
Design Note DN117

SWRA306 Page 1 of 14

SimpliciTI-compatible UART Driver

By Jim Noxon and Kristoffer Flores

Keywords

• SimpliciTI
• UART driver
• RS-232
• SmartRF®04EB
• SmartRF®05EB
• CCMSP-EM430F2618
• MSP430FG4618 Experimenter Board

• CC1110Fx
• CC1111Fx
• CC2510Fx
• CC2511Fx
• CC2430
• CC2431
• CC2530

1 Introduction

This design note introduces a UART driver
that is compatible with the SimpliciTITM
low-power wireless networking protocol.
This note describes the driver
implementation, the process of adding the
driver into an existing SimpliciTI project,
and the basic driver API function calls.

The supplied UART driver can facilitate
interfacing a SimpliciTI device with other
UART-capable devices, for example, a PC
via RS-232. Using a UART with an RS-
232 transceiver allows for live in-system

data transfer from a SimpliciTI device to a
PC or PC control of the SimpliciTI device
for end applications or for development
and debugging purposes. The driver
package includes an example project
based on the ‘Simple Peer-to-Peer’
SimpliciTI example to demonstrate the
UART operation. The example program
sends messages to a PC via the RS-232
port on the SmartRF®04, SmartRF®05,
and MSP430FG4618/F2013 Experimenter
Boards. The sample code in this design
note can be downloaded from
http//:www.ti.com/lit/zip/SWRA306.

http://www.ti.com/lit/zip/SWRA306

Design Note DN117

SWRA306 Page 2 of 14

Table of Contents

KEYWORDS ... 1
1 INTRODUCTION ... 1
2 ABBREVIATIONS ... 3
3 UART DRIVER DESCRIPTION .. 4

3.1 COMPATIBILITY ...4
3.2 DRIVER IMPLEMENTATION .. 4

3.2.1 Flow control on MSP430s .. 4
3.3 USER OPTIONS AND INTERFACE ... 4

4 INSTALLING THE DRIVER INTO AN EXISTING SIMPLICITI PROJECT 5
4.1 EXTRACTING THE FILES INTO THE PROJECT DIRECTORIES 5
4.2 CONFIGURING THE UART ... 5
4.3 SETTING UP THE PROJECT .. 6

4.3.1 In IAR (for 8051-based SoC or MSP430) ... 6
4.3.2 In Code Composer Essentials (for MSP430) .. 8

5 EXAMPLE – SIMPLE PEER-TO-PEER WITH HYPERTERMINAL 10
6 BASIC API FUNCTION CALLS .. 11

6.1 UART_INTFC_INIT() ... 11
6.1.1 Description ... 11
6.1.2 Prototype .. 11

6.2 TX_PEEK() ... 11
6.2.1 Description ... 11
6.2.2 Prototype .. 11
6.2.3 Return ... 11

6.3 TX_SEND() ... 12
6.3.1 Description ... 12
6.3.2 Prototype .. 12
6.3.3 Parameter Details ... 12
6.3.4 Return ... 12

6.4 TX_SEND_WAIT() .. 12
6.4.1 Description ... 12
6.4.2 Prototype .. 12
6.4.3 Parameter Details ... 12
6.4.4 Return ... 12

6.5 RX_PEEK() ... 12
6.5.1 Description ... 12
6.5.2 Prototype .. 12
6.5.3 Return ... 12

6.6 RX_RECEIVE() .. 13
6.6.1 Description ... 13
6.6.2 Prototype .. 13
6.6.3 Parameter Details ... 13
6.6.4 Return ... 13

6.7 UART_BUSY() ... 13
6.7.1 Description ... 13
6.7.2 Prototype .. 13
6.7.3 Return ... 13

7 GENERAL INFORMATION ... 14
7.1 DOCUMENT HISTORY ... 14

Design Note DN117

SWRA306 Page 3 of 14

2 Abbreviations

UART Universal Asynchronous Receiver/Transmitter
DMA Direct Memory Access
ISR Interrupt Service Routine
SoC System On Chip
EM Evaluation Module
TX Transmit
RX Receive

Design Note DN117

SWRA306 Page 4 of 14

3 UART Driver Description

3.1 Compatibility
The driver has been tested on the following SimpliciTI development platforms:

- SmartRF®04 board with CC1110EM, CC2510EM, and CC2430EM
- SmartRF®05 board with CCMSP-EM430F2618 daughter board and CC2520EM
- SmartRF®05 board with CC2530EM
- MSP430FG4618/F2013 Experimenter Board with CC1101EM

Code modifications may be necessary to ensure proper compilation and UART operation
when using MSP430s, microcontrollers, or development platforms other than those listed
above. The driver can be used in both IAR and Code Composer Essentials (CCE).

3.2 Driver Implementation
The supplied UART driver uses first-in first-out (FIFO) ring buffers for transmit (TX) and
receive (RX) data. To send data, the user calls an API function that writes the data to the end
of the TX FIFO. To receive data, the user calls a function that reads data from the top of the
RX FIFO.

The actual transmission and reception of data bytes over the UART is driven by interrupts. If
there is data in the TX FIFO, the UART TX interrupt service routine (ISR) moves the data byte
by byte to the UART TX byte register for transmission until the FIFO is empty. The UART RX
ISR moves each received byte from the RX byte register to the RX FIFO as long as there is
room in the buffer.

The alternative to an interrupt-based UART is one that is supported by the Direct Memory
Access (DMA) controller to move data to and from the UART TX/RX byte registers. An
interrupt-based solution was chosen for the following reasons:

1. A UART with DMA support would require two DMA channels, one for transmit and

one for receive. An ISR-driven solution keeps DMA resources free to use with other
peripherals.

2. While UART using DMA could operate as a background process with very little

overhead, some of the functions provided with the supplied driver, for example, the
function to check the amount of unread data in the RX FIFO, have more practical
implementations in an ISR-based UART.

3.2.1 Flow control on MSP430s

Flow control prevents overflow conditions via signalling on the RTS and CTS UART pins. If
the RX FIFO is full, the RTS pin will output a high logic level as a signal that the device is not
ready to receive data. On the transmit side, the UART will wait for the CTS pin (driven by the
target device’s RTS pin) to go to a low logic level before transmitting data.

The 8051-based SoCs have a built-in flow control mechanism managed by hardware while
the MSP430s do not. To provide flow control capability to MSP430-based systems, a flow
control mechanism managed by software is enabled when using an MSP430 and flow control
is turned on. The implementation maps two I/O pins as the RTS/CTS signals and toggles the
lines manually in software. Since this handshaking mechanism is software-based, the latency
involved in toggling the RTS and CTS lines can lead to lost data when using high baud rates.

3.3 User Options and Interface

Design Note DN117

SWRA306 Page 5 of 14

The UART driver is designed for minimal complexity for the user. Using #define statements
in a preinclude file, the user can specify which UART on the CPU to use, the baud rate, flow
control mode, parity mode, and number of stop bits. The user can also specify the size of the
transmit and receive FIFO buffers. However, this driver does not allow the above settings to
be changed during runtime. Section 4 explains the driver installation and project setup
procedures.

The driver API provides seven function calls for the UART. These are high-level functions for
sending and receiving messages to and from the buffers, checking for free space in the
transmit buffer, and checking how much unread data is in the receive buffer. Section 6
describes the API functions in detail.

4 Installing the Driver into an Existing SimpliciTI Project

Installing the UART driver into a project consists of three main steps: extracting the files into
the project directories, configuring the UART, and setting up the project to use the UART.

4.1 Extracting the Files into the Project Directories
The first step in installing the UART driver is to extract the zip file contents into the SimpliciTI
directory. If the extraction process preserves the directory structure, the file contents should
extract into the recommended folders; however, the table below lists the files and their
recommended destinations:

Extract into $SimpliciTI_Installation_Folder$\Components\bsp
Filename Description
pp_utils.h Macro definitions used by UART driver.

Extract into $SimpliciTI_Installatio _Folder$\Components\bsp\drivers
Filename Description
uart.h UART definitions and low-level function declarations
uart_intfc.h UART driver include file with API function prototypes

Extract into $SimpliciTI_Installation_Folder$\Components\bsp\drivers\code
Filename Description
uart.c Low-level UART function implementations and ISRs
uart_intfc.c UART API function implementations

Extract into $SimpliciTI_Installation_Folder$\Projects\Examples\Applications
Filename Description
main_LinkToWithUART.c Example program (see Section 5)
options.h Project preinclude file with UART configuration definitions

4.2 Configuring the UART
The options.h preinclude file contains #define statements that determine the following
UART settings:

- Transmit and receive FIFO buffers size
- For 8051-based SoCs, the number and location of the USART module to use
- For MSP430s, the letter and module number of the USCI module to use
- Baud rate
- Flow control mode
- Number of stop bits
- Parity mode

Design Note DN117

SWRA306 Page 6 of 14

The 8051-based SoCs use a consistent pin mapping such that a given USART (number and
location) maps to the same I/O pins regardless of the SoC. The driver has built-in pin
mappings for the different USART configurations. For the MSP430s, it is necessary to define
the pins used by the chosen USCI module because the pin mapping for the same module
may differ among different MSP430s. Since the MSP430 does not have hardware-
handshaking, the pins to use for CTS and RTS must also be defined in options.h.

When using an 8051-based SoC EM on a SmartRF®04 (CC1110/1, CC2510/1, CC2430/1) or
SmartRF®05 board (CC2530/1), specifying USART port number 0 at location 1 will map the
UART to the on-board RS-232 transceiver.

The comments in options.h identify the pin mappings for USCI_A0 for the CCMSP-
EM430F2618 SmartRF®05 board and for the MSP430FG4618 Experimenter Board. Using
the mapping will route the UART to the on-board RS-232 transceivers. On the CCMSP-
EM430F2618 SmartRF®05 board, it is possible to enable hardware-handshaking because
pins 2.6 and 2.7 on the MSP430 connect to the RTS and CTS pins of the RS-232 transceiver.
On the Experimenter Board, hardware-handshaking cannot be enabled because the RTS and
CTS pins on the RS-232 connector are open.

4.3 Setting Up the Project
4.3.1 In IAR (for 8051-based SoC or MSP430)

The following steps set up an existing SimpliciTI project to use the UART driver:

1. With the workspace and project open in IAR, add uart.c and uart_intfc.c to

the project:
a. Navigate to <ProjectAdd Files…>.
b. Browse for uart.c and uart_intfc.c in the file browser that appears,

highlight the files, and press Open.
c. Both uart.c and uart_intfc.c should now appear in the project files list.

Drag and drop the files to the desired folder in the project or leave them in
the default location.

2. Set options.h as a preinclude file for the project:

a. Navigate to <ProjectOptions>
b. Under Category, select C/C++ Compiler, then choose the Preprocessor tab.
c. Under Preinclude File, enter the location or browse for the options.h file.

Design Note DN117

SWRA306 Page 7 of 14

Figure 1. Example preprocessor options tab for CC2510 project

3. In the main C file of the project, include uart_intfc.h and add a line of code to call

uart_intfc_init() after the call to BSP_Init() (as shown in Figure 2). Rebuild
the project. The project should compile with no errors. The other UART API functions
can be called after SMPL_Init() has been called.

Design Note DN117

SWRA306 Page 8 of 14

Figure 2. No build errors after successful driver install and initialization in IAR

4.3.2 In Code Composer Essentials (for MSP430)

The following steps set up an existing SimpliciTI project to use the UART driver:

1. With a workspace and project open in CCE, link uart.c and uart_intfc.c to the

project:
a. Navigate to <ProjectLink Files to Active Project...>
b. Browse for uart.c and uart_intfc.c in the file browser that appears,

highlight the files, and press Open.
c. Both uart.c and uart_intf.c should now appear in the project files list.

Drag and drop the files to the desired folder in the project or leave them in
the default location.

2. Configure options.h as a preinclude file

a. Navigate to <ProjectProperties>
b. On the left menu in the window that appears, select C/C++ Build.
c. Under Configuration SettingsTool Settings, select the Runtime Model

Options.
d. Specify options.h as a preinclude file by entering the file location or

browsing for the file (Figure 3).

Design Note DN117

SWRA306 Page 9 of 14

Figure 3. Specifying a preinclude file in CCE.

3. In the main project C file, include uart_intfc.h and add a line of code to call

uart_intfc_init() after the call to BSP_Init()(see Figure 4). Rebuild the
project. The project should compile with no errors. The other UART API functions can
be called after SMPL_Init() has been called.

Design Note DN117

SWRA306 Page 10 of 14

Figure 4. No build errors after successful driver install and initialization in CCE

5 Example – Simple Peer-to-Peer with HyperTerminal

The file main_LinkToWithUART.c is a modified version of the Simple Peer-to-Peer
example provided with SimpliciTI. The code provides a simple demonstration of the UART
interface and is intended to be used with one of development platforms with an RS-232
interface (i.e. SmartRF®04 board, SmartRF®05 board, or MSP430FG4618 Experimenter
Board with their compatible SoCs or radios). The example program communicates to a PC
HyperTerminal via RS-232 to deliver status messages and to receive input from the PC.

The original LinkTo program waits for a button press on the development platform to initiate a
link; the modified version waits for a carriage return in the HyperTerminal window. Pressing
keys other than the carriage return key during this time will cause LED 1 to toggle. The rest of
the program operates as the original, with the modification that the device sends status
messages to the PC HyperTerminal as shown in Figure 5.

To run the example, follow the instructions below:

1. Open the Simple Peer-to-Peer LinkTo project for the device and platform to be used.
2. Per the instructions in Section 4, extract the UART driver files, configure the UART in

options.h; and set up the project. The default Simple Peer-to-Peer project should
compile with the minor changes to main_LinkTo.c as shown in Figure 2 and Figure
4.

3. Replace the code in main_LinkTo.c with the code in main_LinkToWithUART.c
OR add (link in CCE) main_LinkToWithUART.c to the project and exclude
main_LinkTo.c from the build. Rebuild the project.

Design Note DN117

SWRA306 Page 11 of 14

4. Open a HyperTerminal and configure the terminal to match the UART settings
specified in options.h

5. With a serial cable connected to the development board, run the example program.

Figure 5. HyperTerminal Window of Example Program

6 Basic API Function Calls

This section gives a description of each of the 7 UART API functions. For more details, see
the code and comments in uart_intfc.h and uart_intfc.c.

6.1 uart_intfc_init()
6.1.1 Description

The uart_intfc_init() function prepares the UART by configuring the CPU registers
(per the definitions in options.h) and initializing the UART buffers. uart_intfc_init()
must be called before attempting to use any other API functions.

6.1.2 Prototype
void uart_intfc_init(void)

6.2 tx_peek()
6.2.1 Description
The tx_peek() function returns the number of unused bytes in the transmit FIFO.

6.2.2 Prototype
int tx_peek(void)

6.2.3 Return
Data Type Description
integer Number of bytes of free space in UART transmit FIFO

Design Note DN117

SWRA306 Page 12 of 14

6.3 tx_send()
6.3.1 Description
The tx_send() function pushes a message to the end of the transmit FIFO if there is
enough room for the entire message. If there is inadequate free space in the FIFO, nothing is
appended to the FIFO. The transmit FIFO is set to 50 bytes by default, but can be resized in
the options.h file.

6.3.2 Prototype
bool tx_send(const void* data, size_t len)

6.3.3 Parameter Details
Parameter Description
(void *) data Pointer to first byte of data to be sent
len Length in bytes of data to be sent (max 50)

6.3.4 Return
Boolean Value Description
true (1) Data successfully pushed onto buffer
false (0) Not enough room in transmit buffer; No data

pushed onto buffer

6.4 tx_send_wait()
6.4.1 Description
The tx_send_wait() function pushes a message to the end of the transmit FIFO, but
unlike tx_send(), the message length can exceed the size of the FIFO. For messages
longer than the available space in the FIFO, tx_send_wait() pushes the message into the
FIFO in pieces, filling the buffer with the data as space becomes available due to completed
transmissions. The function is a blocking task in that it does not terminate until the entire
message has been delivered to the FIFO.

6.4.2 Prototype
bool tx_send_wait(const void* data, size_t len)

6.4.3 Parameter Details
Parameter Description
(void *) data Pointer to first byte of data to be sent
len Length in bytes of data to be sent

6.4.4 Return
Boolean Value Description
true (1) Data successfully pushed onto buffer
false (0) Null pointer or len = 0

6.5 rx_peek()
6.5.1 Description
The rx_peek() function returns the number of bytes of unread received data in the receive
FIFO. It is recommended to call rx_peek()to determine if there is unread data in the receive
FIFO before calling rx_receive().

6.5.2 Prototype
int rx_peek()

6.5.3 Return
Data Type Description
integer Number of unread bytes available in the UART receive FIFO

Design Note DN117

SWRA306 Page 13 of 14

6.6 rx_receive()
6.6.1 Description
The rx_receive() function pulls unread data out of the UART receive FIFO to a specified
location until the specified maximum number of bytes has been read or the receive FIFO has
been emptied. The function returns the actual number of bytes read.

6.6.2 Prototype
int rx_receive(void *data, int max_len)

6.6.3 Parameter Details
Parameter Description
(void *) data Location to which buffer data should be read
max_len Maximum number of bytes to be read from buffer

6.6.4 Return
Data Type Description
integer Number of bytes actually read from buffer

6.7 uart_busy()
6.7.1 Description
The uart_busy() function indicates whether there is any impending actions required by the
UART, either there is still data in the transmit FIFO or there is unread data in the receive
FIFO.

6.7.2 Prototype
bool uart_busy(void)

6.7.3 Return
Boolean Value Description
true (1) UART is in use; UART transmit and/or receive buffers have data
false (0) UART idle; both UART buffers are empty

Design Note DN117

SWRA306 Page 14 of 14

7 General Information

7.1 Document History

Revision Date Description/Changes
SWRA306 2009.09.22 Initial release.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	SimpliciTI-compatible UART Driver
	By Jim Noxon and Kristoffer Flores
	Keywords
	1 Introduction

	Table of Contents
	2 Abbreviations
	3 UART Driver Description
	3.1 Compatibility
	3.2 Driver Implementation
	3.2.1 Flow control on MSP430s

	3.3 User Options and Interface

	4 Installing the Driver into an Existing SimpliciTI Project
	4.1 Extracting the Files into the Project Directories
	4.2 Configuring the UART
	4.3 Setting Up the Project
	4.3.1 In IAR (for 8051-based SoC or MSP430)
	Figure 2. No build errors after successful driver install and initialization in IAR
	4.3.2 In Code Composer Essentials (for MSP430)

	Figure 3. Specifying a preinclude file in CCE.
	Figure 4. No build errors after successful driver install and initialization in CCE

	5 Example – Simple Peer-to-Peer with HyperTerminal
	Figure 5. HyperTerminal Window of Example Program

	6 Basic API Function Calls
	6.1 uart_intfc_init()
	6.1.1 Description
	6.1.2 Prototype

	6.2 tx_peek()
	6.2.1 Description
	6.2.2 Prototype
	6.2.3 Return

	6.3 tx_send()
	6.3.1 Description
	6.3.2 Prototype
	6.3.3 Parameter Details
	6.3.4 Return

	6.4 tx_send_wait()
	6.4.1 Description
	6.4.2 Prototype
	6.4.3 Parameter Details
	6.4.4 Return

	6.5 rx_peek()
	6.5.1 Description
	6.5.2 Prototype
	6.5.3 Return

	6.6 rx_receive()
	6.6.1 Description
	6.6.2 Prototype
	6.6.3 Parameter Details
	6.6.4 Return

	6.7 uart_busy()
	6.7.1 Description
	6.7.2 Prototype
	6.7.3 Return

	7 General Information
	7.1 Document History

