
TMS320C6713, TMS320C6713B

Digital Signal Processors

Silicon Errata

C6713 Silicon Revision 1.1

C6713B Silicon Revision 2.0

SPRZ191J
 December 2002

Revised August 2005

Copyright  2005, Texas Instruments IncorporatedCopyright  2005, Texas Instruments Incorporated

SPRZ191JTMS320C6713, TMS320C6713B Silicon Errata

2

REVISION HISTORY

This errata revision history highlights the technical changes made to the SPRZ191I device-specific errata to make it an
SPRZ191J revision.

Scope: Applicable updates to the C67x device family, specifically relating to the C6713/13B devices, have been
incorporated.

PAGE(S)
NO. ADDITIONS/CHANGES/DELETIONS

5 Introduction, Revision Identification section:
Updated Figure 1, Example, Lot Trace Codes for TMS320C6713 (GDP and PYP Packages) and TMX320C6713B (GDP and PYP
Packages)

16 Table 2, IPU/IPD Condition of JTAG, Clock/PLL Oscillator, McBSP0, McBSP1, and Timer1 if DEVCFG.0 = 1
Clock/PLL Oscillator Pins section:
In CLKOUT3, changed “IPU” to “IPD”

16 C6713B Silicon Revision 2.0 Known Design Exceptions to Functional Specifications and Usage Notes:
Added “EMIF Big Endian Mode Correctness (HD12 = 0) is Not Usable Unless All CE Spaces Have the Same Width”

SPRZ191JTMS320C6713, TMS320C6713B Silicon Errata

3

Contents
1 Introduction 4.

1.1 Quality and Reliability Conditions 4.

TMX Definition 4.
TMP Definition 4.
TMS Definition 4.

1.2 Revision Identification 5.

2 C6713B Silicon Revision 2.0 Known Design Exceptions to Functional Specifications and Usage Notes 6. . . .
2.1 Usage Notes for C6713B Silicon Revision 2.0 6.

EMIF: L2 Cache Operations Block Other EDMA Operations to EMIF
(C671x/C621x Devices: All Silicon Revisions) 6.

HPI: Illegal Memory Access Can Result in Unexpected HPI Behavior 11.
I2C: Data Bit Count can Only be From 2 to 8 Bits 11.
McASP: Must Access XRBUF[n] With the Same Peripheral Bus 12.
McASP Does Not Support SOFT Mode Emulation Suspend 12.
BUSREQ Asserted During HPI Boot 12.
McASP Pin Internal Pullup/Pulldown Combinations 12.
Cache Configuration (CCFG) Register — P-Bit Function [New Enhancement] 13.
EMIF: Control Signals Not Inactive Before Asserting HOLDA 13.
I2C: Bus Busy Bit Does Not Reflect the State of the I2C Bus When the I2C is in Reset 13.
I2C: Addressed-As-Slave (AAS) Bit is not Cleared Correctly 14.
EMIF: Data Corruption can Occur in SDRAM When the HOLD Feature is Used 14.
RESET Pin Has No Internal Pullup Resistor 15.
Boundary Scan: IDCODE is Only Loaded Onto Instruction Register When TRST Becomes Inactive 15.
JTAG, Clock/PLL Oscillator, McBSP0/1, and TIMER1: MCBSP1DIS Control Bit (DEVCFG.0) Affects
IPUs/IPDs on Specific Peripheral Pins 15.
EMIF Big Endian Mode Correctness (HD12 = 0) is Not Usable Unless All CE Spaces Have
the Same Width 16.

2.2 C6713B Silicon Revision 2.0 Known Design Exceptions to Functional Specifications 16.

3 C6713 Silicon Revision 1.1 Known Design Exceptions to Functional Specifications and Usage Notes 17. . . .
3.1 Usage Notes for C6713 Silicon Revision 1.1 17.

EMIF/HPI: EMIF Output and HPI Signals Can Drive During Reset 17.
3.2 C6713 Silicon Revision 1.1 Known Design Exceptions to Functional Specifications 17.

Advisory 1.1.1 HPI: HPID Read/Write Accesses Must Be Terminated With a Fixed-Mode Access 17.

Advisory 1.1.3 RESET Pin Has Internal Pullup Resistor 19.

Advisory 1.1.4 PLL: Incorrect PLL Controller Peripheral Identification (PID) Register Value 19.

Advisory 1.1.5 I2C: STOP/START Condition Causes Data Corruption in Slave Transmit Mode 19.

Advisory 1.1.14 EDMA: EDMA Blocked from Accessing L2 During Long String of Stores to the
Same Bank in L2 RAM 21.

SPRZ191JTMS320C6713, TMS320C6713B Silicon Errata

4

1 Introduction

This document describes the known exceptions to the functional specifications for the TMS320C6713 and
TMS320C6713B digital signal processors. [See the TMS320C6713, TMS320C6713B Floating-Point Digital Signal
Processors data sheet (literature number SPRS186).] These exceptions are applicable to the TMS320C6713 and
TMS320C6713B devices (272-pin Ball Grid Array, GDP suffix; and the 208-pin PowerPAD Plastic Quad Flatpack,
PYP suffix).

For additional information, see the latest version of TMS320C6000 DSP Peripherals Overview Reference Guide
(literature number SPRU190).

The advisory numbers in this document are not sequential. Some advisories have been moved to the next silicon
revision and others have been removed and documented in a user’s guide and/or data sheet. When advisories are
moved or deleted, the remaining advisory numbers remain the same and are not resequenced.

1.1 Quality and Reliability Conditions

TMX Definition

Texas Instruments (TI) does not warranty either (1) electrical performance to specification, or (2) product reliability
for products classified as “TMX.” By definition, the product has not completed data sheet verification or reliability
performance qualification according to TI Quality Systems Specifications.

The mere fact that a “TMX” device was tested over a particular temperature range and voltage range should not, in
any way, be construed as a warranty of performance.

TMP Definition

TI does not warranty product reliability for products classified as “TMP.” By definition, the product has not
completed reliability performance qualification according to TI Quality Systems Specifications; however, products
are tested to a published electrical and mechanical specification.

TMS Definition

Fully-qualified production device

PowerPAD is a trademark of Texas Instruments.
Other trademarks are the property of their respective owners.

http://www-s.ti.com/sc/techlit/sprs186
http://www-s.ti.com/sc/techlit/spru190

SPRZ191JTMS320C6713, TMS320C6713B Silicon Errata

5

1.2 Revision Identification

The device revision can be determined by the lot trace code marked on the top of the package. The location of the
lot trace codes for the GDP and PYP packages are shown in Figure 1 and the revision ID codes are listed in
Table 1. The revision ID described here is not to be confused with the CPU revision ID that is in the Control Status
Register.

DSP
TMS320C6713PYP

Dxx-29DTHXT

Revision ID Code

DSP
TMS320C6713GDP

Dxx-29Z0208

Revision ID Code

DSP

TMX320C6713BPYP

Dxx-29DTHXT

Revision ID Code

DSP
TMX320C6713BGDP

Dxx-29Z0208

Revision ID Code

nnn

“nnn” represents the device speed. For example:

300 = 300 MHz Core [13BGDP]
(Blank) = 225 MHz Core [13GDP, 13BGDP and 13BPYP]
(Blank) = 200 MHz Core [13GDPA, 13BPYP, 13PYP, 13BGDPA and 13BPYPA (A=Extended Temperature)]
(Blank) = 167 MHz Core [13PYPA, and 13BPYPA (A=Extended Temperature)]

NOTE: Qualified devices are marked with the letters “TMS” at the beginning of the device name, while nonqualified devices are marked with
the letters “TMX” or “TMP” at the beginning of the device name.

Figure 1. Example, Lot Trace Codes for TMS320C6713 (GDP and PYP Packages) and TMX320C6713B
(GDP and PYP Packages)

Silicon revision is identified by a code on the chip. The code is of the format Dxx-YMZLLLS (GDP) and of the format
Dxx-YMDLLLS (PYP). If xx is 11, then the silicon is revision 1.1. If xx is 20, then the silicon revision is 2.0.

SPRZ191JTMS320C6713, TMS320C6713B Silicon Errata

6

Table 1. Revision ID Codes

Revision ID Code Silicon Revision Comments

11 1.1 TMX320C6713, TMS320C6713

20 2.0 TMS320C6713B

2 C6713B Silicon Revision 2.0 Known Design Exceptions to Functional Specifications and
Usage Notes

2.1 Usage Notes for C6713B Silicon Revision 2.0

Usage Notes highlight and describe particular situations where the device’s behavior may not match presumed or
documented behavior. This may include behaviors that affect device performance or functional correctness. These
notes will be incorporated into future documentation updates for the device (such as the device-specific data
sheet), and the behaviors they describe will not be altered in future silicon revisions.

EMIF: L2 Cache Operations Block Other EDMA Operations to EMIF (C671x/C621x Devices: All Silicon
Revisions)

When using the L2 cache on the C671x/C621x devices, for a given EMIF-to-CPU frequency ratio, an L2 writeback
or L2 writeback-invalidate operation may block other EDMA requests from accessing the EMIF until the operation
completes. If the other EDMA requests to the EMIF have hard real-time deadlines, these deadlines may be missed
if the deadline is shorter than the time required to complete the L2 writeback operation. The McBSP and McASP
peripherals are most sensitive to this issue, as the buffering local to the McBSP/McASP peripheral can only hold
data for at most one sample at a time before data loss occurs.

On the C671x/C621x devices, all cache requests to EMIF address ranges are serviced on the highest priority level
of the EDMA (priority 0). All programmed EDMA or QDMA transfers (e.g., EDMA transfers to service the McBSP or
paging data from EMIF to/from L2) and peripheral-initiated transfers (such as HPI) are limited to using priority 1 or
priority 2 queues of the EDMA; therefore an L2 writeback or L2 writeback-invalidate operation may block the lower
priority request.

Program-initiated cache coherency operations (such as L2 writeback and L2 writeback-invalidate operations) are
submitted to the EDMA as a long string of cache operations. For block-based writeback commands, the maximum
length of the cache writeback operation is under user control via the programmed address range. The length of the
range writeback directly impacts the amount of time that the cache traffic may block other accesses to EMIF. The
total potential block-out time equals the amount of time for the cache transfer and is calculated as follows:

Cache transfer size * EMIF clock cycle time = Total potential block-out time

For example, if the user performs an L2 writeback operation to external memory for 2048 words with a 100-MHz
EMIF, the external EMIF bus may be blocked for: 2048 words * 10 ns � 20 µs.

SPRZ191JTMS320C6713, TMS320C6713B Silicon Errata

7

Global cache operations (such as L2 writeback-all or L2 writeback-invalidate-all) are also submitted to the EDMA
as a long string of cache operations. However, the length of the global cache operation is not controllable by the
user and can be as long as the depth of the L2 cache size (up to 64 Kbytes). If the user performs an L2
writeback-all operation to external memory using a 100-MHz EMIF, and L2 is set to the maximum cache size, the
external EMIF bus may be blocked for 16 384 words * 10 ns ≅ 160 µs. Since this can block the EMIF for long
periods of time, the user should avoid using global cache operations at the same time as real-time data transfers.
In general, this is not a limiting factor since global cache operations are primarily performed during system
initialization, task switches, or other non real-time code segments.

As the sample rate is system-dependent, the user must calculate the time between serial samples to determine the
best approach to avoid data loss. The user may break large cache operations into smaller blocks, and transmit
each of these blocks using the CACHE_wbInvL2() and CACHE_wbL2() CSL functions. By breaking the large
cache operations into smaller blocks, other peripherals are then allowed to access the EDMA.

If the EMIF frequency is more than half of the CPU frequency, the device is able to service the L2 writeback
requests faster than the requests can be issued, leaving some EMIF bandwidth available to service other EDMA
requests, so the block-out problem is less noticeable. Therefore, breaking down cache operations into smaller
blocks is more critical when the EMIF frequency is less than half of the CPU frequency. Figure 2 shows the
minimum required latency between McBSP transfers to EMIF at 200-MHz CPU and 50-MHz EMIF when breaking
down the cache operations. These McBSP transfers were performed with concurrent cache operations to EMIF,
creating a block-out scenario. With the 1024-word cache writeback-invalidate operation broken into 32-word
blocks, the McBSP is able to perform almost 10 times faster. The performance improvement is similar when
breaking down the writeback-only operation.

10

9

8

7

6

5

4

3

2

1

0
0

CACHE_wblnvL2
(Entire Operation)

(256-Word Blocks)
CACHE_wblnvL2

(128-Word Blocks)
CACHE_wblnvL2

(64-Word Blocks)
CACHE_wblnvL2

CACHE_wblnvL2
(32-Word Blocks)

Number of Words in Writeback-Invalidate

Minimum
Latency

(�s)

64 128 256 512 1024

Figure 2. Minimum Required Latency Between McBSP Events for a Successful Transfer with
Concurrent L2 Writeback-Invalidates at 200-MHz CPU and 50-MHz EMIF, Using Entire Operations and

Block Breakdown

SPRZ191JTMS320C6713, TMS320C6713B Silicon Errata

8

For example, if the CPU is running at 200 MHz with a 50-MHz EMIF and you have a McBSP hard real-time
deadline of 5 µs, Figure 2 shows that a 1024-word L2 writeback-invalidate may cause data loss since back-to-back
McBSP events can only be serviced at ~8 µs. By breaking down the L2 writeback-invalidate into 256-word blocks,
you can then meet the 5-µs McBSP deadline. In other words, when performing a 1024-word L2
writeback-invalidate operation with the CPU and EMIF conditions cited above, the McBSP events can be serviced
in ~8 µs for the entire operation (one whole block), in ~4 µs when breaking it into 256-word blocks, in ~2.5 µs when
breaking it into 128-word blocks, etc.

When the CPU is set to 225 MHz and the EMIF is set to 100 MHz, breaking down the cache operations will still
improve the block-out problem. Figure 3 shows the improvement in the McBSP’s performance with this frequency
ratio.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0

Original CACHE_wblnvL2
(Entire Operation)

(256-Word Blocks)
CACHE_wblnvL2

(128-Word Blocks)
CACHE_wblnvL2

(64-Word Blocks)
CACHE_wblnvL2

CACHE_wblnvL2
(32-Word Blocks)

Number of Words in Writeback-Invalidate

Minimum
Latency

(�s)

64 128 256 512 1024

Figure 3. Minimum Required Latency Between McBSP Events for a Successful Transfer With
Concurrent Writeback-Invalidates at 225-MHz CPU and 100-MHz EMIF, Using Entire Operations and

Block Breakdown

When the CPU is set to 150 MHz and the EMIF is set to 100 MHz, there is virtually no benefit from breaking down
the coherency cache operations. Figure 4 shows the McBSP’s performance with this frequency ratio.

SPRZ191JTMS320C6713, TMS320C6713B Silicon Errata

9

0.375

0.370

0.365

0.360

0.355

0.350

0.345

0.340

0.335

0.330

0.325
0

CACHE_wblnvL2
(Entire Operation)

(256-Word Blocks)
CACHE_wblnvL2

(128-Word Blocks)
CACHE_wblnvL2

(64-Word Blocks)
CACHE_wblnvL2

CACHE_wblnvL2
(32-Word Blocks)

Number of Words in Writeback-Invalidate

Minimum
Latency

(�s)

64 128 256 512 1024

Figure 4. Minimum Required Latency Between McBSP Events for a Successful Transfer With
Concurrent Writeback-Invalidates at 150-MHz CPU and 100-MHz EMIF, Using Entire Operations and

Block Breakdown

Breaking down the cache operations into smaller blocks takes longer to complete than performing the entire cache
function as one large block. Figure 5 shows how much extra overhead is incurred by breaking down an L2
writeback-invalidate operation to transfer 1024 words with different sized blocks and at various frequency ratios.
Notice that for the 200-MHz CPU and the 50-MHz EMIF frequency ratio, where the new functions are most critical
for peripherals such as the McBSP, the least overhead is incurred.

SPRZ191JTMS320C6713, TMS320C6713B Silicon Errata

10

40

35

30

25

20

15

10

5

0

Latency

(�s)

CPU/EMIF Frequency Ratio (MHz)

200 CPU
50 EMIF

225 CPU
100 EMIF

150 CPU
100 EMIF

CACHE_wblnvL2
(Entire Operation)

(256-Word Blocks)
CACHE_wblnvL2

(128-Word Blocks)
CACHE_wblnvL2

(64-Word Blocks)
CACHE_wblnvL2

CACHE_wblnvL2
(32-Word Blocks)

Figure 5. 1024-Word L2 Writeback-Invalidate Performance at Various Frequency Ratios With Old and
New CACHE-wbInvL2()

To avoid cache operations blocking other time-sensitive EDMA accesses, observe the following guidelines:

1. Avoid placing real-time data in EMIF address range. Instead, real-time data should be placed in the L2
address range.

2. If data must be placed in the EMIF address range:

− Avoid global cache operations in favor of block-based cache operations.

− Block-based cache operations should be submitted in small blocks, such that the total amount of time
that the EMIF is blocked is less than the amount of time between serial samples.

SPRZ191JTMS320C6713, TMS320C6713B Silicon Errata

11

HPI: Illegal Memory Access Can Result in Unexpected HPI Behavior

On C6713B silicon revision 2.0 and C6713 silicon revision 1.1, the DSP has a reserved memory range that is
mapped to the internal FIFO of the HPI for EDMA engine usage. This reserved memory range is located at
0x60000000 − 0x7FFFFFFF in the memory map. If CPU code (or a host access) happens to read/write from/to this
memory range, the internal HPI state machine can be corrupted, causing one or more of the following occurrences:

• Host reads/writes through the HPI fail. HPI reads return incorrect data, and/or HPI writes result in incorrect
data being written.

• Host reads/writes through the HPI take an unexpectedly long time. The HRDY signal stays high (not ready)
for an extended period of time.

• HPI locks up. HRDY stays high indefinitely.

The most common cause of this illegal access is uninitialized or stray pointers. To verify that the DSP program
does not perform this illegal memory access, the user can use the Advanced Event Triggering tools featured in
Code Composer Studio Integrated Development Environment (IDE) version 2.1 or later, with the latest emulation
driver. Below are the step-by-step instructions on how to trap a CPU access to the memory range 0x60000000 −
0x7FFFFFFF:

1. Start Code Composer Studio IDE with the proper setup and GEL file.

2. Load the program.

3. Under the Tools menu, select Advanced Event Triggering > Event Analysis

4. Right-click on the bottom left panel that appears, select “Set Hardware Watchpoint”.

5 Name the watchpoint; choose to watch for “Data Memory Reads” or “Data Memory Writes”; select the
inclusive range start address (0x60000000) and end address (0x7FFFFFFF); select the data size from 32-,
16-, or 8-bit to watch for word, halfword, or byte reads/writes, respectively. Then, click Apply.

6 The watchpoint now is enabled, indicated by the blue “E” icon. Now, run the program.

7. When a read/write to the specified memory range is detected, the CPU halts, and the blue “E” icon changes
to a red “T” icon.

Notes:

The CPU halts a few cycles after the specified memory access is detected. Without a CPU stall, the number of
cycles is around 4 cycles. This means that when the CPU halts, the PC points to a few instructions after the one
that caused the trap to trigger.

The hardware watchpoint restricts the trap to be set up for either read or write accesses, but not both. Therefore,
the user may need to repeat this procedure several times for each read and write trap.

The above step-by-step method only catches illegal accesses made by the CPU, and does not catch illegal
accesses made by the EDMA (through the McBSP or the HPI).

I2C: Data Bit Count can Only be From 2 to 8 Bits

On C6713B silicon revision 2.0 and C6713 silicon revision 1.1, the bit count (BC) field in the I2C Mode Register
(I2CMDR) for the data word that is to be received or transmitted by the I2C module can only be from 2 to 8 bits (do
not specify 1 bit per data word).

(Internal reference number: 1465.)

Code Composer Studio is a trademark of Texas Instruments.

SPRZ191JTMS320C6713, TMS320C6713B Silicon Errata

12

McASP: Must Access XRBUF[n] With the Same Peripheral Bus

On C6713B silicon revision 2.0 and C6713 silicon revision 1.1, always use the same peripheral bus to access the
McASP XRBUF[n] registers for both the transmit and receive serializers. For example, if the transmit serializers are
serviced via the Peripheral Data Port (XBUSEL = 0), the receive serializers should also be serviced via the same
port (RBUSEL = 0). Similarly, if the transmit serializers are serviced via the Peripheral Configuration Port
(XBUSEL = 1), the receive serializers should also be serviced via the same Peripheral Configuration Port
(RBUSEL = 1).

(Internal reference number: 1177)

McASP Does Not Support SOFT Mode Emulation Suspend

On C6713B silicon revision 2.0 and C6713 silicon revision 1.1, the McASP specification includes out a PWRDEMU
register with “SOFT” and “FREE” bits. This register is not implemented correctly, and the McASP always acts in
“FREE” mode when the emulator halts the TMS320C6713/TMS320C6713B CPU. This simply means that the
McASP will ignore the emulator suspend and continue to run generating DMA events or interrupts and requiring
data transfers.

The EDMA also continues to run when the C6713/C6713B DSP is halted during emulation; so it is possible to
configure the EDMA to keep the McASP serviced even during an emulation halt.

BUSREQ Asserted During HPI Boot

On C6713B silicon revision 2.0 and C6713 silicon revision 1.1, the EMIF Bus Request (BUSREQ) signal goes
active during an HPI boot when the internal SDRAM refresh counter reaches zero, even though the EMIF does not
default to SDRAM use. The BUSREQ remains active until the first EMIF access after the HPI boot completes.

The BUSREQ signal is typically only used by systems that share external memory between several DSPs. When
constructing such a system the false assertion of BUSREQ during reset should be taken into account when
designing the external arbitration logic.

McASP Pin Internal Pullup/Pulldown Combinations

On C6713B silicon revision 2.0 and C6713 silicon revision 1.1, be aware that certain McASP pins which might
commonly be connected together may not have the same internal pull resistor type. When connecting one pin with
an internal pullup to another pin with an internal pulldown (for example connecting ACLKX0 to ACLKX1) the pins
may float at an intermediate level during reset unless externally driven to a good level.

For reference, the internal pullup and pulldown combinations on C6713/C6713B McASP pins are listed here:

MCASP0: MCASP1:

ACLKX0 − IPD
ACLKR0 − IPD

ACLKX1 − IPU
ACLKR1 − IPD

AFSR0 − IPD
AFSX0 − IPD

AFSR1 − IPU
AFSX1 − IPU

AHCLKX0 − IPD
AHCLKR0 − IPD

AHCLKR1 − IPU
AHCLKX1 − IPU

SPRZ191JTMS320C6713, TMS320C6713B Silicon Errata

13

Cache Configuration (CCFG) Register — P-Bit Function [New Enhancement]

On C6713B silicon revision 2.0, the “P” bit in the cache configuration (CCFG) register ensures that requests to L2
memory by the transfer crossbar (TC) [such as the important class of TC accesses originating from the EDMA
controller] will have priority over the L1D requests to L2 memory. As noted in “Workaround” of Advisory 1.1.14,
EDMA: EDMA Blocked from Accessing L2 During Long String of Stores to the Same Bank in L2 RAM, without the
“P” bit set it is possible to construct a loop that creates a long string of stores to the same bank in L2 RAM which
could block an EDMA transfer and cause a missed deadline on time critical peripherals such as the McASP or
McBSP.

Step 2 in the “Workaround” of Advisory 1.1.14, “EDMA: EDMA Blocked from Accessing L2 During Long String of
Stores to the Same Bank in L2 RAM” , explains how to use the compiler switch to identify and fix these types of
loops.

With the “P” bit set on silicon revision 2.0 and later, the problem described in Advisory 1.1.14 does not occur
because in general priority is given to the TC over the L1D when the “P” bit is set. However, there still is one case
where the TC request can be stalled for a very short duration while stores from L1D to the L2 RAM are taking
place.

This “stalled” case occurs when the L1D is storing data to the same block of data in the L2 cache as the TC is
attempting to access. The blocks of data in L2 consists of contiguous groups of 32 words aligned at 32-word
boundaries. When both the L1D and TC are operating on the same block of data in L2, the L1D has priority even if
the “P” bit is set.

Since this priority inversion is bounded by the time it takes for the L1D to complete writing 32 words to L2 memory
(256 cycles assuming bytes are written or approximately 1.1 µs for a 225-MHz DSP clock rate).

It is recommended, as good practice, to avoid this delay by design. This can be accomplished simply by locating
the current buffer on which the DSP is operating in a different 32-word aligned, 32-word block of data of L2 RAM
than the current buffer on which the EDMA is transferring (through TC).

EMIF: Control Signals Not Inactive Before Asserting HOLDA

On all silicon revisions of C6713/C6713B, when the HOLDA signal is asserted in an EMIF clock cycle, the EMIF
deasserts its control signals. This deassertion may cause the control signals to float in the asserted state as well as
cause undesired memory accesses.

To prevent the possible actions caused by the EMIF deasserting its control signals, connect a weak pullup resistor
(1 kΩ) to each CE pin where the HOLDA signal is used.

I2C: Bus Busy Bit Does Not Reflect the State of the I2C Bus When the I2C is in Reset

On C6713B silicon revision 2.0 and C6713 silicon revision 1.1, the bus busy (BB) bit indicates the status of the I2C
bus. The BB bit is set to “1” by a START condition (bus is busy) and set to “0” by a STOP condition (bus is free).
The I2C peripheral cannot detect a START or STOP condition when it is in reset (IRS bit set to “0”); therefore, the
BB bit will keep the stat it was in when the I2C peripheral was placed in reset (when IRS bit is set to “0”) instead of
reflecting the actual I2C bus status. The BB bit stays in that state until the I2C peripheral is taken out of reset (IRS
bit set to “1”) and a START or STOP condition is detected on the I2C bus. When the device is powered up, the BB
bit stays stuck at the default value of “0” until the IRS bit is set to “1” (taking the I2C peripheral out of reset). After
the IRS bit is set to “1”, the START or STOP condition can be captured in the BB bit.

For multi-master systems, be aware that the BB bit does not reflect the bus status until the I2C peripheral is out of
reset (IRS set to “1”) and the first START or STOP condition is detected. Before initiating the first data transfer with
the I2C peripheral, follow this sequence:

SPRZ191JTMS320C6713, TMS320C6713B Silicon Errata

14

1. After taking the I2C peripheral out of reset (IRS bit set to “1”), wait a certain period to detect the actual
bus status before starting the first data transfer. [The period should be set longer than the total time it
takes for the longest data transfer in the application.] Waiting this amount of time after the I2C comes
out of reset should ensure at least one START or STOP condition occurred on the I2C bus and captured
by the BB bit. After this period, the BB bit will correctly reflect the state of the I2C bus.

2. Poll the BB bit and verify that BB = 0 (bus not busy) before proceeding to the next step.

3. Begin data transfers.

4. Do not reset the I2C peripheral between transfers so that the BB bit reflects the actual bus status. If the
I2C peripheral must be reset between transfers, repeat steps 1 to 3 every time the I2C peripheral is
taken out of reset (IRS bit set to “1”).

I2C: Addressed-As-Slave (AAS) Bit is not Cleared Correctly

On C6713B silicon revision 2.0 and C6712 silicon revision 1.1, the addressed-as-slave (AAS) bit indicates that the
I2C peripheral has recognized its own slave address on the I2C bus. In normal (proper) operation for both 7- and
10-bit addressing modes, the AAS bit has the capability to know that its own I2C peripheral has been addressed as
a slave and is now capable of transferring/receiving. Also, in normal operation for both addressing modes, the AAS
bit is subsequently cleared by receiving a STOP condition or by a slave address different from the I2C peripheral’s
own slave address.

In the 7-bit addressing mode, the AAS bit is cleared when receiving a NACK, a STOP condition, or a repeated
START condition. The AAS bit is not cleared by receiving a slave address different from the I2C peripheral’s own
slave address.

In the 10-bit addressing mode, the AAS bit is cleared when receiving a NACK, a STOP condition, or by a slave
address different from the I2C peripheral’s own slave address. The AAS bit is not cleared by a repeated START
condition.

For either address mode, the AAS bit is properly set when addressed as a slave.

The only divergence from normal operation is how the AAS bit is cleared in either address modes.

Note that the AAS bit is set correctly when the I2C peripheral is addressed as a slave for both addressing modes.
Also, take into account that when the AAS bit is cleared, the I2C peripheral is no longer addressed as a slave,
regardless of addressing mode.

EMIF: Data Corruption can Occur in SDRAM When the HOLD Feature is Used

On all silicon revisions of C6713/C6713B, data can be corrupted in the SDRAM found on the EMIF when the
HOLD features is used. When the SDRAM refresh counter, found in the EMIF, expires around the same time a
HOLD request is asserted, the DSP starts a refresh of the SDRAM. Before the tRFC specification is met, the DSP
generates a DCAB command and asserts HOLDA, thus violating the tRFC specification for SDRAM.

Since both the DSP and the other processor can act as a master, external arbitration logic is needed. Three
options for providing external arbitration logic exist:

• Program the arbitration logic to take care of SDRAM refresh. Disable refresh on DSP. Since the DSP is no
longer responsible for refresh of SDRAM, the arbitration logic ensures tRFC specification is not violated.

• Use one of the DSP internal timers to provide an output signal to the arbitration logic that indicates refresh
is pending. The arbitration logic would then be responsible for de-asserting HOLD and starting its own

SPRZ191JTMS320C6713, TMS320C6713B Silicon Errata

15

timer to estimate when the refresh operation has completed. Once the timer within the arbitration logic
expires, the arbitration logic should assert HOLD if needed.

• Use two of the DSP internal timers to output two signals that indicate the start and end of a refresh
operation to the arbitration logic. The arbitration logic would then be responsible for de-asserting HOLD
between the start and end of a refresh operation.

RESET Pin Has No Internal Pullup Resistor

On the C6713B silicon revision 2.0, the RESET pin does not have an internal pullup resistor.

When designing a new PCB using C6713B silicon revision 2.0, either incorporate a voltage supervisor that drives
when in the inactive state (RESET = 1) or include an external pullup resistor on the RESET pin.

Boundary Scan: IDCODE is Only Loaded Onto Instruction Register When TRST Becomes Inactive

The IDCODE instruction is loaded into the instruction register only when the Test Logic Reset state is entered by
transitioning TRST from low to high, but not when the Test Logic Reset state is entered by holding TMS high and
clocking TCK five times.

JTAG, Clock/PLL Oscillator, McBSP0/1, and TIMER1: MCBSP1DIS Control Bit (DEVCFG.0) Affects
IPUs/IPDs on Specific Peripheral Pins

On the C6713B silicon revision 2.0, if a 1 is written to the MCBSP1DIS control bit (bit 0) of the DEVCFG register,
the pins listed in Table 2 lose their internal pullup or pulldown resistor and external resistors must be added.

If the pins that are listed in Table 2 are not continuously driven after DEVCFG.0 = 1, an external 10-kΩ pullup or
pulldown resistor is required to maintain a valid logic level.

Table 2. IPU/IPD Condition of JTAG, Clock/PLL Oscillator, McBSP0, McBSP1, and
Timer1 if DEVCFG.0 = 1

PIN NAME IPU/IPD DESCRIPTION

JTAG Pins

If DEVCFG.0 = 1:

TRST

CAUTION:
If DEVCFG.0 = 1, TRST must be externally pulled down to ensure the device scan chain logic
does not become active. Even if DEVCFG.0 = 0 and TRST is routed out and not driven, it
is recommended that this pin be externally pulled down.

IPD Removed

TMS IPU Removed

TDO IPU Removed

TDI IPU Removed

TCK IPU Removed

SPRZ191JTMS320C6713, TMS320C6713B Silicon Errata

16

Table 2. IPU/IPD Condition of JTAG, Clock/PLL Oscillator, McBSP0, McBSP1, and
Timer1 if DEVCFG.0 = 1 (Continued)

PIN NAME IPU/IPD DESCRIPTION

Clock/PLL Oscillator Pins

If DEVCFG.0 = 1:

CLKIN IPD Removed

CLKOUT3 IPD Removed

McBSP0 Pins

If DEVCFG.0 = 1:

CLKR0/ACLKR0 IPD Removed

CLKX0/ACLKX0 IPD Removed

FSR0/AFSR0 IPD Removed

FSX0/AFSX0 IPD Removed

McBSP1 Pins

If DEVCFG.0 = 1:

CLKX1/AMUTE0 IPD Removed

FSX1 IPD Removed

Timer1 Pins

If DEVCFG.0 = 1:

TINP1/AHCLKX0 IPD Removed

EMIF Big Endian Mode Correctness (HD12 = 0) is Not Usable Unless All CE Spaces Have the Same Width

On the C6713B silicon revision 2.0, when using EMIF big endian mode correctness (HD12 = 0) and the device is in
big endian mode (HD8 = 0), data corruption can occur if CE spaces are configured to different widths.

No data corruption occurs:

• If CE spaces have the same width when using EMIF big endian mode correctness (HD12 = 0) and the
device is in big endian mode (HD8 = 0)

• When little endian mode (HD8 = 1) is selected

• When big endian mode without EMIF big endian correctness (HD8 = 0, HD12 = 1) is selected

2.2 C6713B Silicon Revision 2.0 Known Design Exceptions to Functional Specifications

There are no known advisories for the TMS320C6713B silicon revision 2.0.

SPRZ191JTMS320C6713, TMS320C6713B Silicon Errata

17

3 C6713 Silicon Revision 1.1 Known Design Exceptions to Functional Specifications and
Usage Notes

3.1 Usage Notes for C6713 Silicon Revision 1.1

All usage notes for silicon revision 1.1 still apply and have been moved up to the Usage Notes for C6713B Silicon
Revision 2.0 section of this document except the “EMIF/HPI: EMIF Output and HPI Signals Can Drive During
Reset” usage note, which is applicable to silicon revision 1.1 only.

EMIF/HPI: EMIF Output and HPI Signals Can Drive During Reset

On silicon revision 1.1 of C6713, the EMIF output pins and HPI pins can drive the bus for a small amount of time
while the external RESET signal is asserted. In normal operation, the EMIF output and HPI pins should be 3-stated
when the external RESET signal is low until the internal reset signal is deasserted. However, the actual C6713
silicon revision 1.1 behavior is as follows:

• The EMIF output pins become properly 3-stated on the first SYSCLK3 clock edge after the external reset
deassertion. Note that SYSCLK3 oscillates at CLKIN/2 by default after the external reset signal is
deasserted.

• The HPI pins become properly 3-stated three cycles of CLKIN/8 frequency after the external RESET signal
is asserted (CLKIN is the input clock to the DSP).

However, if these EMIF output and HPI signals are 3-stated at the time that the external reset goes low, these
signals stay 3-stated and not driven.

This behavior has been corrected in silicon revision 2.0.

3.2 C6713 Silicon Revision 1.1 Known Design Exceptions to Functional Specifications

HPI: HPID Read/Write Accesses Must Be Terminated With a Fixed-Mode AccessAdvisory 1.1.1

Revision(s) Affected: 1.1

Details: The autoincrement HPI read utilizes an internal buffer and prefetch mechanism to increase
throughput. The prefetch mechanism may conflict with the internal buffer flush that is caused
by HPIA or HPIC write. This conflict may cause the next autoincrement read access to return
stale data in the first few words.

This conflict may also cause the HPI to lock up (i.e., HRDY staying high indefinitely)

Workaround: Terminate every autoincrement HPID read with a fixed-mode HPID read, and terminate every
HPID write with a fixed-mode HPID write. For example, to read 14 words in autoincrement
mode, do not do the following:

HPIA write
HPID++ read (1st word, autoincrement)
HPID++ read (2nd word, autoincrement)
...
HPID++ read (14th word, autoincrement)
HPIA write (set up HPIA for next access)
HPID++ read
...

But, do this instead:

SPRZ191JTMS320C6713, TMS320C6713B Silicon Errata

18

HPIA write
HPID++ read (1st word, autoincrement)
HPID++ read (2nd word, autoincrement)
...
HPID++ read (13th word, autoincrement)
HPID read (14th word, FIXED-MODE)
HPIA write (set up HPIA for next access)
HPID++ read
...

This brings the HPI to a clean state after an autoincrement access. The next HPIA / HPIC
write will not conflict with in-flight data from previous HPID++ read/write.

SPRZ191JTMS320C6713, TMS320C6713B Silicon Errata

19

RESET Pin Has Internal Pullup ResistorAdvisory 1.1.3

Revision(s) Affected: 1.1

Details: The RESET pin has an internal pullup resistor with a typical value of 18 kΩ. This pullup
resistor is problematic because it is stronger than the weak pulldown (10 µA near 1 V) typical
of most voltage supervisors.

Workaround: Any new PCB designs should incorporate either a voltage supervisor with an active drive on
RESET or include an external pullup resistor on the RESET pin. The internal pullup resistor
has been removed in silicon revision 2.0.

PLL: Incorrect PLL Controller Peripheral Identification (PID) Register ValueAdvisory 1.1.4

Revision(s) Affected: 1.1

Details: The PLL Controller Peripheral Identification (PID) value is incorrect. The PLL PID register
currently reads CLASS = 0x01, TYPE = 0x10. It should read CLASS = 0x08, TYPE = 0x01.

Workaround: None. This will be corrected in a future silicon revision.

I2C: STOP/START Condition Causes Data Corruption in Slave Transmit ModeAdvisory 1.1.5

Revision(s) Affected: 1.1

Details: When the I2C is configured as a slave transmitter, a STOP condition followed by a START
condition may cause transmit data to be corrupted. In normal operation, the I2C transmitter
sets the I2CXRDY bit when the data in the I2CDXR register is copied to the ICXSR register.
Upon receiving I2CXRDY, the DSP services the I2C by putting the next byte (byte B) in
I2CDXR. The write of “byte B” to I2CDXR clears I2CXRDY. If, at this point, the I2C receives a
STOP condition, I2CXRDY is incorrectly set. This incorrect setting of I2CXRDY does not
cause either an interrupt (I2CINT) or EDMA event (I2CXEVT) to be generated. The
untransmitted data (byte B) is left in the I2CDXR register. Now if the I2C receives a new
START condition and is addressed as a slave-transmitter, it generates an interrupt and EDMA
event (I2CINT/I2CXEVT) because I2CXRDY=1 (incorrectly set by the former STOP condition).
The DSP will write over the untransmitted data (byte B) residing in I2CDXR with the new data
(byte C).

The following example outlines this scenario. The slave I2C has a 6-byte message that needs
to be delivered to the external master. These 6 bytes will be labeled 0 to 5, with byte 0 being
the first byte transferred. The external master generates a START condition and addresses
the I2C as a slave transmitter. Upon receiving its own address, the I2C issues the interrupt
signal I2CINT (and EDMA event I2CXEVT), and the first byte (”byte 0”) is loaded onto
I2CDXR:

SPRZ191JTMS320C6713, TMS320C6713B Silicon Errata

20

I2C: STOP/START Condition Causes Data Corruption in Slave Transmit Mode (Continued)

Slave buffer: ”0” 1 2 3 4 5 (”0” loaded into ICDXR for transfer)
Slave ICDXR: 0
Master reads: −−
Master input read buffer: −−

Assume the master sees this 6-byte data as two 3-byte packets. The master reads in three
bytes first. After copying the contents of I2CDXR to I2CXSR, I2CXRDY is set and causes
I2CINT/I2CXEVT to allow the next bytes to be loaded onto I2CDXR again. After “byte 2” is
transferred, the master sends a NACK to the I2C. As a result, the I2C does not copy “byte 3”
(prefetched data) from I2CDXR to I2CXSR because the Slave I2C does not need to send any
more data:

Slave buffer: ”0 1 2 3” 4 5 (”3” loaded into ICDXR for transfer)
Slave ICDXR: 3
Master reads: 0 1 2
Master input read buffer: 0 1 2

The master code is structured to process these three bytes before proceeding; therefore, the
Master I2C creates a STOP condition. Upon the STOP condition, the I2C incorrectly sets
I2CXRDY. In this case, I2CINT/I2CXEVT is not generated:

Slave buffer: ”0 1 2 3” 4 5 (”3” was loaded into ICDXR for transfer)
Slave ICDXR: 3
Master reads: −−
Master input read buffer: 0 1 2

The master issues another START condition and addresses the I2C as a slave transmitter.
Because I2CXRDY is set (caused by the former STOP condition) and the I2C detects its own
address, I2CINT/I2CXEVT is generated and the DSP services the I2C by loading the next data
into the I2CDXR. This overwrites the original data in the I2CDXR:

Slave buffer: ”0 1 2 3 4” 5 (”4” now loaded into ICDXR for transfer)
Slave ICDXR: 4 (overwrites ”3”)
Master reads: −−
Master input read buffer: 0 1 2

The master now reads the next three bytes, but it gets invalid data:

Slave buffer: ”0 1 2 3 4 5”
Slave DXR: Y (Y is invalid data)
Master reads: 4 5 X (X is invalid data)
Master input read buffer: 0 1 2 4 5 X

(Internal reference number: 1454)

Workaround: When the I2C is used as a slave transmitter, the user should provide a predefined handshake
protocol with this STOP/START behavior in mind. The master and slave should know exactly
what byte is being transmitted and received. The user can put dummy data in the slave buffer
in between each transfer packet.

SPRZ191JTMS320C6713, TMS320C6713B Silicon Errata

21

EDMA: EDMA Blocked from Accessing L2 During Long String of Stores to the Same Bank
in L2 RAM

Advisory 1.1.14

Revision(s) Affected: 1.1

Details: If the CPU is storing data to a bank of L2 memory on the same cycle that the EDMA is trying
to access the same bank, the CPU will always be given priority. (For example, the EDMA will
be blocked from accessing that bank until the CPU access is complete.) Access will be
programmable in silicon revision 2.0. (Note that the EDMA and CPU can access different
banks of L2 on the same cycle.) If the CPU stores to the same bank on every cycle for a long
period of time, an EDMA access to that bank can be blocked long enough to miss a hard
deadline.

L2 memory is organized as 4 banks with each bank 64 bits wide (see Figure 6).

0x00000000 0x00000004

0x000000240x00000020

Bank 0

0x0000000C

0x0000002C

0x00000008

0x00000028

Bank 1 Bank 3Bank 2

0x00000030

0x00000010 0x0000001C

0x0000003C0x00000034

0x00000014

0x00000038

0x00000018

0x0003FFE0 0x0003FFE4 0x0003FFE8 0x0003FFEC 0x0003FFF0 0x0003FFF4 0x0003FFF8 0x0003FFFC

NOTE: Each address in Figure 6 is an address for a 32-bit word.

Figure 6. L2 Memory Organization

A conflict occurs when the CPU is trying to access a bank of L2 on the same cycle as the
EDMA is trying to access the same L2 bank. For example, if the CPU were trying to store a
32-bit word to location 0x0000 0000, and on the same cycle the EDMA is trying to transfer a
32-bit word at location 0x0000 0024 to the McASP to be transmitted, then a conflict would
occur since both are trying to access Bank0. In silicon revision 1.1, the CPU will always get
priority over the EDMA, so the EDMA has to wait for the store to 0x0000 0000 to complete
before accessing location 0x0000 0024.

Waiting for a single store to complete would only delay the EDMA access by several cycles,
which is not normally a problem. However, a problem can occur when the CPU continually
stores data to the same bank of L2 for a long period of time. The problem occurs when the
EDMA has a hard deadline to meet, e.g., it must transfer a word from L2 to the McASP every
5 µs. If the duration of the sequence of continuous stores is longer than 5µs, then the EDMA
will be blocked from accessing that bank of L2 long enough to miss the deadline and a
transmit underrun error will occur in the McASP.

SPRZ191JTMS320C6713, TMS320C6713B Silicon Errata

22

EDMA: EDMA Blocked from Accessing L2 During Long String of Stores to the Same Bank in L2 RAM (Continued)

It should be noted that a series of CPU stores that causes a real-time system problem (an
EDMA transfer to miss a deadline) is most likely to occur in looped code. For example, if a
particular code segment caused the EDMA to be blocked for four cycles, a system problem
caused by the delayed EDMA transfer would likely not occur. If that same code segment were
repeated in a loop of 1000 iterations, then the EDMA transfer would be blocked for a total of
(4 * 1000 =) 4000 cycles. In this latter case, the EDMA transfer is more likely to miss a hard
deadline causing a system problem.

There are four criteria that must be met in order for a loop to continually block a bank of L2. All
of the conditions must be met for the problem to occur.

1. The total duration of time the EDMA is blocked (or the total duration of a loop, in the case
of looped code) is close to or longer than the hard deadline.

2. In a given sequence of code, the total number of stores must be greater than or equal to
the number of cycles on which no store occurs. In the case of looped code, in one iteration
of a loop, the total number of stores must be greater than or equal to the number of cycles
on which no store occurs, or, in other words, the length of one iteration in cycles is less
than or equal to twice the number of stores.

Figure 7 outlines this scenario. Note that the STW instruction represents a store of any word
size (32-, 16-, or 8-bit).

SPRZ191JTMS320C6713, TMS320C6713B Silicon Errata

23

EDMA: EDMA Blocked from Accessing L2 During Long String of Stores to the Same Bank in L2 RAM (Continued)

STW

II STW

II ADD

Cycle 1

Bad Sequence

Cycle 2

II SUB

II ADD

ADD

Cycle 3
II MV

II B

ADD

II ADD

Cycle 3

II ADD

II B

Bad Sequence

ADD

Cycle 2

ADD

II MV

II SUB

II ADD

Cycle 1 II STW

II ADD

STW

ADD

II MPY

II SUB

Cycle 4

II SUB

II MPY

II ADD

Cycle 4

Cycle 3

ADD

II B

Good Sequence

ADD

II ADD

II SUB

II MV

Cycle 2

ADD

II ADD

II STWCycle 1

STW

Cycle 5

II ADD

MPY

II ADD

Total Cycles: 3
Total Stores: 2

Total Cycles: 4
Total Stores: 2 Total Stores: 2

Total Cycles: 5

Figure 7. Pseudo Code Example With Parallel Stores (Criteria 2)

In most looped code, more than one instruction would likely be executed on each cycle,
i.e., instructions would be executed in parallel. In this case, as long as a store is one of the
instructions being executed in parallel on a particular cycle, that cycle counts as a cycle on
which a store occurs. Instructions with parallel bars (||) at the beginning of the line of
assembly execute in parallel with instructions on the preceding line.

In the C6000 core, up to 2 stores can occur per cycle. In this case, each store must be
counted individually. That is, even though both stores occur on the same cycle, they still
must be counted as two stores. All other rules apply (see Figure 7).

SPRZ191JTMS320C6713, TMS320C6713B Silicon Errata

24

EDMA: EDMA Blocked from Accessing L2 During Long String of Stores to the Same Bank in L2 RAM (Continued)

3. All stores in the loop must be to the same bank of L2. If there are any stores to another
bank, this will free the first bank long enough for the EDMA access to get in (see
Figure 8).

A0 = 0x00000000
A2 = 0x00000020
A8 = 0x00000008

STW A1, *A0 Store to
Bank 0

II ADD

II ADD

Cycle 1

Bad sequence

II SUB

ADD

Cycle 2 II STW A1, *A0 Store to
Bank 0

II MV
Cycle 3

STW A1, *A2

II B

Store to
Bank 0

II ADD

STW A1, *A8

Cycle 3

II ADD

II B

II MV

Store to
Bank 1

II STW A1, *A0

II ADD

Cycle 2

ADD

II SUB

Good sequence

STW A1, *A0

Cycle 1 II ADD

Store to
Bank 0

Store to
Bank 0

Total Cycles: 3
Total Stores: 3 Total Stores: 3

Total Cycles: 3

Figure 8. Pseudo Code Example Stores to Specified Banks (Criteria 3)

In the case of two stores occurring on the same cycle, in parallel, the same rules apply. If
both stores are to the same bank (and there are no other stores in the sequence to a
different bank), then a problem may occur. If each of the parallel stores is to a different
bank, then the problem cannot occur.

4. There are no loads that miss in L1 (therefore access L2). It does not matter which bank
the load is accessing (see Figure 9).

A load from L2 provides enough of a gap to allow the EDMA to access L2. The good
sequence would not cause a problem even if the load were executed in parallel with one
of the stores, as long as the load occurred somewhere in the sequence. Notice that
although the good sequence satisfies criteria 2 and 3, it would not cause a problem.

SPRZ191JTMS320C6713, TMS320C6713B Silicon Errata

25

EDMA: EDMA Blocked from Accessing L2 During Long String of Stores to the Same Bank in L2 RAM (Continued)

Total Cycles: 3
Total Loads: 1
Total Stores: 2

A0 = 0x00000000
A2 = 0x00000020
A8 = 0x00000008

STW A1, *A0

II ADD

II ADD

Cycle 1

Bad Sequence

II SUB

ADD

Cycle 2 II ADD

II MV
Cycle 3

STW A1, *A2

II B

II ADD

STW A1, *A2

Cycle 3

II ADD

II B

II MV

II LDW *Ax, A1

II ADD

Cycle 2

ADD

II SUB

Good Sequence

STW A1, *A0

Cycle 1 II ADD

Bank # does
not Matter

Total Cycles: 3
Total Stores: 2
Total Loads: 0

Figure 9. Pseudo Code Example Stores and Loads (Criteria 4)

Workaround: Note: This will be fixed in silicon revision 2.0. The fix in silicon revision 2.0 will require setting a
hardware bit to avoid the problem discussed in this erratum. The workaround discussed in this
erratum is not necessary if using silicon revision 2.0.)

Step 1

Determine the hard deadlines for the system of interest.

Step 2

Use the compiler switch −edma_warnN to find potential problem loops. The compiler switch
only checks for criteria 1 and 2.

For more detailed information on the compiler switch, see the Using the −edma_warnN
Compiler Switch to Detect a CPU L2 EDMA Lockout Application Report (literature number
SPRA916).

The −edma_warnN option was not available until the release of Code Composer Studio IDE
2.20.23.

SPRZ191JTMS320C6713, TMS320C6713B Silicon Errata

26

EDMA: EDMA Blocked from Accessing L2 During Long String of Stores to the Same Bank in L2 RAM (Continued)

Step 3

After Step 2, a list of potential problem loops now exists. The programmer must now examine
each of these potential problem loops to see if they meet the two additional criteria for being a
problem loop (remember that the compiler switch in step 2 only checked for criteria 1 and 2).
This is done by closely examining the source code and assembly output of that source code.

For more detailed information on how to interpret the source code and the assembly output of
that source code, see the Using the −edma_warnN Compiler Switch to Detect a CPU L2
EDMA Lockout Application Report (literature number SPRA916).

Step 4

The final step is to fix the remaining problem loops. There are a number of fixes that can be
implemented, and which fix to implement is highly system dependent. Each fix attempts to
break one of the criteria of a problem loop. Only one fix is needed for each loop.

A. Reduce the duration of the loop by breaking into smaller loops. If a particular problem loop
has a length of 4 cycles (determined by looking at the software pipeline kernel in the
assembly file), and the loop runs 200 times, then the total loop duration is ~800 cycles. If
the deadline is 586 cycles, then loop could cause a problem (assuming the loop meets all
the other criteria). The workaround is to break the loop into four smaller loops of
50 iterations each. Then any one loop will only run for 200 cycles allowing the EDMA
transfer to complete between the smaller loops.

B. Try to break criteria 2. The quickest way to do this is to turn off optimization for the file
containing the problem loop (this is done in the File Specific Options for the file). Instead
of using the compiler switch −o3, use the compiler switch −o1 for the particular problem
file. This will cause the problem loop to not be software pipelined and less likely to meet
criteria 2. The downside to this fix is that all the loops in the particular file will be
un-optimized, not just the problem loop.

C. Try to break criteria 3. One way of doing this is to rearrange the data structures so that a
loop does not have to stride an array by a factor of 8. The other way of implementing this
is to possibly combine two different loops so that the array stride becomes a different
factor other than 8.

D. Try to break criteria 4. One way of doing this is to place a dummy load in the loop.

http://www-s.ti.com/sc/techlit/spra916

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright  2005, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

	Title Page - SPRZ191J
	REVISION HISTORY
	Contents
	1 Introduction
	1.1 Quality and Reliability Conditions
	TMX Definition
	TMP Definition
	TMS Definition

	1.2 Revision Identification

	2 C6713B Silicon Revision 2.0 Known Design Exceptions to Functional Specifications and Usage Notes
	2.1 Usage Notes for C6713B Silicon Revision 2.0
	2.2 C6713B Silicon Revision 2.0 Known Design Exceptions to Functional Specifications

	3 C6713 Silicon Revision 1.1 Known Design Exceptions to Functional Specifications and Usage Notes
	3.1 Usage Notes for C6713 Silicon Revision 1.1
	3.2 C6713 Silicon Revision 1.1 Known Design Exceptions to Functional Specifications

	Advisory 1.1.1 HPI: HPID Read/Write Accesses Must Be Terminated With a Fixed-Mode Access
	Advisory 1.1.3 RESET Pin Has Internal Pullup Resistor
	Advisory 1.1.4 PLL: Incorrect PLL Controller Peripheral Identification (PID) Register Value
	Advisory 1.1.5 I2C: STOP/START Condition Causes Data Corruption in Slave Transmit Mode
	Advisory 1.1.14 EDMA: EDMA Blocked from Accessing L2 During Long String of Stores to the Same Bank in L2 RAM
	IMPORTANT NOTICE

