
The role of embedded software developers

has become increasingly important in the

innovation of medical technology. Embed-

ded processors used in many medical sys-

tems these days need to handle high levels

of computational complexity in real-time and

at low power. For example, innovative digital

signal processors (DSPs) from Texas Instru-

ments (TI) have enabled diagnostic systems

that achieve higher resolution image scans

and provide caregivers access to key clini-

cal data in real time. This ability to meet the

processing constraints of medical systems

is not only a function of the inherent paral-

lelism in TI’s KeyStone architecture but also

a function of how well software developers

are able to leverage its advanced archi-

tecture: multiple cores, rapid data paths,

high-speed peripherals and other features.

To that end, TI has created a solid software

development ecosystem to enable the quick

and easy development of optimized medical

applications that fully utilize TI’s high-per-

formance KeyStone-based system-on-chip

(SoC).

Medical Software Development
on KeyStone™ Processors

Getting started
A typical development environment consists of a host computer with TI tools installed on it

and an Eclipse-based Code Composer Studio™ (CCS) IDE. CCS IDE has been designed as

a one-stop shop that allows code editing, simulation and running/debugging on evaluation

modules (EVMs), all within a single environment. The host computer and EVM are connected

via an emulator that can provide advanced trace and debug capabilities. Instrumentation,

profiling and visualization tools are useful features within CCS IDE that can be leveraged

by developers to fine-tune their applications. TI’s free Multicore Software Development

Kit (MCSDK) incorporates the core software building blocks, including platform software, a

real-time operating system SYS/BIOS™, the Linux operating system for ARM®, processors

low-level drivers, high-level APIs and algorithm libraries, all in one package. Out-of-box dem-

onstration applications and examples are part of the MCSDK and are a great starting point

for developers. These enable developers to learn how to leverage APIs within the MCSDK to

create an application that runs on multiple cores and takes advantage of the various hardware

features within KeyStone-based processors.

Development tools
With the foundational software building blocks available with the MCSDK, developers can

focus their attention on algorithm innovation. Often addressing new clinical needs translates

into the research and implementation of novel algorithms that differentiate a medical product

and create new intellectual property. A programmable processor, like a DSP, provides innova-

tors the flexibility of trying various approaches in software before deciding on what works

best. To give developers a kick start, TI has released multiple algorithm libraries like DSPLIB,

MATHLIB and IMGLIB that include commonly-used signal-processing, math and image-

processing functions optimized for TI’s DSPs. Codecs for many video, audio and speech ap-

plications that have been optimized for various TI platforms can be accessed at the TI codec

page. For medical imaging developers, there is the Software Toolkit for Medical Imaging

(STK-MED), which includes optimized building blocks for ultrasound and optical coherence

tomography applications. These include functions for B-Mode processing, Doppler signal

processing, scan conversion, cubic spline interpolation, FFT and IFFT, and magnitude and log

W H I T E P A P E R

Uday Gurnani,
Applications Engineer,
Embedded Processors

Texas Instruments

http://www.ti.com/lsds/ti/dsp/keystone/overview.page
http://www.ti.com/lsds/ti/dsp/keystone/overview.page
http://processors.wiki.ti.com/index.php/Category:Code_Composer_Studio_v5
http://www.ti.com/lsds/ti/dsp/keystone/toolsw.page#kits
http://www.ti.com/lsds/ti/dsp/keystone/toolsw.page#kits
http://www.ti.com/tool/bioslinuxmcsdk
http://www.ti.com/tool/bioslinuxmcsdk
http://processors.wiki.ti.com/index.php/Category:SYSBIOS
http://www.ti.com/codecs
http://www.ti.com/codecs
http://www.ti.com/tool/s2meddus
http://www.ti.com/tool/s2meddus

Medical Software Development on KeyStone™ Devices July 2013

2 Texas Instruments

computation. Since the algorithm source code is available as part of STK-MED, developers are able to easily

extend these functions to create customized modules to differentiate their medical systems.

Software developers also play a critical role in collecting validation data for the 510(k) or PMA submission to

the Food and Drug Administration (FDA) for device clearance or approval. In medical-imaging systems, for

example, developers may need to prove the accuracy and integrity of each signal-processing block, showing

that the device’s final image output is accurate and bit-exact to the expected output. TI’s STK-MED incor-

porates test projects and reference test vectors for the included algorithms. These projects showcase an

example for developers using TI’s CCS environment and integrated software tools to design their own valida-

tion tests for output accuracy and performance profiling.

Debug and trace tools can also be very useful in the testing and validation phase, and throughout the

software development life cycle. For TI’s KeyStone-based processors, the CToolsLib provides the ability to

do core trace and system trace. Core trace provides program counter and instruction timing and the ability

Testing and
validating

MATHLIB	 and	 IMGLIB	 that	 include	 commonly‐used	 signal‐processing,	 math	 and	
image‐processing	 functions	 optimized	 for	 TI’s	 DSP	 core.	 Codecs	 for	 many	 video,	
audio	and	speech	applications	that	have	been	optimized	for	various	TI	platforms	can	
be	 accessed	 at	 the	 TI	 codec	 page.	 For	 medical	 imaging	 developers,	 there	 is	 the	
Software	 Toolkit	 for	 Medical	 Imaging	 (STK‐MED),	 which	 includes	 optimized	
building	 blocks	 for	 ultrasound	 and	 optical	 coherence	 tomography	 applications.	
These	 include	 functions	 for	 B‐Mode	 processing,	 Doppler	 signal‐processing,	 scan	
conversion,	 cubic	 spline	 interpolation,	 FFT	 and	 IFFT,	 and	 magnitude	 and	 log	
computation.	 Since	 the	 algorithm	 source	 code	 is	 available	 as	 part	 of	 STK‐MED,	
developers	are	able	to	easily	extend	these	functions	to	create	customized	modules	
to	differentiate	their	medical	systems.		
	

			
Figure	1.		The	block	diagram	summarizes	the	various	software	components	that	
create	a	solid	development	environment	for	medical	developers	who	choose	TI’s	

KeyStone‐based	processors	for	their	system	designs.	
	
Testing	and	validating	
Software	 developers	 also	 play	 a	 critical	 role	 in	 collecting	 validation	 data	 for	 the	
510(k)	or	PMA	submission	 to	 the	Food	and	Drug	Administration	 (FDA)	 for	device	

Figure 1: The block diagram summarizes the various software components that create a solid development

environment for medical developers who choose TI’s KeyStone-based processors for their system designs.

http://processors.wiki.ti.com/index.php/CToolsLib_Article

3Texas Instruments

to monitor core memory accesses and core events for the DSP. System trace provides multicore application

instrumentation, including core visibility and processing relative to the entire system, as well as correlation

between traces. The fault management library enables applications to store DSP register data upon any fault

detection. The Multicore System Analyzer, which is integrated into CCS IDE, can also be used as a real-time

tool to analyze, visualize and profile application performance and behavior.

Once algorithms have been implemented, the next step is to integrate them together in a system-level

implementation that maps the complete signal chain on the target embedded device. Resource management,

inter-processor communication and data movement techniques are some of the important considerations

during this stage. TI provides software components for its KeyStone-based SoCs that can be used to achieve

these goals. Some of these include the resource management low level drivers (LLDs), inter-processor

communication (IPC) package and enhanced direct memory access LLD, which are part of the MCSDK, as

well as the framework components library with its Codec Engine interface that allows algorithms to eas-

ily plug-and-play together. Developers might also want to leverage high-speed interfaces like PCI Express,

HyperLink, Gigabit Ethernet or Serial RapidIO® (SRIO) to move data across devices. They can also leverage

the Multicore Navigator to transport data between dedicated memories within a device. Again the MCSDK

incorporates relevant LLDs and usage examples for each of these peripherals.

To appreciate the scalability and ease-of-use of these software components, let’s look at the IPC software

package as an example. IPC APIs enable communication between threads that either run on the same core,

on different cores or on different devices. There are various possibilities with IPC transports: for communi-

cation between cores that reside on the same device there’s either shared memory transport or navigator

transport. For communication between cores across two devices one might want to use the SRIO interface.

What’s great about IPC from the developer’s perspective is the ability to use the same set of APIs irrespective

of the transport underneath. In a heterogeneous system like TI’s KeyStone II family, with ARM on one side

and DSP on the other side, IPC APIs can be used on the DSP side, and corresponding APIs can be used on

the ARM side.

How developers leverage each core and map functions within a multicore embedded device is another

aspect of system-level implementation. Two typical models are functional parallelization and data paralleliza-

tion. To explain the difference, let’s use ultrasound and optical coherence tomography as examples. For an

ultrasound system’s mid-end processing, one might choose to implement B-mode processing on one DSP

core, Doppler processing on another DSP core, scan conversion on a third DSP core and provide display and

user interface functionality via an ARM core. This corresponds to a functional parallelization strategy. In the

case of optical coherence tomography, each frame of input data could be sliced and divided across multiple

DSP cores and processed through the same set of algorithms: background subtraction, resampling, FFT,

magnitude computation and log compression running on each core. This is an example of data parallelization.

Medical Software Development on KeyStone™ Devices July 2013

System-level
 implementation

http://processors.wiki.ti.com/index.php/Multicore_System_Analyzer
http://processors.wiki.ti.com/index.php/BIOS_MCSDK_2.0_User_Guide#Resource_Manager_.28RM.29_LLD
http://processors.wiki.ti.com/index.php/Keystone_II_Device_Architecture

4 Texas Instruments

TI’s Medical Imaging Demo Application Starter (MIDAS) software package implements the ultrasound

and optical coherence tomography signal chain described above on TI’s KeyStone-based C6678 processor.

MIDAS leverages the algorithm modules from STK-MED and uses the MCSDK and other software com-

ponents to realize a system-level implementation that meets real-time constraints. This serves as a great

reference for developers to see an example of how medical algorithms can be integrated together to realize a

complete signal processing flow on TI’s embedded processors. (See Figure 2.)

Software developers also have the option of leveraging some open-source parallel programming APIs on TI’s

KeyStone-based processors, with OpenMP and OpenEM software packages included in TI’s MCSDK as well

as OpenCL support in the works. OpenMP includes compiler directives and library routines that make it pos-

sible to quite easily and incrementally parallelize an application across multiple cores. OpenMP implementa-

tions are based on a fork-join model as shown in Figure 3. An OpenMP program begins with an initial thread

(known as a master thread) in a sequential region. When a parallel region is encountered—indicated by the

compiler directive “#pragma omp parallel”—extra threads called worker threads are automati-

cally created by the scheduler. This team of threads executes simultaneously to work on the block of parallel

code. When the parallel region ends, the program waits for all threads to terminate, then resumes its single-

threaded execution for the next sequential region. OpenEM is a centralized runtime system that dynamically

schedules events across all resources of the system in an optimized way. OpenEM is event driven and is also

easily scalable from one to many cores.

Medical Software Development on KeyStone™ Devices July 2013

Open-source
tools

ARM	on	one	side	and	DSP	on	the	other	side,	IPC	APIs	can	be	used	on	the	DSP	side,	
and	corresponding	APIs	can	be	used	on	the	ARM	side.		
	
How	developers	leverage	each	core	and	map	functions	within	a	multicore	embedded	
device	 is	 another	 aspect	 of	 system‐level	 implementation.	 Two	 typical	 models	 are	
functional	parallelization	and	data	parallelization.	To	explain	the	difference,	let’s	use	
ultrasound	 and	 optical	 coherence	 tomography	 as	 examples.	 For	 an	 ultrasound	
system’s	mid‐end	processing,	one	might	choose	to	implement	B‐mode	processing	on	
one	DSP	core,	Doppler	processing	on	another	DSP	core,	scan	conversion	on	a	third	
DSP	core	and	provide	display	and	user	interface	functionality	via	an	ARM	core.	This	
corresponds	to	a	functional	parallelization	strategy.	In	the	case	of	optical	coherence	
tomography,	 each	 frame	of	 input	data	 could	be	 sliced	and	divided	across	multiple	
DSP	 cores	 and	 processed	 through	 the	 same	 set	 of	 algorithms:	 background	
subtraction,	resampling,	FFT,	magnitude	computation	and	log	compression	running	
on	each	core.	This	is	an	example	of	data	parallelization.		
	
TI’s	 Medical	 Imaging	 Demo	 Application	 Starter	 (MIDAS)	 software	 package	
implements	 the	 ultrasound	 and	 optical	 coherence	 tomography	 signal	 chain	
described	 above	 on	 TI’s	 KeyStone‐based	 C6678	 processor.	 MIDAS	 leverages	 the	
algorithm	 modules	 from	 STK‐MED	 and	 uses	 the	 MCSDK	 and	 other	 software	
components	 to	 realize	 a	 system‐level	 implementation	 that	 meets	 real‐time	
constraints.	This	serves	as	a	great	reference	for	developers	to	see	an	example	of	how	
medical	 algorithms	 can	 be	 integrated	 together	 to	 realize	 a	 complete	 signal	
processing	flow	on	TI’s	embedded	processors.			
	
	

	
	Figure 2: TI’s MIDAS OCT v1.0 showcases a system-wide demo implementation of the mid-end and back-end

signal chain for optical coherence tomography, and leverages TI’s KeyStone-based C6678 multicore DSP. This

implementation is an example of data-based partitioning across cores.

http://processors.wiki.ti.com/index.php/Medical_Imaging_Demo_Application_Starter_(MIDAS)
http://processors.wiki.ti.com/index.php/OpenMP_on_C6000

5Texas Instruments

In addition to the host of software packages available to medical software developers, the TI E2E™ Com-

munity and third parties form an important part of the TI embedded ecosystem. The E2E Community allows

system developers to directly interact with TI engineers on their technical questions. TI also works closely

with third parties in TI’s Design Network to bring their software tools into the development ecosystem that

provide additional multicore programming, profiling and analysis capabilities. To name a few, Poly-Platform

from PolyCore consists of tools and runtime software that provide a programming model for applications to

scale from one to many cores. Prism from CriticalBlue provides multicore analysis and exploration, and allows

developers to evaluate various parallelization strategies.

Extensive learning collateral in the form of user guides, white papers, application notes, online training, as

well as reference diagrams for specific medical applications can also serve as in-depth resources for

developers. The TI multicore web page provides links to much of this collateral. The Embedded Processors

(EP) Wiki is another great resource with technical articles, guides, tips and tricks, written by TI employees

and community members, with KeyStone SoC-specific articles summarized at the Multicore Wiki page. TI

conducts training seminars around the world on KeyStone SoCs, programming and other relevant topics,

with many training videos available to watch online anytime. TI also offers many analog components, mi-

crocontrollers and other processors for medical technology, which can be found in TI’s HealthTech product

guide.

TI’s KeyStone-based processors represent the cutting edge in hardware and the very best in multicore

processing at low power. This hardware offering is coupled with an industry-leading, stable software develop-

ment ecosystem that supports a comprehensive multicore framework, which ensures that medical system

Figure	2.		TI’s	MIDAS	OCT	v1.0	showcases	a	system‐wide	demo	implementation	of	the	
mid‐end	and	back‐end	signal	chain	for	optical	coherence	tomography,	and	leverages	
TI’s	KeyStone‐based	C6678	multicore	DSP.	This	implementation	is	an	example	of	data‐

based	partitioning	across	cores.	
	
Open	source	tools	
Software	developers	also	have	 the	option	of	 leveraging	some	open‐source	parallel	
programming	APIs	on	TI’s	KeyStone‐based	processors,	with	OpenMP	and	OpenEM	
software	packages	included	in	TI’s	MCSDK	as	well	as	OpenCL	support	in	the	works.	
OpenMP	 includes	compiler	directives	and	 library	routines	 that	make	 it	possible	 to	
quite	 easily	 and	 incrementally	 parallelize	 an	 application	 across	 multiple	 cores.	
OpenMP	implementations	are	based	on	a	fork‐join	model	as	shown	in	Figure	4.	An	
OpenMP	 program	 begins	 with	 an	 initial	 thread	 (known	 as	 a	 master	 thread)	 in	 a	
sequential	region.	When	a	parallel	region	is	encountered—indicated	by	the	compiler	
directive	 “#pragma	 omp	 parallel”—extra	 threads	 called	 worker	 threads	 are	
automatically	 created	 by	 the	 scheduler.	 This	 team	 of	 threads	 executes	
simultaneously	to	work	on	the	block	of	parallel	code.	When	the	parallel	region	ends,	
the	 program	waits	 for	 all	 threads	 to	 terminate,	 then	 resumes	 its	 single‐threaded	
execution	 for	 the	next	 sequential	 region.	OpenEM	 is	 a	 centralized	 runtime	 system	
that	dynamically	schedules	events	across	all	resources	of	the	system	in	an	optimized	
way.	OpenEM	is	event‐driven	and	is	also	easily	scalable	from	one	to	many	cores.		
	

	
Figure	3.	OpenMP’s	fork‐join	model	makes	it	possible	for	developers	to	incrementally	

parallelize	their	applications	with	ease	
	
Additional	support	
In	 addition	 to	 the	 host	 of	 software	 packages	 available	 to	 medical	 software	
developers,	the	TI	E2E™	Community	and	third	parties	form	an	important	part	of	the	
TI	embedded	ecosystem.	The	E2E	Community	allows	system	developers	to	directly	
interact	with	TI	engineers	on	 their	 technical	questions.	TI	also	works	closely	with	
third	 parties	 in	 TI’s	 Design	 Network	 to	 bring	 their	 software	 tools	 into	 the	
development	 ecosystem	 that	 provide	 additional	multicore	 programming,	 profiling	
and	 analysis	 capabilities.	 To	name	 a	 few,	 Poly‐Platform	 from	PolyCore	 consists	 of	

Figure 3: OpenMP’s fork-join model makes it possible for developers to incrementally parallelize their

 applications with ease

Additional
support

Learning
collateral

Medical Software Development on KeyStone™ Devices July 2013

Summary

http://e2e.ti.com/
http://e2e.ti.com/
http://www.ti.com/designnetwork
http://www.ti.com/lsds/ti/apps/healthtech/end_equipment.page
http://www.ti.com/multicore
http://processors.wiki.ti.com/
http://processors.wiki.ti.com/
http://processors.wiki.ti.com/index.php/Orb_Multicore
http://trainingcenter.ti.com/
http://learningmedia.ti.com/public/HPMP/KeyStone/index.html
http://www.ti.com/lit/slyb108
http://www.ti.com/lit/slyb108

SPRY239© 2013 Texas Instruments Incorporated

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI’s standard terms and
conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability
for applications assistance, customer’s applications or product designs, software performance, or infringement of patents. The publication of information regarding any
other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Code Composer Studio, E2E, KeyStone and SYS/BIOS are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

6 Texas Instruments

designers spend most of their time innovating and differentiating and less time in addressing system-level

issues. As we continue to innovate and create new hardware, we also continue to innovate with our software,

keeping in mind a modular software approach so that our customers can simply migrate from one generation

of SoCs to the next. With this integrated ecosystem, our objective is to help our fellow engineers in the medi-

cal technology world create great applications that get to market fast and effectively solve the many clinical

needs of today.

System and equipment manufacturers and designers are responsible to ensure that their systems (and any

TI devices incorporated in their systems) meet all applicable safety, regulatory and system-level performance

requirements. All application-related information in this white paper (including application descriptions, sug-

gested TI devices and other materials) is provided for reference only. This information is subject to customer

confirmation, and TI disclaims all liability for system designs and for any applications assistance provided

by TI. Use of TI devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer

agrees to defend, indemnify and hold harmless TI from any and all damages, claims, suits or expense result-

ing from such use.

Disclaimer

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

