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1 Introduction 

The CC1100, CC1100E, CC1101, 
CC1110Fx, CC1111Fx, CC1150, CC2500, 
CC2510Fx, CC2511Fx, and CC2550 all 
implement FEC encoding and decoding in 
HW. The purpose of this design note is to 
describe how one can implement the 
same FEC decoding in SW. This is in 
particular very important for the CC430Fx 

device, which has the same radio as the 
CC1101 and CC1110/11Fx but without 
HW FEC included. This design note is not 
meant as a tutorial on FEC and it will not 
cover the FEC encoding, as it is described 
in  
DN504 [1]. 
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2 Abbreviations 

CRC   Cyclic Redundancy Check 
FEC   Forward Error Correction 
FIFO   First In First Out 
HW   Hardware 
LSB   Least Significant Bit 
MSB   Most Significant Bit 
RAM   Random Access Memory 
SW   Software 
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3 Implementation 

3.1 Code Example Assumptions and Limitations 

Assume that you want to use the CC1101 [5] to transmit a packet and the CC430Fx [2] to 
receive it. The payload is 29 bytes and 2 bytes of CRC are appended. If FEC is enabled 
(MDMCFG1.FEC_EN = 1) on the transmitter, 64 bytes will be transmitted over the air in 
addition to preamble and sync word. Due to the appended trellis terminator and the size of 
the interleaving buffer the packet length will always be a multiple of 4 after encoding  
(see DN504 [1]). The number of bytes sent over the air (not including preamble and sync 
word) can be calculated as shown in Equation 1. 
 

 
Equation 1. # of Bytes on the Air1 

The code example shown in Section 3.2 does not show how to set up the CC430Fx to 
receive a packet and it does not show how to implement the function (readRxFifo) that will 
read from the RXFIFO in Figure 5 (see the CC430Fx User’s Guide [2] on how this can be 
done). It is assumed that a flag, packetReceived, is asserted when the packet is received 
and the 64 bytes are in the RXFIFO. It is important to notice that there is no packet size 
limitation to the FEC decoding itself, but if more than 64 bytes are sent over the air, the 
receiver must start to read the RXFIFO before the complete packet is received and additional 
RAM is needed to store the un-coded packet. When 64 bytes or less is sent on the air, the 
un-coded data can simply be kept in the RXFIFO until being decoded. The CC1101 [5] only 
support fixed packet length mode (PKTCTRL0.LENGTH_CONFIG = 0) when FEC is enabled, 
so the CC430Fx should also use this mode. Overflow of the RXFIFO will therefore not be an 
issue as long as the maximum packet length is less than 64 bytes (PKTLEN <= 0x40). 

If the receiver is not the CC430Fx but some other radio which do not have an RXFIFO, it will 
be necessary to store the receive packet in a temporary buffer and then the function 
readRxFifo should read from this buffer instead of from the RXFIFO. It is assumed that the 
bytes in this buffer are read in the same order as they would have been read from a 
traditional FIFO. 
                                                      
1 The division is a “whole number” division; i.e., all variables are of type unsigned short  

41)
2
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3.2 C Code 

The C code in this section is organized as follows: Figure 1; Function Prototypes, Global 
Variables, and Defines, Figure 2; Function Definitions, Figure 3 and Figure 4; FEC Decoder 
Implementation, and Figure 5; main. 

 
Figure 1. Function Prototypes, Global Variables, and Defines 

/************************************************************************************************************** 
* FUNCTION PROTOTYPES 
*/ 
unsigned short fecDecode(unsigned char *pDecData, unsigned char* pInData, unsigned short RemBytes); 
static unsigned char hammWeight(unsigned char a); 
static unsigned char min(unsigned char a, unsigned char b); 
static unsigned short calcCRC(unsigned char crcData, unsigned short crcReg); 
 
 
/************************************************************************************************************** 
* GLOBAL VARIABLES 
*/ 
 
// The payload + CRC are 31 bytes. This way the complete packet to be received will fit in the RXFIFO 
unsigned char rxBuffer[4];    // Buffer used to hold data read from the RXFIFO (4 bytes are read at a time) 
unsigned char rxPacket[31];   // Data + CRC after being interleaved and decoded 
 
// Look-up source state index when: 
//                    Destination state --\   /-- Each of two possible source states 
const unsigned char aTrellisSourceStateLut[8][2] =  
{ 
  {0, 4},     // State {0,4} -> State 0 
  {0, 4},     // State {0,4} -> State 1 
  {1, 5},     // State {1,5} -> State 2 
  {1, 5},     // State {1,5} -> State 3 
  {2, 6},     // State {2,6} -> State 4 
  {2, 6},     // State {2,6} -> State 5 
  {3, 7},     // State {3,7} -> State 6 
  {3, 7},     // State {3,7} -> State 7 
}; 
 
// Look-up expected output when: 
//                      Destination state --\   /-- Each of two possible source states 
const unsigned char aTrellisTransitionOutput[8][2] =  
{ 
  {0, 3},     // State {0,4} -> State 0 produces {"00", "11"} 
  {3, 0},     // State {0,4} -> State 1 produces {"11", "00"} 
  {1, 2},     // State {1,5} -> State 2 produces {"01", "10"} 
  {2, 1},     // State {1,5} -> State 3 produces {"10", "01"} 
  {3, 0},     // State {2,6} -> State 4 produces {"11", "00"} 
  {0, 3},     // State {2,6} -> State 5 produces {"00", "11"} 
  {2, 1},     // State {3,7} -> State 6 produces {"10", "01"} 
  {1, 2},     // State {3,7} -> State 7 produces {"01", "10"} 
}; 
 
// Look-up input bit at encoder when: 
//                     Destination state --\                                                      
const unsigned char aTrellisTransitionInput[8] =  
{ 
  0, 
  1, 
  0, 
  1, 
  0, 
  1, 
  0, 
  1, 
}; 
 
/************************************************************************************************************** 
* DEFINES 
*/ 
 
// NUMBER_OF_BYTES_AFTER_DECODING should be given the length of the payload + CRC (CRC is optional) 
#define NUMBER_OF_BYTES_AFTER_DECODING  31 
#define NUMBER_OF_BYTES_BEFORE_DECODING (4 * ((NUMBER_OF_BYTES_AFTER_DECODING / 2) + 1)) 
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Figure 2. Function Definitions 

/************************************************************************************************************** 
* @fn          hammWeight 
* 
* @brief       Calculates Hamming weight of byte (# bits set) 
* 
* @param       a - Byte to find the Hamming weight for 
* 
* @return      Hamming weight (# of bits set in a) 
*/ 
static unsigned char hammWeight(unsigned char a)  
{ 
  a = ((a & 0xAA) >> 1) + (a & 0x55); 
  a = ((a & 0xCC) >> 2) + (a & 0x33); 
  a = ((a & 0xF0) >> 4) + (a & 0x0F); 
  return a; 
} 
 
/************************************************************************************************************** 
* @fn          min 
* 
* @brief       Returns the minimum of two values 
* 
* @param       a - Value 1 
*              b - Value 2 
* 
* @return      Minimum of two values 
*              Value 1 (Value 1 < Value 2) 
*              Value 2 (Value 2 < Value 1) 
*/ 
static unsigned char min(unsigned char a, unsigned char b) 
{ 
  return (a <= b ? a : b);   
} 
 
/************************************************************************************************************** 
* @fn          calcCRC 
* 
* @brief       Calculates a checksum over n data bytes 
*              Example of usage 
*       
*              checksum = 0xFFFF; 
*              for (i = 0; i < n; i++) 
*                 checksum = calcCRC(dataBytes[i], checksum); 
* 
* @param       crcData - checksum (initially set to 0xFFFF) 
*              crcReg - data byte  
*           
* 
* @return      Checksum  
*/ 
static unsigned short calcCRC(unsigned char crcData, unsigned short crcReg) 
{ 
  unsigned char i; 
  for (i = 0; i < 8; i++) { 
    if (((crcReg & 0x8000) >> 8) ^ (crcData & 0x80)) 
      crcReg = (crcReg << 1) ^ 0x8005; 
    else 
      crcReg = (crcReg << 1); 
    crcData <<= 1; 
  } 
  return crcReg; 
} 
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Figure 3. FEC Decoder Implementation (1) 

/************************************************************************************************************** 
* @fn          fecDecode 
* 
* @brief       De-interleaves and decodes a given input buffer 
* 
* @param       pDecData  - Pointer to where to put decoded data (NULL when initializing at start of packet) 
*              pInData   - Pointer to received data 
*              nRemBytes - of remaining (decoded) bytes to decode  
*           
* 
* @return      Number of bytes of decoded data stored at pDecData 
*/ 
unsigned short fecDecode(unsigned char *pDecData, unsigned char* pInData, unsigned short nRemBytes) 
{ 
  // Two sets of buffers (last, current) for each destination state for holding:  
  static unsigned char nCost[2][8];           // Accumulated path cost 
  static unsigned long aPath[2][8];           // Encoder input data (32b window) 
   
  // Indices of (last, current) buffer for each iteration 
  static unsigned char iLastBuf; 
  static unsigned char iCurrBuf; 
   
  // Number of bits in each path buffer 
  static unsigned char nPathBits; 
   
  // Variables used to hold # Viterbi iterations to run, # bytes output, 
  // minimum cost for any destination state, bit index of input symbol 
  unsigned char nIterations; 
  unsigned short nOutputBytes = 0; 
  unsigned char nMinCost; 
  signed char iBit = 8 - 2; 
   
  // Initialize variables at start of packet (and return without doing any more) 
  if (pDecData == NULL) { 
    unsigned char n ; 
    memset(nCost, 0, sizeof(nCost)); 
    for (n = 1; n < 8; n++) 
      nCost[0][n] = 100; 
    iLastBuf = 0; 
    iCurrBuf = 1; 
    nPathBits = 0; 
    return 0; 
  } 
 
  { 
    unsigned char aDeintData[4]; 
    signed char iOut; 
    signed char iIn; 
     
    // De-interleave received data (and change pInData to point to de-interleaved data) 
    for (iOut = 0; iOut < 4; iOut++) { 
      unsigned char dataByte = 0; 
      for (iIn = 3; iIn >= 0; iIn--) 
        dataByte = (dataByte << 2) | ((pInData[iIn] >>( 2 * iOut)) & 0x03); 
      aDeintData[iOut] = dataByte; 
    } 
    pInData = aDeintData; 
  }   
 
  // Process up to 4 bytes of de-interleaved input data, processing one encoder symbol (2b) at a time 
  for (nIterations = 16; nIterations > 0; nIterations--) { 
     
    unsigned char iDestState; 
    unsigned char symbol  = ((*pInData) >> iBit) & 0x03; 
  
    // Find minimum cost so that we can normalize costs (only last iteration used) 
    nMinCost = 0xFF; 
     
    // Get 2b input symbol (MSB first) and do one iteration of Viterbi decoding    
    if ((iBit -= 2) < 0) { 
      iBit = 6; 
      pInData++;            // Update pointer to the next byte of received data 
    } 
     
    // For each destination state in the trellis, calculate hamming costs for both possible paths into state and 
    // select the one with lowest cost. 
    for (iDestState = 0; iDestState < 8; iDestState++) { 
      unsigned char nCost0; 
      unsigned char nCost1; 
      unsigned char iSrcState0; 
      unsigned char iSrcState1; 
      unsigned char nInputBit; 
       
      nInputBit = aTrellisTransitionInput[iDestState]; 
       
      // Calculate cost of transition from each of the two source states (cost is Hamming difference between 
      // received 2b symbol and expected symbol for transition) 
      iSrcState0 = aTrellisSourceStateLut[iDestState][0]; 
      nCost0  = nCost[iLastBuf][iSrcState0]; 
      nCost0 += hammWeight(symbol ^ aTrellisTransitionOutput[iDestState][0]); 
       
      iSrcState1 = aTrellisSourceStateLut[iDestState][1]; 
      nCost1  = nCost[iLastBuf][iSrcState1]; 
      nCost1 += hammWeight(symbol ^ aTrellisTransitionOutput[iDestState][1]); 
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Figure 4. FEC Decoder Implementation (2) 

 

 
Figure 5. main 

/************************************************************************************************************** 
* @fn          main 
* 
* @brief       This code example demonstrates how the fecDecode function can be used. It is assumed that a  
*              flag, packetReceived, is asserted when a packet is received (there are 64 bytes in the RXFIFO) 
* 
* @param       None           
* 
* @return      None 
*/ 
void main(void) 
{   
  unsigned short checksum; 
  unsigned short nBytes; 
  unsigned char *pDecData = rxPacket;        // Destination for decoded data 
 
  // Init MCU and Radio 
   
  while (1) { 
 
    while (!packetReceived);                 // Wait for packet to be received (64 bytes in the RXFIFO) 
    packetReceived = 0; 
 
    pDecData = rxPacket; 
   
    // Perform de-interleaving and decoding (both done in the same function) 
    fecDecode(NULL, NULL, 0);        // The function needs to be called with a NULL pointer for  
                                             // initialization before every packet to decode 
    nBytes = NUMBER_OF_BYTES_AFTER_DECODING; 
    while (nBytes > 0) { 
      unsigned short nBytesOut; 
      readRxFifo(RF_RXFIFO, rxBuffer, 4);  // Read 4 bytes from the RXFIFO and store them in rxBuffer 
      nBytesOut = fecDecode(pDecData, rxBuffer, nBytes); 
      nBytes -= nBytesOut; 
      pDecData += nBytesOut; 
    } 
     
    // Perform CRC check (Optional) 
    { 
      unsigned short i; 
      nBytes = NUMBER_OF_BYTES_AFTER_DECODING; 
      checksum = 0xFFFF;                     // Init value for CRC calculation 
      for (i = 0; i < nBytes; i++) 
        checksum = calcCRC(rxPacket[i], checksum); 
      if (!checksum) { 
        // Do something to indicate that the CRC is OK 
      } 
    } 
  }   
} 

      // Select transition that gives lowest cost in destination state, copy that source state's path and add 
      // new decoded bit 
      if (nCost0 <= nCost1) { 
        nCost[iCurrBuf][iDestState] = nCost0; 
        nMinCost = min(nMinCost, nCost0); 
        aPath[iCurrBuf][iDestState] = (aPath[iLastBuf][iSrcState0] << 1) | nInputBit; 
      } else { 
        nCost[iCurrBuf][iDestState] = nCost1; 
        nMinCost = min(nMinCost, nCost1); 
        aPath[iCurrBuf][iDestState] = (aPath[iLastBuf][iSrcState1] << 1) | nInputBit; 
      } 
    }    
    nPathBits++; 
 
    // If trellis history is sufficiently long, output a byte of decoded data 
    if (nPathBits == 32) { 
      *pDecData++ = (aPath[iCurrBuf][0] >> 24) & 0xFF; 
      nOutputBytes++; 
      nPathBits -= 8; 
      nRemBytes--; 
    } 
   
    // After having processed 3-symbol trellis terminator, flush out remaining data 
    if ((nRemBytes <= 3) && (nPathBits == ((8 * nRemBytes) + 3))) { 
      while (nPathBits >= 8) { 
        *pDecData++ = (aPath[iCurrBuf][0] >> (nPathBits - 8)) & 0xFF; 
        nOutputBytes++; 
        nPathBits -= 8; 
      } 
      return nOutputBytes; 
    } 
 
    // Swap current and last buffers for next iteration 
    iLastBuf = (iLastBuf + 1) % 2; 
    iCurrBuf = (iCurrBuf + 1) % 2;     
  } 
   
  // Normalize costs so that minimum cost becomes 0 
  { 
    unsigned char iState; 
    for (iState = 0; iState < 8; iState++) 
      nCost[iLastBuf][iState] -= nMinCost; 
  } 
  return nOutputBytes; 
} 
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4 Explanation to the Code 

The most important part of the code is the decoder part implemented in the function 
fecDecode (see Figure 3 and Figure 4). The function will process 4 and 4 bytes of received 
data since this is the data size the interleaver works on. This means that in most cases the 
function will be called several times for each received packet. The pseudo code for the 
function is shown in Figure 6.  

 
Figure 6. Pseudo Code for the FEC Encoder 

The “key” elements of the code are the two for loops that for every symbol goes through each 
destination state in the trellis. An example is used to illustrate what is going on in this loop.  

Example: A packet consisting of 5 bytes (0x01, 0x02, 0x03, 0x04, 0x05) is being interleaved 
and encoded by the CC1101 (MDMCFG1.FEC_EN = 1). The data transmitted on the air will 
be the following (preamble and sync word is not shown):  

0x4C, 0xF0, 0x30, 0x10, 0xC8, 0x7C, 0xC3, 0x23, 0x40, 0x34, 0x7C, 0xE3 (see DN504 [1]) 

In chunks of 4 and 4 bytes, this data will on the receiver side be interleaved, giving the 
symbols shown in Table 1 to be decoded (only the 4 first bytes are shown): 

Symbol # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Symbol 00 00 00 00 00 00 00 11 01 11 11 00 00 00 11 01 

Byte 0x00 0x03 0x7C 0x0D 

Table 1. Symbols to be Encoded 

fecDecode() 
{ 
  // Variable Declaration 
   
  // Initialize variables at start of packet (and return without doing any more) 
   
  // De-interleave 4 bytes of received data (4 bytes of data means 16 (2b) encode symbols  
 
  // For all 16 symbols do one iteration of Viterbi decoding 
  for (nIterations = 16; nIterations > 0; nIterations--) { 
     
    // Get 2b input symbol (MSB first) and do one iteration of Viterbi decoding    
        
    // For each destination state in the trellis 
    for (iDestState = 0; iDestState < 8; iDestState++) { 
             
      // Calculate cost of transition from each of the two source states (cost is Hamming difference between 
      // received 2b symbol and expected symbol for transition) 
             
      // Select transition that gives lowest cost in destination state, copy that source state's path and add 
      // new decoded bit 
    }   
    nPathBits++; 
 
    // If trellis history is sufficiently long, output a byte of decoded data. After 32 iterations  
    // (nPathBits == 32) the 8 MSB bits will be the same for all 8 surviving paths and a byte can be output  
   
    // After having processed 3-symbol trellis terminator, flush out remaining data 
     
    // Swap current and last buffers for next iteration     
  } 
  // Normalize costs so that minimum cost becomes 0 
} 
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Figure 7. Trellis 1 (the number in () indicates the source state of that given cost) 

For each received symbol (2b), all possible encoder output symbols (00, 01, 10, and 11) in 
Figure 7 are compared against the received symbol and a transition cost is calculated 
(nCost0 and nCost1). The appropriate transition cost is added to the accumulated path cost 
of each path that terminates in the source state on the left in the figure. It can be seen that 
there are two transitions into each destination state on the right in the figure. For each 
destination state the incoming transition with the lowest accumulated path cost is selected 
(the survivor path) and the other one thrown away - nothing is lost as all future paths that go 
through this state at this point in the trellis would do the same selection. Thus the number of 
paths that the Viterbi Algorithm tracks is always constant and the optimal path is always one 
of them. 
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Figure 8. Trellis 2 

 
Figure 9. nCost and aPath after 1st Iteration (received symbol: 00b) 

iCurrBuf = 1 
iLastBuf = 0 
 
nCost[iCurrBuf][] = [0, 2, 101, 101, 100, 100, 101, 101] 
 
aPath[iCurrBuf][iDestState] = (aPath[iLastBuf][iSrcState] << 1) | nInputBit; 
aPath[1][0] = (aPath[0][0] << 1) | Input to state 0 = 00000000000000000000000000000000 
aPath[1][1] = (aPath[0][0] << 1) | Input to state 1 = 00000000000000000000000000000001 
aPath[1][2] = (aPath[0][1] << 1) | Input to state 2 = 00000000000000000000000000000000 
aPath[1][3] = (aPath[0][1] << 1) | Input to state 3 = 00000000000000000000000000000001 
aPath[1][4] = (aPath[0][6] << 1) | Input to state 4 = 00000000000000000000000000000000 
aPath[1][5] = (aPath[0][2] << 1) | Input to state 5 = 00000000000000000000000000000001 
aPath[1][6] = (aPath[0][3] << 1) | Input to state 6 = 00000000000000000000000000000000 
aPath[1][7] = (aPath[0][3] << 1) | Input to state 7 = 00000000000000000000000000000001 
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Figure 10. Trellis 3 

 
Figure 11. nCost and aPath after 2nd Iteration (received symbol: 00b) 

iCurrBuf = 0 
iLastBuf = 1 
 
nCost[iCurrBuf][] = [0, 2, 3, 3, 101, 101, 102, 102] 
 
aPath[iCurrBuf][iDestState] = (aPath[iLastBuf][iSrcState] << 1) | nInputBit; 
aPath[0][0] = (aPath[1][0] << 1) | Input to state 0 = 00000000000000000000000000000000 
aPath[0][1] = (aPath[1][0] << 1) | Input to state 1 = 00000000000000000000000000000001 
aPath[0][2] = (aPath[1][1] << 1) | Input to state 2 = 00000000000000000000000000000010 
aPath[0][3] = (aPath[1][1] << 1) | Input to state 3 = 00000000000000000000000000000011 
aPath[0][4] = (aPath[1][6] << 1) | Input to state 4 = 00000000000000000000000000000000 
aPath[0][5] = (aPath[1][2] << 1) | Input to state 5 = 00000000000000000000000000000001 
aPath[0][6] = (aPath[1][3] << 1) | Input to state 6 = 00000000000000000000000000000010 
aPath[0][7] = (aPath[1][3] << 1) | Input to state 7 = 00000000000000000000000000000011 
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Figure 12. Trellis 4 

 
Figure 13. nCost and aPath after 3rd Iteration (received symbol: 00b) 

iCurrBuf = 1 
iLastBuf = 0 
 
nCost[iCurrBuf][] = [0, 2, 3, 3, 5, 3, 4, 4] 
 
aPath[iCurrBuf][iDestState] = (aPath[iLastBuf][iSrcState] << 1) | nInputBit; 
aPath[1][0] = (aPath[0][0] << 1) | Input to state 0 = 00000000000000000000000000000000 
aPath[1][1] = (aPath[0][0] << 1) | Input to state 1 = 00000000000000000000000000000001 
aPath[1][2] = (aPath[0][1] << 1) | Input to state 2 = 00000000000000000000000000000010 
aPath[1][3] = (aPath[0][1] << 1) | Input to state 3 = 00000000000000000000000000000011 
aPath[1][4] = (aPath[0][2] << 1) | Input to state 4 = 00000000000000000000000000000100 
aPath[1][5] = (aPath[0][2] << 1) | Input to state 5 = 00000000000000000000000000000101 
aPath[1][6] = (aPath[0][3] << 1) | Input to state 6 = 00000000000000000000000000000110 
aPath[1][7] = (aPath[0][3] << 1) | Input to state 7 = 00000000000000000000000000000111 
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101 (3), 101 (7) 102 (3), 102 (7) 4 (3), 103 (7) 4 (3), 5 (7)

101 (3), 101 (7) 102 (3), 102 (7) 4 (3), 103 (7) 4 (3), 5 (7)

00 00 00 00

100

 

Figure 14. Trellis 5 

 
Figure 15. nCost and aPath after 4th Iteration (received symbol: 00b) 

iCurrBuf = 0 
iLastBuf = 1 
 
nCost[iCurrBuf][] = [0, 2, 3, 3, 4, 3, 4, 4] 
 
aPath[iCurrBuf][iDestState] = (aPath[iLastBuf][iSrcState] << 1) | nInputBit; 
aPath[0][0] = (aPath[1][0] << 1) | Input to state 0 = 00000000000000000000000000000000 
aPath[0][1] = (aPath[1][0] << 1) | Input to state 1 = 00000000000000000000000000000001 
aPath[0][2] = (aPath[1][1] << 1) | Input to state 2 = 00000000000000000000000000000010 
aPath[0][3] = (aPath[1][1] << 1) | Input to state 3 = 00000000000000000000000000000011 
aPath[0][4] = (aPath[1][6] << 1) | Input to state 4 = 00000000000000000000000000001100 
aPath[0][5] = (aPath[1][2] << 1) | Input to state 5 = 00000000000000000000000000000101 
aPath[0][6] = (aPath[1][3] << 1) | Input to state 6 = 00000000000000000000000000000110 
aPath[0][7] = (aPath[1][3] << 1) | Input to state 7 = 00000000000000000000000000000111 
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Figure 16. Trellis 6 

 
Figure 17. nCost and aPath after 5st Iteration (received symbol: 00b) 

 

iCurrBuf = 1 
iLastBuf = 0 
 
nCost[iCurrBuf][] = [0, 2, 3, 3, 4, 3, 4, 4] 
 
aPath[iCurrBuf][iDestState] = (aPath[iLastBuf][iSrcState] << 1) | nInputBit; 
aPath[1][0] = aPath[0][0] << 1 | Input to state 0 = 00000000000000000000000000000000 
aPath[1][1] = aPath[0][0] << 1 | Input to state 1 = 00000000000000000000000000000001 
aPath[1][2] = aPath[0][1] << 1 | Input to state 2 = 00000000000000000000000000000010 
aPath[1][3] = aPath[0][1] << 1 | Input to state 3 = 00000000000000000000000000000011 
aPath[1][4] = aPath[0][6] << 1 | Input to state 4 = 00000000000000000000000000001100 
aPath[1][5] = aPath[0][2] << 1 | Input to state 5 = 00000000000000000000000000000101 
aPath[1][6] = aPath[0][3] << 1 | Input to state 6 = 00000000000000000000000000000110 
aPath[1][7] = aPath[0][3] << 1 | Input to state 7 = 00000000000000000000000000000111 
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After having processed 32 symbol, the 8 MSBs of aPath[0][0] (0000001b) is copied to 
rxFifo[0]. 

 
Figure 18. aPath after having Processed 32 Symbols 

After 8 more symbols, aPath[iCurrBuf][iDestState] looks like in Figure 19 and 00000010b 
(8 MSBs of aPath[0][0]) are copied to rxFifo[1].  

 

Figure 19. aPath after having Processed 40 Symbols 

After having processed 3 more symbols, the trellis terminator has been processed and the 
remaining bytes of the packet are being copied to rxFifo. 

rxFifo[2] = aPath[1][0] bit 26:19 = 00000011b 
rxFifo[3] = aPath[1][0] bit 18:11 = 00000100b 
rxFifo[4] = aPath[1][0] bit 10:3   = 00000101b 

 

Figure 20. aPath after having Processed 43 Symbols  

aPath[iCurrBuf][iDestState] = (aPath[iLastBuf][iSrcState] << 1) | nInputBit; 
aPath[1][0] = 00010000000110000010000000101000 
aPath[1][1] = 00010000000110000010000000101001 
aPath[1][2] = 00010000000110000010000000101010 
aPath[1][3] = 00010000000110000010000000101011 
aPath[1][4] = 00010000000110000010000000100100 
aPath[1][5] = 00010000000110000010000000101101 
aPath[1][6] = 00010000000110000010000000101110 
aPath[1][7] = 00010000000110000010000000101111

aPath[iCurrBuf][iDestState] = (aPath[iLastBuf][iSrcState] << 1) | nInputBit; 
aPath[0][0] = 00000010000000110000010000000000 
aPath[0][1] = 00000010000000110000010000001001 
aPath[0][2] = 00000010000000110000010000000010 
aPath[0][3] = 00000010000000110000010000000011 
aPath[0][4] = 00000010000000110000010000000100 
aPath[0][5] = 00000010000000110000010000000101 
aPath[0][6] = 00000010000000110000010000000110 
aPath[0][7] = 00000010000000110000010000000111 

aPath[iCurrBuf][iDestState] = (aPath[iLastBuf][iSrcState] << 1) | nInputBit; 
aPath[0][0] = 00000001000000100000001100001000 
aPath[0][1] = 00000001000000100000001100000001 
aPath[0][2] = 00000001000000100000001100000010 
aPath[0][3] = 00000001000000100000001100000011 
aPath[0][4] = 00000001000000100000001100000100 
aPath[0][5] = 00000001000000100000001100000101 
aPath[0][6] = 00000001000000100000001100000110 
aPath[0][7] = 00000001000000100000001100000111 
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