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Introduction

The KeyStone™ II generation of multicore System on-Chips (SoCs) from Texas 
Instruments provides a powerful computing platform for a range of broad market 
applications including networking, industrial and defense and avionics. These SoCs 
boast multiple high-frequency ARM® Cortex®-A15 and C66x DSP cores, a range of 
industry-standard peripherals, a high-speed internal processing bus and up to 18 MB 
of internal memory (including on-chip caches and SRAM). They also include several 
co-processors to offload processing in certain key areas from the main cores. One 
of these key elements is the Network Coprocessor (NetCP), comprised of the packet 
accelerator (PA) and security accelerator (SA) subsystems, Ethernet switches and 
supporting queues and direct memory accesses (DMAs). All of these together provide 
a powerful way to accomplish common networking tasks, many times without involving 
the host processor at all. This frees the host to have more cycles dedicated to the 
application. In addition, the on-chip Ethernet switches for 1 Gb and 10 Gb Ethernet 
help reduce overall board bill of materials (BOM) cost by eliminating the need for a 
discrete switch. Together, the K2E NetCP and Ethernet switches afford the developer 
with end application power, space and cost reductions without compromising 
performance. Furthermore, TI provides various software libraries and Linux patches to 
simplify development with the network coprocessor. This paper outlines the network 
subsystem and its associated accelerators on the latest members of the KeyStone II 
family, AM5K2Ex and 66AK2Ex devices, referred to collectively as K2E.

K2E networking 
overview

The K2E device family consists of four ARM 

Cortex-A15 processing cores, located in one cluster 

with 4 MB of L2 cache and is illustrated in the 

block diagram, Figure 1 (on the following page). In 

addition, K2E has a network subsystem illustrated in 

Figure 2 on page 4. This subsystem is comprised of:

•	An integrated, 8 port +1 host port, 1 Gigabit 

Ethernet switching subsystem,

•	A separate 2 port + 1 host port, 10 Gigabit 

Ethernet switching subsystem,

•	A packet processing subsystem comprised 

of a pipeline of dedicated, programmable 

packet processors with hardware assist for 

packet operations such as classification and 

checksums,

•	A security processor that is IPSEC aware,

•	A packet-aware direct memory access (DMA) 

peripheral, and

•	A hardware-based queuing subsystem, with

•	Dedicated, programmable processors for 

functions such as quality of service and traffic 

shaping.

Tying these hardware components together are 

ARM software kernel drivers and user space 

libraries that enable high throughput, low-latency 

packet-processing applications. The ARM cluster 

caches and DMAs are kept coherent via hardware 
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Figure 1. K2E (AM5K2E04) block diagram

making for very efficient packet input to and output 

from the ARM cores.

Ethernet switch blocks

There are two Ethernet switch blocks in K2E. 

The integrated switch subsystem in K2E is a full-

featured, 801.1d compliant, Ethernet bridge that 

supports eight 1 Gig Ethernet ports. All Ethernet 

ports can also be independently used as normal 

Ethernet ports without switching. The 9-port switch 

subsystem has numerous features including:

•	Line rate switching for 8 external 1 Gig ports 

and an internal, 8 Gig “host port”

•	VLAN and DSCP aware switching

•	8-KByte look-up table for learned and 

provisioned MAC addresses, VLANs
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•	Hardware-based packet arrival and departure 

time stamping to facilitate the implementation 

of network-based time synchronization such 

as IEEE 1588-2008. Time stamping of IPSEC-

encapsulated 1558 is also supported.

•	802.1Qbb per priority flow control, per priority 

per port statistics, 802.1Qav egress shaping

•	Host port is interfaced directly to packet 

processing subsystem (no hop to external 

memory required)

A second 3-port integrated switch is also included 

on the SoC, supporting two external Ethernet ports 

and one internal port, each running up to 10 Gbps. 

This switch also provides a MACSEC engine for line 

rate packet encryption and authentication. 

Multicore Navigator: 
Hardware queuing and 
packet-aware DMA

K2E SoCs include a hardware-based queuing 

subsystem and packet-aware DMA engine that 

Figure 2. K2E Network Coprocessor packet accelerator
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is capable of interworking with packet/security 

accelerator hardware in the NetCP (discussed 

below), software and the hardware queues.

The hardware queuing subsystem consists of a 

hardware module (the queue manager) that exposes 

8196 individual hardware queues via memory-

mapped registers. Each queue can contain a list of 

32-bit pointers to small chunks of memory called 

packet descriptors. Descriptors are allocated from 

blocks of memory that are initially registered with the 

queue manager. Descriptors are typically 64 or 128 

Bytes in size and have a well-defined format that is 

understood by software, the accelerators and the 

DMA engine. Descriptors contain pointers to actual 

buffers that hold the packet data, but also have 

fields to hold various pieces of packet metadata 

such as actual buffer length, maximum buffer 

length and return queue number. Descriptors can 

be chained together to facilitate scatter/gather lists 

used by most operating systems.

The well-known queuing paradigms of push and 

pop are used throughout. Software or hardware 

accelerators can push a descriptor onto the tail 

(head) of a queue by writing the descriptor address 

(32 bits) to the appropriate memory-mapped 

register. The queue manager takes care of updating 

the previous/next links that manage the list. From 

ARM software, this push operation takes on the 

order of 10–15 cycles, assuming that the queue 

manager memory-mapped area is made “write 

buffer able” by the operating system. On the order 

of 90 additional cycles are typically required to 

convert from virtual to physical address and to issue 

the necessary memory barrier instructions required 

for ARM–DMA coherency to take place. Similarly, 

consumers can pop a descriptor off the top of 

the queue by reading from the memory-mapped 

address. From ARM software, this typically takes on 

the order of 400 cycles; including the 32-bit actual 

memory read, address conversion and cache line 

loading of the descriptor.

Certain queues are hardwired or can be assigned to 

the Packet DMA channels so that they can be used 

to send to/receive data from hardware accelerators. 

The DMA engine is aware of the descriptor format 

and can use fields out of the descriptor for specific 

purposes. Examples include:

•	A queue may contain a list of descriptors to be 

used to place newly arrived packets (e.g., from 

the network or as output from an accelerator). 

The DMA engine will pop a descriptor from 

this assigned queue, parse it to obtain the 

buffer address where to place the data and the 

maximum size to transfer and then copy the 

new data into this memory.

•	For queues used as inputs to accelerators, the 

DMA engine will again pop the top descriptor 

when the accelerator is ready for new data, 

parse it to obtain the buffer address and length, 

and then copy the data into the accelerator. 

The DMA engine will then read a return queue 

number from the descriptor and will push 

the [consumed] descriptor to this queue for 

recycling.

The DMA engine also supports more complicated 

descriptor and buffer allocation schemes. For 

example, a set of free queues, each with different 

sized buffers can be grouped together with a 

defined allocation policy. The DMA will select which 

free queue to use in the group based on the policy:

•	Best fit: Select the queue whose buffer sizes 

match closest to the size of the incoming data

•	Ordered fit: Use a buffer from the first free 

queue for the first N Bytes of the packet, and 

then use the second queue of the set for the 

next M Bytes, etc. This allows a packet to be 
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split into different memory areas and chained 

together. 

Multicore Navigator:  
Quality of Service

The hardware queuing subsystem also contains 

several programmable microcontrollers that can 

be used to implement various functions, including 

packet scheduling, interrupt accumulation and 

egress traffic shaping to provide packet quality 

of service. The traffic shaper is implemented 

by firmware running on these microcontrollers. 

Each shaper consists of a set of hierarchical 

arrangements of hardware queues that hold packets 

that are fed from software or accelerators. The tip 

of the hierarchy feeds these packets to a configured 

output queue (this could be the input to the network 

coprocessor for example) using the configured 

shaping algorithm. The shaper firmware supports 

the following features:

•	Packet drop scheduler, supporting configurable 

tail drop, head drop or random early drop (RED)

•	Strict priority queues and best effort queues

•	Weighted round robin (WRR) scheduling with 

configurable weights for each input

•	Shaping/dropping can be done on Byte or 

packet counts 

K2E Network 
Coprocessor packet 
accelerator

The packet processing accelerator (PA) as part 

of the K2E Network Coprocessor, consists of a 

collection of packet-processing microcontrollers 

known as PDSPs, coupled with look-up engines 

to perform pattern matching and classification of 

packet header fields. There are also dedicated 

hardware engines for in-line IPV4 and IPV6 fragment 

re-assembly and to perform a cyclic redundancy 

check (CRC) and checksum calculations. The K2E 

PA is connected to the rest of the SoC via hardware 

queues and the DMA engine discussed above.

PDSPs

PDSPs are small, 32-bit microcontrollers with an 

instruction set that has been optimized for packet 

header processing. Inside of the K2E PA, there is a 

broad-side interface that lets PDSP firmware see a 

sliding 32-Byte window view of each packet. Each 

32-Byte packet chunk can be loaded into the PDSP 

registers in one cycle, as needed by firmware. This 

allows the PDSP firmware to work on packets in a 

streamlined fashion very efficiently. Each PDSP has 

access to its own program and data RAM.

Look-up engines

The K2E NetCP PA contains two types of look-up 

table (LUT) accelerators. The first-pass LUTs hold 

entries that are 64 Bytes wide. Each entry can 

contain up to 44 Byte-wide fields and 16 bit-wide 

fields. Various sizes of these LUTs are present, 

ranging from 64 entry tables to 512 entry tables. 

Each table is capable of look up at line rate. Entries 

can be added and deleted while packets are flowing 

through them. The first-pass LUT can also create 

an RSS hash of packet fields (typically IP source/

destination addresses and ports).

There is also one second-pass LUT at the final 

ingress processing stage (see below). This contains 

up to 16K entries, each one 128 bits wide.

Processing flow

The PA is organized as a processing pipeline with 

processing stages roughly corresponding to typical 

packet protocol layering. A packet is received 
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into the PA directly from the switch subsystem, or 

from dedicated hardware queues. These hardware 

queues can be fed from software or from other 

accelerators as discussed above. While being 

processed by PA, a packet resides entirely in the 

K2E NetCP internal buffering. The PA pipeline can 

contain multiple packets simultaneously.

Ingress processing

On ingress, the accelerator consists of five clusters 

of PDSPs/look-up engines organized as follows:

•	 Ingress cluster 0: Layer 2 processing and outer 

firewall; Outer re-assembly preparation

•	 Ingress cluster 1: Layer 3 / first pass IP/IPSEC 

ESP/AH, NAT-T

•	 Ingress cluster 2: Second Pass IPSEC (bundled 

S) ESP/AH

•	 Ingress cluster 3: Layer 3/ inner IP processing 

and firewall

•	 Ingress cluster 4: Layer 4/5 processing including 

layer 4 checksums and L4 port look up

At any stage, a PDSP cluster has the same basic 

hardware architecture. As an example, the first 

ingress stage cluster is illustrated in Figure 3 below. 

It consists of two look-up engines (labeled as 

LUT1 in the figure), coupled to two PDSPs (labeled 

CDEx) and a CRC/checksum hardware accelerator. 

Typically the first stage cluster PDSP firmware will 

perform Layer 2 classification and firewall checks 

on packets received from the switch. Roughly, the 

processing is as follows for this stage:

•	Parse the L2 headers of the packet. Basic 

packet validity checks are done and certain 

exception packets may be identified here and 

passed immediately to software.

•	Extract fields of interest such as MAC 

addresses, VLAN IDs, Ether-types

•	Send these extracted fields to the first look-

up engine. While waiting for the result, begin 

processing the next packet.

•	The engine look up will return a match record 

from one of the 256 entries or failure result. 

On a match, the match record will contain 

instructions telling the firmware where to send 

the packet next (typically to the next stage of 

the pipeline). If the packet is to exit the PA (e.g., 

an exact match of a particular Ether-type says 

to send the packet immediately to the host), the 

match record will indicate where to send the 

packet (which hardware queue) and where to 

get a free buffer to place the packet in.

The second PDSP and look-up engine in the first 

ingress cluster can be used to perform a firewall 

function on the packet. Match results at this stage can:

•	Drop the packet

•	Pass the packet on

•	Mark the packet. The mark can be used in 

subsequent stages.
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The remaining ingress clusters have similar 

structure. A packet may be sent to the next cluster 

or exit the subsystem based on what the cluster 

firmware decides and the rules programmed into the 

look-up engines in that cluster.

On final egress of the subsystem, the packet will 

contain items of meta data that are useful to the 

software stack consumer:

•	Offsets to the packet L2, L3, L4 headers are 

provided

•	Markers defined by the application along with 

the look-up table rules will be present. These 

indicate the rule(s) that the packet matched 

along the pipeline. These can be used by the 

software stack to bypass its classification logic

•	 IP header and L4 checksum success/failure will 

be indicated

•	The ingress Ethernet port is provided

Two hardware re-assembly engines are present 

to collect IP (V4 or V6) fragments of a flow and 

return completed IP datagrams to the pipelines. 

These effectively allow support for inner and outer 

fragments in one level of IP tunneling, particularly for 

targeting inline IPSEC applications.

Egress processing

The K2E NetCP PA contains three PDSP clusters 

for packet egress processing. These have similar 

structure to the ingress clusters and are designed 

for the following egress processing:

•	Cluster 0: Implements a flow cache, can 

perform inner tunnel IP fragmentation, L4 

checksum and preparation for IPSEC pass one

•	Cluster 1: Implements outer IPSEC pre-

processing (for second security transform in a 

security accelerator (SA) bundle)

•	Cluster 2: Performs outer IP fragmentation and 

L2 framing.

The egress pipeline will perform framing and packet 

header/trailer construction on payloads for flows 

that are pre-programmed into the flow cache (at 

egress cluster 0). The flow cache consists of a 

look-up engine and memory that contains software-

programmable packet framing/patching/header 

insertion instructions. The results from the ingress 

pipeline processing on a packet, for example, can 

be used as part of the look up. This allows no-host 

software touch packet forwarding with some level 

of header manipulation (e.g., for simple IP routing or 

NAT translation). 

K2E Network 
Coprocessor security 
accelerator

The Security Accelerator (SA) provides multiple 

hardware engines for the following packet crypto 

operations:

•	AES

•	3DES

•	SHA1 HMAC

•	SHA2 HMAC (up to sha256)

•	Kasumi

•	SNOW 3G

•	ZUC

In addition, it supports various modes of the above 

algorithms such as HMAC, CBC and counter mode, 

as well as combined modes such as GCM and 

CCM. It allows encryption and authentication to 

be performed in one operation (e.g., AES CBC + 

SHA1). As it is hardware queue based, it can accept 

packets from software as well as other accelerators, 

in particular the PA. Finally, it contains PDSP 

engines to do packet security protocol processing, 

e.g., for IPSEC. This processing includes window 
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replay checks for ingress and sequence number 

maintenance for egress.

The SA is programmed by software with security 

contexts. These may be in external or internal 

memory, but are loaded by the SA when required 

into an internal context cache. These contexts 

hold keys for the encryption and authentication 

algorithms, as well as any state (for example 

the window replay bit mask). Software can lock 

contexts into the cache if necessary.

IPSEC inflow

The SA hardware and firmware, in conjunction 

with the PA, is designed to implement to perform 

inline IPSEC processing. This is a powerful feature 

that offloads much of ingress and egress IPSEC 

processing from the host operating system. On 

ingress, PA PDSP clusters/look-up engines can be 

programmed by software with the matching criteria 

for IPSEC tunnels. Typically this would include the 

source/destination IP address, the protocol type 

(e.g., ESP or AH) and the Security Policy Index (SPI) 

value, and a pointer to the corresponding security 

association. A packet matching this signature 

would then be sent by that cluster to the security 

accelerator, with the matched security context 

pointer included as part of the packet meta data. 

After IPSEC processing (including decryption, 

authentication, window replay checks) in the SA, 

the packet will be returned to the PA pipeline 

for subsequent processing; this might involve 

another trip to SA in the case of bundled security 

transformations (e.g., ESP+AH). Ultimately the 

decrypted and authenticated packet may land in a 

hardware queue serviced by the host application 

or network driver. With some modification (as 

discussed below), this packet can now be 

processed more efficiently by the host stack as 

major portions of the IPSEC processing layers can 

be skipped over.

Similarly, egress packets may bypass the IPSEC 

processing layers in the host stack and can be sent 

to NetCP with explicit instructions (passed as meta 

data) telling NetCP to perform the IPSEC processing 

and crypto transforms as the packet egresses the 

SoC (alternatively, the flow cache can be pre-

programmed with these instructions). 

Networking software

The K2E NetCP PA and SA provide for powerful 

hardware resources that can be applied to network 

workloads. But to use this hardware effectively 

requires a great deal of firmware and host software 

participation. Texas Instruments provides several 

layers of firmware, software and APIs to facilitate 

customer’s usage of these resources.

PDSP firmware and low-level drivers

Firmware is provided as part of the K2E software 

development kits, typically bundled with the Linux 

Kernel. This firmware implements the packet 

processing functionality described above. For bare 

metal and Real-Time OS (RTOS) implementations 

on ARM, a low-level-driver software library, MCSDK, 

is included that provides APIs to configure the PA 

and SA accelerators, and to expose access to the 

multi-core navigator functions (e.g., queue  

push/pop).

Operating system integration

Integration of K2E networking features with 

a high-level operating system such as Linux 

requires a balance between exposing all hardware 

capability to software versus maintainability of 

the operating system network stack and drivers. 
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Texas Instruments has taken an approach that 

compromises between the two extremes. The K2E 

has exposed features such as NetCP’s checksum 

offload, and traditional look-aside security 

acceleration to Linux as these have well-maintained 

interfaces to the kernel stack and drivers. Other 

examples in this category include exposing the 

hardware packet time-stamping capability of the 

integrated switch to socket-based user space 

applications via Linux’s packet timestamp transport 

mechanism, and use of the RSS hash calculation 

that NetCP can perform to assign packet flows to 

processing cores.

TI has also integrated NetCP’s inflow IPSEC feature 

into Linux by introducing a patch into the Linux 

kernel stack. This patch replaces the Linux native 

IPSEC Encapsulating Security Protocol layer (ESP) 

with a version that:

•	Accepts provisioning of which security contexts 

can be offloaded

•	On ingress, packets belonging to offloaded 

security contexts will be decrypted and 

authenticated “in flight” by PA and the security 

accelerator, prior to the packet reaching the 

kernel Ethernet driver. The replaced ESP 

protocol layer will check for such packets and 

will skip sending these to Linux’s xfrm layer for 

crypto processing. Policy checking, and anti-

replay window checking will still be done by 

Linux (i.e., PA/SA offload of these features will 

be disabled) as bypassing this software in Linux 

would require more intrusive changes to the 

Linux stack.

•	On egress, the replaced ESP protocol layer 

checks for packets that have been assigned 

to offloaded contexts. For such packets, it 

skips sending the packet to the xfrm layer for 

crypto processing (either software crypto or 

look aside accelerator) and instead marks these 

with meta data. Ethernet driver checks for this 

IPSEC offload meta data in packets and when 

such packets are seen, sends them to the PA 

with instructions for the egress pipeline stages 

to perform the IPSEC processing and crypto 

transformation.

•	Corner cases, such as the handling of 

fragmentation and re-assembly, require 

additional logic, primarily implemented in 

custom netfilter hooks that are installed by a TI-

provided kernel module.

•	A companion user space daemon is 

responsible for monitoring IPSEC security 

policy and association activity and issuing 

configuration commands to the PA and the 

security accelerator to offload/stop offload of 

the security associations. 

What the NetCP means 
to the SoC

The features and functionality afforded by the 

NetCP, as used in conjunction with an embedded 

processor such as the K2E have traditionally been 

implemented with a standalone network interface 

chip (NIC). The NICs obviously add extra end-

product-level bill of material costs, significant 

power consumption and board space. By including 

high-performance real-time packet and security 

processing as detailed, the K2E processor and 

its on-chip network coprocessor should be 

considered by every embedded developer with 

Ethernet network interface functionality as part of 

their end product application. The NetCP meets or 

exceeds many of the real-time network features and 



performance requirements for today’s embedded 

applications with its minimal power consumption 

compared to standalone network chips, affords end 

product efficiencies. 
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anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
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