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1 Introduction 

This document gives an overview of the 
FEC implementation in the CC1100, 

CC1101, CC1110, CC1111, CC1150, 
CC2500, CC2510, CC2511, and CC2550. 
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2 Abbreviations 

 
FEC   Forward Error Coding 
FSM   Finite State Machine 
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3 What is FEC? 

Forward Error Correction (FEC) is a technique that allows the receiver to correct a certain 
amount of errors in the received message. This is achieved by letting a FEC encoder add 
redundancy to the data message at the transmitter according to certain prescribed rules. The 
FEC decoder at the receiver uses the knowledge of these rules to identify and, if possible, 
correct any errors that have appeared. Broadly speaking there are two main classes of FEC: 
linear block codes (BCH, Reed-Solomon, etc) and convolutional codes.  
 
An (n,k) linear block encoder takes  k-bit block of message data and appends n-k redundant 
bits algebraically related to the k message bits, producing a n-bit code block. There are 2k 
valid code words, which is far less than the 2n possible code words, and a good linear block 
code is one in which the minimum distance dmin, the minimum number of bits that must be 
changed to go from any one code word to any other code word, is maximized. In order to be 
able to correct e erroneous bits we have that dmin  > 2e, i.e. after e erroneous bits the correct 
code word is still the one with the smallest distance to the received code word. The 
dimensionless ratio r = k/n is called the code rate. 
 
A convolutional encoder is fundamentally a finite state machine with a k-bit input and n-bit 
output, n>k, and an internal M-bit memory. An important parameter of the convolutional 
encoder is its constraint length L = M + 1 which specifies over how many consecutive n-bit 
output periods a k-bit input value affects the output. The FSM is such that any given message 
sequence input results in a coded output sequence which maximizes the minimum distance 
to what would be generated for any other input message sequence. Convolutional decoding 
is usually performed by the Viterbi algorithm, which, conceptually, compares the received 
sequence to the encoded version of all possible encoder input sequences and keeps tab of 
how close of a match each is. Periodically, the Viterbi algorithm, tracks back through its 
memory and outputs part of the input sequence, which when encoded is the closest match to 
the received code sequence. 
 

4 How is FEC Implemented? 

The CC1100/CC1101/CC1110/CC1111/CC1150/CC2500/CC2510/CC2511/CC2550 all have 
a rate r  = 1/2 convolutional, non-recursive encoder with constraint length L = 4 (M = 3), 
implemented as shown in Figure 1. 
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Figure 1. Implementation of Convolutional Encoder 

Each input bit is encoded into two output bits, thus doubling the amount of data that must be 
transmitted. If the same radio data rate is used, error-free reception with a lower signal 
strength is possible – thus effectively the range of the radio has been increased or the power 
consumption can be decreased for a fixed range. If the same raw data rate is required, the 
radio data rate must be doubled either by doubling the modulation rate or going from a 2-ary 
to a 4-ary modulation format. Obviously, this will increase the number of bit errors in the 
received coded sequence, but the error-correction in the decoder ensures that the decoded 
message sequence contains less erroneous bits than if the message sequence had been 
transmitted without coding. 
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Convolutional coding works best if the erroneous bits are evenly (or at least randomly) 
spaced throughout the received coded sequence. Unfortunately, due to the bursty nature of 
many radio interference sources and the characteristics of the demodulator, it is more likely 
that erroneous bits will clump together. To combat this problem, so-called interleaving of the 
coded data is performed after encoding in the transmitter and de-interleaving before decoding 
in the receiver. The purpose of interleaving is to make sure that adjacent symbols in the 
coded sequence are spaced out in the transmitted sequence, so that any clumps of bit errors 
in the received sequence are spread out more uniformly by the de-interleaver, letting the 
decoder work under optimum conditions. Our chips employ a 4x4 matrix interleaver with 2 
bits (one encoder output symbol) per cell. 
 

 

Figure 2. FEC and Interleaving 

 
The decoder in the chip implements a Viterbi algorithm that works on 8-bit soft-decision 
values from the demodulator. The Viterbi algorithm conceptually compares the received 
coded sequence with the encoded sequences resulting from encoding of all possible input 
message sequences, calculates a deviation value for each and then selects the most likely 
one (the one with the lowest deviation).  
 
A section of the so-called trellis shown in Figure 3 is useful in understanding how the Viterbi 
algorithm works. The circles at the left and right represent the possible values of the encoder 
state at any given time and the lines between them represent possible transitions from any 
one state to another. The numbers written along the transition lines are, the input bit to the 
encoder and the resulting output bits from the encoder, respectively. 
 
In practice, the Viterbi algorithm manages to explore all possible input sequences to the 
encoder by keeping track of only a finite number of paths through the trellis (corresponding to 
certain sequences of input bits). Specifically, the Viterbi algorithm only keeps track of the 
most probable of all paths that end in each of the 2M encoder states, and the accumulated 
deviation or cost of that path.  
  
For each input symbol, all possible encoder output symbols (00, 01, 10, and 11 in Figure 3) 
are compared against the received symbol and a transition cost is calculated. The 
appropriate transition cost is added to the accumulated path cost of each path that terminates 
in the source state on the left in the figure. It can be seen that there are two transitions into 
each destination state on the right in the figure. For each destination state the incoming 
transition with the lowest accumulated path cost is selected (the survivor path) and the other 
one thrown away – nothing is lost as all future paths that go through this state at this point in 
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the trellis would do the same selection. Thus the number of paths that the Viterbi Algorithm 
tracks is always constant and the optimal path is always one of them. 
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Figure 3. Trellis Diagram 

 
In order to provide the end of the transmitted data, which do not get the benefit of being 
evaluated over a full trellis path, with a protection equal to that of the rest of the transmitted 
data, so-called trellis termination is necessary. Terminating the trellis means to transmit extra 
data that brings the convolutional encoder to a known state (usually all zero) so that the 
decoder doesn’t need to make a decision on the most-probable trellis path with limited 
history. At the end of the transmitted data it is also necessary to fill up the last interleaver 
buffer with something so that a full interleaver block can be transmitted. 
 
Our FEC implementation appends “00001011b” to the data input to the encoder/interleaver 
when an odd number of data bytes are transmitted and “00001011 00001011 b” when an 
even num ber of data bytes are transmitted. The first three zeros of these sequences are 
used to terminate the trellis and the rest are used to fill up the last interleaver block. (The 
reason that not all zeros are transmitted is to ensure that there are some symbol transitions in 
the output of the interleaver to facilitate clock recovery.) 
 

5 How Many Bit Errors Can FEC Correct? 

The convolutional code (optionally) employed in our chips has a maximum free distance of 
dfree= 6 bits. This means that changing any one bit in the message sequence will change at 
least 6 bits in the coded output sequence. Correspondingly, at least three erroneous bits are 
required in the received coded sequence before any other message sequence than the 
correct one is equally likely or more likely. 
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The ability to correct two bits in the entire coded sequence may not sound like much, but of 
course this is not the whole story. Normally, when there are no bit errors in the received 
sequence, the correct path through the trellis will have a much lower cost than all other 
possible paths and these alternative paths will thus quickly die out. This situation is illustrated 
in Figure 4 (for a different convolutional code than that employed in the CC11xx/CC25xx 
having fewer states for illustrative clarity): 
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Figure 4. Example Trellis and Example Encoder 

 

 
Figure 5. Trellis 1 

 
The numbers above each state node is the cost in erroneous bits in the received sequence 
(this assumes a binary symmetric channel and hard decoding). It can be seen that most 
alternative paths quickly disappear since their cost become prohibitively high. If we introduce 
an error in the received sequence (input) as shown below we see that the cost of the 
alternative path(s) are much closer to the cost of the correct path and are thus longer-lived. 
 

 
Figure 6. Trellis 2 
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If we were to introduce another bit error in the received sequence close to the first one, this 
effect would be even more pronounced: 

 
 Figure 7. Trellis 3 

 
We see that this time there exists an alternative path that originates in state 10 at the point of  
the first error (marked in green) which for time afterwards has the same (or even lower) cost 
as the correct path. The culled (non-surviving) transitions are also shown in black to illustrate 
at which point the correct path and the alternative path merge. The convolutional encoder 
employed in CCxx00 can tolerate one additional bit error in the received sequence for the life-
span of such an alternative path (from when the two paths split at the first bit error until they 
meet again at the same state sometime later). If a third bit error was to occur during this time, 
the alternative path instead of the optimum path might be the survivor path upon merge. We 
introduce a third error after the two paths merge to demonstrate the principle: 
 

 
Figure 8. Trellis 4 

 
The exact life-span of each such alternative path is dependant on the input data and the state 
in which the alternative and correct paths split. As a rule of thumb one could say that they 
usually merge again within 3L (constraint lengths). The interleaver will help in distributing 
clumps of erroneous bits, which often occur in real-world received data, further part. Due to 
the inability to precisely predict how many erroneous bits can be corrected by a convolutional 
coder, the figure of merit usually associated with a convolutional code is its asymptotic coding 
gain, i.e. the reduction of the SNR of the received signal that yields an equivalent BER as the 
un-coded case. This can be used to increase range or decrease power in the transmitter. For 
a binary-input AWGN channel (relevant for 2-ary modulation formats on the CCxx00) the 
asymptotic coding gain is: 
 
         ( ) dBlog10 10 rdG freea = , 
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where dfree is the free distance of the code and r is the code rate. The used code (dfree= 6, r = 
1/2) has an asymptotic coding gain of 4.8 dB, although the achievable gain is considerable 
less for binary modulation formats (perhaps 2-3 dB). 

6 FEC Implementation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

//-------------------------------------------------------------------------------- 
UINT16 culCalcCRC(BYTE crcData, UINT16 crcReg) { 
    UINT8 i; 
    for (i = 0; i < 8; i++) { 
        if (((crcReg & 0x8000) >> 8) ^ (crcData & 0x80)) 
            crcReg = (crcReg << 1) ^ 0x8005; 
        else 
            crcReg = (crcReg << 1); 
        crcData <<= 1; 
    } 
    return crcReg; 
}// culCalcCRC 
//-------------------------------------------------------------------------------- 
// Variables 
UINT16 xdata fecEncodeTable[] = { 
    0, 3, 1, 2, 
    3, 0, 2, 1, 
    3, 0, 2, 1, 
    0, 3, 1, 2    
}; 
UINT16 input[260];  
UINT16 i, j, val, fecReg, fecOutput; 
UINT32 intOutput; 
UINT16 fec[520]; 
UINT16 interleaved[520]; 
UINT16 inputNum = 0, fecNum; 
UINT16 checksum; 
UINT16 length; 
//-------------------------------------------------------------------------------- 
//Example code 
length = 3; 
input[0] = length; 
input[1] = 1; 
input[2] = 2; 
input[3] = 3; 
 
inputNum = length + 1; 
 
printf("Input: [%5d bytes]\n", inputNum); 
for (i = 0; i < inputNum; i++) 
    printf("%02X%s", input[i], (i % 8 == 7) ? "\n" : (i % 2 == 1) ? "  " : " "); 
printf("\n\n"); 
 
// Generate CRC 
checksum = 0xFFFF;  //Init value for CRC calculation 
for(i = 0; i <= input[0]; i++) 
    checksum = culCalcCRC(input[i], checksum); 
input[inputNum++] = checksum >> 8;     // CRC1 
input[inputNum++] = checksum & 0x00FF; // CRC0 
 
printf("Appended CRC: [%5d bytes]\n", inputNum); 
for (i = 0; i < inputNum; i++) 
    printf("%02X%s", input[i], (i % 8 == 7) ? "\n" : (i % 2 == 1) ? "  " : " "); 
printf("\n\n"); 
 
// Append Trellis Terminator 
input[inputNum] = 0x0B; 
input[inputNum + 1] = 0x0B; 
 
fecNum = 2*((inputNum / 2) + 1); 
 
printf("Appended Trellis terminator: [%5d bytes]\n", fecNum); 
for (i = 0; i < fecNum; i++) 
    printf("%02X%s", input[i], (i % 8 == 7) ? "\n" : (i % 2 == 1) ? "  " : " "); 
printf("\n\n"); 
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Running this code will give the following result (all data in hexadecimal base): 
 
Input: [    4 bytes] 
03 01 02 03 
 
Appended CRC: [    6 bytes] 
03 01 02 03 30 3A 
 
Appended Trellis terminator: [    8 bytes] 
03 01 02 03 30 3A 0B 0B 
 
FEC encoder output: [   16 bytes] 
00 0E 8C 03 7C 0D F0 0E 82 8C 0E 5E F0 D1 8C D1 
 
Interleaver output: [   16 bytes] 
C8 3C 00 20 84 CF 33 31 A2 FC 40 4A 44 30 47 EF 
 
To test this FEC encoder program one can transmit its output data from one device (with FEC 
disabled) and recover the original input from a receiving device with FEC enabled. It is also 
possible to deliberately insert errors in the transmitted sequence to experiment with the error 
correcting abilities of the code. 
 

 
// FEC encode 
fecReg = 0;  
for (i = 0; i < fecNum; i++) { 
    fecReg = (fecReg & 0x700) | (input[i] & 0xFF); 
    fecOutput = 0; 
    for (j = 0; j < 8; j++) { 
        fecOutput = (fecOutput << 2) | fecEncodeTable[fecReg >> 7]; 
        fecReg = (fecReg << 1) & 0x7FF; 
    } 
    fec[i * 2] = fecOutput >> 8;  
    fec[i * 2 + 1] = fecOutput & 0xFF; 
}   
 
printf("FEC encoder output: [%5d bytes]\n", fecNum * 2); 
for (i = 0; i < fecNum * 2; i++) 
    printf("%02X%s", fec[i],  (i % 16 == 15) ? "\n" : (i % 4 == 3) ? "  " : " ");     
printf("\n\n"); 
 
// Perform interleaving 
for (i = 0; i < fecNum * 2; i += 4) { 
    intOutput = 0; 
    for (j = 0; j < 4*4; j++) 
        intOutput =  

(intOutput << 2) | ((fec[i +(~j & 0x03)] >> (2 * ((j & 0x0C) >> 2))) & 0x03);       
 

    interleaved[i]      = (intOutput >> 24) & 0xFF; 
    interleaved[i + 1]  = (intOutput >> 16) & 0xFF; 
    interleaved[i + 2]  = (intOutput >> 8)  & 0xFF; 
    interleaved[i + 3]  = (intOutput >> 0)  & 0xFF; 
} 
 
printf("Interleaver output: [%5d bytes]\n", fecNum * 2); 
for (i = 0; i < fecNum * 2; i++) 
    printf("%02X%s", interleaved[i],  (i % 16 == 15) ? "\n" : (i % 4 == 3) ? "  " : " ");   
printf("\n\n"); 
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For relevant register settings in TX and RX, see table 1 and table 2 respectively. 
 

Transmitter Comments 
PKTCTRL0.LENGTH_CONFIG = 0 Fixed Packet Length 

PKTCTRL0.CRC_EN = 0 Disable CRC 

MDMCFG1.FEC_EN = 0 Disable FEC 

PKTLEN = 0x10 Packet length = 16 

TXFIFO = 0xC8, 0x3C, 0x00, 0x20 , 0x84, 0xCF, 0x33, 0x31,   

                   0xA2, 0xFC, 0x40, 0x4A, 0x44, 0x30, 0x47, 0xEF 

The output from the interleaver 

Table 1. TX Settings 

 
Receiver Comments 
PKTCTRL0.LENGTH_CONFIG = 1 Variable Packet Length 

PKTCTRL0.CRC_EN = 1 Enable CRC 

MDMCFG1.FEC_EN = 1 Enable FEC 
RXFIFO = 0x03, 0x01, 0x02, 0x03 The received packet 

Table 2. RX Settings 
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7 General Information 

7.1 Document History 
Revision Date Description/Changes 
SWRA113A 2007.10.22 Removed logo from header. Added CC1101 and CC1111 
SWRA113 2006.07.31 Initial release. 
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