
Embedded low-power
deep learning with TIDL

Manu Mathew
Principal Engineer &
Member Group Technical Staff

Kumar Desappan
Member Group Technical Staff

Pramod Kumar Swami
Principal Engineer &
Member Group Technical Staff

Soyeb Nagori
Senior Principal Engineer &
Senior Member Technical Staff

Biju Moothedath Gopinath
Engineering Manager

Automotive Processors
Texas Instruments

Embedded low-power deep learning with TIDL 2 January 2018

Introduction

Computer-vision algorithms used to be quite different from one another. For example,

one algorithm would use Hough transforms to detect lines and circles, whereas

detecting objects of interest in images would require another technique such as

histograms of oriented gradients, while semantic segmentation would require yet a

third type of algorithm.

Deep learning methods, including convolutional neural networks (CNNs), have

revolutionized machine intelligence, helping algorithms become more accurate,

versatile and autonomous. Deep learning has also revolutionized automotive

applications. Many state-of-the-art algorithms for advanced driver assistance systems

(ADAS) now require deep learning methods, including the detection of lane markings

and the detection and classification of various objects such as pedestrians, vehicles,

cyclists and traffic signs. Deep learning has emerged as a key technology that provides

the best accuracy for most of these algorithms. The tools described in this paper help

enable ADAS algorithms on automotive processors from Texas Instruments (TI).

Deep learning provides a systematic way to enable a variety of algorithms. For

example, deep learning configurations for many algorithms operate quite similarly,

making deep learning a perfect candidate to accelerate processing speeds through

software- and hardware-optimization techniques. In this paper, we will specifically

address software optimization: highly optimized software components that maximize

the efficiency of the available hardware and can increase the speed at which deep

learning algorithms run. Algorithmic optimization involves developing faster algorithms

to achieve the same end result faster or better. Providing libraries and components that

are easy to use and integrate into existing system frameworks improve time to market.

These are the goals of the tools we’ll describe in this paper.

TI’s Jacinto™ TDA2, TDA2P and TDA3 automotive

processors enable the processing and fusing of

data from camera, radar and ultrasonic sensors

to support ADAS functionality[1]. These sensors

enable object detection, classification and tracking

algorithms for automatic emergency braking or

driver monitoring, as well as stitching multiple

camera streams together for surround views.

Other algorithms include lane detection for lane-

keep assist and the detection of 3-D structures for

Embedded low-power deep learning with TIDL 3 January 2018

parking assist. These processors can also perform

semantic segmentation, which can help identify the

free space available for driving by classifying which

pixels of an image belong to the road and which

pixels do not.

TI deep learning (TIDL) is a suite of components that

enables deep learning on TI embedded devices.

TIDL has a highly optimized set of deep learning

primitives that provide the best accuracy, speed and

memory usage trade-offs. It also provides an easy

way to use a model from one of the popular deep-

learning training frameworks and run it on a TDA-

based embedded platform very quickly. Ease of use

and high performance are the two key motivations

behind TIDL.

Figure 1 illustrates the TIDL suite of components.

The first part of the development flow is for training

a network model and is best accomplished within

popular training frameworks. The next step is using

the TIDL device translator tool to convert network

models into an internal format best suited for

use inside the TIDL library. The final step is to run

the converted network model on the embedded

TDA device using TIDL-provided application

programming interfaces (APIs).

TIDL can run full-frame CNNs, which some of the

ADAS algorithms, such as object detection and

semantic segmentation, require. TIDL can also run

object-classification algorithms that operate on a

small region of interest in the image.

Deep learning for low-power devices

Deep learning involves training and inference.

Training usually occurs offline using a large data

set on servers or PCs with external graphics

processing units (GPUs). Real-time performance or

power is not an issue during this phase. However,

during actual inference, when a low-power device

executes an algorithm such as lane detection,

real-time performance and power consumption are

important. Several publicly available deep learning

frameworks enable the training of CNN or other

deep learning models. Popular frameworks include

Caffe, TensorFlow, CNTK, MxNet and PyTorch.

Most of these platforms are optimized for central

processing units (CPUs) or GPUs and run at very

high speeds, especially on the GPUs. However,

there is a lack of support for low-power embedded

devices such as digital signal processors (DSPs).

Because DSPs consume much less power than

GPUs, systems using DSP processors can be

placed in small cases that provide limited thermal

dissipation or in portable devices that have limited

battery power.

TI developed the TIDL suite of components in order

to address the gap for supported DSPs. TIDL does

not address the training

of deep-learning models,

which the popular deep-

learning frameworks can

best handle. Instead,

TIDL addresses the

inference part of deep

learning, using a trained

model from a supported

network and running it at

a very high speed on a

Training
(PC/GPU)

Inference—deep learning application
(embedded device)

OpenVX
framework

TI deep learning
library (TIDL)

TIDLTI device translator toolDeep learning/CNN training

Caffe

TensorFlow

Caffe-Jacinto

TI device translator tool
(format conversion)

Format conversion
(PC)

TDAx

Processor

Figure 1. TIDL development flow.

http://caffe.berkeleyvision.org/
https://github.com/tensorflow/tensorflow
https://github.com/Microsoft/CNTK
http://mxnet.incubator.apache.org/
http://pytorch.org/

Embedded low-power deep learning with TIDL 4 January 2018

supported low-power embedded processor like one

from the TI TDA family.

The TI device translator tool enables development

on open frameworks and provides push-button

PC-to-embedded porting. TIDL abstracts

embedded development, provides high-efficiency

implementation and is platform scalable.

Features

As we discussed, the purpose of TIDL is to enable

ease of use and provide optimized inference. Ease

of use is achieved by providing a way to use the

trained network models in the TIDL library. Thus,

one primary feature is that TIDL can understand the

trained output of popular frameworks.

TIDL has achieved optimized inference through

software optimizations that enable it to use the

underlying hardware resources optimally and

through algorithmic simplifications, such as sparse

convolutions that reduce the number of operations

required for CNN.

TIDL also offers these features:

• Layer types. Deep-learning models such as

CNNs are arranged in layers. A layer typically

consists of certain mathematical operations

such as filters, rectification linear unit (ReLU)

operations, downsampling operations (usually

called average pooling, max pooling or striding),

elementwise additions, concatenations, batch

normalization and fully connected matrix

multiplications. TIDL supports most of the

popular CNN layers present in frameworks such

as Caffe and TensorFlow.

• Sparse convolution. A convolution algorithm

that takes advantage of zero coefficients and

runs faster when a significant portion of the

weights are zero is called sparse convolution.

TIDL uses an efficient convolution algorithm

that runs faster when using sparse models.

Speed-up can be quite significant when sparsity

is high.

• Quantized inference and on-the-fly

quantization. The trained model is a floating-

point model. However, floating point is not

the best for execution speed on low-power

embedded devices. Thus, it is important to

convert the floating-point model such that

inference execution can use fixed-point

operations (with example convolutions done

using 8-bit or 16-bit integer multiplications).

TIDL and its device translator tool will

automatically convert floating point to fixed

point so that the training algorithm or framework

does not need to do anything special for fixed-

point inference in TIDL. This is called on-the-

fly quantization, a sophisticated feature that

increases execution speed significantly and

takes care of varying input-signal characteristics

and intermediate layer outputs. TIDL supports

both 8-bit and 16-bit quantization. The drop in

accuracy due to quantization is small for several

popular networks.

• Host emulation. While TIDL actually runs

on embedded devices, host emulation mode

enables you to perform a sanity check. In host

emulation mode, TIDL runs on the host PC,

emulating each of the CNN network layers

and producing the expected output. Thus, you

can check the expected output on the device

without actually using an embedded device.

• Support for a variety of training

frameworks. The TIDL device conversion tool

is compatible with trained models from BVLC/

Caffe, TensorFlow, NVIDIA/Caffe and TIDSP/

Caffe-Jacinto. Each of these tools has their

own strengths; you can choose the one that

suits your requirements.

https://github.com/BVLC/caffe
https://github.com/BVLC/caffe
https://github.com/NVIDIA/caffe
https://github.com/tidsp/caffe-jacinto
https://github.com/tidsp/caffe-jacinto

Embedded low-power deep learning with TIDL 5 January 2018

• Low power consumption. Full-frame

semantic segmentation at 15 fps consumes

only 2.5W of computing power on the TDA2x

system-on-chip (SoC).

Sparse convolution

The complexity of the overall network should be

restricted such that it fits well within the computing

capability of the targeted device. Typically, the

convolution layers are the most computationally

intense and will determine how fast the inference

runs—so it is important to reduce the complexity

of convolution layers. TIDL supports sparse

convolution, which can execute the inference much

faster when there are a lot of zero coefficients.

Using sparse convolution algorithms eliminates

the need for multiplications whenever the weights

are zeros. Sparse training methods can induce

80 percent or more sparsity in most convolution

layers —in other words, making 80 percent of the

convolution weights zero. At TI, we have observed

a 4× execution speed increase when nearly 80

percent of the weights in the convolution layers are

zeros. Sparsity is optional, however, and TIDL can

work with conventional non-sparse models as well.

Training

Caffe and TensorFlow are the currently supported

training frameworks; in other words, TIDL can

import models trained in these frameworks using

the device translator tool. As we mentioned, TIDL

also supports various Caffe flavors including BVLC/

Caffe, NVIDIA/Caffe and TIDSP/Caffe-Jacinto.

Caffe-Jacinto is a custom fork of Caffe that provides

tools to train models with sparsity. Caffe-Jacinto

models help you get started on training with

sparsity and include detailed documentation about

how to proceed with the training.

Forcing convolution weights to zero can reduce the

accuracy of the deployed algorithm. For example,

you will want to avoid accuracy drops of 25 percent

(that should be within 1 or 2 percent) for a trained

network model for image classification when

introducing sparsity. Training models with sparsity

(sparsification) without losing accuracy significantly

are an important aspect of the training phase.

Reference [2] offers additional details about training

with sparsification.

Sparsification at training time is useful only if the

inference framework (in our case TIDL) is capable of

performing sparse convolutions efficiently. Caffe-

Jacinto is a good training framework for generating

sparse models that can run much faster in TIDL.

Device converter tool

Training can be done in floating point. Conversion

from floating-point to fixed-point models happens

on the fly inside the device converter tool and TIDL.

This method provides the maximum ease of use,

because you can proceed with the training without

any concerns regarding quantization.

Results

References [3] and [4] are demonstrations of TIDL

used for real-time semantic segmentation on TDA2

automotive processors. Figure 2 is a sample

frame that shows semantic-segmentation output

in a colorful way. The purple color shows pixels

classified as road, blue shows pixels classified as

vehicles, red shows pixels classified as pedestrians

and cyclists, and yellow would show pixels classified

as road signs (not shown in the figure).

Figure 2. Semantic segmentation using TIDL on a TDA2 SoC.

https://github.com/tidsp/caffe-jacinto-models
https://github.com/tidsp/caffe-jacinto-models
https://www.youtube.com/watch?v=pA8lXeMjuao

Embedded low-power deep learning with TIDL 6 January 2018

It is seen from experiments that the classification

accuracy drop for a typical CNN network is around

1 percent, while inducing 80 percent sparsity.

The total drop in accuracy due to sparsification

and quantization is within 2 percent. The same

observation is true for semantic segmentation as

well. Further details on CNN network structures and

accuracy are available in [2] and [5].

Table 1 lists the results of a semantic-segmentation

network running on the TDA2 SoC using TIDL. As

you can see, inducing around 80 percent sparsity

increases the speed of inference from about 5 fps

to about 20 fps for 1,024-by-512 pixels full-frame

semantic-segmentation applications.

How to choose your
network configuration

While popular networks can run on TIDL, low-power

embedded devices do not have the same level of

computing capability as high-power (but costly)

GPUs. The network deployed must fit within the

capability of the device. This will vary depending on

the embedded device.

Algorithm developers sometimes look at the model

size (the number of parameters in the model)

to determine inference complexity, but that’s a

small issue in automotive applications. Inference

complexity depends on several factors, including

the number of multiplications, data-transfer

requirements for input/output activations and the

transfer of weights. For models like residential

networks (ResNets) that do not have heavy, fully

connected layers, the number of multiplications

required for inference of a certain-sized image is

often a good indicator of complexity.

You can also look at the examples given in Caffe-

Jacinto models to understand the networks suitable

for inference on TDA2x devices. As the computing

capability for CNN increases, future TI ADAS SoCs

will likely run much more complex models.

How to obtain TIDL

TIDL is part of TI’s processor software

development (SDK) for vision, which provides

an out-of-the-box demo of deep-learning-based

semantic segmentation. In the vision SDK, you’ll

find TIDL at <VSDK>\ti_components\algorithms_

codecs [6].

The TIDL package offers detailed documentation on

how to use it, the performance of different layers,

example networks to demonstrate translation

and inference, and other relevant information. It

is supported on both embedded vision engine

(EVE) and C66x DSP cores on TDA2, TDA2P and

TDA3 devices and also comes with a standalone

test bench for you to execute and measure the

performance of your network without having to

understand other system complexities.

References

1. Jacinto TDAx ADAS SoCs, with

heterogeneous hardware and software

architecture for ADAS.

2. “Sparse, Quantized, Full Frame CNN for Low

Power Embedded Devices,” which focuses

on the training portion of the whole process

Inference method Configuration for inference
Giga multiply accumulations

per second (MACs) Giga cycles Time (ms)
Frames per
second (fps)

Dense JSegNet21 nonsparse 8.843 0.700 194.44 5.14

Sparse JSegNet21 sparse (80%) 1.540 0.188 52.22 20.22

Table 1. Measurements from the TDA2x SoC for inferring semantic segmentation of an image with 1,024-by-512 pixels resolution.

http://www.ti.com/tool/PROCESSOR-SDK-TDAX
http://www.ti.com/tool/PROCESSOR-SDK-TDAX
https://www.ti.com/processors/automotive-processors/tdax-adas-socs/overview.html
http://openaccess.thecvf.com/content_cvpr_2017_workshops/w4/papers/Mathew_Sparse_Quantized_Full_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017_workshops/w4/papers/Mathew_Sparse_Quantized_Full_CVPR_2017_paper.pdf

SPRY314© 2018 Texas Instruments Incorporated

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI’s standard
terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing
orders. TI assumes no liability for applications assistance, customer’s applications or product designs, software performance, or infringement of patents.
The publication of information regarding any other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

The platform bar and Jacinto are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

and goes into detail regarding the inclusion

of sparsity.

3. “TI’s Deep Learning-Based Semantic

Segmentation on TDA Processors.”

4. “Texas Instruments Demonstration of Deep

Learning-Based Semantic Segmentation.”

5. “Caffe-Jacinto – embedded deep learning

framework.”

6. “TI Vision SDK, Optimized Vision Libraries

for ADAS Systems.”

https://www.youtube.com/watch?v=-CH_0J_f5zA
https://www.youtube.com/watch?v=-CH_0J_f5zA
https://www.youtube.com/watch?v=pA8lXeMjuao
https://www.youtube.com/watch?v=pA8lXeMjuao
https://github.com/tidsp/caffe-jacinto
https://github.com/tidsp/caffe-jacinto
http://www.ti.com/lit/wp/spry260/spry260.pdf
http://www.ti.com/lit/wp/spry260/spry260.pdf

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

