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Overview

Advanced driver assistance systems (ADAS) are becoming increasingly popular. 
ADAS applications such as lane departure warning (LDW), forward collision warning 
(FCW), automatic cruise control (ACC), auto emergency braking (AEB) and surround 
view (SV) that were present only in luxury vehicles in the past have trickled down to  
entry- and mid-level vehicles. Many of these applications are also mandated by safety 
authorities such as European New Car Assessment Program (Euro NCAP) and National 
Highway Traffic Safety Administration (NHTSA). In order to make these applications 
affordable in entry- and mid-level vehicles, it is important to have a cost-effective, 
yet high-performance and low-power solution. Texas Instruments (TI’s) TDA3x is an 
ideal platform to address these needs. In this paper we will illustrate the mapping of 
multiple algorithms such as SV, LDW, object detection (OD), structure from motion 
(SFM) and camera-monitor systems (CMS) to the TDA3x device, thereby demonstrating 
its computing capabilities. We also share the performance for these embedded 
vision applications, showing that TDA3x is an excellent high-performance device for 
ADAS applications.

1. Introduction

In the automotive space, the demand for ADAS 

technology has increased as mobility has come 

to be a basic need in today’s life. Approximately 

1.25 million people died in road accidents around 

the globe in 2013[2]. Pedestrians, cyclists and 

motorcyclists comprise half of the road traffic 

deaths, and motor vehicle crashes are ranked 

number nine among top ten leading causes of death 

in the world[5]. These statistics push automobile 

manufacturers to ensure higher safety standards in 

their vehicles. The European New Car Assessment 

Program (Euro NCAP) and National Highway Traffic 

Safety Administration (NHTSA) provide safety 

ratings to new cars based on the safety systems 

that are in place. Euro NCAP[6] provides better star 

rating for cars equipped with AEB, FCA, LKA and 

other ADAS applications, which ensures higher 

safety for on-road vehicles, pedestrians, cyclists 

and motorcyclists.

ADAS applications can be based upon various 

sensor systems such as radar, camera, LiDAR 

and ultrasound[7]. They can also integrate and 

use external information sources such as global 

positioning systems, car data networks and 

vehicle-to-vehicle or vehicle-to-infrastructure 

communication systems to efficiently and 

accurately achieve desired goals. While different 

sensor modalities have varying performance 

based on different environmental conditions and 

applications, camera sensors are emerging as a 

key differentiator by car manufacturers. Camera-

based ADAS systems use various computer vision 

(CV) technologies to perform real-time driving 

situation analysis and provide warning to the driver. 

The advantages of camera-based ADAS include 

reliability and robustness under difficult real life 

scenarios, and ability to support multiple varied 

applications such as traffic sign recognition (TSR), 

traffic light detection, lane and obstacle detection.
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To enable different safety aspects of ADAS, camera-

based systems are deployed in front, back and 

surround view[8]. The front camera systems are 

used for applications such as AEB and FCW. The 

rear view and surround view systems are used 

for park assist and cross traffic alert applications. 

Front camera systems can use mono or stereo 

camera setup. Stereo camera is useful to obtain 

3-D information by generating disparity. However, 

stereo camera systems are more expensive 

compared to mono camera systems. Structure 

from Motion (SFM) technology[17] [11], which enables 

a single moving camera to obtain depth, is being 

widely researched for its capabilities in ADAS 

applications. Surround view systems use multiple 

cameras (four to six) placed around the car. The 

feed from multiple cameras are re-mapped and 

stitched to provide a 360-degree view to the driver. 

Also, analytics are performed on these images to 

alert the driver. Recently, Camera Mirror Systems 

(CMS) are increasingly replacing mirrors in mid-/

high-end cars. In CMS systems the side and rear 

view mirrors are replaced by cameras, and the 

camera feed is displayed to the driver via display 

panels (typically OLED display panels). Cameras 

with wide angle field of view can reduce the number 

of blind spots for the driver. Sophisticated features 

like wide dynamic range (WDR)[15] and noise filter 

allow the system to be used in variety of lighting 

conditions including low-light, high-glare scenarios. 

Due to the low surface area of the camera lens 

versus a conventional mirror, a CMS system is less 

susceptible to the effects of dust and rain. CMS 

systems also have added advantage of reducing 

wind drag and thus aiding fuel efficiency. Finally, the 

CMS opens the possibility of running vision analytics 

on them[12]. Figure 1 shows the flow for different 

ADAS applications.

In order to fully utilize the capabilities of camera-

based systems for multiple applications, it is 

imperative to have a high-performance, low-

power embedded processor that is capable of 

analyzing data from multiple cameras in real time. 

In order to solve this problem, Texas Instruments 

Figure 1: Flow chart of ADAS applications
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(TI) has developed a family of System-on-Chip 

(SoC) processors that integrate heterogeneous 

compute architectures like general-purpose 

processor (GPP), digital signal processor (DSP), 

single-instruction multiple data (SIMD) processor 

and hardware accelerators (HWA) to satisfy the 

compute requirements and still meet the area 

and power specifications. The rest of the paper 

is organized as follows: Section 2 provides an 

introduction to a high-performance, low area and 

power, third generation of SoC solution from TI 

called Texas Instruments Driver Assist 3x (TDA3x), 

Section 3 illustrates different applications such as 

LDW, OD, SFM, SV, CMS and their mapping to the 

TDA3x platform. Section 4 shows the results of 

our implementation and the performance data and 

Section 5 provides the conclusion. 

2. TDA3x introduction

The TDA3x SoC[4] has a heterogeneous and 

scalable architecture that includes a dual-core 

ARM® Cortexv-M4, dual-core C66x DSP and single-

core Embedded Vision Engine (EVE) for vector 

processing, as shown in Figure 2. It integrates 

hardware for camera capture, image signal 

processor (ISP) and display sub-system resulting in 

better video quality at lower power. It also contains 

large on-chip random access memory (RAM), a rich 

set of input/output peripherals for connectivity, and 

a safety mechanism for automotive market. There 

are three types of programmable cores in the TDA3x 

SoC: GPP, DSP, and EVE. 

2.1  General-Purpose Processor 
(GPP)

The dual-core ARM Cortex-M4 CPU, running 

at 212.8 MHz, serves as the general-purpose 

processor in the TDA3x processor[1]. The M4 

cores deliver efficient control and processing 

camera stream. 

2.2 Digital Signal Processor (DSP)

The TDA3x SoC contains a dual-core C66x 

DSP. The C66x DSP[3] is a floating-point Very 

ARMARM
M4

ARMDSP 
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EVE

ISS

DSS

On-chip
RAM

Safety

High-speed interconnectEDMA

Capture I/O

Fig 2. TDA3x SoC Block Diagram
Figure 2: TDA3x SoC block diagram
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Long Instruction Word VLIW architecture with 8 

functional units (2 multipliers and 6 arithmetic units) 

that operate in parallel, as shown in Figure 3. It 

comprises of 64 general-purpose 32-bit registers 

shared by all eight functional units. There are four 

arithmetic units .L1/.L2, .S1/.S2, two multiplier units 

for .M1/.M2 and two data load and store units,  

.D1/.D2. Each C66x DSP core has configurable 

32  KB of L1 data cache, 32 KB of L1 

instruction cache and 288 KB of unified L2 data/

instruction memory. 

2.3. Embedded Vision Engine (EVE)

TI’s TDA3x contains a single-core EVE, a fully 

programmable accelerator specifically to enable the 

processing, latency and reliability needs found in 

computer vision applications. The EVE includes one 

32-bit Application-Specific RISC Processor (ARP32) 

and one 512-bit vector coprocessor (VCOP) with 

built-in mechanisms and unique vision-specialized 

instructions for concurrent, low overhead 

processing. The VCOP is a dual 8-way SIMD engine 

with built-in loop control and address generation. 

It has certain special properties such as transpose 

store, de-interleave load and interleaving store. The 

VCOP also has specialized pipelines for accelerating 

table look-up and histograms[13]. Figure 4 shows the 

block diagram of EVE processor.

3.  Applications and 
system partitioning

3.1. System partitioning

A computer vision application can be roughly 

categorized into three types of processing: Low-

level, mid-level and high-level processing. The low-

level processing functions include pixel-processing 

operations, where the main focus is to extract key 

properties such as edges and corners, and to form 

robust features. The mid-level processing functions 

include feature detection, analysis, matching and 

tracking. High-level processing is the stage where 

heuristics are applied to make meaningful decisions 

by using data generated by low- and mid-level 

Figure 3: C66x processor block diagram
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processing. The EVE architecture is an excellent 

match for low-level and mid-level vision-processing 

functions due its number-crunching capability. The 

C66x DSP with program and data caches enables 

mix of control as well as data-processing capabilities 

and is well suited for mid- and high-level vision-

processing functions. High-level OS (or RTOS) runs 

on ARM as the main controller and does I/O with 

real world. 

3.2.  Object detection and traffic sign 
recognition

The object detection algorithm consists of low-, 

mid-, and high-level processing functions, and are 

mapped across the EVE and DSP cores as shown 

in Figure 5. As EVE is suitable for low- and mid-level 

processing, stages such as gradient computation, 

orientation binning and histogram equalization are 

mapped to EVE while the classification stage is 

mapped to the C66x DSP.

3.2.1 Gradient computation on EVE

Gradient computation is one of the most commonly 

used operations in the feature detection stage of 

various algorithms such as histogram of gradients 

(HoG)[9] and ORB[20]. The gradient is calculated by 

finding the absolute difference of pixels in horizontal 

and vertical direction and adding both providing 

magnitude of gradient. Figure 6 shows optimized 

code written in kernel-C (C-like language for EVE) 

for gradient magnitude computation. Each VCOP 

computation instruction/line in Figure 6 operates on 

eight elements. VCOP has two 256 bit functional 

units each and can operate on eight data elements 

in parallel. Two instruction/lines can be executed 

in a cycle. Address computations are performed 

by dedicated units so it can happen in parallel with 

core computation. Loop counters are managed by 

nested loop controller of VCOP, and does not add 

any overhead. Data load and store instruction can 

be hidden by compute cycles. The loop in Figure 6 

takes just 4 cycles per iteration (generating output 

for 16 pixel locations in parallel), resulting in 64 times 

faster performance.

3.2.2 Adaboost Classification on C66x DSP

Adaboost classifier uses a set of simple decision 

trees whose individual classification accuracy is 
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Z = 0; 
for (I1 = 0; I1 < height; I1++) { 
  for (I2 = 0; I2 < (width/16); I2++) { 
     // Separate Address generation hardware 
    Addr1 = I1*pitch*ELEMSZ + I2*VECTORSZ*2; 
    Addr2 = I1*width*ELEMSZ*2 + I2*VECTORSZ*2*2; 
    Addr3 = I1*width*ELEMSZ*2 + I2*VECTORSZ*2*2; 
    // Data Load for dual SIMD in VCOP 
    (VinT1,VinT2) = (pIn+1)[Addr1].deinterleave(); 
    (VinL1,VinL2) = (pIn+pitch)[Addr1].deinterleave(); 
    (VinR1,VinR2) = (pIn+pitch+2)[Addr1].deinterleave(); 
    (VinB1,VinB2) = (pIn+2*pitch+1)[Addr1].deinterleave(); 
     // Vector Computation  
     VgX_1 = VinR1 - VinL1; 
     VgY_1 = VinB1 - VinT1; 
     VgX_2 = VinR2 - VinL2; 
     VgY_2 = VinB2 - VinT2; 
     Vmag1 = abs(VgX_1); 
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     // Data Store from dual SMID in VCOP 
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     pGradY[Addr2].interleave()    = (VgY_1,VgY_2); 
     pMag[Addr3].interleave()      = (Vmag1,Vmag2); 
    } 
  } 
 

Fig 6. Gradient Magnitude Computation on EVE 
Figure 6: Gradient magnitude computation on EVE
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slightly more than fifty percent[18]. By combining 

the response of several such simple decision trees, 

a strong classifier can be constructed without the 

need for sophisticated classifier engine as shown 

in Figure 7. Each individual tree is comprised 

of three nodes and four leaves. Nodes are the 

locations where an input value is compared against 

a predetermined threshold. Depending on the 

comparison result, the tree is traversed left or right 

until it reaches one of the four possible leaf values. 

The tree structure, threshold values, leaf values and 

even the offsets from which input has to be read is 

predetermined during the training stage. The final 

leaf value or responses of 

each tree is accumulated. 

The accumulated 

response is compared 

against a cascade 

threshold which finally 

classifies the object. This 

algorithm is data bound 

with three thresholds, 

three offsets, three inputs 

and four leaf values read 

for each tree. Assuming 

that all data is 16 bit, 

accessing the inputs, 

off-sets, thresholds, leaf 

values one at a time will 

be inefficient on a C66x 

DSP with 64-bit data paths. As the C66x DSP 

supports SIMD processing for fixed-point data, the 

first step is to load and process four 16-bit data 

in a single cycle. TI provides intrinsic instructions 

which the can be used to perform SIMD operations. 

As input data tested at each node is fetched 

from a sparse offset in the memory, software can 

perform SIMD loads of the predetermined offsets, 

thresholds and leaf values stored contiguously in the 

memory[16]. 

3.3. Lane Departure Warning (LDW)

The lane departure warning (LDW) algorithm 

consists of low- and mid-level processing functions. 

Due to the presence of a single EVE on the TDA3x, 

the LDW is mapped to the C66x DSP. Also, since 

the LDW algorithm uses canny-edge detection that 

includes the edge-relaxation stage which cannot 

be made block based, and due to the limited 

internal memory of EVE, this algorithm is mapped 

to the C66x DSP for simplicity of design. The block 

diagram of LDW is shown in Figure 8. The LDW 
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Figure 7: Adaboost classifier diagram
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algorithm is purely image based and uses simple 

processing functions such as canny-edge detection 

and Hough transform for lines to detect the lanes. 

Algorithmic enhancements and simplifications 

such as Intelligent ROI definition, computation of 

horizontal gradient only, detection of inner/outer 

edge and curve detection using Hough transform 

for lines are performed. More details of the algorithm 

implementation can be found in Figure 17 on page 

12. Dataflow optimization techniques such as use 

of direct memory access (DMA) to transfer smaller 

blocks of data into L1D, ping-pong data processing 

are employed to reduce the DDR bandwidth. 

3.4. Structure From Motion (SFM)

Structure from motion (SFM) is a key algorithm 

which enables computation of depth using a 

single camera which is moving[17] [11]. The key 

components of SFM are sparse optical flow (SOF) 

and triangulation. Optical flow estimates pixel 

motion between two temporally ordered images. 

Lucas Kanade (LK)[14]-based SOF is widely used 

for these purposes. Figure 9 shows the various 

modules involved in SOF. The SOF algorithm is 

implemented on the EVE engine of the TDA3x. 

Although SOF operates on sparse points which 

is not typically suitable for EVE, the algorithm is 

designed to operate optimally by operating on 

multiple sparse points together and also utilizing 

the DMA engine to organize data suitably, thereby 

utilizing the SIMD capability of EVE. Special 

instructions of EVE such as collated-store and 

scatter help save computation. Collate-store 

collects all the converged points and then further 

computation is performed for only those points. 

Scatter is used to later revert the results back to its 

original location. Once the SOF algorithm provides 

reliable optical flow tracks for various key points, 

triangulation is performed on the C66x DSP to 

obtain the 3-D point cloud. 

3.5. 3D Surround View (SV) system

Surround view (SV) systems are becoming 

popular in entry- and mid-range cars[21]. 2D SV 

systems provide a stationary top-down view of the 

surroundings from above the vehicle, whereas 3D 
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SV systems provide rendering capabilities of the 

surroundings of vehicle from any virtual viewpoint 

and transitions between viewpoints. Examples of 

2D SV and 3D SV are shown in Figures 10 and 11. 

An SV system is constructed by stitching multiple 

video cameras placed around the periphery of 

the vehicle as shown in Figure 12. Typically, a 

dedicated graphics processing unit (GPU) processor 

would be employed for composition of 3D SV. 

Since the TDA3x does not have a GPU, the 3D 

SV is implemented using the combination of a 

lens distortion correction (LDC) accelerator and 

a C66x DSP. The GPU typically stores the entire 

representation of the 3D world, allowing the user to 

Fig 10. 2D Surround View System Output 

Fig 11. 3D Surround View System Output 

Figure 10: 2D surround view system output

Fig 10. 2D Surround View System Output 

Fig 11. 3D Surround View System Output 
Figure 11: 3D surround view system output

Fig 12. Surround View Algorithm Flow 

Figure 12: Surround view algorithm flow
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change viewpoints. However, this can be optimized 

by projecting only those 3D points that are in the 

visible region. Distortion correction is required to 

correct the fish-eye distortion present in the image 

sensors used in SV systems. The ISP of the TDA3x 

SoC has a robust LDC accelerator which performs 

the distortion correction. In order to create multiple 

viewpoints, a minimized 3D world map for all the 

cameras and viewpoints are generated and these 

viewpoints are stored in non-volatile memory. This 

can be done both offline and once during the 

camera setup. When the system boots up, for all 

the valid viewpoints, 3D world map is read and 

associated LDC mesh table is generated. Then, 

these outputs from the LDC are stitched together 

to obtain the 360°-view for any viewpoint. The data 

flow for the same is shown in Figure 13. 

3.6. Camera Monitor System (CMS)

Figure 14 shows the placement of the cameras in 

a typical CMS. The algorithm processing involved 

in a CMS system and its partitioning in TDA3x 

SoC is shown in Figure 15 on the following page. 

CMOS sensors are used to capture the scene. A 

frame-rate of 60 fps is typically utilized to reduce 
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latency of the scene as viewed by the car driver. 

The data format of CMOS sensors is typically Bayer 

raw data and it is passed through many stages 

of the ISP before it is converted to viewable video 

data as shown in Figure 16. Key features in the 

ISP are: spatial noise filter, which helps to improve 

the image quality in low-light conditions, and wide 

dynamic range, which increases the dynamic range 

of the scene so that bright areas are not clipped 

and at the same time details in shadow (or darker) 

regions are visible. This allows the CMS system 

to operate in a variety of lighting conditions. ISP in 

the TDA3x also outputs auto white balance (AWB)
[10] and auto exposure (AE) statistics which are 

used by the AEWB algorithm to dynamically adjust 

the sensor exposure and scene white balance to 

adapt the cameras settings, dynamically changing 

lighting conditions. Additionally, focus statistics are 

output by the ISP indicating the degree to which 

the camera is in focus. When the camera lens is 

obstructed by dirt or water, the scene will not be in 

focus. Due to the safety-critical nature of the CMS 

application, it is important to detect such scenarios. 

Focus statistics can be used in algorithms to detect 

such events, thereby warning the user of suboptimal 

scene capture. The hardware LDC module is used 

to adjust for lens distortion correction due to wide-

angle field of view.

A common problem associated with cameras for 

visual systems like CMS is LED flickering. LEDs are 

commonly used in car headlights, traffic signals 

and traffic signs. LEDs are typically pulsed light 

sources. However, due to persistence of vision, 

our eyes cannot see the LED flicker. However, 

camera sensors, especially when they operate at 

low exposure time due to bright lighting conditions, 

could capture LED pulses in one frame and miss the 

LED pulse in the next frame causing an unpleasing 

and unnatural flicker-like effect. Worst case, it could 

happen that the LED pulse is not captured at all, say 

a red light or car headlight, thus giving a dangerous 

false scene representation to the user. A deflicker 

algorithm is typically used to eliminate the flicker due 

to LED lights. This is a pixel-processing-intensive 

algorithm and is typically run on DSP/EVE. After the 

LED deflicker algorithm, the scene is displayed on 

the display through the display sub-system (DSS). 

A key safety measure in a CMS system is informing 
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the user in case of a frame freeze scenario. Since 

the user is not constantly looking at the mirror, 

it could happen that due to hardware (HW) or 

software (SW) failure, the data that is displayed on 

the screen is frozen with the same frame repeating. 

This can cause a hazardous situation to the road 

users. In the TDA3x, this can be detected by using 

the DSS to write back the pixel data that is being 

displayed and then computing a CRC signature 

for the frame using a HW CRC module. If the CRC 

signature matches for a sequence of consecutive 

frames, then it implies that there is frame freeze 

somewhere in the system and a warning is given 

to the user or the display is blanked out. Additional 

analytics algorithms like object detect can be run in 

the blind spot to notify the driver.

4.  Results and 
analysis

In this section, we provide details of system 

partitioning and performance of multiple applications 

executing on the TDA3x SoC. TI’s TDA3x EVM 

is used as the experimental platform. In order to 

showcase our algorithms, we captured multiple 

scenes with various camera sensors placed around 

the car. The video sequence contained urban 

roads with pedestrians, vehicles, traffic signs, lane 

marking, traffic lights and parking lot scenarios. This 

video sequence is then decoded via an HDMI player 

and fed to the TDA3x EVM as shown in Figure 17.  

The algorithms then utilize all of the available 
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Figure 17: Algorithm partitioning for front camera applications on TDA3x SoC
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compute blocks such as ISP, EVE, DSP and ARM 

Cortex-M4 to perform various functions such as OD, 

LDW, TSR, SFM, SV and CMS. The output of these 

algorithms is provided to the ARM Cortex-M4 to 

draw these markings in the original video and send 

out the annotated video to the HDMI display. An 

LCD display is used to watch the video along with 

object markings to confirm the expected behavior of 

algorithms. The configuration parameters of these 

algorithms are listed in Table 1.

In the case of front camera applications, the capture 

is configured for 25 frames per second (fps). As 

a first step, multiple scales of the input frame are 

created by using resizer functionality in the ISP. The 

scale space pyramid is useful to detect objects 

of different sizes with a fixed-size template. For 

every relevant pixel in these scales, histogram of 

oriented gradients (HOG)[9] signatures are formed. 

This module involves intensive calculations at 

the pixel level and hence executed on the EVE. 

After formation of the HOG feature plane, the EVE 

runs the SOF algorithm and the C66x DSP1 runs 

the adaboost classifier stage of object detection 

algorithm. The classifier is executed separately for 

each object category such as pedestrians, vehicles, 

cyclists and traffic signs. From the scale space 

pyramid, 640 × 360 and 1280 × 720 scale is fed 

to DSP2 on which lane detection and traffic light 

recognition algorithms are run. After completion 

of SOF, the EVE sends the optical flow tracks to 

DSP2 to perform triangulation to obtain 3D location 

of key points in the frame, thereby helping to 

identify distance of various objects in the scene. 

In this setup, the ARM Cortex-M4 manages the 

capture and display device, feeds the data to the 

ISP and collects information from the DSPs before 

annotating the objects and displaying them.

For SV application, four channels of video of 

resolution 1280 × 800 at 30 fps are captured 

from RAW video sensors in Bayer format, which 

is supported by the ISP. The ISP then converts 

the Bayer format data to YUV format for further 

processing. Auto white balance and exposure-

control algorithms ensure each video source is 

photometrically aligned. Then, the camera calibrator 

will generate the required mesh table for distortion 

correction based on the view point and distortion 

correction is performed. Synthesizer will then receive 

the corrected images and stitch to form the SV 

output with a resolution of 752 × 1008 at 30 fps.

In the case of CMS, each camera input operates on 

one TDA3x SoC. Each channel of video of resolution 

1280 × 800 at 60 fps are captured from RAW video 

sensors (Bayer format) which is supported by the 

ISP. The ISP then converts the Bayer format data 

to YUV format, as shown in Figure 16. Algorithms 

such as OD are run for blind spot detection. Also, a 

deflicker algorithm is run to remove any LED flicker-

related issues, before displaying it to the driver.

Algorithm
Frame 
rate Configuration details on TDA3x SoC

Vehicle, 
pedestrian, cycle 
detect

25 Resolution = 1280 × 720, multi-scale
Minimum object size = 32 × 64

Traffic sign 
recognition

25 Resolution = 1280 × 720, multi-scale
Minimum object size = 32 × 32

Traffic light 
recognition

25 Resolution = 1280 × 720
Radii range = 8

Lane depart 
warning

25 Resolution = 640 × 360
Number of lanes detected = 2

Structure from 
motion

25 Resolution = 1280 × 720
Number of SOF tracks = 1K points
3D cloud points generated = 800

Surround view 
system

30 Input resolution = 4 channels of 1280 × 800
Output resolution = 752 × 1008

Camera mirror 
system

60 Number of video channels = 1
Input resolution = 1280 × 800

Table 1: Algorithm configurations
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Table 2 shows the loading of the various processors 

of the TDA3x SoC while running these algorithms. 

For front-camera applications, 53 percent of DSP1, 

66 percent of DSP2, 79 percent of EVE and 33 

percent of one ARM Cortex-M4 are utilized.

For SV application, 45 percent of DSP1 is utilized 

and 44 percent of one ARM Cortex-M4 is utilized. 

The unused C66x DSP and EVE can be used to 

run analytics on the SV output if needed. For CMS 

application, 68 percent of DSP1 is consumed to 

run the deflicker algorithm and 20 percent of DSP2 

and 40 percent of EVE is used for the blind spot 

detection algorithm. 

5. Conclusion

ADAS applications require high-performance, 

low-power and low-area solutions. In this paper, 

we have presented one such solution based on 

Texas Instruments’ TDA3x device. The paper 

provided insight into key algorithms of ADAS such 

as front camera, surround view and camera monitor 

systems and presented the system partitioning 

of these algorithms across multiple cores present 

in the TDA3x SoC and their performance has 

been provided. Additionally, it has shown that 

TI’s TDA3x platform is able to generate 3D SV 

efficiently, without a GPU. We have also shown that 

the TDA3x platform is able to map various ADAS 

algorithms and still have headroom for customer’s 

differentiation. For more information on the TDA3x 

platform visit www.ti.com/TDA.
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