
Save power and costs
with TI’s K2E on-chip
networking features

David Lide
Processor Software Architect
Texas Instruments

	 Save power and costs with TI’s K2E on-chip networking features	 2	 April 2015

Introduction

The KeyStone™ II generation of multicore System on-Chips (SoCs) from Texas
Instruments provides a powerful computing platform for a range of broad market
applications including networking, industrial and defense and avionics. These SoCs
boast multiple high-frequency ARM® Cortex®-A15 and C66x DSP cores, a range of
industry-standard peripherals, a high-speed internal processing bus and up to 18 MB
of internal memory (including on-chip caches and SRAM). They also include several
co-processors to offload processing in certain key areas from the main cores. One
of these key elements is the Network Coprocessor (NetCP), comprised of the packet
accelerator (PA) and security accelerator (SA) subsystems, Ethernet switches and
supporting queues and direct memory accesses (DMAs). All of these together provide
a powerful way to accomplish common networking tasks, many times without involving
the host processor at all. This frees the host to have more cycles dedicated to the
application. In addition, the on-chip Ethernet switches for 1 Gb and 10 Gb Ethernet
help reduce overall board bill of materials (BOM) cost by eliminating the need for a
discrete switch. Together, the K2E NetCP and Ethernet switches afford the developer
with end application power, space and cost reductions without compromising
performance. Furthermore, TI provides various software libraries and Linux patches to
simplify development with the network coprocessor. This paper outlines the network
subsystem and its associated accelerators on the latest members of the KeyStone II
family, AM5K2Ex and 66AK2Ex devices, referred to collectively as K2E.

K2E networking
overview

The K2E device family consists of four ARM

Cortex-A15 processing cores, located in one cluster

with 4 MB of L2 cache and is illustrated in the

block diagram, Figure 1 (on the following page). In

addition, K2E has a network subsystem illustrated in

Figure 2 on page 4. This subsystem is comprised of:

•	An integrated, 8 port +1 host port, 1 Gigabit

Ethernet switching subsystem,

•	A separate 2 port + 1 host port, 10 Gigabit

Ethernet switching subsystem,

•	A packet processing subsystem comprised

of a pipeline of dedicated, programmable

packet processors with hardware assist for

packet operations such as classification and

checksums,

•	A security processor that is IPSEC aware,

•	A packet-aware direct memory access (DMA)

peripheral, and

•	A hardware-based queuing subsystem, with

•	Dedicated, programmable processors for

functions such as quality of service and traffic

shaping.

Tying these hardware components together are

ARM software kernel drivers and user space

libraries that enable high throughput, low-latency

packet-processing applications. The ARM cluster

caches and DMAs are kept coherent via hardware

	 Save power and costs with TI’s K2E on-chip networking features	 3	 April 2015

32 KB L1
P-Cache

32 KB L1
P-Cache

ARM
A15

®

ARM
A15

ARM
A15

ARM
A15

32 KB L1
P-Cache

32 KB L1
P-Cache

4 MB L2 Cache

32 KB L1
D-Cache

72-Bit
DDR3 EMIF

2 MB
MSM
SRAM

MSMC

Debug & Trace

Boot ROM

Secure Mode

Power
Management

PLL

EDMA

HyperLink TeraNet

Multicore Navigator

Network Coprocessor

3×

5×

Semaphore

Memory Subsystem AM5K2E04

32 KB L1
D-Cache

32 KB L1
D-Cache

4 ARM cores @ up to 1.4 GHz

32 KB L1
D-Cache

Security
Accelerator

Packet
Accelerator

Queue
Manager

Packet
DMA

9-Port
Ethernet
Switch

1
 G

b
E

1
 G

b
E

1
 G

b
E

1
 G

b
E

1
 G

b
E

1
 G

b
E

1
 G

b
E

1
 G

b
E

1
0
 G

b
E

1
0
 G

b
E

3-Port
Ethernet
Switch

T
S

IP

E
M

IF
 1

6

G
P

IO
 ×

3
2

3
×

 I
C

2

2
×

 U
S

B
 3

.0

2
×

 U
A

R
T

3
×

 S
P

I

2
×

 P
C

Ie
 ×

2

Figure 1. K2E (AM5K2E04) block diagram

making for very efficient packet input to and output

from the ARM cores.

Ethernet switch blocks

There are two Ethernet switch blocks in K2E.

The integrated switch subsystem in K2E is a full-

featured, 801.1d compliant, Ethernet bridge that

supports eight 1 Gig Ethernet ports. All Ethernet

ports can also be independently used as normal

Ethernet ports without switching. The 9-port switch

subsystem has numerous features including:

•	Line rate switching for 8 external 1 Gig ports

and an internal, 8 Gig “host port”

•	VLAN and DSCP aware switching

•	8-KByte look-up table for learned and

provisioned MAC addresses, VLANs

	 Save power and costs with TI’s K2E on-chip networking features	 4	 April 2015

PDSP0

PDSP0

PDSP0

PDSP0

PDSP0

PDSP0

PDSP0

PDSP0

PDSP0

LUT1_0 (256 entries)
SRIO/MAC classification

LUT1_0 (256 entries)
Outer IP classification; Custom header

LUT1_0 (256 entries)
Inner IP classification; Custom header

Packet patch, protocol handler and/or trailer
removal

LUT1_0 (256 entries)
Flow cache lookup using L3/L4 header

LUT1_0 (256 entries)
Second IPSEC classification

LUT1_0 (256 entries)
Inner IP firewall (ACL); Reassembly prep

NAT-T header insertion or second IPSEC
pre-processing

LS header insertion/update and outer IP
fragmentation

LUT1_1 (256 entries)
Outer IP firewall (ACL); Reassembly prep

LUT1_1 (256 entries)
IPSEC NAT-T detection; IPSEC classification

LUT2 (3000 entries)
TCP/UDP/GTP-U/Custom header

Packet patch, protocol handler and/or trailer
removal

Inner L3/L4 header update and TX command
processing

Outer IP insertion/update, IPSEC pre-processing,
inner IP fragmentation, TX command processing

Ingress 0 Cluster

NetCP Packet

DMA

Local Packet

DMA

Local Queue

Manager

Security

Accelerator

Reassembly

Engine

Flexible

Statistics Block

Host

1
2

8
-b

it S
tream

in
g
 In

terface S
w

itch

Ingress 1 Cluster

Ingress 4 Cluster

Post-Classification Cluster

Egress 0 Cluster

Ingress 2 Cluster

Ingress 3 Cluster

Egress 1 Cluster

Egress 2 Cluster

PDSP1

PDSP1

PDSP1

PDSP1

PDSP1
GbE Switch Subsystem

TXST

RXST

PDSP2SGMII 1

...

SGMII N

N-Port

Ethernet

Switch

•	Hardware-based packet arrival and departure

time stamping to facilitate the implementation

of network-based time synchronization such

as IEEE 1588-2008. Time stamping of IPSEC-

encapsulated 1558 is also supported.

•	802.1Qbb per priority flow control, per priority

per port statistics, 802.1Qav egress shaping

•	Host port is interfaced directly to packet

processing subsystem (no hop to external

memory required)

A second 3-port integrated switch is also included

on the SoC, supporting two external Ethernet ports

and one internal port, each running up to 10 Gbps.

This switch also provides a MACSEC engine for line

rate packet encryption and authentication.

Multicore Navigator:
Hardware queuing and
packet-aware DMA

K2E SoCs include a hardware-based queuing

subsystem and packet-aware DMA engine that

Figure 2. K2E Network Coprocessor packet accelerator

	 Save power and costs with TI’s K2E on-chip networking features	 5	 April 2015

is capable of interworking with packet/security

accelerator hardware in the NetCP (discussed

below), software and the hardware queues.

The hardware queuing subsystem consists of a

hardware module (the queue manager) that exposes

8196 individual hardware queues via memory-

mapped registers. Each queue can contain a list of

32-bit pointers to small chunks of memory called

packet descriptors. Descriptors are allocated from

blocks of memory that are initially registered with the

queue manager. Descriptors are typically 64 or 128

Bytes in size and have a well-defined format that is

understood by software, the accelerators and the

DMA engine. Descriptors contain pointers to actual

buffers that hold the packet data, but also have

fields to hold various pieces of packet metadata

such as actual buffer length, maximum buffer

length and return queue number. Descriptors can

be chained together to facilitate scatter/gather lists

used by most operating systems.

The well-known queuing paradigms of push and

pop are used throughout. Software or hardware

accelerators can push a descriptor onto the tail

(head) of a queue by writing the descriptor address

(32 bits) to the appropriate memory-mapped

register. The queue manager takes care of updating

the previous/next links that manage the list. From

ARM software, this push operation takes on the

order of 10–15 cycles, assuming that the queue

manager memory-mapped area is made “write

buffer able” by the operating system. On the order

of 90 additional cycles are typically required to

convert from virtual to physical address and to issue

the necessary memory barrier instructions required

for ARM–DMA coherency to take place. Similarly,

consumers can pop a descriptor off the top of

the queue by reading from the memory-mapped

address. From ARM software, this typically takes on

the order of 400 cycles; including the 32-bit actual

memory read, address conversion and cache line

loading of the descriptor.

Certain queues are hardwired or can be assigned to

the Packet DMA channels so that they can be used

to send to/receive data from hardware accelerators.

The DMA engine is aware of the descriptor format

and can use fields out of the descriptor for specific

purposes. Examples include:

•	A queue may contain a list of descriptors to be

used to place newly arrived packets (e.g., from

the network or as output from an accelerator).

The DMA engine will pop a descriptor from

this assigned queue, parse it to obtain the

buffer address where to place the data and the

maximum size to transfer and then copy the

new data into this memory.

•	For queues used as inputs to accelerators, the

DMA engine will again pop the top descriptor

when the accelerator is ready for new data,

parse it to obtain the buffer address and length,

and then copy the data into the accelerator.

The DMA engine will then read a return queue

number from the descriptor and will push

the [consumed] descriptor to this queue for

recycling.

The DMA engine also supports more complicated

descriptor and buffer allocation schemes. For

example, a set of free queues, each with different

sized buffers can be grouped together with a

defined allocation policy. The DMA will select which

free queue to use in the group based on the policy:

•	Best fit: Select the queue whose buffer sizes

match closest to the size of the incoming data

•	Ordered fit: Use a buffer from the first free

queue for the first N Bytes of the packet, and

then use the second queue of the set for the

next M Bytes, etc. This allows a packet to be

	 Save power and costs with TI’s K2E on-chip networking features	 6	 April 2015

split into different memory areas and chained

together.

Multicore Navigator:
Quality of Service

The hardware queuing subsystem also contains

several programmable microcontrollers that can

be used to implement various functions, including

packet scheduling, interrupt accumulation and

egress traffic shaping to provide packet quality

of service. The traffic shaper is implemented

by firmware running on these microcontrollers.

Each shaper consists of a set of hierarchical

arrangements of hardware queues that hold packets

that are fed from software or accelerators. The tip

of the hierarchy feeds these packets to a configured

output queue (this could be the input to the network

coprocessor for example) using the configured

shaping algorithm. The shaper firmware supports

the following features:

•	Packet drop scheduler, supporting configurable

tail drop, head drop or random early drop (RED)

•	Strict priority queues and best effort queues

•	Weighted round robin (WRR) scheduling with

configurable weights for each input

•	Shaping/dropping can be done on Byte or

packet counts

K2E Network
Coprocessor packet
accelerator

The packet processing accelerator (PA) as part

of the K2E Network Coprocessor, consists of a

collection of packet-processing microcontrollers

known as PDSPs, coupled with look-up engines

to perform pattern matching and classification of

packet header fields. There are also dedicated

hardware engines for in-line IPV4 and IPV6 fragment

re-assembly and to perform a cyclic redundancy

check (CRC) and checksum calculations. The K2E

PA is connected to the rest of the SoC via hardware

queues and the DMA engine discussed above.

PDSPs

PDSPs are small, 32-bit microcontrollers with an

instruction set that has been optimized for packet

header processing. Inside of the K2E PA, there is a

broad-side interface that lets PDSP firmware see a

sliding 32-Byte window view of each packet. Each

32-Byte packet chunk can be loaded into the PDSP

registers in one cycle, as needed by firmware. This

allows the PDSP firmware to work on packets in a

streamlined fashion very efficiently. Each PDSP has

access to its own program and data RAM.

Look-up engines

The K2E NetCP PA contains two types of look-up

table (LUT) accelerators. The first-pass LUTs hold

entries that are 64 Bytes wide. Each entry can

contain up to 44 Byte-wide fields and 16 bit-wide

fields. Various sizes of these LUTs are present,

ranging from 64 entry tables to 512 entry tables.

Each table is capable of look up at line rate. Entries

can be added and deleted while packets are flowing

through them. The first-pass LUT can also create

an RSS hash of packet fields (typically IP source/

destination addresses and ports).

There is also one second-pass LUT at the final

ingress processing stage (see below). This contains

up to 16K entries, each one 128 bits wide.

Processing flow

The PA is organized as a processing pipeline with

processing stages roughly corresponding to typical

packet protocol layering. A packet is received

	 Save power and costs with TI’s K2E on-chip networking features	 7	 April 2015

into the PA directly from the switch subsystem, or

from dedicated hardware queues. These hardware

queues can be fed from software or from other

accelerators as discussed above. While being

processed by PA, a packet resides entirely in the

K2E NetCP internal buffering. The PA pipeline can

contain multiple packets simultaneously.

Ingress processing

On ingress, the accelerator consists of five clusters

of PDSPs/look-up engines organized as follows:

•	 Ingress cluster 0: Layer 2 processing and outer

firewall; Outer re-assembly preparation

•	 Ingress cluster 1: Layer 3 / first pass IP/IPSEC

ESP/AH, NAT-T

•	 Ingress cluster 2: Second Pass IPSEC (bundled

S) ESP/AH

•	 Ingress cluster 3: Layer 3/ inner IP processing

and firewall

•	 Ingress cluster 4: Layer 4/5 processing including

layer 4 checksums and L4 port look up

At any stage, a PDSP cluster has the same basic

hardware architecture. As an example, the first

ingress stage cluster is illustrated in Figure 3 below.

It consists of two look-up engines (labeled as

LUT1 in the figure), coupled to two PDSPs (labeled

CDEx) and a CRC/checksum hardware accelerator.

Typically the first stage cluster PDSP firmware will

perform Layer 2 classification and firewall checks

on packets received from the switch. Roughly, the

processing is as follows for this stage:

•	Parse the L2 headers of the packet. Basic

packet validity checks are done and certain

exception packets may be identified here and

passed immediately to software.

•	Extract fields of interest such as MAC

addresses, VLAN IDs, Ether-types

•	Send these extracted fields to the first look-

up engine. While waiting for the result, begin

processing the next packet.

•	The engine look up will return a match record

from one of the 256 entries or failure result.

On a match, the match record will contain

instructions telling the firmware where to send

the packet next (typically to the next stage of

the pipeline). If the packet is to exit the PA (e.g.,

an exact match of a particular Ether-type says

to send the packet immediately to the host), the

match record will indicate where to send the

packet (which hardware queue) and where to

get a free buffer to place the packet in.

The second PDSP and look-up engine in the first

ingress cluster can be used to perform a firewall

function on the packet. Match results at this stage can:

•	Drop the packet

•	Pass the packet on

•	Mark the packet. The mark can be used in

subsequent stages.

48 Bytes × 256

CDE0

L2 Header /

Custom

Parsing

CDE1

L3 / L4

Firewall 1

RA – Prep

SRC MAC

DST MAC

VLAN

ETH Type

48 Bytes × 256

VC (2)

SRC IP (16)

DST IP (16)

Protocol (1)

TC/TOS (1)

Flow Label (4)

SRC Port (2)

DST Port (2)

LUT1

16K External Buffer

“S
p
litter”

“C
om

b
in

er”CDE0

2K

CDE1

2K

Checker

(CRC)

LUT1

Figure 3. K2E Network Coprocessor ingress
stage 0 architecture

	 Save power and costs with TI’s K2E on-chip networking features	 8	 April 2015

The remaining ingress clusters have similar

structure. A packet may be sent to the next cluster

or exit the subsystem based on what the cluster

firmware decides and the rules programmed into the

look-up engines in that cluster.

On final egress of the subsystem, the packet will

contain items of meta data that are useful to the

software stack consumer:

•	Offsets to the packet L2, L3, L4 headers are

provided

•	Markers defined by the application along with

the look-up table rules will be present. These

indicate the rule(s) that the packet matched

along the pipeline. These can be used by the

software stack to bypass its classification logic

•	 IP header and L4 checksum success/failure will

be indicated

•	The ingress Ethernet port is provided

Two hardware re-assembly engines are present

to collect IP (V4 or V6) fragments of a flow and

return completed IP datagrams to the pipelines.

These effectively allow support for inner and outer

fragments in one level of IP tunneling, particularly for

targeting inline IPSEC applications.

Egress processing

The K2E NetCP PA contains three PDSP clusters

for packet egress processing. These have similar

structure to the ingress clusters and are designed

for the following egress processing:

•	Cluster 0: Implements a flow cache, can

perform inner tunnel IP fragmentation, L4

checksum and preparation for IPSEC pass one

•	Cluster 1: Implements outer IPSEC pre-

processing (for second security transform in a

security accelerator (SA) bundle)

•	Cluster 2: Performs outer IP fragmentation and

L2 framing.

The egress pipeline will perform framing and packet

header/trailer construction on payloads for flows

that are pre-programmed into the flow cache (at

egress cluster 0). The flow cache consists of a

look-up engine and memory that contains software-

programmable packet framing/patching/header

insertion instructions. The results from the ingress

pipeline processing on a packet, for example, can

be used as part of the look up. This allows no-host

software touch packet forwarding with some level

of header manipulation (e.g., for simple IP routing or

NAT translation).

K2E Network
Coprocessor security
accelerator

The Security Accelerator (SA) provides multiple

hardware engines for the following packet crypto

operations:

•	AES

•	3DES

•	SHA1 HMAC

•	SHA2 HMAC (up to sha256)

•	Kasumi

•	SNOW 3G

•	ZUC

In addition, it supports various modes of the above

algorithms such as HMAC, CBC and counter mode,

as well as combined modes such as GCM and

CCM. It allows encryption and authentication to

be performed in one operation (e.g., AES CBC +

SHA1). As it is hardware queue based, it can accept

packets from software as well as other accelerators,

in particular the PA. Finally, it contains PDSP

engines to do packet security protocol processing,

e.g., for IPSEC. This processing includes window

	 Save power and costs with TI’s K2E on-chip networking features	 9	 April 2015

replay checks for ingress and sequence number

maintenance for egress.

The SA is programmed by software with security

contexts. These may be in external or internal

memory, but are loaded by the SA when required

into an internal context cache. These contexts

hold keys for the encryption and authentication

algorithms, as well as any state (for example

the window replay bit mask). Software can lock

contexts into the cache if necessary.

IPSEC inflow

The SA hardware and firmware, in conjunction

with the PA, is designed to implement to perform

inline IPSEC processing. This is a powerful feature

that offloads much of ingress and egress IPSEC

processing from the host operating system. On

ingress, PA PDSP clusters/look-up engines can be

programmed by software with the matching criteria

for IPSEC tunnels. Typically this would include the

source/destination IP address, the protocol type

(e.g., ESP or AH) and the Security Policy Index (SPI)

value, and a pointer to the corresponding security

association. A packet matching this signature

would then be sent by that cluster to the security

accelerator, with the matched security context

pointer included as part of the packet meta data.

After IPSEC processing (including decryption,

authentication, window replay checks) in the SA,

the packet will be returned to the PA pipeline

for subsequent processing; this might involve

another trip to SA in the case of bundled security

transformations (e.g., ESP+AH). Ultimately the

decrypted and authenticated packet may land in a

hardware queue serviced by the host application

or network driver. With some modification (as

discussed below), this packet can now be

processed more efficiently by the host stack as

major portions of the IPSEC processing layers can

be skipped over.

Similarly, egress packets may bypass the IPSEC

processing layers in the host stack and can be sent

to NetCP with explicit instructions (passed as meta

data) telling NetCP to perform the IPSEC processing

and crypto transforms as the packet egresses the

SoC (alternatively, the flow cache can be pre-

programmed with these instructions).

Networking software

The K2E NetCP PA and SA provide for powerful

hardware resources that can be applied to network

workloads. But to use this hardware effectively

requires a great deal of firmware and host software

participation. Texas Instruments provides several

layers of firmware, software and APIs to facilitate

customer’s usage of these resources.

PDSP firmware and low-level drivers

Firmware is provided as part of the K2E software

development kits, typically bundled with the Linux

Kernel. This firmware implements the packet

processing functionality described above. For bare

metal and Real-Time OS (RTOS) implementations

on ARM, a low-level-driver software library, MCSDK,

is included that provides APIs to configure the PA

and SA accelerators, and to expose access to the

multi-core navigator functions (e.g., queue

push/pop).

Operating system integration

Integration of K2E networking features with

a high-level operating system such as Linux

requires a balance between exposing all hardware

capability to software versus maintainability of

the operating system network stack and drivers.

	 Save power and costs with TI’s K2E on-chip networking features	 10	 April 2015

Texas Instruments has taken an approach that

compromises between the two extremes. The K2E

has exposed features such as NetCP’s checksum

offload, and traditional look-aside security

acceleration to Linux as these have well-maintained

interfaces to the kernel stack and drivers. Other

examples in this category include exposing the

hardware packet time-stamping capability of the

integrated switch to socket-based user space

applications via Linux’s packet timestamp transport

mechanism, and use of the RSS hash calculation

that NetCP can perform to assign packet flows to

processing cores.

TI has also integrated NetCP’s inflow IPSEC feature

into Linux by introducing a patch into the Linux

kernel stack. This patch replaces the Linux native

IPSEC Encapsulating Security Protocol layer (ESP)

with a version that:

•	Accepts provisioning of which security contexts

can be offloaded

•	On ingress, packets belonging to offloaded

security contexts will be decrypted and

authenticated “in flight” by PA and the security

accelerator, prior to the packet reaching the

kernel Ethernet driver. The replaced ESP

protocol layer will check for such packets and

will skip sending these to Linux’s xfrm layer for

crypto processing. Policy checking, and anti-

replay window checking will still be done by

Linux (i.e., PA/SA offload of these features will

be disabled) as bypassing this software in Linux

would require more intrusive changes to the

Linux stack.

•	On egress, the replaced ESP protocol layer

checks for packets that have been assigned

to offloaded contexts. For such packets, it

skips sending the packet to the xfrm layer for

crypto processing (either software crypto or

look aside accelerator) and instead marks these

with meta data. Ethernet driver checks for this

IPSEC offload meta data in packets and when

such packets are seen, sends them to the PA

with instructions for the egress pipeline stages

to perform the IPSEC processing and crypto

transformation.

•	Corner cases, such as the handling of

fragmentation and re-assembly, require

additional logic, primarily implemented in

custom netfilter hooks that are installed by a TI-

provided kernel module.

•	A companion user space daemon is

responsible for monitoring IPSEC security

policy and association activity and issuing

configuration commands to the PA and the

security accelerator to offload/stop offload of

the security associations.

What the NetCP means
to the SoC

The features and functionality afforded by the

NetCP, as used in conjunction with an embedded

processor such as the K2E have traditionally been

implemented with a standalone network interface

chip (NIC). The NICs obviously add extra end-

product-level bill of material costs, significant

power consumption and board space. By including

high-performance real-time packet and security

processing as detailed, the K2E processor and

its on-chip network coprocessor should be

considered by every embedded developer with

Ethernet network interface functionality as part of

their end product application. The NetCP meets or

exceeds many of the real-time network features and

performance requirements for today’s embedded

applications with its minimal power consumption

compared to standalone network chips, affords end

product efficiencies.

Acknowledgments

The author would like to thank his colleagues

at Texas Instruments for their support in the

preparation of this article.

SPRY283© 2015 Texas Instruments Incorporated

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI’s standard
terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing
orders. TI assumes no liability for applications assistance, customer’s applications or product designs, software performance, or infringement of patents.
The publication of information regarding any other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

KeyStone is a trademark of Texas Instruments. All trademarks are the property of their respective owners.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

