
 Design Note   DN507 

 SWRA313 Page 1 of 17  

FEC Decoding 
By Siri Johnsrud and Robin Hoel  

 
 
Keywords 
 
• FEC 
• Trellis 
• Viterbi 
• CC1100 
• CC1100E 
• CC1101 
• CC1110Fx 

• CC1111Fx 
• CC1150 
• CC2500 
• CC2510Fx 
• CC2511Fx 
• CC2550 
• CC430Fx   

 
 
 

1 Introduction 

The CC1100, CC1100E, CC1101, 
CC1110Fx, CC1111Fx, CC1150, CC2500, 
CC2510Fx, CC2511Fx, and CC2550 all 
implement FEC encoding and decoding in 
HW. The purpose of this design note is to 
describe how one can implement the 
same FEC decoding in SW. This is in 
particular very important for the CC430Fx 

device, which has the same radio as the 
CC1101 and CC1110/11Fx but without 
HW FEC included. This design note is not 
meant as a tutorial on FEC and it will not 
cover the FEC encoding, as it is described 
in  
DN504 [1]. 

 



 Design Note   DN507 

 SWRA313 Page 2 of 17  

Table of Contents 
 
KEYWORDS.............................................................................................................................. 1 
1 INTRODUCTION............................................................................................................. 1 
2 ABBREVIATIONS........................................................................................................... 2 
3 IMPLEMENTATION........................................................................................................ 3 

3.1 CODE EXAMPLE ASSUMPTIONS AND LIMITATIONS ........................................................ 3 
3.2 C CODE..................................................................................................................... 4 

4 EXPLANATION TO THE CODE..................................................................................... 8 
5 REFERENCES.............................................................................................................. 16 
6 GENERAL INFORMATION .......................................................................................... 17 

6.1 DOCUMENT HISTORY................................................................................................ 17 
 
 
 
 
 
 
 
 
 
 

2 Abbreviations 

CRC   Cyclic Redundancy Check 
FEC   Forward Error Correction 
FIFO   First In First Out 
HW   Hardware 
LSB   Least Significant Bit 
MSB   Most Significant Bit 
RAM   Random Access Memory 
SW   Software 
 
 



 Design Note   DN507 

 SWRA313 Page 3 of 17  

3 Implementation 

3.1 Code Example Assumptions and Limitations 

Assume that you want to use the CC1101 [5] to transmit a packet and the CC430Fx [2] to 
receive it. The payload is 29 bytes and 2 bytes of CRC are appended. If FEC is enabled 
(MDMCFG1.FEC_EN = 1) on the transmitter, 64 bytes will be transmitted over the air in 
addition to preamble and sync word. Due to the appended trellis terminator and the size of 
the interleaving buffer the packet length will always be a multiple of 4 after encoding  
(see DN504 [1]). The number of bytes sent over the air (not including preamble and sync 
word) can be calculated as shown in Equation 1. 
 

 
Equation 1. # of Bytes on the Air1 

The code example shown in Section 3.2 does not show how to set up the CC430Fx to 
receive a packet and it does not show how to implement the function (readRxFifo) that will 
read from the RXFIFO in Figure 5 (see the CC430Fx User’s Guide [2] on how this can be 
done). It is assumed that a flag, packetReceived, is asserted when the packet is received 
and the 64 bytes are in the RXFIFO. It is important to notice that there is no packet size 
limitation to the FEC decoding itself, but if more than 64 bytes are sent over the air, the 
receiver must start to read the RXFIFO before the complete packet is received and additional 
RAM is needed to store the un-coded packet. When 64 bytes or less is sent on the air, the 
un-coded data can simply be kept in the RXFIFO until being decoded. The CC1101 [5] only 
support fixed packet length mode (PKTCTRL0.LENGTH_CONFIG = 0) when FEC is enabled, 
so the CC430Fx should also use this mode. Overflow of the RXFIFO will therefore not be an 
issue as long as the maximum packet length is less than 64 bytes (PKTLEN <= 0x40). 

If the receiver is not the CC430Fx but some other radio which do not have an RXFIFO, it will 
be necessary to store the receive packet in a temporary buffer and then the function 
readRxFifo should read from this buffer instead of from the RXFIFO. It is assumed that the 
bytes in this buffer are read in the same order as they would have been read from a 
traditional FIFO. 
                                                      
1 The division is a “whole number” division; i.e., all variables are of type unsigned short  

41)
2

CRC Optional Bytes 2Length Payload(Air on the Bytes of# ⋅⎟
⎠
⎞

⎜
⎝
⎛ ++=  



 Design Note   DN507 

 SWRA313 Page 4 of 17  

3.2 C Code 

The C code in this section is organized as follows: Figure 1; Function Prototypes, Global 
Variables, and Defines, Figure 2; Function Definitions, Figure 3 and Figure 4; FEC Decoder 
Implementation, and Figure 5; main. 

 
Figure 1. Function Prototypes, Global Variables, and Defines 

/************************************************************************************************************** 
* FUNCTION PROTOTYPES 
*/ 
unsigned short fecDecode(unsigned char *pDecData, unsigned char* pInData, unsigned short RemBytes); 
static unsigned char hammWeight(unsigned char a); 
static unsigned char min(unsigned char a, unsigned char b); 
static unsigned short calcCRC(unsigned char crcData, unsigned short crcReg); 
 
 
/************************************************************************************************************** 
* GLOBAL VARIABLES 
*/ 
 
// The payload + CRC are 31 bytes. This way the complete packet to be received will fit in the RXFIFO 
unsigned char rxBuffer[4];    // Buffer used to hold data read from the RXFIFO (4 bytes are read at a time) 
unsigned char rxPacket[31];   // Data + CRC after being interleaved and decoded 
 
// Look-up source state index when: 
//                    Destination state --\   /-- Each of two possible source states 
const unsigned char aTrellisSourceStateLut[8][2] =  
{ 
  {0, 4},     // State {0,4} -> State 0 
  {0, 4},     // State {0,4} -> State 1 
  {1, 5},     // State {1,5} -> State 2 
  {1, 5},     // State {1,5} -> State 3 
  {2, 6},     // State {2,6} -> State 4 
  {2, 6},     // State {2,6} -> State 5 
  {3, 7},     // State {3,7} -> State 6 
  {3, 7},     // State {3,7} -> State 7 
}; 
 
// Look-up expected output when: 
//                      Destination state --\   /-- Each of two possible source states 
const unsigned char aTrellisTransitionOutput[8][2] =  
{ 
  {0, 3},     // State {0,4} -> State 0 produces {"00", "11"} 
  {3, 0},     // State {0,4} -> State 1 produces {"11", "00"} 
  {1, 2},     // State {1,5} -> State 2 produces {"01", "10"} 
  {2, 1},     // State {1,5} -> State 3 produces {"10", "01"} 
  {3, 0},     // State {2,6} -> State 4 produces {"11", "00"} 
  {0, 3},     // State {2,6} -> State 5 produces {"00", "11"} 
  {2, 1},     // State {3,7} -> State 6 produces {"10", "01"} 
  {1, 2},     // State {3,7} -> State 7 produces {"01", "10"} 
}; 
 
// Look-up input bit at encoder when: 
//                     Destination state --\                                                      
const unsigned char aTrellisTransitionInput[8] =  
{ 
  0, 
  1, 
  0, 
  1, 
  0, 
  1, 
  0, 
  1, 
}; 
 
/************************************************************************************************************** 
* DEFINES 
*/ 
 
// NUMBER_OF_BYTES_AFTER_DECODING should be given the length of the payload + CRC (CRC is optional) 
#define NUMBER_OF_BYTES_AFTER_DECODING  31 
#define NUMBER_OF_BYTES_BEFORE_DECODING (4 * ((NUMBER_OF_BYTES_AFTER_DECODING / 2) + 1)) 



 Design Note   DN507 

 SWRA313 Page 5 of 17  

 
Figure 2. Function Definitions 

/************************************************************************************************************** 
* @fn          hammWeight 
* 
* @brief       Calculates Hamming weight of byte (# bits set) 
* 
* @param       a - Byte to find the Hamming weight for 
* 
* @return      Hamming weight (# of bits set in a) 
*/ 
static unsigned char hammWeight(unsigned char a)  
{ 
  a = ((a & 0xAA) >> 1) + (a & 0x55); 
  a = ((a & 0xCC) >> 2) + (a & 0x33); 
  a = ((a & 0xF0) >> 4) + (a & 0x0F); 
  return a; 
} 
 
/************************************************************************************************************** 
* @fn          min 
* 
* @brief       Returns the minimum of two values 
* 
* @param       a - Value 1 
*              b - Value 2 
* 
* @return      Minimum of two values 
*              Value 1 (Value 1 < Value 2) 
*              Value 2 (Value 2 < Value 1) 
*/ 
static unsigned char min(unsigned char a, unsigned char b) 
{ 
  return (a <= b ? a : b);   
} 
 
/************************************************************************************************************** 
* @fn          calcCRC 
* 
* @brief       Calculates a checksum over n data bytes 
*              Example of usage 
*       
*              checksum = 0xFFFF; 
*              for (i = 0; i < n; i++) 
*                 checksum = calcCRC(dataBytes[i], checksum); 
* 
* @param       crcData - checksum (initially set to 0xFFFF) 
*              crcReg - data byte  
*           
* 
* @return      Checksum  
*/ 
static unsigned short calcCRC(unsigned char crcData, unsigned short crcReg) 
{ 
  unsigned char i; 
  for (i = 0; i < 8; i++) { 
    if (((crcReg & 0x8000) >> 8) ^ (crcData & 0x80)) 
      crcReg = (crcReg << 1) ^ 0x8005; 
    else 
      crcReg = (crcReg << 1); 
    crcData <<= 1; 
  } 
  return crcReg; 
} 



 Design Note   DN507 

 SWRA313 Page 6 of 17  

 
Figure 3. FEC Decoder Implementation (1) 

/************************************************************************************************************** 
* @fn          fecDecode 
* 
* @brief       De-interleaves and decodes a given input buffer 
* 
* @param       pDecData  - Pointer to where to put decoded data (NULL when initializing at start of packet) 
*              pInData   - Pointer to received data 
*              nRemBytes - of remaining (decoded) bytes to decode  
*           
* 
* @return      Number of bytes of decoded data stored at pDecData 
*/ 
unsigned short fecDecode(unsigned char *pDecData, unsigned char* pInData, unsigned short nRemBytes) 
{ 
  // Two sets of buffers (last, current) for each destination state for holding:  
  static unsigned char nCost[2][8];           // Accumulated path cost 
  static unsigned long aPath[2][8];           // Encoder input data (32b window) 
   
  // Indices of (last, current) buffer for each iteration 
  static unsigned char iLastBuf; 
  static unsigned char iCurrBuf; 
   
  // Number of bits in each path buffer 
  static unsigned char nPathBits; 
   
  // Variables used to hold # Viterbi iterations to run, # bytes output, 
  // minimum cost for any destination state, bit index of input symbol 
  unsigned char nIterations; 
  unsigned short nOutputBytes = 0; 
  unsigned char nMinCost; 
  signed char iBit = 8 - 2; 
   
  // Initialize variables at start of packet (and return without doing any more) 
  if (pDecData == NULL) { 
    unsigned char n ; 
    memset(nCost, 0, sizeof(nCost)); 
    for (n = 1; n < 8; n++) 
      nCost[0][n] = 100; 
    iLastBuf = 0; 
    iCurrBuf = 1; 
    nPathBits = 0; 
    return 0; 
  } 
 
  { 
    unsigned char aDeintData[4]; 
    signed char iOut; 
    signed char iIn; 
     
    // De-interleave received data (and change pInData to point to de-interleaved data) 
    for (iOut = 0; iOut < 4; iOut++) { 
      unsigned char dataByte = 0; 
      for (iIn = 3; iIn >= 0; iIn--) 
        dataByte = (dataByte << 2) | ((pInData[iIn] >>( 2 * iOut)) & 0x03); 
      aDeintData[iOut] = dataByte; 
    } 
    pInData = aDeintData; 
  }   
 
  // Process up to 4 bytes of de-interleaved input data, processing one encoder symbol (2b) at a time 
  for (nIterations = 16; nIterations > 0; nIterations--) { 
     
    unsigned char iDestState; 
    unsigned char symbol  = ((*pInData) >> iBit) & 0x03; 
  
    // Find minimum cost so that we can normalize costs (only last iteration used) 
    nMinCost = 0xFF; 
     
    // Get 2b input symbol (MSB first) and do one iteration of Viterbi decoding    
    if ((iBit -= 2) < 0) { 
      iBit = 6; 
      pInData++;            // Update pointer to the next byte of received data 
    } 
     
    // For each destination state in the trellis, calculate hamming costs for both possible paths into state and 
    // select the one with lowest cost. 
    for (iDestState = 0; iDestState < 8; iDestState++) { 
      unsigned char nCost0; 
      unsigned char nCost1; 
      unsigned char iSrcState0; 
      unsigned char iSrcState1; 
      unsigned char nInputBit; 
       
      nInputBit = aTrellisTransitionInput[iDestState]; 
       
      // Calculate cost of transition from each of the two source states (cost is Hamming difference between 
      // received 2b symbol and expected symbol for transition) 
      iSrcState0 = aTrellisSourceStateLut[iDestState][0]; 
      nCost0  = nCost[iLastBuf][iSrcState0]; 
      nCost0 += hammWeight(symbol ^ aTrellisTransitionOutput[iDestState][0]); 
       
      iSrcState1 = aTrellisSourceStateLut[iDestState][1]; 
      nCost1  = nCost[iLastBuf][iSrcState1]; 
      nCost1 += hammWeight(symbol ^ aTrellisTransitionOutput[iDestState][1]); 
       



 Design Note   DN507 

 SWRA313 Page 7 of 17  

 
Figure 4. FEC Decoder Implementation (2) 

 

 
Figure 5. main 

/************************************************************************************************************** 
* @fn          main 
* 
* @brief       This code example demonstrates how the fecDecode function can be used. It is assumed that a  
*              flag, packetReceived, is asserted when a packet is received (there are 64 bytes in the RXFIFO) 
* 
* @param       None           
* 
* @return      None 
*/ 
void main(void) 
{   
  unsigned short checksum; 
  unsigned short nBytes; 
  unsigned char *pDecData = rxPacket;        // Destination for decoded data 
 
  // Init MCU and Radio 
   
  while (1) { 
 
    while (!packetReceived);                 // Wait for packet to be received (64 bytes in the RXFIFO) 
    packetReceived = 0; 
 
    pDecData = rxPacket; 
   
    // Perform de-interleaving and decoding (both done in the same function) 
    fecDecode(NULL, NULL, 0);        // The function needs to be called with a NULL pointer for  
                                             // initialization before every packet to decode 
    nBytes = NUMBER_OF_BYTES_AFTER_DECODING; 
    while (nBytes > 0) { 
      unsigned short nBytesOut; 
      readRxFifo(RF_RXFIFO, rxBuffer, 4);  // Read 4 bytes from the RXFIFO and store them in rxBuffer 
      nBytesOut = fecDecode(pDecData, rxBuffer, nBytes); 
      nBytes -= nBytesOut; 
      pDecData += nBytesOut; 
    } 
     
    // Perform CRC check (Optional) 
    { 
      unsigned short i; 
      nBytes = NUMBER_OF_BYTES_AFTER_DECODING; 
      checksum = 0xFFFF;                     // Init value for CRC calculation 
      for (i = 0; i < nBytes; i++) 
        checksum = calcCRC(rxPacket[i], checksum); 
      if (!checksum) { 
        // Do something to indicate that the CRC is OK 
      } 
    } 
  }   
} 

      // Select transition that gives lowest cost in destination state, copy that source state's path and add 
      // new decoded bit 
      if (nCost0 <= nCost1) { 
        nCost[iCurrBuf][iDestState] = nCost0; 
        nMinCost = min(nMinCost, nCost0); 
        aPath[iCurrBuf][iDestState] = (aPath[iLastBuf][iSrcState0] << 1) | nInputBit; 
      } else { 
        nCost[iCurrBuf][iDestState] = nCost1; 
        nMinCost = min(nMinCost, nCost1); 
        aPath[iCurrBuf][iDestState] = (aPath[iLastBuf][iSrcState1] << 1) | nInputBit; 
      } 
    }    
    nPathBits++; 
 
    // If trellis history is sufficiently long, output a byte of decoded data 
    if (nPathBits == 32) { 
      *pDecData++ = (aPath[iCurrBuf][0] >> 24) & 0xFF; 
      nOutputBytes++; 
      nPathBits -= 8; 
      nRemBytes--; 
    } 
   
    // After having processed 3-symbol trellis terminator, flush out remaining data 
    if ((nRemBytes <= 3) && (nPathBits == ((8 * nRemBytes) + 3))) { 
      while (nPathBits >= 8) { 
        *pDecData++ = (aPath[iCurrBuf][0] >> (nPathBits - 8)) & 0xFF; 
        nOutputBytes++; 
        nPathBits -= 8; 
      } 
      return nOutputBytes; 
    } 
 
    // Swap current and last buffers for next iteration 
    iLastBuf = (iLastBuf + 1) % 2; 
    iCurrBuf = (iCurrBuf + 1) % 2;     
  } 
   
  // Normalize costs so that minimum cost becomes 0 
  { 
    unsigned char iState; 
    for (iState = 0; iState < 8; iState++) 
      nCost[iLastBuf][iState] -= nMinCost; 
  } 
  return nOutputBytes; 
} 



 Design Note   DN507 

 SWRA313 Page 8 of 17  

4 Explanation to the Code 

The most important part of the code is the decoder part implemented in the function 
fecDecode (see Figure 3 and Figure 4). The function will process 4 and 4 bytes of received 
data since this is the data size the interleaver works on. This means that in most cases the 
function will be called several times for each received packet. The pseudo code for the 
function is shown in Figure 6.  

 
Figure 6. Pseudo Code for the FEC Encoder 

The “key” elements of the code are the two for loops that for every symbol goes through each 
destination state in the trellis. An example is used to illustrate what is going on in this loop.  

Example: A packet consisting of 5 bytes (0x01, 0x02, 0x03, 0x04, 0x05) is being interleaved 
and encoded by the CC1101 (MDMCFG1.FEC_EN = 1). The data transmitted on the air will 
be the following (preamble and sync word is not shown):  

0x4C, 0xF0, 0x30, 0x10, 0xC8, 0x7C, 0xC3, 0x23, 0x40, 0x34, 0x7C, 0xE3 (see DN504 [1]) 

In chunks of 4 and 4 bytes, this data will on the receiver side be interleaved, giving the 
symbols shown in Table 1 to be decoded (only the 4 first bytes are shown): 

Symbol # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Symbol 00 00 00 00 00 00 00 11 01 11 11 00 00 00 11 01 

Byte 0x00 0x03 0x7C 0x0D 

Table 1. Symbols to be Encoded 

fecDecode() 
{ 
  // Variable Declaration 
   
  // Initialize variables at start of packet (and return without doing any more) 
   
  // De-interleave 4 bytes of received data (4 bytes of data means 16 (2b) encode symbols  
 
  // For all 16 symbols do one iteration of Viterbi decoding 
  for (nIterations = 16; nIterations > 0; nIterations--) { 
     
    // Get 2b input symbol (MSB first) and do one iteration of Viterbi decoding    
        
    // For each destination state in the trellis 
    for (iDestState = 0; iDestState < 8; iDestState++) { 
             
      // Calculate cost of transition from each of the two source states (cost is Hamming difference between 
      // received 2b symbol and expected symbol for transition) 
             
      // Select transition that gives lowest cost in destination state, copy that source state's path and add 
      // new decoded bit 
    }   
    nPathBits++; 
 
    // If trellis history is sufficiently long, output a byte of decoded data. After 32 iterations  
    // (nPathBits == 32) the 8 MSB bits will be the same for all 8 surviving paths and a byte can be output  
   
    // After having processed 3-symbol trellis terminator, flush out remaining data 
     
    // Swap current and last buffers for next iteration     
  } 
  // Normalize costs so that minimum cost becomes 0 
} 



 Design Note   DN507 

 SWRA313 Page 9 of 17  

000 000

001

010

011

100

101

110

111

001

010

011

100

101

110

111

nCost0 (0), nCost1 (4)

nCost0 (0), nCost1 (4)

nCost0 (1), nCost1 (5)

nCost0 (1), nCost1 (5)

nCost0 (2), nCost1 (6)

nCost0 (2), nCost1 (6)

nCost0 (3), nCost1 (7)

nCost0 (3), nCost1 (7)

2b Symbol

 
Figure 7. Trellis 1 (the number in () indicates the source state of that given cost) 

For each received symbol (2b), all possible encoder output symbols (00, 01, 10, and 11) in 
Figure 7 are compared against the received symbol and a transition cost is calculated 
(nCost0 and nCost1). The appropriate transition cost is added to the accumulated path cost 
of each path that terminates in the source state on the left in the figure. It can be seen that 
there are two transitions into each destination state on the right in the figure. For each 
destination state the incoming transition with the lowest accumulated path cost is selected 
(the survivor path) and the other one thrown away - nothing is lost as all future paths that go 
through this state at this point in the trellis would do the same selection. Thus the number of 
paths that the Viterbi Algorithm tracks is always constant and the optimal path is always one 
of them. 



 Design Note   DN507 

 SWRA313 Page 10 of 17  

000 000

001

010

011

100

101

110

111

001

010

011

100

101

110

111

0 (0), 102 (4)

2 (0), 100 (4)

101 (1), 101 (5)

101 (1), 101 (5)

102 (2), 100 (6)

100 (2), 102 (6)

101 (3), 101 (7)

101 (3), 101 (7)

00

 
Figure 8. Trellis 2 

 
Figure 9. nCost and aPath after 1st Iteration (received symbol: 00b) 

iCurrBuf = 1 
iLastBuf = 0 
 
nCost[iCurrBuf][] = [0, 2, 101, 101, 100, 100, 101, 101] 
 
aPath[iCurrBuf][iDestState] = (aPath[iLastBuf][iSrcState] << 1) | nInputBit; 
aPath[1][0] = (aPath[0][0] << 1) | Input to state 0 = 00000000000000000000000000000000 
aPath[1][1] = (aPath[0][0] << 1) | Input to state 1 = 00000000000000000000000000000001 
aPath[1][2] = (aPath[0][1] << 1) | Input to state 2 = 00000000000000000000000000000000 
aPath[1][3] = (aPath[0][1] << 1) | Input to state 3 = 00000000000000000000000000000001 
aPath[1][4] = (aPath[0][6] << 1) | Input to state 4 = 00000000000000000000000000000000 
aPath[1][5] = (aPath[0][2] << 1) | Input to state 5 = 00000000000000000000000000000001 
aPath[1][6] = (aPath[0][3] << 1) | Input to state 6 = 00000000000000000000000000000000 
aPath[1][7] = (aPath[0][3] << 1) | Input to state 7 = 00000000000000000000000000000001 



 Design Note   DN507 

 SWRA313 Page 11 of 17  

000 000 000

001

010

011

100

101

110

111

001 001

010 010

011 011

100 100

101 101

110 110

111 111

0 (0), 102 (4) 0 (0), 102 (4)

2 (0), 100 (4) 2 (0), 100 (4)

101 (1), 101 (5) 3 (1), 101 (5)

101 (1), 101 (5) 3 (1), 101 (5)

102 (2), 100 (6) 103 (2), 101 (6)

100 (2), 102 (6) 101 (2), 103 (6)

101 (3), 101 (7) 102 (3), 102 (7)

101 (3), 101 (7) 102 (3), 102 (7)

00 00

 
Figure 10. Trellis 3 

 
Figure 11. nCost and aPath after 2nd Iteration (received symbol: 00b) 

iCurrBuf = 0 
iLastBuf = 1 
 
nCost[iCurrBuf][] = [0, 2, 3, 3, 101, 101, 102, 102] 
 
aPath[iCurrBuf][iDestState] = (aPath[iLastBuf][iSrcState] << 1) | nInputBit; 
aPath[0][0] = (aPath[1][0] << 1) | Input to state 0 = 00000000000000000000000000000000 
aPath[0][1] = (aPath[1][0] << 1) | Input to state 1 = 00000000000000000000000000000001 
aPath[0][2] = (aPath[1][1] << 1) | Input to state 2 = 00000000000000000000000000000010 
aPath[0][3] = (aPath[1][1] << 1) | Input to state 3 = 00000000000000000000000000000011 
aPath[0][4] = (aPath[1][6] << 1) | Input to state 4 = 00000000000000000000000000000000 
aPath[0][5] = (aPath[1][2] << 1) | Input to state 5 = 00000000000000000000000000000001 
aPath[0][6] = (aPath[1][3] << 1) | Input to state 6 = 00000000000000000000000000000010 
aPath[0][7] = (aPath[1][3] << 1) | Input to state 7 = 00000000000000000000000000000011 



 Design Note   DN507 

 SWRA313 Page 12 of 17  

000 000 000 000

001

010

011

100

101

110

111

001 001 001

010 010 010

011 011 011

100 100 100

101 101 101

110 110 110

111 111 111

0 (0), 102 (4) 0 (0), 102 (4) 0 (0), 103 (4)

2 (0), 100 (4) 2 (0), 100 (4) 2 (0), 101 (4)

101 (1), 101 (5) 3 (1), 101 (5) 3 (1), 102 (5)

101 (1), 101 (5) 3 (1), 101 (5) 3 (1), 102 (5)

102 (2), 100 (6) 103 (2), 101 (6) 5 (2), 102 (6)

100 (2), 102 (6) 101 (2), 103 (6) 3 (2), 104 (6)

101 (3), 101 (7) 102 (3), 102 (7) 4 (3), 103 (7)

101 (3), 101 (7) 102 (3), 102 (7) 4 (3), 103 (7)

00 00 00

 
Figure 12. Trellis 4 

 
Figure 13. nCost and aPath after 3rd Iteration (received symbol: 00b) 

iCurrBuf = 1 
iLastBuf = 0 
 
nCost[iCurrBuf][] = [0, 2, 3, 3, 5, 3, 4, 4] 
 
aPath[iCurrBuf][iDestState] = (aPath[iLastBuf][iSrcState] << 1) | nInputBit; 
aPath[1][0] = (aPath[0][0] << 1) | Input to state 0 = 00000000000000000000000000000000 
aPath[1][1] = (aPath[0][0] << 1) | Input to state 1 = 00000000000000000000000000000001 
aPath[1][2] = (aPath[0][1] << 1) | Input to state 2 = 00000000000000000000000000000010 
aPath[1][3] = (aPath[0][1] << 1) | Input to state 3 = 00000000000000000000000000000011 
aPath[1][4] = (aPath[0][2] << 1) | Input to state 4 = 00000000000000000000000000000100 
aPath[1][5] = (aPath[0][2] << 1) | Input to state 5 = 00000000000000000000000000000101 
aPath[1][6] = (aPath[0][3] << 1) | Input to state 6 = 00000000000000000000000000000110 
aPath[1][7] = (aPath[0][3] << 1) | Input to state 7 = 00000000000000000000000000000111 



 Design Note   DN507 

 SWRA313 Page 13 of 17  

000 000 000 000 000

001

010

011

100

101

110

111

001 001 001 001

010 010 010 010

011 011 011 011

100 100 100

101 101 101 101

110 110 110 110

111 111 111 111

0 (0), 102 (4) 0 (0), 102 (4) 0 (0), 103 (4) 0 (0), 7 (4)

2 (0), 100 (4) 2 (0), 100 (4) 2 (0), 101 (4) 2 (0), 5 (4)

101 (1), 101 (5) 3 (1), 101 (5) 3 (1), 102 (5) 3 (1), 4 (5)

101 (1), 101 (5) 3 (1), 101 (5) 3 (1), 102 (5) 3 (1), 4 (5)

102 (2), 100 (6) 103 (2), 101 (6) 5 (2), 102 (6) 5 (2), 4 (6)

100 (2), 102 (6) 101 (2), 103 (6) 3 (2), 104 (6) 3 (2), 6 (6)

101 (3), 101 (7) 102 (3), 102 (7) 4 (3), 103 (7) 4 (3), 5 (7)

101 (3), 101 (7) 102 (3), 102 (7) 4 (3), 103 (7) 4 (3), 5 (7)

00 00 00 00

100

 

Figure 14. Trellis 5 

 
Figure 15. nCost and aPath after 4th Iteration (received symbol: 00b) 

iCurrBuf = 0 
iLastBuf = 1 
 
nCost[iCurrBuf][] = [0, 2, 3, 3, 4, 3, 4, 4] 
 
aPath[iCurrBuf][iDestState] = (aPath[iLastBuf][iSrcState] << 1) | nInputBit; 
aPath[0][0] = (aPath[1][0] << 1) | Input to state 0 = 00000000000000000000000000000000 
aPath[0][1] = (aPath[1][0] << 1) | Input to state 1 = 00000000000000000000000000000001 
aPath[0][2] = (aPath[1][1] << 1) | Input to state 2 = 00000000000000000000000000000010 
aPath[0][3] = (aPath[1][1] << 1) | Input to state 3 = 00000000000000000000000000000011 
aPath[0][4] = (aPath[1][6] << 1) | Input to state 4 = 00000000000000000000000000001100 
aPath[0][5] = (aPath[1][2] << 1) | Input to state 5 = 00000000000000000000000000000101 
aPath[0][6] = (aPath[1][3] << 1) | Input to state 6 = 00000000000000000000000000000110 
aPath[0][7] = (aPath[1][3] << 1) | Input to state 7 = 00000000000000000000000000000111 



 Design Note   DN507 

 SWRA313 Page 14 of 17  

000 000 000 000 000

001

010

011

100

101

110

111

001 001 001 001

010 010 010 010

011 011 011 011

100 100 100

101 101 101 101

110 110 110 110

111 111 111 111

0 (0), 102 (4) 0 (0), 102 (4) 0 (0), 103 (4) 0 (0), 7 (4)

2 (0), 100 (4) 2 (0), 100 (4) 2 (0), 101 (4) 2 (0), 5 (4)

101 (1), 101 (5) 3 (1), 101 (5) 3 (1), 102 (5) 3 (1), 4 (5)

101 (1), 101 (5) 3 (1), 101 (5) 3 (1), 102 (5) 3 (1), 4 (5)

102 (2), 100 (6) 103 (2), 101 (6) 5 (2), 102 (6) 5 (2), 4 (6)

100 (2), 102 (6) 101 (2), 103 (6) 3 (2), 104 (6) 3 (2), 6 (6)

101 (3), 101 (7) 102 (3), 102 (7) 4 (3), 103 (7) 4 (3), 5 (7)

101 (3), 101 (7) 102 (3), 102 (7) 4 (3), 103 (7) 4 (3), 5 (7)

00 00 00 00

000

001

010

011

100

101

110

111

0 (0), 6 (4)

2 (0), 4 (4)

3 (1), 4 (5)

3 (1), 4 (5)

5 (2), 4 (6)

3 (2), 6 (6)

4 (3), 5 (7)

4 (3), 5 (7)

00

100

 
Figure 16. Trellis 6 

 
Figure 17. nCost and aPath after 5st Iteration (received symbol: 00b) 

 

iCurrBuf = 1 
iLastBuf = 0 
 
nCost[iCurrBuf][] = [0, 2, 3, 3, 4, 3, 4, 4] 
 
aPath[iCurrBuf][iDestState] = (aPath[iLastBuf][iSrcState] << 1) | nInputBit; 
aPath[1][0] = aPath[0][0] << 1 | Input to state 0 = 00000000000000000000000000000000 
aPath[1][1] = aPath[0][0] << 1 | Input to state 1 = 00000000000000000000000000000001 
aPath[1][2] = aPath[0][1] << 1 | Input to state 2 = 00000000000000000000000000000010 
aPath[1][3] = aPath[0][1] << 1 | Input to state 3 = 00000000000000000000000000000011 
aPath[1][4] = aPath[0][6] << 1 | Input to state 4 = 00000000000000000000000000001100 
aPath[1][5] = aPath[0][2] << 1 | Input to state 5 = 00000000000000000000000000000101 
aPath[1][6] = aPath[0][3] << 1 | Input to state 6 = 00000000000000000000000000000110 
aPath[1][7] = aPath[0][3] << 1 | Input to state 7 = 00000000000000000000000000000111 



 Design Note   DN507 

 SWRA313 Page 15 of 17  

After having processed 32 symbol, the 8 MSBs of aPath[0][0] (0000001b) is copied to 
rxFifo[0]. 

 
Figure 18. aPath after having Processed 32 Symbols 

After 8 more symbols, aPath[iCurrBuf][iDestState] looks like in Figure 19 and 00000010b 
(8 MSBs of aPath[0][0]) are copied to rxFifo[1].  

 

Figure 19. aPath after having Processed 40 Symbols 

After having processed 3 more symbols, the trellis terminator has been processed and the 
remaining bytes of the packet are being copied to rxFifo. 

rxFifo[2] = aPath[1][0] bit 26:19 = 00000011b 
rxFifo[3] = aPath[1][0] bit 18:11 = 00000100b 
rxFifo[4] = aPath[1][0] bit 10:3   = 00000101b 

 

Figure 20. aPath after having Processed 43 Symbols  

aPath[iCurrBuf][iDestState] = (aPath[iLastBuf][iSrcState] << 1) | nInputBit; 
aPath[1][0] = 00010000000110000010000000101000 
aPath[1][1] = 00010000000110000010000000101001 
aPath[1][2] = 00010000000110000010000000101010 
aPath[1][3] = 00010000000110000010000000101011 
aPath[1][4] = 00010000000110000010000000100100 
aPath[1][5] = 00010000000110000010000000101101 
aPath[1][6] = 00010000000110000010000000101110 
aPath[1][7] = 00010000000110000010000000101111

aPath[iCurrBuf][iDestState] = (aPath[iLastBuf][iSrcState] << 1) | nInputBit; 
aPath[0][0] = 00000010000000110000010000000000 
aPath[0][1] = 00000010000000110000010000001001 
aPath[0][2] = 00000010000000110000010000000010 
aPath[0][3] = 00000010000000110000010000000011 
aPath[0][4] = 00000010000000110000010000000100 
aPath[0][5] = 00000010000000110000010000000101 
aPath[0][6] = 00000010000000110000010000000110 
aPath[0][7] = 00000010000000110000010000000111 

aPath[iCurrBuf][iDestState] = (aPath[iLastBuf][iSrcState] << 1) | nInputBit; 
aPath[0][0] = 00000001000000100000001100001000 
aPath[0][1] = 00000001000000100000001100000001 
aPath[0][2] = 00000001000000100000001100000010 
aPath[0][3] = 00000001000000100000001100000011 
aPath[0][4] = 00000001000000100000001100000100 
aPath[0][5] = 00000001000000100000001100000101 
aPath[0][6] = 00000001000000100000001100000110 
aPath[0][7] = 00000001000000100000001100000111 



 Design Note   DN507 

 SWRA313 Page 16 of 17  

5 References 

[1] DN504 FEC Implementation (swra113.pdf) 

[2] CC430 User's Guide (slau259.pdf) 

[3] CC1100 Single-Chip Low Cost Low Power RF-Transceiver, Data sheet (cc1100.pdf) 

[4] CC1100E Low-Power Sub-GHz RF Transceiver (470-510 MHz & 950-960 MHz) 
(CC1100E.pdf) 

[5] CC1101 Single-Chip Low Cost Low Power RF-Transceiver, Data sheet (cc1101.pdf) 

[6] CC1110Fx/CC1111Fx Low-Power Sub-1 GHz RF System-on-Chip (SoC) with MCU, 
Memory, Transceiver, and USB Controller (cc1110f32.pdf) 

[7] CC1150 Single Chip Low Cost Low Power RF-Transmitter (cc1150.pdf) 

[8] CC2500 Single-Chip Low Cost Low Power RF-Transceiver, Data sheet (cc2500.pdf) 

[9] CC2510Fx/CC2511Fx Low-Power SoC (System-on-Chip) with MCU, Memory, 2.4 GHz 
RF Transceiver, and USB Controller (cc2510f32.pdf) 

[10] CC2550 Low-Cost Low-Power 2.4 GHz RF Transmitter (cc2550.pdf) 

http://www.ti.com/lit/swra113
http://www.ti.com/litv/pdf/slau259
http://www.ti.com/lit/SLAU259
http://www.ti.com/lit/SWRS038
http://www.ti.com/lit/SWRS082
http://www.ti.com/lit/SWRS061
http://www.ti.com/lit/swrs033
http://www.ti.com/lit/SWRS037
http://www.ti.com/lit/SWRS040
http://www.ti.com/lit/swrs055
http://www.ti.com/lit/SWRS039


 Design Note   DN507 

 SWRA313 Page 17 of 17  

6 General Information 

6.1 Document History 
Revision Date Description/Changes 
SWRA313 2010.01.25 Initial release. 

 

  

 



IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DLP® Products www.dlp.com Communications and www.ti.com/communications
Telecom

DSP dsp.ti.com Computers and www.ti.com/computers
Peripherals

Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps

Interface interface.ti.com Energy www.ti.com/energy

Logic logic.ti.com Industrial www.ti.com/industrial

Power Mgmt power.ti.com Medical www.ti.com/medical

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Space, Avionics & www.ti.com/space-avionics-defense
Defense

RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video

Wireless www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/communications
http://dsp.ti.com
http://www.ti.com/computers
http://www.ti.com/clocks
http://www.ti.com/consumer-apps
http://interface.ti.com
http://www.ti.com/energy
http://logic.ti.com
http://www.ti.com/industrial
http://power.ti.com
http://www.ti.com/medical
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/space-avionics-defense
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless-apps

	Introduction
	Abbreviations
	Implementation
	Code Example Assumptions and Limitations
	C Code

	Explanation to the Code
	References
	General Information
	Document History




