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Introduction

Computer-vision algorithms used to be quite different from one another. For example, 

one algorithm would use Hough transforms to detect lines and circles, whereas 

detecting objects of interest in images would require another technique such as 

histograms of oriented gradients, while semantic segmentation would require yet a 

third type of algorithm.

Deep learning methods, including convolutional neural networks (CNNs), have 

revolutionized machine intelligence, helping algorithms become more accurate, 

versatile and autonomous. Deep learning has also revolutionized automotive 

applications. Many state-of-the-art algorithms for advanced driver assistance systems 

(ADAS) now require deep learning methods, including the detection of lane markings 

and the detection and classification of various objects such as pedestrians, vehicles, 

cyclists and traffic signs. Deep learning has emerged as a key technology that provides 

the best accuracy for most of these algorithms. The tools described in this paper help 

enable ADAS algorithms on automotive processors from Texas Instruments (TI).

Deep learning provides a systematic way to enable a variety of algorithms. For 

example, deep learning configurations for many algorithms operate quite similarly, 

making deep learning a perfect candidate to accelerate processing speeds through 

software- and hardware-optimization techniques. In this paper, we will specifically 

address software optimization: highly optimized software components that maximize 

the efficiency of the available hardware and can increase the speed at which deep 

learning algorithms run. Algorithmic optimization involves developing faster algorithms 

to achieve the same end result faster or better. Providing libraries and components that 

are easy to use and integrate into existing system frameworks improve time to market. 

These are the goals of the tools we’ll describe in this paper.

TI’s Jacinto™ TDA2, TDA2P and TDA3 automotive 

processors enable the processing and fusing of 

data from camera, radar and ultrasonic sensors 

to support ADAS functionality[1]. These sensors 

enable object detection, classification and tracking 

algorithms for automatic emergency braking or 

driver monitoring, as well as stitching multiple 

camera streams together for surround views. 

Other algorithms include lane detection for lane-

keep assist and the detection of 3-D structures for 
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parking assist. These processors can also perform 

semantic segmentation, which can help identify the 

free space available for driving by classifying which 

pixels of an image belong to the road and which 

pixels do not.

TI deep learning (TIDL) is a suite of components that 

enables deep learning on TI embedded devices. 

TIDL has a highly optimized set of deep learning 

primitives that provide the best accuracy, speed and 

memory usage trade-offs. It also provides an easy 

way to use a model from one of the popular deep-

learning training frameworks and run it on a TDA-

based embedded platform very quickly. Ease of use 

and high performance are the two key motivations 

behind TIDL.

Figure 1 illustrates the TIDL suite of components. 

The first part of the development flow is for training 

a network model and is best accomplished within 

popular training frameworks. The next step is using 

the TIDL device translator tool to convert network 

models into an internal format best suited for 

use inside the TIDL library. The final step is to run 

the converted network model on the embedded 

TDA device using TIDL-provided application 

programming interfaces (APIs).

TIDL can run full-frame CNNs, which some of the 

ADAS algorithms, such as object detection and 

semantic segmentation, require. TIDL can also run 

object-classification algorithms that operate on a 

small region of interest in the image.

Deep learning for low-power devices

Deep learning involves training and inference. 

Training usually occurs offline using a large data 

set on servers or PCs with external graphics 

processing units (GPUs). Real-time performance or 

power is not an issue during this phase. However, 

during actual inference, when a low-power device 

executes an algorithm such as lane detection, 

real-time performance and power consumption are 

important. Several publicly available deep learning 

frameworks enable the training of CNN or other 

deep learning models. Popular frameworks include 

Caffe, TensorFlow, CNTK, MxNet and PyTorch.

Most of these platforms are optimized for central 

processing units (CPUs) or GPUs and run at very 

high speeds, especially on the GPUs. However, 

there is a lack of support for low-power embedded 

devices such as digital signal processors (DSPs). 

Because DSPs consume much less power than 

GPUs, systems using DSP processors can be 

placed in small cases that provide limited thermal 

dissipation or in portable devices that have limited 

battery power.

TI developed the TIDL suite of components in order 

to address the gap for supported DSPs. TIDL does 

not address the training 

of deep-learning models, 

which the popular deep-

learning frameworks can 

best handle. Instead, 

TIDL addresses the 

inference part of deep 

learning, using a trained 

model from a supported 

network and running it at 

a very high speed on a 
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Figure 1. TIDL development flow.

http://caffe.berkeleyvision.org/
https://github.com/tensorflow/tensorflow
https://github.com/Microsoft/CNTK
http://mxnet.incubator.apache.org/
http://pytorch.org/
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supported low-power embedded processor like one 

from the TI TDA family.

The TI device translator tool enables development 

on open frameworks and provides push-button 

PC-to-embedded porting. TIDL abstracts 

embedded development, provides high-efficiency 

implementation and is platform scalable.

Features

As we discussed, the purpose of TIDL is to enable 

ease of use and provide optimized inference. Ease 

of use is achieved by providing a way to use the 

trained network models in the TIDL library. Thus, 

one primary feature is that TIDL can understand the 

trained output of popular frameworks.

TIDL has achieved optimized inference through 

software optimizations that enable it to use the 

underlying hardware resources optimally and 

through algorithmic simplifications, such as sparse 

convolutions that reduce the number of operations 

required for CNN.

TIDL also offers these features:

• Layer types. Deep-learning models such as 

CNNs are arranged in layers. A layer typically 

consists of certain mathematical operations 

such as filters, rectification linear unit (ReLU) 

operations, downsampling operations (usually 

called average pooling, max pooling or striding), 

elementwise additions, concatenations, batch 

normalization and fully connected matrix 

multiplications. TIDL supports most of the 

popular CNN layers present in frameworks such 

as Caffe and TensorFlow.

• Sparse convolution. A convolution algorithm 

that takes advantage of zero coefficients and 

runs faster when a significant portion of the 

weights are zero is called sparse convolution. 

TIDL uses an efficient convolution algorithm 

that runs faster when using sparse models. 

Speed-up can be quite significant when sparsity 

is high.

• Quantized inference and on-the-fly 

quantization. The trained model is a floating-

point model. However, floating point is not 

the best for execution speed on low-power 

embedded devices. Thus, it is important to 

convert the floating-point model such that 

inference execution can use fixed-point 

operations (with example convolutions done 

using 8-bit or 16-bit integer multiplications). 

TIDL and its device translator tool will 

automatically convert floating point to fixed 

point so that the training algorithm or framework 

does not need to do anything special for fixed-

point inference in TIDL. This is called on-the-

fly quantization, a sophisticated feature that 

increases execution speed significantly and 

takes care of varying input-signal characteristics 

and intermediate layer outputs. TIDL supports 

both 8-bit and 16-bit quantization. The drop in 

accuracy due to quantization is small for several 

popular networks.

• Host emulation. While TIDL actually runs 

on embedded devices, host emulation mode 

enables you to perform a sanity check. In host 

emulation mode, TIDL runs on the host PC, 

emulating each of the CNN network layers 

and producing the expected output. Thus, you 

can check the expected output on the device 

without actually using an embedded device.

• Support for a variety of training 

frameworks. The TIDL device conversion tool 

is compatible with trained models from BVLC/

Caffe, TensorFlow, NVIDIA/Caffe and TIDSP/

Caffe-Jacinto. Each of these tools has their 

own strengths; you can choose the one that 

suits your requirements.

https://github.com/BVLC/caffe
https://github.com/BVLC/caffe
https://github.com/NVIDIA/caffe
https://github.com/tidsp/caffe-jacinto
https://github.com/tidsp/caffe-jacinto
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• Low power consumption. Full-frame 

semantic segmentation at 15 fps consumes 

only 2.5W of computing power on the TDA2x 

system-on-chip (SoC).

Sparse convolution

The complexity of the overall network should be 

restricted such that it fits well within the computing 

capability of the targeted device. Typically, the 

convolution layers are the most computationally 

intense and will determine how fast the inference 

runs—so it is important to reduce the complexity 

of convolution layers. TIDL supports sparse 

convolution, which can execute the inference much 

faster when there are a lot of zero coefficients.

Using sparse convolution algorithms eliminates 

the need for multiplications whenever the weights 

are zeros. Sparse training methods can induce 

80 percent or more sparsity in most convolution 

layers —in other words, making 80 percent of the 

convolution weights zero. At TI, we have observed 

a 4× execution speed increase when nearly 80 

percent of the weights in the convolution layers are 

zeros. Sparsity is optional, however, and TIDL can 

work with conventional non-sparse models as well.

Training

Caffe and TensorFlow are the currently supported 

training frameworks; in other words, TIDL can 

import models trained in these frameworks using 

the device translator tool. As we mentioned, TIDL 

also supports various Caffe flavors including BVLC/

Caffe, NVIDIA/Caffe and TIDSP/Caffe-Jacinto.

Caffe-Jacinto is a custom fork of Caffe that provides 

tools to train models with sparsity. Caffe-Jacinto 

models help you get started on training with 

sparsity and include detailed documentation about 

how to proceed with the training.

Forcing convolution weights to zero can reduce the 

accuracy of the deployed algorithm. For example, 

you will want to avoid accuracy drops of 25 percent 

(that should be within 1 or 2 percent) for a trained 

network model for image classification when 

introducing sparsity. Training models with sparsity 

(sparsification) without losing accuracy significantly 

are an important aspect of the training phase. 

Reference [2] offers additional details about training 

with sparsification.

Sparsification at training time is useful only if the 

inference framework (in our case TIDL) is capable of 

performing sparse convolutions efficiently. Caffe-

Jacinto is a good training framework for generating 

sparse models that can run much faster in TIDL.

Device converter tool

Training can be done in floating point. Conversion 

from floating-point to fixed-point models happens 

on the fly inside the device converter tool and TIDL. 

This method provides the maximum ease of use, 

because you can proceed with the training without 

any concerns regarding quantization.

Results

References [3] and [4] are demonstrations of TIDL 

used for real-time semantic segmentation on TDA2 

automotive processors. Figure 2 is a sample 

frame that shows semantic-segmentation output 

in a colorful way. The purple color shows pixels 

classified as road, blue shows pixels classified as 

vehicles, red shows pixels classified as pedestrians 

and cyclists, and yellow would show pixels classified 

as road signs (not shown in the figure).

Figure 2. Semantic segmentation using TIDL on a TDA2 SoC.

https://github.com/tidsp/caffe-jacinto-models
https://github.com/tidsp/caffe-jacinto-models
https://www.youtube.com/watch?v=pA8lXeMjuao
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It is seen from experiments that the classification 

accuracy drop for a typical CNN network is around 

1 percent, while inducing 80 percent sparsity. 

The total drop in accuracy due to sparsification 

and quantization is within 2 percent. The same 

observation is true for semantic segmentation as 

well. Further details on CNN network structures and 

accuracy are available in [2] and [5].

Table 1 lists the results of a semantic-segmentation 

network running on the TDA2 SoC using TIDL. As 

you can see, inducing around 80 percent sparsity 

increases the speed of inference from about 5 fps 

to about 20 fps for 1,024-by-512 pixels full-frame 

semantic-segmentation applications.

How to choose your 
network configuration

While popular networks can run on TIDL, low-power 

embedded devices do not have the same level of 

computing capability as high-power (but costly) 

GPUs. The network deployed must fit within the 

capability of the device. This will vary depending on 

the embedded device.

Algorithm developers sometimes look at the model 

size (the number of parameters in the model) 

to determine inference complexity, but that’s a 

small issue in automotive applications. Inference 

complexity depends on several factors, including 

the number of multiplications, data-transfer 

requirements for input/output activations and the 

transfer of weights. For models like residential 

networks (ResNets) that do not have heavy, fully 

connected layers, the number of multiplications 

required for inference of a certain-sized image is 

often a good indicator of complexity.

You can also look at the examples given in Caffe-

Jacinto models to understand the networks suitable 

for inference on TDA2x devices. As the computing 

capability for CNN increases, future TI ADAS SoCs 

will likely run much more complex models.

How to obtain TIDL

TIDL is part of TI’s processor software 

development (SDK) for vision, which provides 

an out-of-the-box demo of deep-learning-based 

semantic segmentation. In the vision SDK, you’ll  

find TIDL at <VSDK>\ti_components\algorithms_

codecs [6].

The TIDL package offers detailed documentation on 

how to use it, the performance of different layers, 

example networks to demonstrate translation 

and inference, and other relevant information. It 

is supported on both embedded vision engine 

(EVE) and C66x DSP cores on TDA2, TDA2P and 

TDA3 devices and also comes with a standalone 

test bench for you to execute and measure the 

performance of your network without having to 

understand other system complexities.
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