Speed Up Development With
C2000™ Real-Time MCUs Using
SysConfig

Wip TEXAS INSTRUMENTS

Nima Eskandari
Applications Engineer
C2000 Real-Time MCUs

-+
| &

This white paper explains how the C2000 SysConfig

graphical user interface (GUI) tool is developed to facilitate
the development process for designers.

At a glance

AN C2000 SysConfig system initialization

& code generation can speed up your
software development
1 Reliable and pre-verified code generated by the

C2000 SysConfig tool is the main feature that
facilitates software development for designers.
Device configuration errors are caught by tool
and the developer is notified of the unsupported
setting.

AN Integrated PinMux tool and PinMux
initialization code generation closes
the gap between hardware and
2 software designers
The C2000 SysConfig tool has built-in support
for solving the device PinMux against system
requirements, and provides device visualization

aids.
AN Portable device initialization and
= code generation allows developers to

create flexible and easily modifiable

3 code

The device configuration developed in C2000
SysConfig can be easily ported between device
families. Also modifications in the device
configuration can be easily propagated through
the rest of the already developed application
code.

Designers utilizing C2000™ Real-Time MCU can
configure their device using C2000 SysConfig that
generates reliable code and visual aids to simplify and
speed up the development process. C2000 SysConfig
catches incorrect device initialization settings which
significantly facilitates the debugging process.

Speed Up Development With C2000™ Real-Time MCUs Using SysConfig

Developing embedded software for initializing an MCU
can be difficult for inexperience and experienced
designers. New embedded devices with more advanced
features and peripherals enter the market every year,
making the task of configuring the device much more
demanding. Small mistakes in configuring the device and
its peripherals can cause the development process to
slow down and frustrate the designers.

With advancements in embedded technology, both

the size and capabilities of the embedded devices

have grown. This makes the task of device recourse
management very important. Knowing which peripherals
and which device pins are used and which ones are
available for further development is useful for both
hardware and software designers.

Selecting the correct family of devices for a specific
application can also be difficult because the requirement
for the system can change. Portability of initialization
settings and embedded software between device
families eases the minds of developers, because

they can reuse their previous investment in software
development when migrating between different devices.

This white paper explores how the C2000 SysConfig
tool can simplify the tasks that embedded hardware and
software developers face when designing a system with
C2000 real-time MCUs.

C2000 SysConfig system initialization code
generation can speed up your software
development

Developing initialization code is the first step in software
development for an embedded application. This can

be a tedious task and many mistakes are made due

to small coding errors and not following the exact
instructions given in the device's technical reference

October 2021

manual. Once the device is correctly initialized, the
designer can continue on to develop the software for
their specific application. Confidence in the correctness
of the device initialization is much higher when the

code developed has been previously verified by device
experts. C2000 real-time MCUs can be initialized
through C2000 SysConfig which generates reliable and
pre-verified code for configuring your device. Device
configuration errors are caught by the tool, and the
developer is notified of the unsupported settings. C2000

C2000Ware SDK
C2000 Real-Time MCUs

C2000 SysConfig

SysConfig tool can also configure the device PinMux and
visualize the device pins for each package.

C2000 SysConfig is delivered through C2000Ware
(C2000 real-time MCU software development kit) and
can be used with Code Composer Studio™ (CCS) IDE's
built-in SysConfig (System Configuration) tool or with
any other supported IDE through the SysConfig tool's
standalone version.

Code Composer Studio™ IDE

SysConfig Tool PinMux Tool

C2000™

Real-Time Control
Microcontrollers

Compilers
Source code editor i3 Texas

Examples

example.syscfg

Figure 1. C2000 SysConfig in C2000Ware.

Device Support

Peripheral configuration

The C2000 SysConfig allows designers to configure their
peripherals through the SysConfig GUI.

Device peripherals are listed in the C2000 SysConfig tool
so the designer is aware of the peripherals available in
their specific device package. The configurable options
for each peripheral is listed, which allows the designer
to see all the different available modes. The device

level inter-connects are displayed in the tool that shows
the available list of signals for each MUX previously
described only in the technical documentation.

Speed Up Development With C2000™ Real-Time MCUs Using SysConfig

Project build environment
Debugger + many other features

INSTRUMENTS

Peripheral to Configure

Configuration Options

= X « €& - Software » CLB

ASYSCTL
A I @myCLBO o

AN
CLB

CLB INPUTXBAR Name myCLBO
CLB OUTPUTXBAR CLB Instance CLB1 -
GLEXRAR Enable CLB o
cm-2C
Overriding Outputs ! ~
CPUTIMER
DAC Lock Overriding Outputs Setting [m]
ECAP HLC Generates NMI [m}

ECAT
EMIF
EMIF2
EPWM

Clock Prescalar CLB input prescalar configuration -

Data Exporting Through SPI Buffer ~
EPWMXBAR
EQEP

ERAD
ETHERNET

Inputs Used Input 0, Input 1 -

CLB Input 0 CLB Input Configuration Input 0 v

clelelelolelelclelelelclelelelelerelerelelerelelele (€ exe

FSIRX Input Type Input 0 Use Global Mux
FSITX Global Mux Input Input 0 EPWM1A (CLB 1-4)
GPIO Enable Svnc Input 0 m]
12¢ I Input Filter Input 0 INo filtering] gt
INPUTXBAR
GPREG Initial Value Input 0 No filtering v

MCAN Jout Pioeline Inout 0 Rising edge detect
McBSP U Fiperne g Falling edge detect
OTHER Any edge detect
OUTPUTXBAR TCBTAPUT T CLB TpUTC TRPUTT
PMBUS

Register Interrupt Handler a

Figure 2. Peripheral configuration.

More complicated peripherals such as the Configurable
Logic Block (CLB), which is capable of creating custom
logic inside the device, or the Dual Code Security Module
(DCSM), which is used of securing the customer's
intellectual property, are also included in the C2000
SysConfig ecosystem. These add-on tools will show up

October 2021

automatically in the tool and the designer has the options
of using them in their application. The additional auto-
generated artifacts from these tools will be presented to
the designer seamlessly.

CCS Project
(SysConfig based Project)

C2000 SysConfig

« Configured through .syscfg file inside the project

« Graphical User Interface to configure the 2000
Peripherals

« Other application specific files
. onfig tool files

o g

oard.h H
 Other SysConfig Utilities %

Ex: CLB Tool Files

Ex: Security Tool Files Generated Files From C2000 SysConfig

A\
\‘:I: board.c board.h Pinmux.csv

CLB Tool

€2000 Application Code
o main.c

clb_config.c clb_sim.cop clb.dot
Applicati - - ——

Code Code Diagram

ion

Security (DCSM) Tool

LT N N
[desm.cmd dcsm.asm

Figure 3. C2000 SysConfig CCS project overview.

Speed Up Development With C2000™ Real-Time MCUs Using SysConfig

Code generation

Automatic code generation allows developers to be
confident in the correctness of their initialization code
for their embedded application. As configurable options
are changed, the designers can view the differences

in the auto-generated code. This allows developers to
understand how the embedded software changes when
the requirements for the device configuration are altered.

C2000 SysConfig's auto-generated code is structured so
that the designer can pick which section of the code
they wish to add to their application. The designer can
choose to add all of the auto-generated code or they
can choose to use only the PinMux initialization feature,
or they can choose to use only the initialization for a
specific peripheral. This eliminates the concerns that

an experienced designer would have for adopting this
tool, when they already have existing and verified code.
Designers who already have existing code, can compare
their initialization code with the auto-generated one by
C2000 SysConfig as a verification step since the auto-
generated code was designed by C2000 real-time MCU
experts.

October 2021

Automatic Code Geneation

48
49
50
1
52
53
54
55
56
57
58
59
60
61
62
63

u

}

void CLB_init(){
//myCLB@ initialization
CLB_setOutputMask(myCLBO_BASE,

(0 << @), true);
CLB_enableOutputMaskUpdates (myCLBO_BASE);
CLB_disableSPIBufferAccess(myCLBO_BASE);
CLB_configSPIBufferLoadSignal(myCLB@_BASE, ©);
CLB_configSPIBuffershift(myCLBO_BASE, 0);

//myCLB@ CLB_IN@ initialization

CLB_configlLocalInputMux(myCLB@_BASE, CLB_IN®, CLB_LOC
CLB_configGlobalInputMux(myCLB@_BASE, CLB_IN®, CLB_GL
CLB_configGPInputMux(myCLBO_BASE, CLB_IN®, CLB_GP_IN_

= - > —INGS -
CLB_disableInputPipelineMode(myCLBO_BASE, CLB_IN®);
CLB_enableInputPipelineMode(myCLB@_BASE, CLB_IN®);

T
67
68
69
70
71
72
73
74
75
76
77
78
79

Changed Configurable

48

& myCLBO [n] 49

50

Name myCLBO 51

52

CLB Instance CLB1 v i

Enable CLB O 54

Overriding Outputs None v :Z

Lock Overriding Outputs Setting O 57

HLC Generates NMI O 58

59

Clock Prescalar CLB input prescalar configuration ~ ~ 60

61

. R 62

Data Exporting Through SPI Buffer 63
Inputs Used Input 0, Input 1 v

CLB Input 0 CLB Input Configuration Input 0 v -5

Input Type Input 0 Use Global Mux v Z;

Global Mux Input Input 0 EPWM1A (CLB 1-4) hd 69

Enable Sync Input 0 O 78

71

Input Filter Input 0 No filtering - 7

GPREG lInitial Value Input 0 0 A 73

—G Input Pipeline Input 0) ;:

76

CLB Input 1 CLB Input Configuration Input 1 ~ 77

78

Register Interrupt Handler O 79

Figure 4. Code generation and difference identification.
Speed Up Development With C2000™ Real-Time MCUs Using SysConfig

//myCLB@ CLB_IN1 initialization

CLB_configlLocalInputMux(myCLBO_BASE, CLB_IN1, CLB_LOC
CLB_configGlobalInputMux(myCLB@_BASE, CLB_IN1, CLB_GL
CLB_configGPInputMux(myCLB@_BASE, CLB_IN1, CLB_GP_IN_

CLB_selectInputFilter(myCLBO BASE, CLB_IN1, CLB_FILTE
CLB_disableInputPipelineMode(myCLBO_BASE, CLB_IN1);

CLB_setGPREG(myCLBO_BASE,0);
CLB_disableCLB(myCLB@_BASE);

October 2021

Error detection

Embedded devices often have many supported modes,
but the device must be configured exactly as instructed
by the technical documentation for each mode to
operate correctly. Also, the device silicon Errata
documentation notes the unsupported modes which
sometimes are missed by the designers.

It is common that the development process for
configuring a device is slowed down due to errors in the
designer's code. These errors could be due to mistakes
in programming when transferring knowledge from the
technical documentation into the application software.
C2000 SysConfig is capable of catching configuration
errors and notifying the user of the incorrect setup.

Also, similar to error generation, warnings are generated
as needed when a configuration is not necessarily wrong
but requires further attention.

Invalid Signal Connection Identified

Invalid Input Indetified

@ADD | BREMOVE ALL

CLB (1 of 8 Added)

@ myCLBO [u]
Name myCLBO

CLB Instance CLB1 v
Enable CLB O

Overriding Outputs None v

Lock Overriding Outputs Setting O
HLC Generates NMI O

@ Clock Prescalar CLB input prescalar configuration”

Enable Prescalar O

Enable Strobe Mode O

Tap Select Bit 0 v

156687
Prescale Value °The CLB prescale value must
be a valid 16-bit number

Data Exporting Through SPI Buffer ~
Inputs Used Input 0, Input 1 v

® cLs Input 0 CLB Input Configuration Input 0 g

Use Global Mux v

EPWM5B (CLB 5-8) A
°This CLB input is only

applicable for CLB 5-8

Input Type Input 0

Global Mux Input Input 0

Enable Sync Input 0 O
Input Filter Input 0 No filtering v
GPREG Initial Value Input 0 0 v

Figure 5. Error detection.

Speed Up Development With C2000™ Real-Time MCUs Using SysConfig

Device level dependencies

Device level dependencies can be missed by developers.
Not configuring all dependencies required for a
peripheral to operate correctly is a common mistake.
The C2000 SysConfig tool identifies the dependencies

in the device and ensures that these dependencies are
configured by the designer.

C2000 real-time MCUs are highly configurable and their
inter-connections, which reduces signal chain latency
and eliminates requirements for external components,
create dependencies between peripherals inside the
device. For example, the Analog-to-Digital Converter
(ADC), the enhanced Pulse Width Modulator (ePWM)
and Comparator Subsystem (CMPSS) could all be inter-
connected to one another inside the device.

Dependent Peripheral Identified

Selected Peripheral

Global Parameters Settings that affect all instances

Other Dependencies Vi
ASYSCTL Analog SysCtl ¥
Enable Temperature Sensor O
Lock Temperature Sensor Control .. [
Analog Reference Internal o
Analog Reference Voltage 2.5V -

DAC (1 of 2 Added)

(@DADD | §=REMOVE ALL

I @ myDACO]
Name myDACO
DAC Instance DACA hd
Reference Voltage ADC VREFHI reference voltage -
I Gain Made Gainsetto 1 w
Load Mode Load on next SYSCLK hl
EPWMSYNCPER Signal ePWM sync signal 1 -
Shadow Value 0
Enable Output O
Lock DAC Registers r b

Figure 6. [dentifying dependencies.

October 2021

Device level error detection

Error detection in the designer's configuration is NOT
limited to one peripheral at a time. Incorrect setups can
be detected across dependent modules. This ensures
that all dependent peripherals are configured correctly.

Dependent Peripheral Identified
Unsupported Mode due to Dependent

Peripheral’s Configuration

Global Parameters Settings that affect all instances B
Other Dependencies b

ASYSCTL Analog SysCtl ad

Enable Temperature Sensor O

Lock Temperature Sensor Control .. []

Analog Reference Internal v
qAnalug Reference Voltage 2.5\ -)_

| @myDAco [u]

Name myDACO

DACA *

DAC Instance

ADC VREFHI reference voltage -

Gain setto 2 w.
€ selected gain mode not supported

Load on next SYSCLK b

Reference Voltage

—(Gain Mode

Load Mode
EPWMSYNCPER Signal
Shadow Value 0

Enable Output O

Lock DAC Registers b

ePWM sync signal 1 h

Figure 7. Detecting errors in dependencies.

Integrated PinMux tool and PinMux
initialization code generation closes the gap
between hardware and software designers
Solving the device PinMux for a given application can be
a difficult task. Resource management, knowing which
peripherals and pins have been used and which ones are
free, is extremely important in determining if the MCU

is capable of all of the application's requirements. The
C2000 SysConfig tool has built-in support for device
PinMux, and can solve the device PinMux, and also
auto-generates PinMux initialization code along with a
summary CSV file. C2000 SysConfig will also visualize
the device package and show the used and free package
pins.

Speed Up Development With C2000™ Real-Time MCUs Using SysConfig

PinMux Summary CSV

Device Package PinMux Visualization
File name Category Include in build
board.c €2000 SysConfig o B
board.h €2000 SysConfig [) B
. Configuration
untitled.syscfg Seript B
4 Total Files @
F2838x
& (Device) 1%
F2838x_337hga “
(Part)
SWITCH (BETA)
(A
O ANMOITUOOMNOD
AN ONDOO -~ —
we
\Y
U 000
T 000
R 000
P [o] [Jelel 1 1] T J
N 990000 o0
M 0000 00000 00
LO00000 00000 00
K 0000 00000 00
JOO0O00 00000 60
H O 00 00000 000000
G 0000 00000
F ...8....... 0000
E 00000000000000000
D 00000000000000000
C 00000000000000000
B G000 000000
AQOOOOO 000000000000
o
_ J
@ Pin Available
® Pin Assigned
@ Power
@® Ground
Fixed (N/A)
Figure 8. Device package PinMux support.
October 2021

The pinmux.csv file bridges the gap between the hardware and software designer.

The Selected PinMux Option
for the Application

GPIO161 GPI0161 EPWM9A GPI0161 ESC_GP028 GPIO161 ESC_TX0_DATA3
GPIO162 GPI0162 EPWM9B GPIO162 GP10162 ESC_GP0O29 GPIO162 ESC_RX0_DV
_GPIO163 GPIO163 EPWM10A GPIO163 GPI0163 ESC_GPO30 _GPI0163 ESC_RXO_CLK
GPIO164 || GPI0O164 EPWM10B GPIO164 GPIO164 ESC_GPO31 GPIO164 ESC_RXO0_ERR

GPIOO I |5PI00 EPWM1A GPIOO 12CA_SDA GPIOO CM-12CA_SESC_GPIO GPIOO FSITXA_DO

GPIO1 GPI01 EPWM1B MFSRB GPIO1 12CA_SCL GPIO1 CM-I2CA_SESC_GPI1 GPIO1 FSITXA_D1

GPIO2 GPI02 EPWM2A GPIO2 OUTPUTXE I2CB_SDA GPIO2 ESC_GPI2 GPIO2 FSITXA_CLK

GPIO3 GPIO3 EPWM2B OUTPUTXEMCLKRB GPIO3 OUTPUTXE I2CB_SCL GPIO3 ESC_GPI3 GPIO3 FSIRXA_DO

GPIO4 FPIO4 EPWM3A GPIO4 OUTPUTXE CANA_TX GPIO4 MCAN_TX ESC_GPI4 GPIO4 FSIRXA_D1

GPIOS GPIOS EPWM3B MFSRA OUTPUTXEGPIOS CANA_RX GPIOS MCAN_RX ESC_GPI5 GPIOS FSIRXA_CLK

GPIO6 GPI06 EPWM4A OUTPUTXEEXTSYNCO GPIO6 EQEP3_A CANB_TX GPlO6& ESC_GPI6 GPIO6 FSITXB_DO

GPIO7 GPI07 EPWM4B MCLKRA OUTPUTXEGPIO7 EQEP3_B CANB_RX GPIO7 ESC_GPI7 GPIO7 FSITXB_D1

GPIO88 GPI088 EMIF1_A1IEMIF1_DQ GPIO88 GPIO88 EMIF1_DQM1 GPIO88 ESC_TX0_DATA1
GPIO89 |EP1089 EMIF1_A1¢EMIF1_DQ GPIO89 SCIC_TX GPIO89 EMIF1_CAS GPIO89 ESC_TX0_DATA2
GPIO90 P1090 EMIF1_A1IEMIF1_DQ GPIO90 SCIC_RX GPIOS0 EMIF1_RAS GPI090 ESC_TXO_DATA3
GPIO91 GPI091 EMIF1_A1¢EMIF1_DQGPIO91 12CA_SDA GPIO91 EMIF1_DQPMBUSA_SSSIA_TX GPIO91 FSIRXF_DO CLB_OUTP SPID_SIMC
GPIO165 |10 PIO165 EPWM11A GPI0165 GPIO165 MDXA GPIO165 ESC_RX0_DATAO
GPI092 || BPI092 EMIF1_A1¢EMIF1 BA:GPIO92 12CA_SCL GPIO92 EMIFL DQPMBUSA SSSIA RX GPIO92 FSIRXF D1 CLB OUTP SPID_SOM
GPIO166 (PI0166 EPWM11B GPIO166 GPIO166 MDRA GPIO166 ESC_RX0_DATA1
GPIO93 [5PI093 EMIF1_A2(EMIF1_BA(GPIO93 SCID_TX GPI093 PMBUSA_/SSIA_CLK GPIO93 FSIRXF_CLICLB_OUTP SPID_CLK
GPI0167 [|flele 7 [FPIO167 EPWMI12A GPIO167 GPIO167 MCLKXA GPI0167 ESC_RXO0_DATA2
GPIO94 GPI094 EMIF1_A21 GPIO94 SCID_RX GPIO94 EMIF1_BA!PMBUSA _(SSIA_FSS GPIO94 FSIRXG_DOCLB_OUTP SPID_STEn
GPIO168 [[010 0 PI0168 EPWM12B GPIO168 GPIO168 MFSXA GPIO168 ESC_RX0_DATA3
GPIO95 PI095 EMIF2_A1:GPIO95 GPI095 GPIO95 FSIRXG_D1CLB_OUTPUTXBARS
GPIO96 [P1096 EMIF2_DQGPIO96 EQEP1_A GPIO96 GPIO96 FSIRXG_CL CLB_OUTPUTXBARG
GPI097 5PI097 EMIF2_DQGPIO97 EQEP1 B GPI097 GPIO97 FSIRXH_DOCLB_OUTPUTXBAR7

Figure 9. PinMux summary table.

Portable device initialization and code
generation allows developers to create
flexible and easily modifiable code

The device configuration set in C2000 SysConfig

for a specific device family and package can be

ported to other device families and packages. When
migrating between device families, C2000 SysConfig
will automatically update it's code generation templates
and output the correct embedded software for the new
device family. This can simplify the task of porting
device initialization code for designers who are migrating
between device families.

C2000 SysConfig also allows designers to name their
device resources to their application specific name. This
allows the initialization code and the runtime application

Speed Up Development With C2000™ Real-Time MCUs Using SysConfig

code to be much more flixible to changes in PinMux
and resource instances. For example, if the designer
decides to change the GPIO number used for a task in
the application, no change would be necessary to the
runtime application code if the task GPIO was named
through C2000 SysConfig.

In the case that some resources are not available when
migrating between device families or device packages,
the user is notified through warning and errors generated
by the tool. If the tool is able to reassign a new resource,
which can accomplish the same task, the designer is
notified through a warning. If the tool is NOT able to
reassign a new resource, the tool generates an error and
forces the designer to either remove the requirement or
reassign a new resource manually, which meets the same
requirements.

8 October 2021

Resource NOT available

Resource Available but Changed

- myMCANO

(A Incompatible Software and/or Peripherals

The following is not supported by the new target and has been removed:

® PinMux Peripheral and Pin Configuration h

> 12C Peripheral

SDA
SCL

12cB ~ @&
°An attempt was made here to
change settings that do not exist.

This is most likely due to a
difference in the board or device.
Click here to acknowledge and
dismiss this error.

Any(GPI02/162) -
Any(GPI03/163) -

Figure 10. Migrating between device families and device packages.

Conclusion

C2000 SysConfig is a powerful graphical user interface
tool that configures the C2000 real-time MCUs and auto-
generates embedded software, visualization diagrams,
and debug artifacts that helps designers significantly
with their development process. The reliable and pre-
validated initialization software generated by the C2000
SysConfig tool can speed up development and help
designers avoid lengthy debug sessions.

Additional resources

¢ TI Cloud Tools
- SysConfig
— Resource Explorer
e C2000Ware for C2000 MCUs

— (2000 SysConfig and examples for C2000 real-
time MCUs

Speed Up Development With C2000™ Real-Time MCUs Using SysConfig

Code Composer Studio (CCS)

— Integrated development environment (IDE) that
supports Tl's Microcontroller and Embedded
Processors

— SysConfig tool is delivered integrated in CCS
(built-in SysConfig support)

SysConfig Standalone Version

— SysConfig standalone version can be used

alongside other IDEs which do not have the built-in

SysConfig tool
Texas Instruments: C2000 SysConfig
— Step by step instructions for C2000 SysConfig
C2000 SysConfig Lab 0

October 2021

https://dev.ti.com/
https://dev.ti.com/sysconfig/index.html#/start
https://dev.ti.com/tirex/explore/node?node=AL.a.macE.c7rSiGSB7klQ__gYkahfz__LATEST
https://www.ti.com/tool/C2000WARE
https://www.ti.com/tool/CCSTUDIO
https://www.ti.com/tool/download/SYSCONFIG
https://www.ti.com/lit/pdf/SPRACX3
https://software-dl.ti.com/C2000/docs/software_guide/c2000_sysconfig.html

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI’s
standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about Tl products and services
before placing orders. Tl assumes no liability for applications assistance, customer’s applications or product designs, software performance, or
infringement of patents. The publication of information regarding any other company’s products or services does not constitute TI’s approval,

warranty or endorsement thereof.

C2000™ and Code Composer Studio™ are trademarks of Texas Instruments.
All trademarks are the property of their respective owners.
I3 TEXAS SPRY341

© 2021 Texas Instruments Incorporated
INSTRUMENTS

https://www.ti.com/lit/pdf/SPRY341

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with Tl products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an
application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other Tl intellectual property right or to any third party intellectual property right. Tl disclaims responsibility for, and you
will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such Tl products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for
TI products.

Tl objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2021, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	At a glance
	C2000 SysConfig system initialization code generation can speed up your software development
	Peripheral configuration
	Code generation
	Error detection
	Device level dependencies
	Device level error detection
	Integrated PinMux tool and PinMux initialization code generation closes the gap between hardware and software designers
	Portable device initialization and code generation allows developers to create flexible and easily modifiable code
	Conclusion
	Additional resources

