to segregate the core I2C communication code and the user implementation.
This segregation was done to foster a device agnostic architecture and offer the opportunity to expand the
functionality to different host architectures. The i2cbsl.c source file contains all BSL command APIs and
low-level I2C physical communication. The external functions in this file contain the APIs that directly
correspond to the specific BSL commands such as mass erase and program segment. Low-level I2C
communication functions are included in this file such as send data and read data. Table 1 lists the
supported BSL commands in this implementation and a brief description of each command. Figure 1
shows a high-level block diagram of the code organization.

Table 1. Supported BSL Commands

BSL Command Description
MSP430BSL_sendData Sends data to be programmed to the memory of the MSP430

device
MSP430BSL_readData Returns X bytes of data at the specified address and prints them

on screen. This command requires the BSL password to be
provided through the MSP430BSL_unlockDevice command.

MSP430BSL_unlockDevice Provides a 32-byte BSL password to unlock the device for
memory reads or CRC calculations.

MSP430BSL_massErase Erases nonprotected memory of the MSP430 device
MSP430BSL_checkCRC Returns the CRC of the provided memory range. This command

requires the BSL password to be provided through the
MSP430BSL_unlockDevice command.

MSP430BSL_invokeBSL Sends the provided software invoke sequence to the MSP430
device

MSP430BSL_setProgramCounter Sets the program counter of the MSP430 device. This function
can reset the device after the firmware update completes.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA500
http://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/i2c_bsl_linux_tools/latest/index_FDS.html
http://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/i2c_bsl_linux_tools/latest/index_FDS.html

Linux

I2C_RDWR

MSP430

I2cbsl.c

I2C/BSL Commands

BSL Host

Implementation
Firmware Parser

Accepts firmware format

and returns linked list

representation of firmware.

Accepts firmware format

and returns linked list

representation of firmware.

Provides APIs to interface

with available BSL

commands on MSP430.

MSP430 running a

compatible I2C BSL.

Standard Linux ioctl calls

to I2C_RDWR for low-level

I2C communication.

www.ti.com BSL Commands and Firmware Parsers

3SWRA500–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430™ Firmware Updates Over I2C Using Linux®

Figure 1. Overall I2C BSL Update Block Diagram

In addition to the core I2C communication APIs, a set of firmware parser functions are also provided.
These functions take a variety of different firmware formats and parse them into a linked list structure that
can be passed into the core I2C communication functions. Figure 2 shows the linked list structure that
represents the firmware.

Figure 2 shows a standard linked list structure that represents a series of noncontiguous segments of
memory in the MSP430.

Figure 2. Firmware Linked List Structure

The ui32MemoryStartAddr variable is the start address of the segment, the ui32MemoryLength is the
length of the current segment, the ui8Buffer variable is a pointer to the array containing the memory
contents, and the pNextSegment pointer is a link to the next memory segment in the linked list. For the
last memory segment the pNextSegment is a value of NULL. TI designed this structure to be generic and
easily sourced from a variety of firmware formats. TI provides the following example parsers with this
document: a TI-TXT parser and a SRecord Array parser. The following sections describe these parsers.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA500

Terminal Program www.ti.com

4 SWRA500–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430™ Firmware Updates Over I2C Using Linux®

3 Terminal Program
TI created the terminal program as an interactive way for users to completely customize the method by
which the firmware update is handled. The msp430-i2cbsl-tool folder includes this implementation. By
using the terminal program, users can specify BSL options such as BSL password and payload size.
Users can also perform special BSL commands such as reading data or calculating CRC through the
terminal program. For the firmware format, the terminal program accepts a standard TI-TXT file. This file is
automatically parsed and converted into the linked list structure defined in Section 2. Figure 3 shows a
printout of the terminal options.

Figure 3. Terminal Application Options

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA500

www.ti.com Terminal Program

5SWRA500–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430™ Firmware Updates Over I2C Using Linux®

The I2C path, slave address, and firmware file must be provided for basic BSL functionality. Figure 4
shows an example invocation.

Figure 4. I2C BSL Update Through Terminal Application

In this example, the I2C path is /dev/i2c-1, the slave address is 0x48, and the firmware file to program is
firmware.txt. In this instance, the password file is omitted. If the password file is omitted, the device
performs a mass erase (resetting the password to all 0xFFs) and the device is unlocked. If a password is
provided, it must be specified as a space delimited ASCII file similar to the TI-TXT file. The password file
must be provided with no addresses and just the hex values of the BSL password (usually the contents in
memory from 0xFFE0 to 0xFFFF). Figure 5 shows an example of the password file.

Figure 5. Example BSL Password File

In addition to updating the firmware, the terminal application can read and return the memory contents of
the device or calculate the CRC value of a specified range of memory. These commands are available by
the use of the –r and –y flags appropriately. These functions require a password to prevent a mass erase.
If an invalid password or no password is provided, a mass erase occurs and memory is reset to 0xFF
(making a read or CRC calculation meaningless). The chunk size of the payload can also be specified by
using the –c flag. The –c flag is an advanced setting that changes the maximum payload size when
sending data to program memory on the MSP430 device. By default, the maximum payload size is set to
16 bytes but can be increased to the maximum supported buffer size of the device. The maximum
supported buffer size varies from device to device. To find the optimal value, see the device-specific BSL
guide.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA500

Simplified Package Program www.ti.com

6 SWRA500–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430™ Firmware Updates Over I2C Using Linux®

Another important design requirement of performing a BSL update is having a method to invoke the BSL
mode on the MSP430 device. For MSP430, the following are ways to invoke the BSL: hardware invocation
and software invocation. Hardware invocation requires the user to apply a specific timing pulse to the
TEST and RESET pins. Software invocation requires the user to have a custom I2C command handler that
changes the program counter to enter BSL mode. For specifics on software and hardware BSL
invocations, see the specific BSL design guide (see MSP430FR57xx, MSP430FR58xx, MSP430FR59xx,
MSP430FR68xx, and MSP430FR69xx Bootloader (BSL) User's Guide [SLAU550]). For hardware
invocation, the timing pulse must be applied on the TEST and RESET pins before calling the terminal
application. If the hardware invocation is used, specify the –n option to omit the software invocation. If the
–n flag is not specified before any BSL command is issued, the terminal program sends an I2C write
transaction of the bytes specified in the invokeString array of the main.c file. By default, this invoke string
is represented by a character sequence of {0xCA, 0xFE, 0xDE, 0xAD, 0xBE, 0xEF, 0xBA, 0xBE}.

4 Simplified Package Program
In addition to a fully functional terminal application, this document also provides a simplified package
implementation that is fully contained and requires no external input. The source code in this program
contains the I2C slave information and a SRecord C-array representation of the firmware. This
implementation is useful for automated system updates for consumer electronics such as tablets or smart
phones where user input is inconvenient. The source for this implementation is included within the
msp430-i2cbsl-package folder. The firmware in this implementation is represented in a C-Array format,
which is exported by the SRecord tool (see SRecord Firmware Parser Tool,
http://srecord.sourceforge.net/). SRecord is an open source tool to convert and manage various formats of
embedded firmware. This tool can convert a TI-TXT file to a standard C-Array implementation. To do this
conversion, the SRecord program must be invoked with the options shown in Figure 6.

Figure 6. SRecord Invocation

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA500
http://www.ti.com/lit/pdf/SLAU550
http://srecord.sourceforge.net/

www.ti.com Simplified Package Program

7SWRA500–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430™ Firmware Updates Over I2C Using Linux®

In this example, SRecord accepts the firmware.txt file in TI-TXT format as a parameter and outputs a
standard C file with a constant character array representation of the firmware. Information about the size
of the firmware, number of segments, and size of each segment is also generated. Figure 7 shows an
example output of this firmware information.

Figure 7. Output of SRecord

The MSP430BSL_parseSRecordArray function in the firmware_parser.c file accepts each of these
parameters (including the firmware array) and generates the memory segment linked list structure. This
linked list can then be parsed into any of the standard BSL functions provided in the i2cbsl.c file. Having
the firmware integrated into a compiled C file is ideal for this package implementation because it does not
require any user input or external file manipulation. The I2C password is also integrated into the main.c file
of this solution in the bslPassword array.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA500

Testing on BeagleBone Black www.ti.com

8 SWRA500–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430™ Firmware Updates Over I2C Using Linux®

5 Testing on BeagleBone Black
For testing, a TI BeagleBone Black running the stock Debian distribution of Linux was used. Included in
the root src/ directory of the software package is a Makefile. This Makefile is recursive and compiles the
individual components of the project when the make command is invoked. The hardware setup of the
BeagleBone Black is ideal because the external pullup resistors required for I2C communication are
integrated on the BeagleBone hardware. For the device testing, an MSP430FR59691 connected to an
MSP-TS430RGZ48C target board was used. Figure 8 shows this setup.

Figure 8. BeagleBone Black and MSP430 Test Setup

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA500

www.ti.com Porting to Other Platforms

9SWRA500–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430™ Firmware Updates Over I2C Using Linux®

The I2C BSL command set varies between MSP430 devices, and certain commands that are available on
one variant of the I2C BSL may not be available on a different variant. While functionality was fully tested
and verified on MSP430FR59691, a certain level of integration might be required for another MSP430
device. For information on the variations of command structures and command availability between
MSP430 devices, see the device-specific BSL documentation. For Linux distributions, any standard
distribution of Linux works with the BSL tools without issue. No special external software libraries are used
other than standard C libraries coupled with Linux ioctl calls. Figure 9 shows compilation through the GCC
compiler on the BeagleBone Black.

Figure 9. Compilation Through GCC

6 Porting to Other Platforms
TI designed the overall structure of this code to be portable to any embedded host system that can
compile standard C code. Only standard C libraries are used and there are no references to nonstandard
or proprietary libraries. When porting to other platforms, the only code that must be modified is the core
I2C communication code included in the MSP430BSL_I2CWriteRead and MSP430BSL_I2CWrite functions
of the i2cbsl.c file. These functions contain the low-level I2C calls that send or read bytes over the I2C line.
This code is platform specific and must be changed according to the I2C communication method of the
host. In this implementation, simple ioctl calls to the I2C_RDWR functionality of Linux are used to perform
I2C transactions.

This code is focused on user space Linux calls. For porting to Linux kernel space, the simplified package
program example implementation is the best reference. This implementation is beneficial for kernel-level
modules because there is no user interaction and all update parameters and BSL parameters can be
contained in a single encapsulated program. For a kernel space implementation, the low-level I2C ioctl
calls must be changed to the i2c_transfer implementation. If a user wants to port the I2C code over to a
Windows® or UEFI implementation, the low-level I2C communication code in the i2cbsl.c file must be
changed to match the I2C APIs of the new platform.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA500

References www.ti.com

10 SWRA500–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430™ Firmware Updates Over I2C Using Linux®

7 References
• MSP430FR57xx, MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Bootloader

(BSL) User's Guide (SLAU550)
• Creating a Custom Flash-Based Bootstrap Loader (BSL) (SLAA450)
• MSP430FR59691 Product Folder, http://www.ti.com/product/msp430fr59691
• BeagleBone Black Homepage, http://beagleboard.org/BLACK
• SRecord Firmware Parser Tool, http://srecord.sourceforge.net/

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA500
http://www.ti.com/lit/pdf/SLAU550
http://www.ti.com/lit/pdf/SLAA450
http://www.ti.com/product/msp430fr59691
http://beagleboard.org/BLACK
http://srecord.sourceforge.net/

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	MSP430™ Firmware Updates Over I2C Using Linux®
	1 Introduction
	2 BSL Commands and Firmware Parsers
	3 Terminal Program
	4 Simplified Package Program
	5 Testing on BeagleBone Black
	6 Porting to Other Platforms
	7 References

	Important Notice

