
TMS320DM355
Digital Media System-on-Chip (DMSoC)
Silicon Revision 1.1, 1.3, and 1.4

Silicon Errata

Literature Number: SPRZ264E

September 2007–Revised July 2010

2 SPRZ264E–September 2007–Revised July 2010

Copyright © 2007–2010, Texas Instruments Incorporated

1 Introduction .. 5
1.1 Device and Development Support Tool Nomenclature ... 5

1.2 Revision Identification ... 6

2 Silicon Revision 1.4 Usage Notes and Known Design Exceptions to Functional Specifications
.. 7

2.1 Usage Notes for Silicon Revision 1.4 ... 7
2.1.1 ROM Bootloader (RBL) Functionality ... 7
2.1.2 Possible Emulator Crash If TCK Frequency Is Greater than MXI Frequency 11
2.1.3 Incorrect Pin Descriptions in Original DM355 Data Sheet .. 11
2.1.4 DM355 EVM VSS_USB_REF Pin Not Connected As Specified ... 11
2.1.5 SD/SDIO card: How to Read M bytes (M=1, 2, 3) from SD or SDIO card 11
2.1.6 SD/SDIO card: How to Handle SDIO interrupt ... 12
2.1.7 Peripherals: Electrostatic Discharge (ESD) Sensitivity Classification 13
2.1.8 ASP: Transfers Should be Buffered in Internal Memory .. 13
2.1.9 GIO0 Low Setting During Device Boot May Cause Boot to Fail 13

2.2 Silicon Revision 1.4 Known Design Exceptions to Functional Specifications 14

3 Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications
.. 29

3.1 Usage Notes for Silicon Revision 1.3 ... 29

3.2 Silicon Revision 1.3 Known Design Exceptions to Functional Specifications 30

4 Silicon Revision 1.1 Usage Notes and Known Design Exceptions to Functional Specifications
.. 33

4.1 Usage Notes for Silicon Revision 1.1 ... 33
4.1.1 NAND Layout Assumed by RBL for Big Block NAND Does Not Match NAND Manufacturers'

Recommendations ... 33

4.2 Silicon Revision 1.1 Known Design Exceptions to Functional Specifications 34

Appendix A Revision History .. 36

3SPRZ264E–September 2007–Revised July 2010 Table of Contents

Copyright © 2007–2010, Texas Instruments Incorporated

www.ti.com

List of Figures

1 Example, Device Revision Codes for TMS320DM355 (ZCE)... 6

2 Video Processing Front End (VPFE) Block Diagram and Data Flows ... 15

3 HSYNC Cycle Period ... 15

4 Valid Window Width and Horizontal Window Count Data Area ... 16

5 Paxel Width and Horizontal Paxel Count... 16

6 Readout Patterns Comparing Timing at the Output of the Reformatter.. 17

7 Expected CSHOLD Behavior .. 21

8 Actual CSHOLD Behavior–32-Bit Writes to SPIDAT1 .. 21

9 Actual CSHOLD Behavior–Halfword Writes to SPIDAT1 .. 22

10 Workaround Assuming 32-Bit Writes to SPIDAT1 Followed by a Write Only to CSHOLD 22

11 Workaround Assuming Halfword Writes to SPIDAT1... 22

List of Tables

1 Device Silicon Revisions ... 6

2 NAND Devices in NAND Device ID Table (Silicon Revision 1.1)... 8

3 NAND Devices in NAND Device ID Table (Silicon Revisions 1.3 and Later) 8

4 NAND Layout Used by Silicon Revision 1.1 ... 10

5 NAND Layout Used by Silicon Revisions 1.3 and Later ... 10

6 ROM Version IDs .. 11

7 Silicon Revision 1.4 Advisory List ... 14

8 Bug Summary for the 0 Wait State Configuration .. 18

9 Bug Summary for the 1 Wait State Configuration .. 18

10 USB Electrical Characteristics in Violation ... 23

11 NAND Device ID... 28

12 Silicon Revision 1.3 Advisory List ... 30

13 Silicon Revision 1.1 Advisory List ... 34

14 Revision History ... 36

4 List of Figures SPRZ264E–September 2007–Revised July 2010

Copyright © 2007–2010, Texas Instruments Incorporated

Silicon Errata
SPRZ264E–September 2007–Revised July 2010

TMS320DM355 Digital Media System-on-Chip (DMSoC)
Silicon Revision 1.1, 1.3, and 1.4

1 Introduction

This document describes the known exceptions to the functional specifications for the TMS320DM355
Digital Media System-on-Chip (DMSoC). [See TMS320DM355 Digital Media System-on-Chip Data Manual
(literature number SPRS463).] Throughout this document, TMS320DM35x and DM35x refer to the
TMS320DM355 device.

For additional information, see the latest version of the TMS320DM35x DMSoC Peripherals Overview
Reference Guide (literature number SPRUFC8).

The advisory numbers in this document may not be sequential. Some advisory numbers may be moved to
the next revision and others may have been removed and documented in the user's guide. When items
are moved or deleted, the remaining numbers remain the same and are not resequenced.

This document also contains Usage Notes. Usage Notes highlight and describe particular situations where
the device's behavior may not match presumed or documented behavior. This may include behaviors that
affect device performance or functional correctness. These notes will be incorporated into future
documentation updates for the device (such as the device-specific data sheet), and the behaviors they
describe will not be altered in future silicon revisions.

1.1 Device and Development Support Tool Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
DSP devices and support tools. Each DSP commercial family member has one of three prefixes: TMX,
TMP, or TMS (e.g., TMS320DM355). Texas Instruments recommends two of three possible prefix
designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of
product development from engineering prototypes (TMX/TMDX) through fully qualified production
devices/tools (TMS/TMDS).

Device development evolutionary flow:
TMX Experimental device that is not necessarily representative of the final device's electrical

specifications
TMP Final silicon die that conforms to the device's electrical specifications but has not

completed quality and reliability verification
TMS Fully-qualified production device
Support tool development evolutionary flow:
TMDX Development support product that has not yet completed Texas Instruments internal

qualification testing
TMDS Fully-qualified development support product

TMX and TMP devices and TMDX development support tools are shipped against the following disclaimer:
"Developmental product is intended for internal evaluation purposes."

TMS devices and TMDS development support tools have been characterized fully, and the quality and
reliability of the device have been demonstrated fully. TI's standard warranty applies.

5SPRZ264E–September 2007–Revised July 2010 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1,
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRS463
http://www.ti.com/lit/pdf/SPRUFC8

DM355xZCE216

#-#######

TMS320

Device Speed Grade
(Last numbers)

Device Revision Code

Introduction www.ti.com

Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard
production devices. Texas Instruments recommends that these devices not be used in any production
system because their expected end use failure rate still is undefined. Only qualified production devices are
to be used.

1.2 Revision Identification

Figure 1 provide examples of the TMS320DM355 and device markings. The device revision can be
determined by the symbols marked on the top of the package. Some prototype devices may have
markings different from those illustrated.

Figure 1. Example, Device Revision Codes for TMS320DM355 (ZCE)

NOTES:
(A) "#" denotes an alphanumeric character. "x" denotes an alpha character only.

Silicon revision is identified by a code on the chip as shown in Figure 1. If x is "blank", then the silicon is
revision 1.1. Table 1 lists the silicon revisions associated with each device revision code for the DM355
device.

Table 1. Device Silicon Revisions (1)

Device Revision Code SILICON REVISION COMMENTS(x)

(blank) Indicates Revision 1.1 TMX320DM355ZCE216, TMX320DM355ZCE270,
TMS320DM355ZCE135, TMS320DM355ZCE216,
TMS320DM355ZCE270,
TMS320DM355ZCEA216, TMS320DM355ZCEA135

C Indicates Revision 1.3 TMS320DM355CZCE135,
TMS320DM355CZCE216,
TMS320DM355CZCE270,
TMS320DM355CZCEA13,
TMS320DM355CZCEA21

D Indicates Revision 1.4 TMS320DM355DZCE135,
TMS320DM355DZCE216,
TMS320DM355DZCE270,
TMS320DM355DZCE27J,
TMS320DM355DZCEA13,
TMS320DM355DZCEA21

(1) Silicon revision 1.2 is not offered for TMS320DM355.

6 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1, SPRZ264E–September 2007–Revised July 2010
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

www.ti.com Silicon Revision 1.4 Usage Notes and Known Design Exceptions to Functional Specifications

2 Silicon Revision 1.4 Usage Notes and Known Design Exceptions to Functional
Specifications

2.1 Usage Notes for Silicon Revision 1.4

Usage Notes highlight and describe particular situations where the device's behavior may not match
presumed or documented behavior. This may include behaviors that affect device performance or
functional correctness. These notes will be incorporated into future documentation updates for the device
(such as the device-specific data sheet), and the behaviors they describe will not be altered in future
silicon revisions.

2.1.1 ROM Bootloader (RBL) Functionality

The only difference between silicon revision 1.1 and silicon revisions 1.3 and later is the replacement of
the ROM Boot Loader (RBL) with a different version with different functional behavior. There are no other
functional changes to the device.

The Rom Boot Loader (RBL) is firmware which is stored in ROM on the DM355. It is responsible for
handling the boot process. When the boot process is initiated, it will sense the state of the BOOTSEL[1:0]
pins and (based on that state) loads a User Boot Loader (UBL) from external media and branches to the
entry point of the UBL. On silicon revisions 1.3 and later, the ROM Boot Loader (RBL) supports three boot
modes: NAND Boot, SD/MMC Boot, and UART Boot. On silicon revision 1.4, SPI boot mode has been
added which is executed in NAND boot mode. If SPI fails (or there is no EEPROM), NAND boot mode is
executed.

Silicon revisions 1.3 and later support the following changes to NAND boot functionality:
• Support for 4K and 8K page size devices has been added
• The NAND device ID table has been extended
• Additional devices not in the Device ID table are supported through fetching characteristics from

registers stored on the NAND
• The assumed layout of the data in the boot NAND has changed
• The UART boot functionality has changed
• A bug in the ECC error correction has been fixed

Silicon revision 1.4 have added the following changes to NAND boot functionality:
• Support for 16K page size devices has been added
• ONFI and Samsung 4th byte support
• NAND parameters/geometry information from the SPI EEPROM
• The RBL Code 4bit ECC Mode 4 error detection limitation has been fixed

Support for 4K, 8K, and 16K NAND Devices Added

The Rom Boot Loader (RBL) used in silicon revision 1.1 supported NAND page sizes of 512 bytes and
2048 bytes. The RBL used in silicon revision 1.3 support page sizes of 512 bytes, 2048 bytes, 4096 bytes,
and 8192 bytes. Silicon revision 1.4 also support 16384 bytes page sizes.

Note: At the time of documentation for this device, 8192-byte and 16384-byte devices were not available
for testing. The code does contain support for these devices; however, it has not yet been tested.

The Rom Boot Loader (RBL) used in silicon 1.1 and later versions all use magic numbers to identify
NAND layout and boot options. A magic number of the form 0xA1AC EDxx was used in revision 1.1.
Using a magic number in this form for revisions 1.3 and later will place the DM355 in compatibility mode.
This will force the device to operate exactly as if it were silicon revision 1.1. You cannot use the larger
NAND devices when operating in compatibility mode. Using a magic number of the form 0xA1BC EDxx
will place the DM355 in standard mode. Standard mode for revisions 1.3 and later allows for the use of the
larger NAND devices. For more information on specific uses of magic numbers, see the TMS320DM355
Digital Media System-on-Chip Data Manual (literature number SPRS463).

NAND Device ID Table Updated

7SPRZ264E–September 2007–Revised July 2010 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1,
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRS463

Silicon Revision 1.4 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

The RBL contains an internal table containing a list of known NAND devices. This list has been updated
on Silicon Revisions 1.3 and later. Table 2 and Table 3 show the devices contained in the tables.

Table 2. NAND Devices in NAND Device ID Table (Silicon Revision 1.1)

Device ID Pages per Block Bytes pr Page Block Shift value for Number of address
address cycles

0xE3 16 512+16 12 3

0xE5 16 512+16 12 3

0xE6 16 512+16 12 3

0x39 16 512+16 13 3

0x6B 16 512+16 13 3

0x73 32 512+16 13 3

0x33 32 512+16 13 3

0x75 32 512+16 13 3

0x35 32 512+16 13 3

0x43 32 512+16 13 4

0x45 32 512+16 13 4

0x53 32 512+16 13 4

0x55 32 512+16 13 4

0x76 32 512+16 13 4

0x36 32 512+16 13 4

0x79 32 512+16 13 4

0x71 32 512+16 13 4

0x46 32 512+16 13 4

0x56 32 512+16 13 4

0x74 32 512+16 13 4

0xF1 64 2048+64 22 4

0xA1 64 2048+64 22 4

0xAA 64 2048+64 22 5

0xDA 64 2048+64 22 5

0xAC 64 2048+64 22 5

0xDC 64 2048+64 22 5

0xB1 64 2048+64 22 5

0xC1 64 2048+64 22 5

Table 3. NAND Devices in NAND Device ID Table (Silicon Revisions 1.3 and Later)

Device ID Pages per Block Bytes pr Page Block Shift value for Number of address
address cycles

0xE3 16 512+16 12 3

0xE5 16 512+16 12 3

0xE6 16 512+16 12 3

0x6B 16 512+16 13 3

0x73 32 512+16 13 3

0x33 32 512+16 13 3

0x75 32 512+16 13 3

0x35 32 512+16 13 3

0x43 32 512+16 13 4

0x45 32 512+16 13 4

0x53 32 512+16 13 4

0x55 32 512+16 13 4

0x76 32 512+16 13 4

8 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1, SPRZ264E–September 2007–Revised July 2010
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

www.ti.com Silicon Revision 1.4 Usage Notes and Known Design Exceptions to Functional Specifications

Table 3. NAND Devices in NAND Device ID Table (Silicon Revisions 1.3 and Later) (continued)

Device ID Pages per Block Bytes pr Page Block Shift value for Number of address
address cycles

0x36 32 512+16 13 4

0x79 32 512+16 13 4

0x71 32 512+16 13 4

0x46 32 512+16 13 4

0x56 32 512+16 13 4

0x74 32 512+16 13 4

0xF1 64 2048+64 22 4

0xA1 64 2048+64 22 4

0xAA 64 2048+64 22 5

0xDA 64 2048+64 22 5

0xAC 64 2048+64 22 5

0xDC 64 2048+64 22 5

0xB1 64 2048+64 22 5

0xC1 64 2048+64 22 5

If the NAND device is not found in this table, then the RBL will read the fourth byte of the NAND ID (stored
on the actual device) and attempt to decode this to obtain the necessary parameters.

For the purpose of determining NAND block size and page size the information from the fourth byte is
considered as follows:
• Bits 5 and 4 determine the block size

– Bits 5,4 = 00: 64KB
– Bits 5,4 = 01: 128KB
– Bits 5,4 = 10: 256KB
– Bits 5,4 = 11: 512 KB

• Bits 1 and 0 determine the page size

– Bits 1,0 = 00: 1KB
– Bits 1,0 = 01: 2KB
– Bits 1,0 = 10: 4KB
– Bits 1,0 = 11: 8KB

In silicon revision 1.4, the latest Samsung (manufacturer ID: 0xEC) 4th ID definition has been added which
is as follows:
• Bits 5 and 4 determine the block size

– Bits 5,4 = 00: 128KB
– Bits 5,4 = 01: 256KB
– Bits 5,4 = 10: 512KB
– Bits 5,4 = 11: 1024KB

• Bits 1 and 0 determine the page size

– Bits 1,0 = 00: 2KB
– Bits 1,0 = 01: 3KB
– Bits 1,0 = 10: 4KB
– Bits 1,0 = 11: Reserved

NAND Layout Changes on Silicon Revisions 1.3 and Later

The position of data on the NAND device assumed by the Rom Boot Loader (RBL) has changed. Table 4
shows the layout for Silicon Revision 1.1, and Table 5 shows the layout for Silicon Revisions 1.3 and later.

9SPRZ264E–September 2007–Revised July 2010 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1,
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

Silicon Revision 1.4 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Table 4. NAND Layout Used by Silicon Revision 1.1

512-Byte Page Size 2048-Byte Page Size

512 bytes Data 512 bytes Data

16 bytes ECC Data 16 bytes ECC Data

512 bytes Data

16 bytes ECC Data

512 bytes Data

16 bytes ECC Data

512 bytes Data

16 bytes ECC Data

Table 5. NAND Layout Used by Silicon Revisions 1.3 and Later (1)

512-Byte Page Size 2048-Byte Page Size 4096-Byte Page Size 8192-Byte Page Size

512 bytes Data 2048 bytes Data 4096 bytes Data 8192 bytes Data

16 bytes ECC Data 64 bytes ECC Data 128 bytes ECC Data 256 bytes ECC Data
(1) Silicon Revisions 1.3 and later assume that all the data on a NAND page is in a single block with the ECC and bad block data

contained in the spare bytes area.

UART Boot Functionality in Silicon Revision 1.1

The boot sequence used in silicon revision 1.1 is given below:

1. The RBL will repeatedly send a “BOOTME” string until it receives a correct response from the host.
2. The host will send

• “ ACK\0”
• UBL Checksum
• UBL size in bytes
• UBL physical start address
• "0000”

3. The DM355 will send “ BEGIN”
4. The Host will send the CRC-32 lookup table
5. The DM355 will verify the checksum for the lookup table and send “DONE” if the checksum is correct.

If the checksum is bad, the DM355 will send “CORRUPT” and branch back to step 1.
6. The Host will send the UBL
7. The DM355 will verify the checksum for the UBL and send DONE if the checksum is correct. If the

checksum is bad, the DM355 will send “CORRUPT” and branch back to step 1.
8. The DM355 will branch to the UBL start address.

UART Boot Functionality in Silicon Revisions 1.3 and Later

There are two functional changes to the UART boot mode:
• The RBL tested for a terminating '\0' in the " ACK" string sent in step 2a. The RBL only tests for 7

characters in silicon revisions 1.3 and later, so the terminating '\0' is ignored.
• If the “0000” string in step 2e is replaced by a “0001” string, then the DM355 will not check the

checksum for the CRC-32 lookup table until the UBL has been sent. After the CRC-32 lookup table
and the UBL have been sent, the DM355 will check both and send two “DONE” strings. The flow in this
case will be:

1. The RBL will repeatedly send a “BOOTME” string until it receives a correct response from the host.
2. The host will send

• “ ACK\0”
• UBL Checksum
• UBL size in bytes
• UBL physical start address

10 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1, SPRZ264E–September 2007–Revised July 2010
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

www.ti.com Silicon Revision 1.4 Usage Notes and Known Design Exceptions to Functional Specifications

• "0001”
• The Host will send the CRC-32 lookup table
• The Host will send the UBL
• The DM355 will verify the checksum for the lookup table and send “DONE” if the checksum is

correct. If the checksum is bad, the DM355 will send “CORRUPT” and branch back to step 1.
• The DM355 will verify the checksum for the UBL and send DONE if the checksum is correct. If

the checksum is bad, the DM355 will send "CORRUPT" and branch back to step 1.
• The DM355 will branch to the UBL start address

ROM Version ID

The ROM ID is stored at address 0x00009FFC and is four bytes long. To identify the silicon revision,
examine the values at this address and compare with Table 6.

Table 6. ROM Version IDs

ROM Version ID Stored at 0x00009FFC

Silicon Revision 1.1 0x10040101

Silicon Revision 1.3 0x10040103

Silicon Revision 1.4 0x10040104

ECC Bug fixed

The Rom Boot Loader (RBL) used in silicon revision 1.1 contained a bug which prevented the ECC
hardware from detecting and correcting bit stream errors while the UBL was read from the NAND device.
This bug has been fixed in silicon revision 1.4.

2.1.2 Possible Emulator Crash If TCK Frequency Is Greater than MXI Frequency

If the frequency of TCK is greater than the frequency of MXI, there is a chance the emulator will crash
when changing the PLL1 clock frequency. This can happen while stepping through code that configures
the PLL1 controller or while using a GEL function that configures the PLL1 controller.

Additionally, the act of applying reset could cause the clock on the TCK pin to stop being generated,
thereby crashing the emulator. This condition happens if the TCK frequency is 2x or greater than the MXI
frequency during reset.

To avoid both of these issues, the MXI clock frequency must be greater than or equal to the TCK clock
frequency.

2.1.3 Incorrect Pin Descriptions in Original DM355 Data Sheet

The pin definitions and descriptions given in the original version of the DM355 data sheet (SPRS463)
were incorrect in several places. These issues have been corrected in revision A of the TMS320DM355
Digital Media System-on-Chip (DMSoc) Data Sheet (SPRS463). Customers are advised to use the
updated pin information in revision A of the DM355 data sheet and disregard the pin information given in
the original version of the data sheet.

2.1.4 DM355 EVM VSS_USB_REF Pin Not Connected As Specified

On some versions of the DM355 EVM, the VSS_USB_REF pin is not connected as specified in the data sheet.
This does not create any USB functional issues; however, for USB compliance, DM355 designs must
follow the pin connection specified in the USB Reference Resistor Routing figure in the TMS320DM355
Digital Media System-on-Chip (DMSoC) data sheet (literature number SPRS463).

2.1.5 SD/SDIO card: How to Read M bytes (M=1, 2, 3) from SD or SDIO card

Direction: Read from SD or SDIO

11SPRZ264E–September 2007–Revised July 2010 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1,
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRS463
http://www.ti.com/lit/pdf/SPRS463

Silicon Revision 1.4 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

Data size: 32*N+M byte (where M=1, 2, 3 and N=0, 1, 2, 3,...) FIFO size is 32 bytes (ACCWD (FIFOCTL
[4:3] = 0), FIFO trigger level is 256-bits (FIFOLEV (MMCFIFOCTL [2]) =1)

Reading from SD or SDIO when FIFO Trigger Level FIFOLEV is 256 bits causes the
DRRDY(MMCST0[10]) bit not to be set for the last M bytes of the above data size equation and therefore
the DMA read event and CPU interrupt for RRDY(MMCST0[10]) are not getting asserted, but the data in
FIFO is correct.

There are two possible methods to work around this limitation.

1. Include SD status checking and/or SD interrupt enable for TRNDNE (MMCST0 [12]) or DATDNE
(MMCST0 [0])

2. Use 128-bit FIFO trigger level (i.e. FIFOLEV (MMCFIFOCTL [2]) =0), since this is only a problem when
FIFOLEV is 256 bits.

Note:
1. To ensure the start of the MMCSD transfer correctly, the DMATRIG bit (MMCCMD [16]) should always

be set to ‘1’ when writing the command to MMCCMD registers.
2. For SDIO read and write function, the MMCBLEN and MMCNBLK registers have to be set to equal the

total byte count and total block count configured by the SDIO command (CMD52 or CMD53). For
example, to read 3 bytes using CMD53, the software has to set MMCBLEN=3 and MMCNBLK=1.

3. The FIFOFUL and FIFOEMP status bits are set based on access size(ACCWD):

• If the number of bytes stored in the FIFO is smaller than access size, FIFOEMP is 1. Otherwise,
FIFOEMP is 0.

• If the size of the remaining empty spaces in FIFO is smaller than access size, FIFOFUL is 1.
Otherwise, FIFOFUL is 0.

For example, when the access size (ACCWD) is 4 bytes and the FIFO level (FIFOLEV=1) is 256-bits
or 32 bytes, and if the number of bytes in FIFO is

• 0 to 3: then, FIFOFUL=0, FIFOEMP=1
• 4 to 28: then, FIFOFUL=0, FIFOEMP=0
• 29 to 32: then, FIFOFUL=1, FIFOEMP=0

2.1.6 SD/SDIO card: How to Handle SDIO interrupt

SDIO interrupt may be missed since SDIO interrupt processing is only done based on the IOINT (SDIOIST
[0]) status.

SDIO Interrupt Detecting: SDIO interrupt is a level interrupt on SDIO protocol, but the interrupt generation
logic detects the edge of DAT1 signal inside the host controller.

SDIO Interrupt Masking: The SDIO Interrupt may be enabled or disabled by the SDIO stack at any time.

SDIO Interrupt Status Clearing: SDIO interrupt status may not be cleared in an atomic sequence since a
pending interrupt has to be cleared not only on the host controller but also on the SDIO module.

To guarantee that the SDIO interrupt is not missed, the host controller has to check the IOINT
(SDIOIST[0]) status register as well as sample the DAT1 signal by checking the DAT1(SDIOST0[1-0])
status register at a certain condition.

The following is a suggested sequence for properly handling the SDIO interrupt:

1. SDIO stack informs the SDIO host controller to enable or unmask the SDIO interrupt.
2. SDIO host controller enables or unmasks the SDIO interrupt. Before enabling the SDIO interrupt, the

SDIO host controller software has to first sample the DAT1 signal (INTPRD==1 && DAT1==1) to make
sure that the pending interrupt is reported to the SDIO stack and then to the SDIO client/function
driver.
Note: SDIO interrupt is enabled at the request of the client/function driver of the SDIO stack. SDIO
interrupt needs to be enabled both on the host controller and the SDIO card which may not happen in
an atomic way. By the time the host controller enables the interrupt, the SDIO interrupt may be already
pending. The SDIO controller can not detect interrupt pending before the interrupt is enabled on the
controller.

12 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1, SPRZ264E–September 2007–Revised July 2010
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

www.ti.com Silicon Revision 1.4 Usage Notes and Known Design Exceptions to Functional Specifications

3. When the SDIO interrupt is detected by the SDIO controller, the SDIO ISR has to process the SDIO
interrupts in the following sequence:

• Check and clear SDIO interrupt status IOINT(SDIOIST[0]) immediately.
• Mask the SDIO interrupt on the SDIO host controller by setting IOINTEN (SDIOIEN[0]) =0.
• Notify the Interrupt event first to the SDIO stack and then to the SDIO client/function driver.

Note: The clearing of the SDIO interrupt on the SDIO card and SDIO controller does not happen in
an atomic way. To mask the SDIO interrupt, it has to be ensured that the interrupt is not mistakenly
detected by the host controller again. In addition, the client/function driver of the SDIO stack can
therefore control the occurrence of interrupt and also the readiness to process the interrupt.

4. The SDIO stack client/function driver clears the SDIO interrupt status on the SDIO card.

2.1.7 Peripherals: Electrostatic Discharge (ESD) Sensitivity Classification

JESD22-A114D, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM), test results
indicate that the TMS320DM355 device's electrostatic discharge (ESD) sensitivity classification is Class 0
due to 4 reserved pins (BGA ID: J1, K1, L1, M1). All other pins meet the Texas Instruments design goal
ESD testing classification of Class 2. No workaround is required. Standard ESD-sensitivity device handling
procedures provide sufficient protection.

JESD22-C101C, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand
Thresholds of Microelectronic Components, testing was also conducted and results demonstrated that the
TMS320DM355 device's charged-device model (CDM) sensitivity classification is Class III (500 to 1000 V).
These results are consistent with the Texas Instruments CDM design goal.

2.1.8 ASP: Transfers Should be Buffered in Internal Memory

Audio Serial Port (ASP) transfers may need to originate and complete from on-chip buffers in ARM
Internal RAM (TCM). This is due to the fact that there is no tolerance for audio data dropouts that may
occur due to the delays in DDR2/mDDR accesses from other masters and from unavoidable DDR2/mDDR
refresh cycles even if the Q0/TC0 is dedicated to transfers from off-chip memories. On-chip buffers might
be needed to ensure immunity from DDR2/mDDR latencies. DDR2/mDDR latencies are
system-dependent, varying between applications, and are impacted by the amount and type of data traffic
to DDR2/mDDR memories. Once completed, the data can be shuttled between the internal buffer and the
DDR2/mDDR memory by using EDMA Q1/TC1.

If using on-chip buffers for ASP transfers, also see the following advisories:
• 1.1.2 Concurrent Access to ARM Internal Memory May Result in Access Errors

2.1.9 GIO0 Low Setting During Device Boot May Cause Boot to Fail

If the GIO0 pin is low during device boot from a NAND device, the DM355 will not follow the normal boot
process. The DM355 ROM Boot Loader (RBL) will attempt to read the User Boot Loader (UBL) header
from a different NAND page range and will look for a different number in that header than that used in the
normal boot process, which may cause the boot to fail.

To prevent this issue from occurring, ensure that the GIO0 pin is held high during NAND boot. Details
about this issue will be incorporated into the next revision of the TMS320DM355 Digital Media
System-on-Chip (DMSoC) Data Manual (literature number SPRS463).

13SPRZ264E–September 2007–Revised July 2010 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1,
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

Silicon Revision 1.4 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

2.2 Silicon Revision 1.4 Known Design Exceptions to Functional Specifications

Table 7. Silicon Revision 1.4 Advisory List

Title .. Page

Advisory 1.4.1 —H3A data may get corrupted ... 15
Advisory 1.4.2 —Concurrent Access to ARM Internal Memory May Result in Access Errors 18
Advisory 1.4.3 —SPI: Receive Overrun Interrupt and Bit Error Can be Lost... 19
Advisory 1.4.4 —SPI: RXINTFLG Bit in SPIFLG Register May Not Get Cleared.. 19
Advisory 1.4.5 —SPI: A Write to SPIFLG Receiver Overrun Bit Does Not Clear the Flag 19
Advisory 1.4.6 —SPI: SPIINTVECT and SPIFLG Registers are Cleared When Read in Debug Mode 20
Advisory 1.4.7 —SPI: SPI Master Receives Extra Bit When SPICLK Polarity Changes 20
Advisory 1.4.8 —SPI Master Mode: Extra Step Required to Use CSHOLD.. 21
Advisory 1.4.9 —USB: Some Electrical Parameters Violate USB Specification ... 23
Advisory 1.4.10 —VPBE: VENC Default Luma Interpolation Filter Does Not Clip to Zero 24
Advisory 1.4.11 —USB (Device Mode): Calculated CRC Value Does Not Match Host CRC Value 25
Advisory 1.4.12 —DEVICE_ID System Register DEVREV Bits [31:28] Show Incorrect Device Silicon Revision......... 27
Advisory 1.4.13 —Change in ROM Boot Loader (RBL) NAND Boot Device ID Table .. 28

14 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1, SPRZ264E–September 2007–Revised July 2010
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

CCDC

Parallel
Imager

Input

H3A

IPIPEIF

IPIPE

Buffer
Logic

DDR2
EMIF

VPFE

HSYNC Cycle

PCLK

HD

www.ti.com Advisory 1.4.1 — H3A data may get corrupted

Advisory 1.4.1 H3A data may get corrupted

Revision(s) Affected 1.4 and earlier.

Details This problem affects H3A auto white balance, auto exposure, and auto focus when the
image sensor data is large (i.e. greater than approximately 10 mega pixels) and the data
path is from imager to CCDC to H3A .

Figure 2. Video Processing Front End (VPFE) Block Diagram and Data Flows

When the H3A module receives more than 4096 pixel clock cycles between consecutive
HD rising edges, the H3A internal line buffer may become corrupt. The internal line
buffer address is reset to zero at HD rising edge, is incremented every pixel clock cycle,
and wraps back to address zero after 4096 pixel clocks. H3A calculations may not be
correct when the line buffer is corrupt.

Figure 3. HSYNC Cycle Period

15SPRZ264E–September 2007–Revised July 2010 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1,
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

HSYNC Cycle

WINW

WINHC

B1 B2V

WINSH

PCLK

HD

Data

HSYNC Cycle

PAXW

PAXHC

B1 B2V

IIRSH

PCLK

HD

Data

PAXSH

Advisory 1.4.1 — H3A data may get corrupted www.ti.com

Workaround(s) To workaround this problem, use any of the four workarounds described below.

1. Constrain the valid AEW/AF data area. The valid data in the internal line buffer will
not become corrupt under certain constraints. In particular, the problem will not occur
when you adhere to the follow constraints (see figures):

• B1 + V < 4096 and
• B2 <= 4096 – (B1+V) + B1

Where

• B1 = Data area from HD rising edge to start of valid AEW/AF data.
• V = Valid AEW/AF data area. This is the data area for AEW/AF calculations. This

area is specified using registers in the H3A module. Note that the registers are
different for AEW and for AF. For AEW, bits WINSH specify the horizontal start
position of the AEW windows, bits WINW specify the horizontal width of the
windows, and bits WINHC specify the total number of windows. The total number
of pixels in the valid AEW data area is equal to V=WINW*WINHC. For AF, bits
IIRSH specify the horizontal start position of the IIR filter, bits PAXSH specify the
horizontal start position of the AF paxels, bits PAXW specify the horizontal width
of the paxels, and bits PAXHC specify the total number of paxels. The total
number of pixels in the valid AF data area is equal to V=[(PAXSH - IIRSH) +
PAXW*PAXHC]. See the VPFE PRG for complete bit descriptions.

• B2 = Data area from end of valid AEW/AF data to next HD rising edge.

Figure 4. Valid Window Width and Horizontal Window Count Data Area

Figure 5. Paxel Width and Horizontal Paxel Count

2. Use the imager’s movie readout mode.
In the imager’s movie readout mode the problem does not occur, because the
number of horizontal pixels and blacking are is less than 4096 pixels and the H3A
module receives less than 4096 pixel clock cycles between consecutive HD rising
edges.
Note that the number of pixel clock cycles between consecutive HD rising edges that
the H3A module receives is determined by the external or internal timing generator
and also, if used, by the reformatter inside the CCDC. The reformatter is used when
imagers have special readout patterns. For example, if the readout pattern contains

16 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1, SPRZ264E–September 2007–Revised July 2010
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

HSYNC Cycle

HSYNC Cycle HSYNC Cycle

HSYNC Cycle HSYNC Cycle HSYNC Cycle

PCLK

HD (Input)

HD (Output)
2 Lines

Data (Output)
2 Lines

HD (Output)
3 Lines

Data (Output)
3 Lines

1 -> 2 Lines

1 -> 3 Lines

www.ti.com Advisory 1.4.1 — H3A data may get corrupted

two lines of actual image data per HSYNC, then the reformatter will convert the data
from one to two lines, internally. The number of pixel clock cycles between
consecutive HD rising edges that the H3A modules receives corresponds to the
timing at the output of the reformatter.

Figure 6. Readout Patterns Comparing Timing at the Output of the Reformatter

3. Use the alternative data path for H3A.
There are two possible data paths for H3A:

(a) Imager->CCDC->H3A
(b) Imager->CCDC->DDR->H3A

This problem is only applicable when the path is Imager->CCDC->H3A, so you
may avoid this problem completely by using the alternative path
Imager->CCDC->DDR->H3A. Note that the alternative path requires raw image
data to be store in DDR memory prior to H3A processing.

17SPRZ264E–September 2007–Revised July 2010 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1,
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

Advisory 1.4.2 — Concurrent Access to ARM Internal Memory May Result in Access Errors www.ti.com

Advisory 1.4.2 Concurrent Access to ARM Internal Memory May Result in Access Errors

Revisions Effected 1.4 and earlier.

Details ARM internal memory consists of two physical memories: RAM0 and RAM1. The ARM
processor can access these memories over two separate busses: ITCM bus and DTCM
bus. The EDMA and USB module are DMA bus masters that can access these
memories over the DMA bus, via special bus arbiters. See the TMS320DM355 ARM
Subsystem Reference Guide, (literature number SPRUFB3). Under certain conditions,
access errors may occur when the ARM and these DMA bus masters attempt to access
ARM internal memory at the same time. An access error means that data is not written
or read properly. The conditions depend on whether ARM internal memory access is
configured for 0 or 1 wait states and are further described below. Use bits AIM_WAIST
in the MISC register in the System Control Module to configure the wait states [see
TMS320DM355 ARM Subsystem Reference Guide, (literature number SPRUFB3)].

For both the 0 and 1 wait state configurations, access errors may occur under the
following conditions (see Table 8 and Table 9):

• Access errors may occur in situations where an ARM DTCM access to RAM0 and a
DMA bus access to RAM1 are attempted at the same time.

• Access errors may occur in situations where an ARM ITCM, an ARM DTCM, and a
DMA bus access are attempted to the same physical memory (RAM0 or RAM1) at
the same time.

For only the 1 wait state configuration, access errors may occur under the following
conditions:

• Access errors may occur in situations where an ARM ITCM and a DMA bus access
are attempted to the same physical memory (RAM0 or RAM1) at the same time.

• Access errors may occur in situations where an ARM DTCM and a DMA bus access
are attempted to the same physical memory (RAM0 or RAM1) at the same time.

Workaround(s) Avoid the conditions that cause accesses errors. Design your software so that accesses
to ARM internal memory are according to the Bug Summary Table 8 and Table 9). In the
tables, P means that no bug will occur under the corresponding conditions.

Table 8. Bug Summary for the 0 Wait State Configuration

3 ACTIVE ACCESSES 2 ACTIVE ACCESSES 1 ACTIVE ACCESS

ARM ITCM Access R0 R0 R0 R0 R1 R1 R1 R1 R0 R0 R1 R1 R0 R0 R1 R1 n n n n R0 n n R1 n n n

ARM DTCM Access R0 R0 R1 R1 R0 R0 R1 R1 R0 R1 R0 R1 n n n n R0 R0 R1 R1 n R0 n n R1 n n

DMA Access R0 R1 R0 R1 R0 R1 R0 R1 n n n n R0 R1 R0 R1 R0 R1 R0 R1 n n R0 n n R1 n

Pass / Fail F F P P P F P F P P P P P P P P P F P P P P P P P P P

Table 9. Bug Summary for the 1 Wait State Configuration

3 ACTIVE ACCESSES 2 ACTIVE ACCESSES 1 ACTIVE ACCESS

ARM ITCM Access R0 R0 R0 R0 R1 R1 R1 R1 R0 R0 R1 R1 R0 R0 R1 R1 n n n n R0 n n R1 n n n

ARM DTCM Access R0 R0 R1 R1 R0 R0 R1 R1 R0 R1 R0 R1 n n n n R0 R0 R1 R1 n R0 n n R1 n n

DMA Access R0 R1 R0 R1 R0 R1 R0 R1 n n n n R0 R1 R0 R1 R0 R1 R0 R1 n n R0 n n R1 n

Pass / Fail F F F F F F P F P P P P F P P F F F P F P P P P P P P

18 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1, SPRZ264E–September 2007–Revised July 2010
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRUFB3
http://www.ti.com/lit/pdf/SPRUFB3

www.ti.com Advisory 1.4.3 — SPI: Receive Overrun Interrupt and Bit Error Can be Lost

Advisory 1.4.3 SPI: Receive Overrun Interrupt and Bit Error Can be Lost

Revision(s) Affected: 1.4 and earlier.

Details: Receive Overrun Interrupt (RXOVINT) and Bit Error interrupt (BITERRINT) can be lost if:
Reading of the SPIFLG register coincides with the setting of these interrupt flag bits.
Reading of the upper 16 bits of SPIBUF register coincides with the setting of these
interrupt bits.

Workaround: Use the interrupt instead of the polling method to check the status of these interrupts.

Access only the lower 16 bits of the SPIBUF register to read received data.

If the polling method must be used, group the error interrupts into one Level (i.e., Level0)
and the RX complete interrupt into the other Level (i.e., Level1). Use the SPIINTVECT0
and SPIINTVECT1 registers to find out the interrupt status first and then only read the
SPIFLG register to decode the source of the error interrupts.

Advisory 1.4.4 SPI: RXINTFLG Bit in SPIFLG Register May Not Get Cleared

Revision(s) Affected: 1.4 and earlier.

Details: The RXINTFLG bit in the SPIFLG register may not get cleared by reading the SPIBUF
register when the read coincides with the setting of the RXINTFLG bit due to new data
arrival.

Workaround: When the above condition occurs, the system is at the verge of receive overrun.
Therefore, either optimize the SPIBUF servicing routine to avoid receive overrun or use
the EDMA3 to avoid the race condition from occurring.

Advisory 1.4.5 SPI: A Write to SPIFLG Receiver Overrun Bit Does Not Clear the Flag

Revision(s) Affected: 1.4 and earlier.

Details: A write to the SPIFLG receiver overrun (SPIFLG.OVRNINTFLG) bit does not clear the
flag if the write coincides with the setting of the receive interrupt flag
(SPIFLG.RXINTFLG).

Workaround: Write to the SPIFLG.OVRNINTFLG bit, then read back the value of the flag. If the flag
did not clear, then write to clear the flag again.

19SPRZ264E–September 2007–Revised July 2010 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1,
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

Advisory 1.4.6 — SPI: SPIINTVECT and SPIFLG Registers are Cleared When Read in Debug Mode www.ti.com

Advisory 1.4.6 SPI: SPIINTVECT and SPIFLG Registers are Cleared When Read in Debug Mode

Revision(s) Affected 1.4 and earlier.

Details Both the INTVECT and SPIFLG registers are cleared when refreshing the memory
window in debug mode with CCS. These registers should be cleared only by regular
CPU reads, not during debug/suspend mode.

Workaround(s) None

Advisory 1.4.7 SPI: SPI Master Receives Extra Bit When SPICLK Polarity Changes

Revision(s) Affected 1.4 and earlier.

Details If the polarity of the SPICLK pin is changed and the change aligns with the receive edge
for the new buffer, then it will be considered as a real SPICLK edge and the receive shift
register shifts the data.

Workaround(s) Pre-select the SPIFMTx register by byte writing to just the DFSEL field in the SPIDAT1
register before actually writing to the SPIDAT1 field of the SPIDAT1 register. This
additional step needs to be done only when there is going to be an SPICLK polarity
change for the new buffer.

20 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1, SPRZ264E–September 2007–Revised July 2010
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

SPIx_CLK

SPIx_SIMO

(a) Write SPIDAT1

= 0x10001245

(CSHOLD=1)

(b) Write SPIDAT1

= 0x00005678

(CSHOLD=0)

(a) (b)

SPI_ENx

SPIx_CLK

SPIx_SIMO

(a) Write SPIDAT1

= 0x10001245

(CSHOLD=1)

(b) Write SPIDAT1

= 0x00005678

(CSHOLD=0)

(a) (b)

SPI_ENx

www.ti.com Advisory 1.4.8 — SPI Master Mode: Extra Step Required to Use CSHOLD

Advisory 1.4.8 SPI Master Mode: Extra Step Required to Use CSHOLD

Revision(s) Affected 1.4 and earlier.

Details The SPI module chip-select hold (CSHOLD) feature allows the device to instruct the SPI
to keep the chip-select pin asserted between transfers. This feature applies in master
mode and is enabled by writing a '1' to SPIDAT1.CSHOLD (bit 28).

When data is written to the SPIDAT1 register with the CSHOLD bit set to '1', the master
is supposed to keep the SPI_ENx pin asserted after the transfer completes. When data
is written to the SPIDAT1 register with CSHOLD set to '0', the master is supposed to
de-assert the SPI_ENx pin after the transfer completes.

For example, assume that the device needs to send two 16-bit words (0x1234 and
0x5678) to an SPI slave that requires its chip select to remain asserted between the
transfers. This is a common requirement when communicating with SPI memory devices.

According to the SPI specification, the following sequence should produce the expected
result as illustrated in Figure 7:

• Write 0x10001234 to SPIDAT1 for transmission of 0X1234 (CSHOLD = 1)
• Write 0x00005678 to SPIDAT1 for transmission of 0x5678 (CSHOLD = 0)

Figure 7. Expected CSHOLD Behavior

Instead, what actually occurs is that SPI_ENx is momentarily de-asserted at the
beginning of the second write, as illustrated in Figure 8.

Figure 8. Actual CSHOLD Behavior–32-Bit Writes to SPIDAT1

21SPRZ264E–September 2007–Revised July 2010 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1,
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

SPIx_CLK

SPIx_SIMO

(a) Write (8 or 16−bit)

SPIDAT1.CSHOLD=1

(c) write (8 or 16−bit)

SPIDAT1.CSHOLD=0

(d) write of

0x5678 to SPIDAT1[15:0]

(b) write of

0x1234 to SPIDAT1[15:0]

(a) (b) (c) (d)

SPI_ENx

SPIx_CLK

SPIx_SIMO

(a) Write SPIDAT1

= 0x10001245

(CSHOLD=1)

(c) Write SPIDAT1.CSHOLD=0

using 8 or 16 bit write.

(do not write to SPIDA T1[15:0])

(b) Write SPIDAT1

=0x10005678

(CSHOLD=1)

(a) (b) (c)

SPI_ENx

SPIx_CLK

SPIx_SIMO

(a) Write (8 or 16−bit)

SPIDAT1.CSHOLD=1

(d) write (8 or 16−bit)

SPIDAT1.CSHOLD=0

(c) write of

0x5678 to SPIDAT1[15:0]

(b) write of

0x1234 to SPIDAT1[15:0]

(a) (b) (c) (d)

SPI_ENx

Advisory 1.4.8 — SPI Master Mode: Extra Step Required to Use CSHOLD www.ti.com

Both Figure 7 and Figure 8 assume that SPIDAT1 is written using a single 32-bit write
instruction. If SPIDAT1 is instead written using an 8-bit or 16-bit instruction to write to the
CSHOLD field, followed by a 16-bit write to the transmit shift register field of SPIDAT1,
then what actually occurs is illustrated in Figure 9. This is the same case illustrated in
Figure 8 except that the de-assertion of SPI_ENx lasts for the duration between writing a
'0' to the CSHOLD field and writing new data to the transmit shift register.

Figure 9. Actual CSHOLD Behavior–Halfword Writes to SPIDAT1

Workaround(s) For each word in the sequence of words during which SPI_ENx should be held low, write
to the SPIDAT1 register with the CSHOLD bit set to '1'. Follow this by a write to only the
CSHOLD field of SPIDAT1, setting CSHOLD = 0 to de-assert SPI_ENx. See Figure 10
for an illustration.

Figure 10. Workaround Assuming 32-Bit Writes to SPIDAT1 Followed by a Write Only to CSHOLD

Alternatively, only write to the SPIDAT1 CSHOLD field before and after the transfer to
toggle the SPI_ENx pin. During the transfer, write only to the data field of SPIDAT1[15:0]
using 16-bit (halfword) write commands. For an illustration, see Figure 11.

Figure 11. Workaround Assuming Halfword Writes to SPIDAT1

22 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1, SPRZ264E–September 2007–Revised July 2010
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

www.ti.com Advisory 1.4.9 — USB: Some Electrical Parameters Violate USB Specification

Advisory 1.4.9 USB: Some Electrical Parameters Violate USB Specification

Revision(s) Affected 1.4 and earlier.

Details Some electrical characteristics violate the USB 2.0 specification; see Table 10.

Table 10. USB Electrical Characteristics in Violation

USB SPECIFICATION DM355 SPECIFICATION
UNIT

MIN MAX MIN MAX

VHSDSC USB high-speed disconnect 525 625 525 675 mV
detection threshold
(differential signal amplitude)

VBUS USB external charge pump 4.75 5.25 4.85 5.25 V
input

Workaround(s) Consider these violations and design your system accordingly.

23SPRZ264E–September 2007–Revised July 2010 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1,
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

Advisory 1.4.10 — VPBE: VENC Default Luma Interpolation Filter Does Not Clip to Zero www.ti.com

Advisory 1.4.10 VPBE: VENC Default Luma Interpolation Filter Does Not Clip to Zero

Revision(s) Affected 1.4 and earlier.

Details The Video Encoder (VENC) in the VPBE subsystem includes an optional 2x interpolation
function for the luma signal. The default filter used for this interpolation (VMISC.YUPF =
0) does not clip the Luma to zero.

Workaround(s) Do not use the default luma 2x interpolation filter (VMISC.YUPF = 0). Instead, use the
alternate luma 2x interpolation filter (VMISC.YUPF = 1).

24 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1, SPRZ264E–September 2007–Revised July 2010
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

www.ti.com Advisory 1.4.11 — USB (Device Mode): Calculated CRC Value Does Not Match Host CRC Value

Advisory 1.4.11 USB (Device Mode): Calculated CRC Value Does Not Match Host CRC Value

Revision(s) Affected: 1.4 and earlier.

Details: The USB Controller can occasionally calculate a bad CRC for a received data packet.
This error is rare and only occurs when ALL of the following conditions are met:

• USB Controller is in Device Mode of Operation and is receiving data
• Received data packet has a good CRC value of 0x7FF2
• A timing violation caused by a synchronization error (race condition)

The timing synchronization error is caused by a race condition between two control
signals in the PHY Clock and System Clock domains. When these two synchronized
control signals are crossing a clock boundary and the received data packet has a good
CRC value of 0x7FF2, a race condition may occur causing one of the control signals to
be latched a few pico-seconds ahead of the other control signal.

The issue has been observed on both Bulk (Non-Isochronous) and Isochronous transfers
and may potentially exist on Control and Interrupt transfers since the data paths for all
these transfers are the same or are very similar.

When the problem occurs in Non-Isochronous transfer types, the data that was "in-flight"
to the USB Controller’s FIFO from the Host is discarded by the USB Controller. Due to
the error condition, the USB Controller also refrains from sending an ACK packet to the
Host, as mandated by the USB transfer protocol. This forces the Host to re-transmit the
data packet, anticipating an error in data transmission. The problem is usually corrected
when the Host re-transmits the data packet.

When this problem occurs in Isochronous transfer mode for either High- or Full-speed,
the USB Controller flags the device application S/W that a CRC error existed but retains
the received data within the FIFO as well as captures the received data packet size
value minus one byte from the actual data size. Since the magnitude of the actual timing
violated due to the synchronization problem is only in pico-seconds, the entire data sent
from the Host is routed into the USB device receive FIFO (i.e., even though the received
data counter is one byte less, the full data packet is available for the USB driver).

Workaround(s): Case 1a: Non-Isochronous Transfers (High-Speed): For non-Isochronous transfers
operating in High-Speed mode, the Host and Device H/W perform the necessary
re-transmission; thererfore, the issue should be transparent to the Host driver. The issue
will also be transparent to the USB device driver since the H/W flushes the received data
and forces the Host driver to re-transmit by not sending an ACK packet. For this reason,
no interrupt is generated by the H/W to signify an error condition to the device-side
application S/W.

Although quite rare, when both the Host and Device are operating in High-Speed mode
and all the three consecutive transmissions did not occur without an error, the Host will
use a PING packet at a later time to check if the endpoint is ready for accepting data.
Upon the Host receiving an ACK packet in response to the PING packet, the Host
re-initiates the previously failed transmission again. This process continues until the
transfer takes place without error. For this reason, the Non-Isochronous High-Speed
transfer is immune to this issue except for a throughput reduction for the time it takes for
the re-transmission.

Case 1b: Non-Isochronous Transfers (Full-Speed): For non-Isochronous transfers
operating in Full-Speed mode, it is recommended that the Host driver be constructed in
such a way that it invokes the transfer multiple times prior to forcing a reset to the USB
device. When the transfer is repeated, it is expected for the transfer to complete
"error-free".

If the Host driver is not "set up" to invoke multiple failed transfers then, the Host driver
will reset the USB driver, re-enumerate, and continue from where it left off.

25SPRZ264E–September 2007–Revised July 2010 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1,
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

Advisory 1.4.11 — USB (Device Mode): Calculated CRC Value Does Not Match Host CRC Value www.ti.com

Case 2: Isochronous Transfers (High- and Full-Speed): For Isochronous Transfers
operating in either High- or Full-Speed modes, upon receiving a CRC error, the USB
controller flags the device application S/W that a CRC error existed but will retain the
received data within the FIFO as well as capture the received data packet size value
minus one byte from the actual data packet size. Since the magnitude of the actual
timing violated due to the synchronization problem is only in pico-seconds, the entire
data sent from the Host is routed into the USB device receive FIFO (i.e., even though
the received data counter is one byte less, the full data packet is available for the USB
driver) and the USB driver should ignore the received CRC error and read one more
additional byte from the receive FIFO. This one-byte counter difference is transparent to
the Host H/W and S/W.

Due to the rare occurrence of this issue and its very minimal impact on applications,
there are no plans to correct this issue in future silicon revisions.

26 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1, SPRZ264E–September 2007–Revised July 2010
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

www.ti.com Advisory 1.4.12 — DEVICE_ID System Register DEVREV Bits [31:28] Show Incorrect Device Silicon Revision

Advisory 1.4.12 DEVICE_ID System Register DEVREV Bits [31:28] Show Incorrect Device Silicon
Revision

Revision(s) Affected 1.4 and earlier.

Details Ideally, the DEVREV Bits [31:28] of this DEVICE_ID register (located at address
0x01c40028) should reflect the device silicon revision as listed below.

DEVREV Bits [31:28] Silicon Revision

0001 Silicon Revision 1.1

0011 Silicon Revision 1.3

0100 Silicon Revision 1.4

However, on Silicon Revision 1.4 and earlier, the DEVICE_ID register contains the value
of 0x0B73E02F, incorrectly reflecting the DEVREV Bits [31:28] as being ‘0000’.

Workaround(s) Silicon revisions 1.4 and earlier only include ROM fixes; hence a workaround to identify
the device silicon revision is to read an internal memory location in ARM ROM (at
address 0x00009FFC) which holds the ROM Version ID. The association between the
device silicon revisions and the ROM version ID is listed below.

Silicon Revision ROM Version ID

Silicon Revision 1.1 0x10040101

Silicon Revision 1.3 0x10040103

Silicon Revision 1.4 0x10040104

27SPRZ264E–September 2007–Revised July 2010 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1,
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

Advisory 1.4.13 — Change in ROM Boot Loader (RBL) NAND Boot Device ID Table www.ti.com

Advisory 1.4.13 Change in ROM Boot Loader (RBL) NAND Boot Device ID Table

Revision(s) Affected 1.4 and 1.3

Details The following NAND device ID table entry described in Table 11 has been removed from
the lookup table (in the RBL for NAND bootmode) in Revision 1.3 and 1.4 (as compared
to Rev 1.1).

Table 11. NAND Device ID

Number of pages per Bytes per page Block shift value (ForDevice ID No. of address cyclesblock (including extra data) address)

0x39 16 512 + 16 12 3

The table entry provides pre-defined NAND parameters indexed by device ID (in this
case 0x39). These parameters are used for the RBL to communicate with the NAND
device.

As a result of this missing table entry, RBL will read the fourth byte of the NAND ID
(stored on the actual device) and attempt to decode this to obtain the necessary
parameters. In silicon revision 1.4 a SPI EEPROM can be used if needed to store the
NAND parameters to be read by the RBL.

Workaround(s) A workaround for this issue would be to use a SPI EEPROM (supported with Rev 1.4) to
store the NAND parameters.

Another recommendation would be to use a different ROM boot mode, such as SPI (as
part of NAND bootmode in Rev 1.4), MMC/SD, AEMIF (OneNAND) or UART) to load a
secondary boot loader that can correctly access the NAND and load the remaining
system software from the NAND device.

This limitation has no impact on any of the other boot modes: MMC/SD boot mode,
AEMIF/OneNAND boot mode, UART boot mode.

28 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1, SPRZ264E–September 2007–Revised July 2010
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

www.ti.com Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications

3 Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional
Specifications

3.1 Usage Notes for Silicon Revision 1.3

Silicon revision 1.3 applicable usage notes have been found on a later silicon revision. For more details,
see Section 2, Usage Notes for Silicon Revision 1.4.

29SPRZ264E–September 2007–Revised July 2010 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1,
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

3.2 Silicon Revision 1.3 Known Design Exceptions to Functional Specifications

Some silicon revision 1.3 applicable advisories have been found on a later silicon revision. For more
details, see Table 7, Silicon Revision 1.4 Known Design Exceptions to Functional Specifications.

Table 12. Silicon Revision 1.3 Advisory List

Title .. Page

Advisory 1.3.1 —Bootloader: RBL Code 4bit ECC Mode Limitation... 31

30 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1, SPRZ264E–September 2007–Revised July 2010
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

www.ti.com Advisory 1.3.1 — Bootloader: RBL Code 4bit ECC Mode Limitation

Advisory 1.3.1 Bootloader: RBL Code 4bit ECC Mode Limitation

Revision(s) Affected 1.3 (not present on silicon revision 1.4)

Details There is an issue with ROM NAND 4bit ECC mode.

The NAND code in the ROM should read 512-byte data chunks from NAND, and the
AEMIF ECC hardware has the capability to correct up to 4 bit errors per 512 bytes of
data. However, when 5 or more ECC errors are detected for a certain chunk of 512
bytes of data, existing TI software components (UBL, U-Boot and kernel) and the RBL
will not read the NANDERRADD1/NANDERRADD2 registers. As a result, the
4BITECC_ADD_CALC_START bit in NANDFCR register is not cleared.

If there are any ECC errors in the ensuing chunks of 512 bytes of data, no ECC
corrections will take place. The software workaround for this is that when the NAND
driver detects 5 bit errors, the driver will perform a dummy read of the NANDERRVAL1
register or NANDERRADD1 register. This clears the 4BITECC_ADD_CALC_START (bit
13 of NANDFCR register). Doing this ensures ECC error correction takes place even
after encountering 5-bit errors for the ensuing chunks of 512 bytes of data. There is no
workaround for this issue in the RBL. This is expected to be rectified when TI comes up
with new revisions of the DM355.

In DM355, TI uses a 2 stage boot loader; the RBL loads a UBL into IRAM which then
loads the U-Boot to DDR.

This bug exists in the RBL. This means that if the NAND driver in the RBL encounters
5-bit errors, ECC correction will stop. The UBL, which is the first software component in
the bootup sequence, will do a dummy read of the NANDERRADD1 register after setting
up the AEMIF as shown below (#1 of FIXES IN TI SOFTWARE COMPONENTS) . If this
is not done, UBL will not be able to correct any errors due to the RBL bug. This will
occur if the RBL encounters 5-bit errors.

A dummy read of the NANDERRADD1 register will take place even after the NAND
driver encounters no bit errors although experiments performed did show that such a
dummy read was not required.

The issue is more likely to be seen in NAND devices that require 4-bit ECC.

Even though there might be ECC errors in the UBL image, it is possible to load a UBL
with errors in the UBL image. Random boot failures can occur as a result, or if boot
appears to succeed, it is also possible to see system stability issues due to possible
corrupted system configuration values (e.g., PLL multiplier, PSC domains).

This is a limitation in the RBL. This is not a limitation in the ECC hardware that is a
feature of the Asynchronous EMIF (AEMIF) peripheral. Therefore any software outside of
the RBL, such as the UBL and NAND driver in the U-Boot and kernel, can use the ECC
hardware to implement NAND error correction and detection.

This limitation has no impact on any of the other boot modes: MMC/SD boot mode,
AEMIF (OneNAND) boot mode, UART boot mode.

FIXES IN TI SOFTWARE COMPONENTS
1. Mitigation of RBL BUG in UBL

The UBL code is modified to include the sequence of code mentioned below. The
following is done in the “device.c” file that is part of the UBL projects for DM355.
// AEMIF Setup
if (status == E_PASS) status |= DEVICE_EMIFInit();

temp = AEMIF->NANDERRADD1

This ensures that 4BITECC_ADD_CALC_START is “low” thereby ensuring that the
UBL can perform ECC correction if it encounters bit errors.

2. Software Fix in NAND writer and UBL
The NAND writer and UBL both use the same NAND driver and are built from the

31SPRZ264E–September 2007–Revised July 2010 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1,
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

Advisory 1.3.1 — Bootloader: RBL Code 4bit ECC Mode Limitation www.ti.com

same source. The NAND driver for both the NAND writer and UBL has been modified
according to the above explanation. Code excerpt from the NAND driver is shown
below. The required sequence has been marked in bold.
if ((corrState == 1) || (corrState > 3))
{

temp = AEMIF->NANDERRADD1;
return E_FAIL;

}
else if (corrState == 0)
{

temp = AEMIF->NANDERRADD1;
return E_PASS;

}

3. Software Fix in U-Boot and kernel
TI makes sure that the NAND driver code in both the U-Boot and kernel are exactly
the same. The following is an excerpt from the kernel NAND driver that is part of LSP
2.10 and later versions.
If (iserror == ECC_STATE_NO_ERR) {

val = __raw_readl(info->emifregs + NANDERRVAL1);
return 0;

}
else if (iserror == ECC_STATE_TOO_MANY_ERRS) {

val = __raw_readl(info->emifregs + NANDERRVAL1);
printk(KERN_ERR "%s Too many errors to be corrected!\n", __func__);
return -1;

}

In the kernel and U-boot the NANDERRVAL1 register is read, but in the UBL and
NAND writer the NANDERRADD1 register is read. Doing a dummy read of any of
these registers has exactly the same effect of clearing the
4BITECC_ADD_CALC_START in the NANDFCR register.
NOTE: All TI Software releases for DM355 SOC’s (including the PSP 3.01
releases) have been updated with the above software fixes. TI has patches for
DM355 SOCs in addition to the official LSP 2.10 and later releases.

Workaround(s) Other Workaround(s) to mitigate RBL issue:

• A workaround for this issue would be to use a different ROM boot mode, such as
MMC/SD, AEMIF (OneNAND or UART) to load a secondary boot loader that can
correctly access the NAND and load the remaining system software from the NAND
device.

• Another recommendation would be to replace the current 4-bit ECC NAND device
with a NAND device that uses less than 4-bit ECC. By employing the 4-bit ECC in the
ROM we automatically cover any ECC requirements less than or equal to 4-bits
(including 1-bit).

32 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1, SPRZ264E–September 2007–Revised July 2010
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

www.ti.com Silicon Revision 1.1 Usage Notes and Known Design Exceptions to Functional Specifications

4 Silicon Revision 1.1 Usage Notes and Known Design Exceptions to Functional
Specifications

4.1 Usage Notes for Silicon Revision 1.1

Silicon revision 1.1 applicable usage notes have been found on a later silicon revision. For more details,
see Section 2, Usage Notes for Silicon Revision 1.4.

4.1.1 NAND Layout Assumed by RBL for Big Block NAND Does Not Match NAND Manufacturers'
Recommendations

Typically NAND manufactures place Bad Block information in the spare bytes area. The RBL assumes a
data layout as below:

512 bytes Data
16 bytes ECC Data
512 bytes Data
16 bytes ECC Data
512 bytes Data
16 bytes ECC Data
512 bytes Data
16 bytes ECC Data

This layout can cause real data to be placed in the spare area, which would erase meta-data that is
placed there by the NAND manufacturer. Typically, NAND programmers assume consecutive data
followed by the meta-data in the spare areas as below:

2048 bytes Data
64 bytes ECC Data

This does not affect small block NAND (512 bytes/page). Any device with page sizes larger than 512
bytes will be affected.

33SPRZ264E–September 2007–Revised July 2010 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1,
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

Silicon Revision 1.1 Usage Notes and Known Design Exceptions to Functional Specifications www.ti.com

4.2 Silicon Revision 1.1 Known Design Exceptions to Functional Specifications

Some silicon revision 1.1 applicable advisories have been found on a later silicon revision. For more
details, see Table 7, Silicon Revision 1.4 Known Design Exceptions to Functional Specifications.

Table 13. Silicon Revision 1.1 Advisory List

Title .. Page

Advisory 1.1.1 —RBL Code ECC Limitation .. 35

34 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1, SPRZ264E–September 2007–Revised July 2010
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

www.ti.com Advisory 1.1.1 — RBL Code ECC Limitation

Advisory 1.1.1 RBL Code ECC Limitation

Revision(s) Affected 1.1 (not present on silicon revision 1.3 and 1.4)

Details During NAND boot, the ROM Bootloader (RBL) does not implement error correction and
detection (ECC). In particular, during NAND boot, the RBL will neither detect nor correct
bit errors while loading the user boot loader (UBL).

Once the UBL is loaded, the UBL can implement error correction and detection. For
more information on the NAND boot process, see the “NAND Boot Mode” section in the
TMS320DM355 Digital Media System-on-Chip ARM Subsystem Reference Guide
(literature number SPRUFB3).

This is a limitation in the RBL. This is not a limitation in the ECC hardware that is a
feature of the Asynchronous EMIF(AEMIF) peripheral. Therefore any software outside of
the RBL, such as the UBL and NAND driver, can use the ECC hardware to implement
NAND error correction and detection.

Workaround(s) The impact of this problem is limited by the incidence of read errors of the NAND device.
In very rare situations, a bit error could occur in the UBL transfer. The impact can be
limited by choosing a NAND device with lower incidence of read errors. SLC NAND is
recommended. SLC NAND typically has a lower incidence of read errors compared to
MLC NAND. The impact can also be limited by minimizing the size of the UBL. Note: the
maximum UBL size is 30Kbytes.

This limitation has no impact on any of the other boot modes: MMC/SD boot mode,
AEMIF/OneNAND boot mode, UART boot mode. This limitation also has no impact on
managed NAND devices.

35SPRZ264E–September 2007–Revised July 2010 TMS320DM355 Digital Media System-on-Chip (DMSoC)—Silicon Revision 1.1,
1.3, and 1.4

Copyright © 2007–2010, Texas Instruments Incorporated

www.ti.com

Appendix A Revision History

This data sheet revision history highlights the technical changes made to the SPRZ264D device-specific
data sheet to make it an E revision.

Scope: Added 1.3 and 1.4 Advisories and Usage Notes.

Table 14. Revision History

ADDS/CHANGES/DELETES

Updated Figure 1.

Deleted 1st note in Section 1.2.

Added Silicon Revision 1.3 and 1.4 to Table 1.

Added Silicon Revision 1.3 and 1.4 Advisories and Usage Notes.

Removed ZWK Package and change to ZCE Package Section.

Moved Section 4.1.1 from Silicon Revision 1.4 to Silicon revision 1.1.

36 Revision History SPRZ264E–September 2007–Revised July 2010

Copyright © 2007–2010, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DLP® Products www.dlp.com Communications and www.ti.com/communications
Telecom

DSP dsp.ti.com Computers and www.ti.com/computers
Peripherals

Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps

Interface interface.ti.com Energy www.ti.com/energy

Logic logic.ti.com Industrial www.ti.com/industrial

Power Mgmt power.ti.com Medical www.ti.com/medical

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Space, Avionics & www.ti.com/space-avionics-defense
Defense

RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video

Wireless www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/communications
http://dsp.ti.com
http://www.ti.com/computers
http://www.ti.com/clocks
http://www.ti.com/consumer-apps
http://interface.ti.com
http://www.ti.com/energy
http://logic.ti.com
http://www.ti.com/industrial
http://power.ti.com
http://www.ti.com/medical
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/space-avionics-defense
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless-apps

	TMS320DM355 Digital Media System-on-Chip (DMSoC)Silicon Revision 1.1, 1.3, and 1.4
	Table of Contents
	1 Introduction
	1.1 Device and Development Support Tool Nomenclature
	1.2 Revision Identification

	2 Silicon Revision 1.4 Usage Notes and Known Design Exceptions to Functional Specifications
	2.1 Usage Notes for Silicon Revision 1.4
	2.1.1 ROM Bootloader (RBL) Functionality
	2.1.2 Possible Emulator Crash If TCK Frequency Is Greater than MXI Frequency
	2.1.3 Incorrect Pin Descriptions in Original DM355 Data Sheet
	2.1.4  DM355 EVM VSS_USB_REF Pin Not Connected As Specified
	2.1.5 SD/SDIO card: How to Read M bytes (M=1, 2, 3) from SD or SDIO card
	2.1.6 SD/SDIO card: How to Handle SDIO interrupt
	2.1.7 Peripherals: Electrostatic Discharge (ESD) Sensitivity Classification
	2.1.8 ASP: Transfers Should be Buffered in Internal Memory
	2.1.9 GIO0 Low Setting During Device Boot May Cause Boot to Fail

	2.2 Silicon Revision 1.4 Known Design Exceptions to Functional Specifications

	3 Silicon Revision 1.3 Usage Notes and Known Design Exceptions to Functional Specifications
	3.1 Usage Notes for Silicon Revision 1.3
	3.2 Silicon Revision 1.3 Known Design Exceptions to Functional Specifications

	4 Silicon Revision 1.1 Usage Notes and Known Design Exceptions to Functional Specifications
	4.1 Usage Notes for Silicon Revision 1.1
	4.1.1 NAND Layout Assumed by RBL for Big Block NAND Does Not Match NAND Manufacturers' Recommendations

	4.2 Silicon Revision 1.1 Known Design Exceptions to Functional Specifications

	Appendix A Revision History

