
Application Note
Enhancing the Computational Performance of the C2000™

Microcontroller Family

Kenneth W. Schachter C2000 Technical Staff

ABSTRACT

Engineers designing real-time control systems are constantly faced with the challenge of optimizing
performance. These systems require minimal processing latency in order to meet the control loop performance
specifications. At the heart of the control systems are math intensive algorithms which are used to calculate
the control signals. Utilizing a microcontroller (MCU) that can quickly and efficiently execute mathematical
operations is critical towards this objective. Ideally, this MCU would be able to execute the real-time control
loops concurrently with the central processing unit (CPU) while it is performing other required tasks. This paper
discusses five integrated on-chip hardware math enhancements that dramatically increase the performance of
the MCU in many real-time applications. These math enhancements boost the CPU processing capabilities by
utilizing extended instruction sets, additional registers, and hardware. When combining a high performance CPU
with these advanced hardware enhancements, the fast and efficient processing power required for complex
real-time control systems can be realized.

Table of Contents
1 Introduction...2
2 Floating-Point Unit (FPU)... 3
3 Control Law Accelerator (CLA)..4
4 Trigonometric Math Unit (TMU)... 5
5 Fast Integer Division Unit (FINTDIV)... 6
6 Viterbi, Complex Math, and CRC Unit (VCU)..7
7 Summary... 9
8 References.. 9
Revision History...10

List of Figures
Figure 1-1. System Block Diagram with Math Enhancements...2
Figure 4-1. TMU Performance Improvement for Park Transform Example... 6
Figure 6-1. VCU Performance Improvements Compared to Software-Only Implementations.. 8

List of Tables
Table 2-1. FPU Performance Improvements... 3
Table 3-1. CLA Performance Improvements..4
Table 3-2. CLA Performance for FFT...4
Table 4-1. TMU Supported Instructions Summary...5
Table 4-2. TMU Performance Improvements...6
Table 5-1. FINTDIV Performance Improvements...7

Trademarks
C2000™ are trademarks of Texas Instruments.
All trademarks are the property of their respective owners.

www.ti.com Table of Contents

SPRY288C – APRIL 2020 – REVISED DECEMBER 2021
Submit Document Feedback

Enhancing the Computational Performance of the C2000™ Microcontroller
Family

1

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRY288
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRY288C&partnum=

1 Introduction
Real-time control systems require fast and efficient processing, with latency kept to a minimum in order
to maintain stability and boost overall performance. In addition, the increasing sophistication of modern
motor systems, power electronics, smart grid technology, robotics, and similar applications require the central
processor to keep up with numerous tasks simultaneously.

The C2000 family of microcontrollers (MCUs) from Texas Instruments addresses these challenges with an array
of integrated on-chip hardware math enhancements that dramatically increase the performance of the MCU in
many real-time applications. The five key enhancements are:

• Floating-Point Unit (FPU)
• Control Law Accelerator (CLA)
• Trigonometric Math Unit (TMU)
• Fast Integer Division Unit (FINTDIV)
• Viterbi, Complex Math, and CRC Unit (VCU)

Figure 1-1. System Block Diagram with Math Enhancements

At the center of each C2000 MCU lies a fast fixed-point central processing unit (CPU) that on its own provides
excellent 32-bit processing capabilities. The FPU provides seamless integration of floating-point hardware
into the CPU. To augment this further, the CLA provides an independent floating-point CPU operating at the
full speed of the device and it is designed to perform control law computations with minimal latency. This
effectively doubles the raw computing capabilities of the device. The TMU provides hardware support for
common trigonometric math functions, while the FINTDIV enables fast integer division operations. The VCU
adds hardware support for communications, complex math, and CRC calculations. This paper provides an
overview of each of these math enhancements. 

Introduction www.ti.com

2 Enhancing the Computational Performance of the C2000™ Microcontroller
Family

SPRY288C – APRIL 2020 – REVISED DECEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRY288
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRY288C&partnum=

2 Floating-Point Unit (FPU)
Many control system designs typically start with simulation tools, where the algorithms are developed with
floating-point math. These algorithms can then easily be ported to a microcontroller that has native floating-
point math support. Floating-point math provides a large dynamic range, thereby making it easier to develop
code compared to fixed-point math. The programmer no longer needs to worry about scaling and saturation.
Additionally, robustness is improved since floating-point values do not wrap around the number line on an
overflow or underflow, as they would in fixed-point math. These characteristics enable the high performance
mathematical capabilities that are needed for advanced control systems. Also, the C2000 MCU architecture has
been optimized to support high-level language programming, along with seamless support from a complete set
of TI development tools.

The C2000 MCUs feature a C28x CPU that is designed around a 32-bit fixed-point accumulator-based
architecture. It utilizes the best features of digital signal processors and microcontroller architectures. The
addition of the FPU to the C28x fixed-point CPU enables the C2000 MCUs to support hardware IEEE-754
single-precision floating-point format operations. Devices with the C28x+FPU add an extended set of floating-
point registers and instructions to the standard C28x architecture. These additional registers are: eight floating-
point result registers, a floating-point status register, and a repeat block register. The repeat block adds zero
overhead looping, which enables flexibility to the processor over the repeat single instruction. All of the registers
are shadowed, except the repeat block register. Shadowing is useful with high priority interrupts for fast context
save and restore of the floating-point registers.

Some C2000 MCUs are available with a FPU64 that provides hardware support for both IEEE-754 single-
precision and double-precision floating-point operations. Devices with the C28x+FPU64 utilize the same
registers as the FPU except for the addition of eight floating-point results extension registers for the double-
precision floating-point operations. The FPU64 enhancements support all existing FPU single-precision floating-
point instructions in addition to the 64-bit double-precision floating-point instructions.

The compiler tools provide C programming support for the CPU which makes it easy to write software, in
addition to porting existing code. Since the FPU instructions are extensions of the standard C28x instruction
set, most instructions operate in one or two pipeline cycles and some can be done in parallel. The FPU64
64-bit instructions operate in one to three pipeline cycles and some can be done in parallel, too. Floating-point
performance dramatically enhances the mathematical computation horsepower used in signal processing and
control algorithms.

Table 2-1. FPU Performance Improvements

Function Type
FPU

Cycles
FPU64
Cycles

Fixed
Cycles Improvements/Comments

Complex FFT 512 pt 24243 43935 63192 2.61x (FPU) / 1.44x (FPU64) vs Fixed Point
1024 pt 53219 98683 141037 2.65x (FPU) / 1.43x (FPU64) vs Fixed-Point

Real FFT 512 pt 13670 20219 34513 2.52x (FPU) / 1.71x (FPU64) vs Fixed-Point
1024 pt 30352 45476 76262 2.51x (FPU) / 1.68x (FPU64) vs Fixed-Point

Square Root Compiler
intrinsic 22 22 64 2.91x (FPU/FPU64) vs Fixed-Point – both modes use 32-bit

float-point arguments

Finite impulse
response (FIR) 64 pts 119 280 111 0.93x (FPU) / 0.40x (FPU64) vs Fixed-Point – FIR algorithms

using circular addressing mode

www.ti.com Floating-Point Unit (FPU)

SPRY288C – APRIL 2020 – REVISED DECEMBER 2021
Submit Document Feedback

Enhancing the Computational Performance of the C2000™ Microcontroller
Family

3

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRY288
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRY288C&partnum=

3 Control Law Accelerator (CLA)
Enabling extremely high performance computation and efficient processing is critical for solving today’s complex
real-time control applications. Real-time control systems require minimal latency where the time delay between
sampling, processing, and outputting must fit within a tight time window in order to meet performance objectives.
For example, a typical digital power controller consists of an ADC to read the input signals (voltage and current),
a math engine to compute the control law algorithms (PID, 2-pole/2-zero, and 3-pole/3-zero compensators),
and a PWM channel to output the calculated waveform. Many advanced control systems would greatly benefit
from an architecture that integrates these functions in such a way as to minimize latency, yielding the absolute
minimum sample to output delay. Ideally, this architecture would execute time-critical control loops concurrently
with the main CPU and free it up to perform other required tasks. In addition, the architecture must have
a built-in protection mechanism to guard against over-current and over-voltage conditions. To address these
important requirements, TI developed the CLA.

The CLA is a fully-programmable independent 32-bit floating-point hardware accelerator that is designed for
math intensive computations. This accelerator can offer a significant boost to the performance of typical math
functions that are commonly found in control algorithms. The CLA is designed to execute real-time control
algorithms in parallel with the C28x CPU, effectively doubling the computational performance. This makes
the CLA perfect for managing low-level control loops with higher cycle performance improvements over the
C28x CPU. Another advantage of the CLA is that since it directly accesses memory, the overhead penalty for
managing a data page pointer is removed. Additionally, the multiplier on the CLA does not require any delay
slots, thus providing true single-cycle performance. A device using the CLA can achieve about a 1.3 times
performance improvement over the C28x CPU for applications like motor control and solar, as shown in the table
below. Furthermore, by using the CLA to service time-critical functions, the C28x CPU is freed up for other tasks,
such as communications and diagnostics.

Table 3-1. CLA Performance Improvements

Application

Number of Execution Cycles

Improvement
CPU CLA

Min/Max Min/Max
Motor AC Induction 888/952 639/694 1.39x (vs CPU)

Power CNTL 2p2z 48 39 1.23x (vs CPU)

Power CNTL 3p3z 68 52 1.31x (vs CPU)

Another key benefit of the CLA, over hardware-based control law implementations, is flexibility. The CLA is a
fully software programmable solution where developers can freely modify their control system without the time
and high cost required to redesign a hardware-based solution. CLA in addition to these benefits can also perform
compute intensive functions such as FFT (both complex and real). Table 3-2 provides the details of the cycles

Table 3-2. CLA Performance for FFT
Function Type Cycles
FFT Complex 256 pt 27323

512 pt 64538

1024 pt 133881

Real FFT 512 pt 37537

1024 pt 85012

The CLA is able to minimize latency because it has direct access to the various control peripherals such as
the ADC and PWM modules. Utilizing this low-latency architecture and capability to directly access the various
control peripherals provides a fast trigger response. The CLA is able to read the ADC result register on the same
cycle that the ADC sample conversion is completed. This “just-in-time” reading of the ADC reduces the sample
to output delay and enables faster system response for higher frequency control loops.

Control Law Accelerator (CLA) www.ti.com

4 Enhancing the Computational Performance of the C2000™ Microcontroller
Family

SPRY288C – APRIL 2020 – REVISED DECEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRY288
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRY288C&partnum=

Programming the CLA consists of initialization code and tasks. A task is similar to an interrupt service routine,
and once started it runs to completion. Each task is capable of being triggered by a variety of peripherals
without CPU intervention. This makes the CLA very efficient since it does not use interrupts for hardware
synchronization, nor must the CLA do any context switching. Compared with the traditional interrupt-based
scheme, the CLA approach eliminates jitter, and furthermore the execution time becomes deterministic. It
supports eight independent tasks, each of which is mapped back to an event trigger, such as a timer or the
availability of an ADC result. Separate tasks can be used to support multiple control loops or phases at the same
time.

Some C2000 devices feature an enhanced version of the CLA with the option of running the lowest priority
task as a background task. Once triggered, it runs continuously until it is terminated or reset by the CLA or
MCU. The remaining tasks in priority order can interrupt the background task when they are triggered. If needed,
portions of the background task can be made uninterruptible. Typical uses of the background task include
running continuous functions, such as communications and clean-up routines.

Another key benefit of the CLA, over hardware-based control law implementations, is flexibility. The CLA is a
fully software programmable solution where developers can freely modify their control system without the time
and high cost required to redesign a hardware-based solution.

4 Trigonometric Math Unit (TMU)
The TMU is an extension of the FPU and enhances the instruction set of the C28x+FPU by efficiently executing
trigonometric and arithmetic operations that are commonly used in control system applications. Similar to the
FPU, the TMU is an IEEE-754 floating-point math unit tightly coupled with the CPU. However, where the
FPU provides general-purpose floating-point math support, the TMU focuses on accelerating several specific
trigonometric math operations that would otherwise be quite cycle intensive. These operations include sine,
cosine, arctangent, divide, and square root. Some C2000 devices include an enhanced version of the TMU
for supporting nonlinear PID applications. Additional instructions have been added for efficient computation of
logarithm and inverse exponent operations which are used in the nonlinear control law. The TMU instructions
include:

Table 4-1. TMU Supported Instructions Summary
Operation C Equivalent Operation
Multiply by 2*pi a = b * 2pi

Divide by 2*pi a = b / 2pi

Divide a = b / c

Square Root a = sqrt(b)

Sin Per Unit a = sin(b*2pi)

Cos Per Unit a = cos(b*2pi)

Arc Tangent Per Unit a = atan(b)/2pi

Arc Tangent 2 and Quadrant Operation Operation to assist in calculating ATANPU2

Logarithm a = LOG2(b)

Inverse Exponent a = 2-|b|

The TMU uses the same pipeline, memory bus architecture, and FPU registers as the C28x+FPU, thereby
removing any special requirements for interrupt context save or restore.

The C2000 compiler has built-in support that allows automatic generation of the TMU instructions. The user
writes code in C using math.h functions, and the compiler uses the TMU instructions, where applicable,
instead of run-time support library calls. This results in significantly fewer cycles and dramatically increases
the performance of trigonometric operations.

The TMU can have a significant impact on many commonly used real-time control algorithms such as:

• Park and Inverse Park Transforms
• Space Vector Generation
• dq0 and Inverse dq0 Transforms
• FFT Magnitude and Phase Calculations

www.ti.com Trigonometric Math Unit (TMU)

SPRY288C – APRIL 2020 – REVISED DECEMBER 2021
Submit Document Feedback

Enhancing the Computational Performance of the C2000™ Microcontroller
Family

5

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRY288
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRY288C&partnum=

For example, a Park Transform typically takes anywhere from 80 to more than 100 cycles to execute on the
FPU. With the TMU a Park Transform takes only 13 cycles, yielding an 85 percent improvement as compared to
without the TMU.

Figure 4-1. TMU Performance Improvement for Park Transform Example

In a typical system application, such as digital motor control (AC induction and permanent magnet) and 3-phase
solar applications, about a 1.4 times performance improvement can be achieved using the TMU over just the
FPU.

Table 4-2. TMU Performance Improvements

Application

Number of Execution Cycles

Improvement
FPU TMU

Min/Max Min/Max
Motor AC Induction 888/952 593/670 1.42x (vs FPU)

Motor Permanent Magnet 783/786 547/592 1.32x (vs FPU)

Solar 3-Phase 1351/1358 985/983 1.38x (vs FPU)

An existing C28x design can realize an immediate advantage using the TMU without the need to rewrite any
code. Simulation-based generated code can realize the same benefits. Portability is maintained since the same
code can be used on TI MCUs with and without the TMU support.

5 Fast Integer Division Unit (FINTDIV)
The FINTDIV extended instruction set optimally supports fast division operations commonly found in adaptive
control systems for scaling parameters based on a variable. All instructions execute in a single cycle and three
types of integer division are supported (Truncated, Modulus, Euclidean) of varying data type sizes (16/16, 32/16,
32/32, 64/32, 64/64) in unsigned or signed formats. Truncated format is the traditional division performed in C
language (where “/” is the integer, and “%” is the remainder); however, the integer value is non-linear around
zero. Modulus and Euclidean formats are more appropriate for precise control applications because the integer
value is linear around the zero point, and this avoids potential calculation hysteresis. Both the Modulus and
Euclidean divisions are supported by C intrinsics, and the C28x compiler supports all three division formats for
all data types. Since the FINTDIV uses the existing FPU register set to carry out the FINTDIV operations, there
are no special considerations relating to interrupt context save and restore.

Fast Integer Division Unit (FINTDIV) www.ti.com

6 Enhancing the Computational Performance of the C2000™ Microcontroller
Family

SPRY288C – APRIL 2020 – REVISED DECEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRY288
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRY288C&partnum=

Table 5-1. FINTDIV Performance Improvements

Operation
Number of Execution Cycles

Improvement (vs CPU)CPU (‘/’ C operator) FINTDIV (intrinsics)
i16/i16 Truncated 52 16 3.3x

i16/i16 Euclidean and Modulus 56 14 4.0x

u16/u16 56 14 4.0x

i32/i32 Truncated 59 13 4.5x

i32/i32 Euclidean and Modulus 63 14 4.5x

i32/u32 Truncated 37 14 2.6x

i32/u32 Modulus 41 14 2.9x

u32/u32 37 12 3.1x

i32/i16 Truncated 60 18 3.3x

i32/i16 Euclidean and Modulus 64 16 4.0x

u32/u16 38 13 2.9x

i64/i64 Truncated (1) 78 – 2631 42 1.9x – 62.6x

i64/i64 Euclidean & Modulus (1) 82 – 2635 42 2.0x – 62.7x

i64/u64 Truncated (1) 54 – 2605 42 1.3x – 62.0x

i64/u64 Euclidean & Modulus (1) 58 – 2609 42 1.4x – 62.1x

u64/u64 (1) 53 – 2548 42 1.3x – 60.7x

(1) FINTDIV implements 64-bit integer division that is optimized in a fixed number of cycles for deterministic behavior. Without the
FINTDIV acceleration enabled, 64-bit integer division is implemented with generic CPU instructions and the number of cycles can vary
significantly based on the value of the numerator and denominator.

6 Viterbi, Complex Math, and CRC Unit (VCU)
Todays advanced control systems, such as motor control and power applications, can benefit from intelligent
management and communications to optimize efficient operation. Power line communications (PLC) has
become an ideal solution for intelligent management since the existing infrastructure can be used cost
effectively. Communicating data in noisy environments is very challenging and computationally intensive. A
typical microcontroller running a control application at its limit cannot tolerate the additional burden of supporting
power line communications, and may require an additional processor. To solve this problem, TI developed
the VCU. The VCU is a tightly coupled fixed-point unit that improves performance of communications-based
applications by a factor of roughly seven times. Additionally, cost savings are realized by eliminating the need
for a separate processor. Besides communications, the VCU is very useful for general-purpose signal processing
applications such as filtering and spectral analysis. For example, spectral analysis can be used to process motor
vibration noise to determine the impact of vibration on a system, estimate the motor operating life, and calibrate
the control loop to improve efficiency.

The VCU has been designed to be flexible in supporting various communications technologies. For the typical
MCU, four key operations consume most of the processing power: Viterbi decoding, complex Fast Fourier
Transform (FFT), complex filters, and Cyclical Redundancy Check (CRC). Using the hardware capabilities of the
VCU, an application will significantly benefit by the increased performance over a software implementation. As
an example, the performance contributions of each key operation are:

• Viterbi decoding is commonly used in baseband communications applications. The Viterbi decode algorithm
consists of three main parts – branch metric calculation, add-compare-select (Viterbi butterfly), and traceback
operation. With the VCU, the branch metric calculation can be completed in a single cycle (code rate = 1/2,
and two cycles for code rate = 1/3). The Viterbi butterfly takes 2 cycles per stage, as compared to 15 cycles
per stage without the VCU. The traceback takes 3 cycles per stage, as compared to 22 cycles per stage
without the VCU.

• The complex FFT is used in spread spectrum communications, as well as many other signal processing
algorithms. For a 16-bit fixed-point complex FFT the VCU only requires 5 cycles per stage, as compared to
approximately 20 cycles per stage without the VCU.

www.ti.com Viterbi, Complex Math, and CRC Unit (VCU)

SPRY288C – APRIL 2020 – REVISED DECEMBER 2021
Submit Document Feedback

Enhancing the Computational Performance of the C2000™ Microcontroller
Family

7

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRY288
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRY288C&partnum=

• Complex filters are used to improve data reliability, transmission distance, and power efficiency, and are
commonly used in other various signal processing applications. The VCU can perform a complex I and Q
multiply with coefficients (four multiplies) in a single cycle, as compared to approximately 10 cycles without
the VCU. In addition, the VCU can read/write the real and imaginary parts of 16-bit complex data to memory
in a single cycle.

• CRC algorithms are used for verifying data integrity over large data blocks, communication packets, or code
sections. The VCU can perform 8-bit, 16-bit, 24-bit, and 32-bit CRCs completely in the background, offloading
the main C28x CPU. For example, the VCU can compute the CRC for a block length of 10 bytes in 10 cycles,
as compared to approximately 250 cycles without the VCU. A CRC result register contains the current CRC
and is updated each time a CRC instruction is executed. This simplifies the CRC calculations and access to
the final CRC value.

Figure 6-1. VCU Performance Improvements Compared to Software-Only Implementations

Devices with the C28x+VCU add an extended set of registers and instructions to the standard C28x architecture,
which are used to support the acceleration of communications-based algorithms. The additional registers are:
nine result registers, two traceback registers, a configuration and status register, and a CRC result register. The
VCU performs fixed-point operations using the same existing instruction set format, pipeline, and memory bus
architecture as C28x.

Programming the VCU is made easy with TI’s C2000Ware software suite. TI provides a complete library of
C-callable assembly functions. These functions are implemented using the VCU instruction set to optimize
efficiency and minimize overhead. TI also provides higher-level functions to support PLC communications
standards such as PRIME and G3.

Some devices utilize a dedicated cyclic redundancy check unit (VCRC) rather than the full featured VCU for
applications not requiring Viterbi decoding or complex math support. This enhanced VCRC is an extension of
the C28x CPU and it includes registers and instructions to support CRC algorithms. CRC algorithms provide
a straightforward method for verifying data integrity over large data blocks, communication packets, or code
sections. The VCRC can perform 8-bit, 16-bit, 24-bit, and 32-bit CRCs, and it is capable of computing the
polynomial code checksum for a block length of 10 bytes in 10 cycles (a byte of data in a single cycle). For
custom CRC polynomials the execution time increases to three cycles. A CRC result register contains the
current CRC, which is updated whenever a CRC instruction is executed.

Viterbi, Complex Math, and CRC Unit (VCU) www.ti.com

8 Enhancing the Computational Performance of the C2000™ Microcontroller
Family

SPRY288C – APRIL 2020 – REVISED DECEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRY288
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRY288C&partnum=

7 Summary
Utilizing the high performance C28x CPU along with the advanced hardware math enhancements described in
this paper, the TI C2000 family of MCUs provides the advanced processing power required for today’s complex
real-time control systems. Combining these enhancements with the various control-optimized peripherals, such
as high-speed ADCs and high-resolution PWMs, engineers can minimize latency while increasing system
performance. TI provides a comprehensive set of development tools and software that enable engineers to
quickly design, test, and produce extremely reliable control systems. A wide range of TI C2000 MCUs are
available to solve the most demanding control system requirements.

The C2000 MCU family includes a wide array of devices that have been designed for both high performance and
low-cost real-time control applications. Based on an extremely fast C28x CPU, advanced control peripherals,
and integrated analog functions, the C2000 MCUs can reduce system cost while increasing system reliability.
Combining the CPU with the CLA running concurrently can effectively double the throughput of the device.
Additionally, some family members feature a dual-core microcontroller, and when combining each CPU with its
own CLA, the device has the capability for delivering the equivalent of up to four times the performance of a
single CPU. Conversely, other family members feature a high level integration of control and analog peripherals
for reducing system complexity and offers greater efficiency for cost-sensitive designs.

The C2000 family of MCUs is ideal for applications requiring advanced real-time signal processing such as
industrial drives, digital power, renewable energy, smart sensing, white goods appliances, motor control, electric
vehicle and hybrid electric vehicle (EV/HEV).

8 References
For additional information about the C2000 MCU family, see the TI web site at:

• http://www.ti.com/c2000

The availability of the various math units and peripherals on each device can be found in the following document:

• Texas Instruments: C2000 Real-Time Control Peripheral Reference Guide

For detailed information about the CLA, see the device-specific Technical Reference Manual.

The extended instruction sets for the FPU, TMU, FINTDIV, VCRC, and VCU can be found in the following
document:

• Texas Instruments: TMS320C28x Extended Instruction Sets Technical Reference Manual

Details about the FPU, TMU, and FINTDIV intrinsics for providing ease of software development can be found in
the following document:

• Texas Instruments: TMS320C28x Optimizing C/C++ Compiler v20.2.0.LTS User's Guide

www.ti.com Summary

SPRY288C – APRIL 2020 – REVISED DECEMBER 2021
Submit Document Feedback

Enhancing the Computational Performance of the C2000™ Microcontroller
Family

9

Copyright © 2021 Texas Instruments Incorporated

http://www.ti.com/c2000
https://www.ti.com/lit/pdf/SPRU566
https://www.ti.com/lit/pdf/SPRUHS1
https://www.ti.com/lit/pdf/SPRU514
https://www.ti.com
https://www.ti.com/lit/pdf/SPRY288
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRY288C&partnum=

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision B (April 2020) to Revision C (November 2021) Page
• Updated the numbering format for tables, figures and cross-references throughout the document...................2
• Updates were made in Section 3..4

Revision History www.ti.com

10 Enhancing the Computational Performance of the C2000™ Microcontroller
Family

SPRY288C – APRIL 2020 – REVISED DECEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRY288
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRY288C&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Table of Contents
	1 Introduction
	2 Floating-Point Unit (FPU)
	3 Control Law Accelerator (CLA)
	4 Trigonometric Math Unit (TMU)
	5 Fast Integer Division Unit (FINTDIV)
	6 Viterbi, Complex Math, and CRC Unit (VCU)
	7 Summary
	8 References
	Revision History

