
Abstract

In today’s advancing market, the growing

performance and decreasing price of em-

bedded processors are opening many doors

for developers to design highly sophisticat-

ed solutions for different end applications.

The complexities of these systems can cre-

ate bottlenecks for developers in the form of

longer development times, more complicated

development environments and issues with

application stability and quality. Developers

can address these problems using sophisti-

cated software packages such as OpenCV,

but migrating this software to embedded

platforms poses its own set of challenges.

This paper will review how to mitigate some

of these issues, including C++ implemen-

tation, memory constraints, floating-point

support and opportunities to maximize per-

formance using vendor-optimized libraries

and integrated accelerators or co-processors.

Finally, we will introduce a new effort by

Texas Instruments (TI) to optimize vision sys-

tems by running OpenCV on the C6000™

digital signal processor (DSP) architecture.

Benchmarks will show the advantage of us-

ing the DSP by comparing the performance

of a DSP+ARM® system-on-chip (SoC)

processor against an ARM-only device.

OpenCV on TI’s DSP+ARM®

platforms: Mitigating the

 challenges of porting OpenCV

to embedded platforms

Introduction

OpenCV is a free and open-source computer vision library that offers a broad range of func-

tionality under the permissive Berkeley Software Distribution (BSD) license. The library itself

is written in C++ and is also usable through C or Python language applications. Thousands

of developers use OpenCV to power their own specialized applications, making it the most

widely-used library of its kind. The OpenCV project is under active development, with regular

updates to eliminate bugs and add new functionality. The mainline development effort targets

the x86 architecture and supports acceleration via Intel’s proprietary Integrated Performance

Primitives (IPP) library. A recent release also added support for graphics processing unit (GPU)

acceleration using NVIDIA’s Compute Unifi ed Device Architecture (CUDA) standard.

OpenCV’s greatest asset is the sheer breadth of algorithms included in its standard distri-

bution. Figure 1 on page 2 shows an incomplete list of some of the key function categories in-

cluded in OpenCV. These range from low-level image fi ltering and transformation to sophisti-

cated feature analysis and machine learning functionality. A complete listing of every function

and use case is beyond the scope of this article, but we will consider the unique requirements

of developers in the embedded vision space. For these developers, OpenCV represents an

attractively comprehensive toolbox of useful, well-tested algorithms that can serve as building

blocks for their own specialized applications. The question then becomes whether or not

OpenCV can be used directly in their embedded systems.

Despite its original development focus for use with PC workstations, OpenCV can also

be a useful tool for embedded development. There are vendor-specifi c libraries that offer

OpenCV-like capabilities on various embedded systems, but few can match OpenCV’s ubiquity

in the computer vision fi eld or the sheer breadth of its included algorithms. It should come as

no surprise that OpenCV has already been ported to the ARM® architecture, a popular CPU

choice for embedded processors. It’s certainly possible to cross-compile the OpenCV source

code as-is and use the result with embedded devices, but memory constraints and other

architectural considerations may pose a problem. This white paper will examine some of the

specifi c obstacles that must be overcome for OpenCV to achieve acceptable performance on

Joseph Coombs,
Applications engineering,

Texas Instruments

Rahul Prabhu,
Applications engineering,

Texas Instruments

W H I T E P A P E R

OpenCV on TI’s DSP+ARM platforms: Mitigating the challenges of porting OpenCV to embedded platforms July 2011

2 Texas Instruments

an embedded platform. Finally, the paper will describe a new effort by Texas Instruments (TI) to bring OpenCV

to its C6000™ digital signal processor (DSP) architecture. Performance benchmarks will compare TI’s

DSP+ARM® system-on-chip (SoC) processor against the standard ARM-only approach.

The continued growth of embedded vision applications places contradictory demands on embedded develop-

ers. Increasingly sophisticated vision algorithms require more memory and processing power, but price and

deployment constraints require embedded devices that cost less money and consume less power. Embedded

hardware and software expand in complexity while development cycles accelerate and contract. The follow-

ing applications are representative of the current state and future direction of the overall embedded vision

space.

Let’s start with industrial vision applications. One common industrial vision task is assembly line inspec-

tion, which detects, classifi es and sorts objects to maximize manufacturing speed and quality. These vision

algorithms are often run on costly computer workstations; migrating to an embedded DSP is one obvious

way to save on price and power consumption. Even applications that are already implemented with embed-

ded systems can be improved by condensing discrete logic into the DSP. For example, many industrial vision

systems share the basic shape illustrated by Figure 2. The image signal processor (ISP) is a fi eld program-

mable gate array (FPGA) that performs time-critical pre-processing on incoming data before it reaches the

DSP. This FPGA becomes more expensive and consumes more power proportional to its workload. One way

to maximize the effi ciency of the overall embedded system is to integrate as much pre-processing as pos-

sible into the DSP. The challenge then becomes keeping up with rapid improvements in the physical system.

Changing requirements

of embedded vision

applications

Figure 1. Partial overview of the OpenCV library.

Figure 2. Typical embedded vision system, including camera, pre-processing FPGA and DSP.

ISP DSP

3Texas Instruments

Next-generation systems must process more data in less time to accommodate improved camera resolution

and frame rate as well as faster assembly line speeds.

Video surveillance applications provide another perspective on the evolution of embedded vision. Tra-

ditional surveillance systems are less concerned with vision analytics than they are with simply encoding

and recording video data. However, as vision algorithms improve, video surveillance will incorporate more

automated monitoring and analysis of this recorded data. Examples range from motion and camera tamper

detection to people counting and license plate reading. These algorithms enable so-called metadata stream-

ing, or creating automated logs of detected activity to accompany streamed and recorded video data. As

vision algorithms become more capable and reliable, video surveillance systems will become more auto-

mated and sophisticated. This presents a particular challenge to embedded video surveillance systems, since

cutting-edge algorithms that are developed on PCs may require considerable rework and optimization to run

effi ciently on an embedded device. Consequently, many embedded video surveillance applications are limited

to the simpler encode-and-record paradigm.

One last example application from the broad category of embedded vision is automotive vision. Unlike

the previously discussed application spaces, automotive vision is almost exclusively the domain of embed-

ded processors. Many automotive vision systems can be reduced to a block diagram similar to Figure 2,

essentially consisting of a camera, a pre-processing FPGA and a DSP to apply intensive vision algorithms.

Reliability is the key concern in applications such as lane departure warning, steering assistance and

proximity detection. The vision algorithms used in automotive vision are under constant, active development

using high-level PC software, but running the fi nal application on a PC is simply not an option. The transition

from PC to DSP is a critical step in the development of automotive vision applications. Writing and rewrit-

ing algorithms to achieve acceptable real-time performance is a major development focus. This only gets

more diffi cult as embedded systems become more sophisticated, incorporating multiple camera inputs and

multiple processing cores.

Effi cient DSP software plays a critical role in all embedded vision applications. The prospect of using high-

level software like OpenCV to facilitate rapid algorithm development is appealing, but optimizing that software

for a new platform is a critical sticking point. Conversely, achieving acceptable performance with un-optimized

DSP software is simply unrealistic. In the next section of this article, we consider the key challenges associ-

ated with porting and optimizing sophisticated PC software — particularly the OpenCV library — to run on an

embedded device.

Since OpenCV is open source and written entirely in C/C++, the library has been cross compiled and ported

as-is to a variety of platforms. However, simply rebuilding the library for an embedded platform may not yield

the real-time performance demanded in that space. At the same time, rewriting and manually optimizing the

entire OpenCV library for a new architecture represents an enormous amount of work. Device-appropriate

optimizing compilers are critical to navigate between these opposing challenges. The ubiquitous GNU Com-

piler Collection (GCC) has been used to successfully port OpenCV to ARM platforms, but GCC is not available

OpenCV on TI’s DSP+ARM platforms: Mitigating the challenges of porting OpenCV to embedded platforms July 2011

Challenges of

porting OpenCV to

embedded devices

4 Texas Instruments

on more specialized DSP architectures. These devices typically rely on proprietary compilers that are not as

full-featured or standards-compliant as GCC. These compilers may have a strong focus on the C language

and be less capable at optimizing C++ code. The current version of OpenCV relies heavily on C++ Standard

Template Library (STL) containers as well as GCC and C99 extensions, which are not well-supported on certain

embedded compilers. For these reasons, it may be necessary to revert to OpenCV version 1.1 or earlier —

which are written almost entirely in C — when targeting a specialized embedded platform. The OpenCV

source code includes many low-level optimizations for x86 processors that are not applicable to ARM® or

DSP platforms. These optimizations can be replaced with vendor-provided support libraries or intrinsic func-

tions that make explicit use of architecture-specifi c single instruction, multiple data (SIMD) commands to

speed up code execution. OpenCV application programming interfaces (APIs) often allow data to be provided

in multiple formats, which can complicate the task of optimizing these functions for a new target device. Lim-

iting these functions to a single data type or splitting them into single-type variants can allow the compiler to

generate simpler, more effi cient code. Similarly, inlining small, frequently-used internal functions can provide

a performance lift to high-level vision functions.

The word “optimization” for embedded platforms often means endlessly poring over low-level architectural

minutiae to write and tweak device-specifi c assembly language code. Fortunately, as embedded processors

have grown in complexity, so too have embedded development tools become more powerful and user-

friendly. Most vendors in the embedded industry provide optimized libraries that have been hand tuned to

provide the best performance on the device for low-level math, image and vision functionality. Coupling the

OpenCV library with these libraries can accelerate high-level OpenCV APIs. TI is one of the few companies

that provides vision and imaging libraries that can replace a portion of the code for an OpenCV function or,

in some cases, the entire function itself. Similarly, optimized math and signal processing libraries can also

provide a signifi cant boost to maximize the potential of OpenCV functions on embedded devices. Using these

optimized libraries underneath the OpenCV APIs can maximize performance by utilizing architecture-specifi c

capabilities while maintaining the standard interface of the high-level software. In other words, these low-

level libraries can accelerate OpenCV functions without breaking pre-existing application code that is written

to use standard OpenCV APIs.

Another challenge often faced when using OpenCV functions in an embedded processor environment deals

with the lack of native support for fl oating-point math. This poses a signifi cant problem for OpenCV since

it includes a number of specialized image processing functions that rely heavily on fl oating-point computa-

tion. OpenCV supports a wide range of image data types, including fi xed- and fl oating-point representations.

Many OpenCV image processing functions never use fl oating-point math, or use it only when the image data

consists of fl oating-point values. However, some specialized functions that work with Eigen values, feature

spaces, image transformation and image statistics always use fl oating-point math regardless of the original

image data type. These intensive algorithms require native fl oating-point support to achieve real-time per-

formance in an embedded application. Figure 3 on the following page compares the performance of several

OpenCV functions that rely on fl oating-point processing across multiple embedded targets. The ARM9™

OpenCV on TI’s DSP+ARM platforms: Mitigating the challenges of porting OpenCV to embedded platforms July 2011

5Texas Instruments

processor used lacks native fl oating-point support, while the ARM Cortex™-A8 processor includes NEON

support for fl oating-point math and delivers a twofold increase in performance. Also included is TI’s fl oating-

point C674x DSP, which is highly optimized for intensive computation and delivers an even greater boost to

performance. These benchmarks emphasize the need for native fl oating-point support when running certain

OpenCV algorithms.

Function Name
ARM9™

(ms)
ARM Cortex-A8

(ms)
C674x DSP

(ms)

cvCornerEigenValsandVecs 4746 2655 402

cvGoodFeaturestoTrack 2040 1234 268

cvWarpAffine 82 37 17

cvOpticalFlowPyrLK 9560 5240 344

cvMulSpecturm 104 69 11

cvHaarDetectObject 17500 8217 1180

Porting and running OpenCV on embedded systems also presents a more general set of design challenges.

In addition to the processor architecture, there may also be memory restrictions and special requirements

for deterministic, real-time operation. Multicore devices are also becoming more common in the embedded

space, and utilizing these cores effi ciently to maximize performance brings its own challenges. Embedded

multicore devices may consist of homogeneous cores, such as dual-ARM devices, or they may integrate an

ARM with a heterogeneous core such as a DSP or GPU. SoC devices also integrate peripherals and accelera-

tors to reduce overall system complexity by simplifying board design and layout considerations. Many OpenCV

functions can benefi t greatly from utilizing these specialized processing cores and vector or fl oating-point

accelerators. An algorithm that is highly parallelizable may be a good fi t for an integrated GPU. Vision and

image-processing algorithms that are not easily parallelized but still require intensive fl oating-point computa-

tion may be better suited for a DSP core. Low-level preprocessing functions like color space conversions,

noise reduction and statistical computation tend to be well suited to single-purpose hardware like an FPGA

or application-specifi c integrated circuit (ASIC). Embedded devices that allow developers to effectively split

their application, including OpenCV, among the best-suited heterogeneous components can deliver superior

performance.

Effectively using and sharing device memory is one of the primary challenges in embedded development.

When both random-access memory (RAM) and read-only memory (ROM) are in short supply, applications

must make judicious use of these resources. Many modern day applications require a full operating system

(OS) with its own sizeable footprint, which makes managing device memory even more critical. An embedded

vision application using OpenCV needs reasonably large memory with suffi cient bandwidth and access time

OpenCV on TI’s DSP+ARM platforms: Mitigating the challenges of porting OpenCV to embedded platforms July 2011

Figure 3. Performance benchmark for OpenCV functions with fl oating-point math. Image size 320×240; all

cores operated at 300 MHz; ARM9 and C674x DSP cores tested using TI’s OMAP-L138 C6-Integra™ DSP+ARM

processor; ARM Cortex-A8 core tested using TI’s DM3730 DaVinci™ digital media processor.

6 Texas Instruments

to accommodate work buffers and program data for several interrelated tasks: data acquisition, processing,

and storage or output of results. Moreover, OpenCV functions that operate on multi-dimensional data such

as a feature space rather than the standard two- or three-dimensional image or video spaces can consume

even larger blocks of memory. OpenCV developers on embedded devices must consider suitable tradeoffs

between memory utilization and the full feature set of OpenCV. For example, some OpenCV APIs operate on a

“memory storage” unit that is initially allocated with a fi xed size and later expanded as necessary to prevent

overfl ow as its contents grow. Developers can avoid unnecessary allocation calls and memory fragmenta-

tion by creating the initial memory storage with enough space to handle the worst-case scenario. Other

tradeoffs can be made that impose limits on OpenCV APIs in order to achieve better performance without

compromising computational accuracy. For example, nested image regions in OpenCV are represented as

sets of components known as contours and holes. Each contour may be contained within a hole and may

itself contain one or more holes, and the reverse is true for each hole. Figure 4 illustrates this relationship.

OpenCV supports multiple formats to store and traverse these regions, including branched representations

that require developers to write complicated routines to plot or process the overall image. Developers can

achieve better performance by creating a single-branch structure that can be traversed using a simple loop.

Finally, OpenCV applications may suffer from memory leaks caused by sloppy handling of large data buffers.

These leaks could waste hundreds of megabytes of highly valuable RAM and could eventually crash the en-

tire application. Memory leaks commonly arise when allocating memory and then changing the pointer itself

(thereby precluding the use of “free” APIs), forgetting to free storage space after processing is complete, or

carelessly changing or translating pointers inside complex data structures. Memory leaks are problematic in

any system, but the consequences are particularly dire in the embedded space.

Multicore embedded processors provide increased performance by increasing the raw processing power

available to applications, but signifi cant challenges face embedded developers who want to use that power

to accelerate OpenCV. The primary challenge when migrating to the multicore paradigm is properly partition-

ing the overall program and coordinating the various bits and pieces as they run independently. The simplest

case is a system that consists of two separate processing units, such as two ARM cores, or an ARM and DSP.

In this case, the problem is often approached as writing a normal, single-core application and then “offl oading”

OpenCV on TI’s DSP+ARM platforms: Mitigating the challenges of porting OpenCV to embedded platforms July 2011

Figure 4. Test image with contour/hole regions and tree structures supported by OpenCV.

OpenCV on TI’s DSP+ARM platforms: Mitigating the challenges of porting OpenCV to embedded platforms July 2011

7Texas Instruments

parts of that application to the other core. An important criterion for offl oading a task from one core to the

other is the inter-processor communication (IPC) overhead. Offl oading a task is appropriate only if the time

spent sending and receiving IPC messages does not exceed the time saved by splitting the processing load.

In a multicore scenario, applications need to be multi-threaded to enable the utilization of multiple processor

cores to complete a task. Multi-threaded applications need special handling to correctly coordinate their tasks

and improve effi ciency. However, the performance increase offered by parallelization in most vision algorithms

is limited because much of the application must be executed serially. Cache coherency, address translation and

endianness translation between multiple processors are some of the issues that a developer may encounter

when designing a multicore application.

Certain data types in OpenCV pose a signifi cant challenge to heterogeneous multicore systems. OpenCV

defi nes several data types for its input/output (I/O) and processing operations that typically utilize a header/

data format. Figure 5 shows a dynamic structure used by OpenCV that stores data as a simple linked list.

Each list node consists of some data and pointers, or links, to neighboring list nodes. These links can be

problematic when sharing lists between separate processing cores that do not share the same memory

management unit (MMU). In order to share this data between the cores, pointers used by one core must be

translated so that they can be understood by the other core. This address translation must then be reversed

when data returns from the second core to the fi rst. Cache coherence between the two cores is also an issue

when data is passed back and forth. Additionally, internal OpenCV allocation APIs may need to be modifi ed to

ensure that data is placed in sections of memory that are equally accessible by both cores.

In addition, OpenCV pre-allocates a memory storage in which the dynamic data structure is formed

and further allocates memory if the link list outgrows the pre-allocated memory. Delegation of such a task

from a master core to a slave core creates the added complication of feeding the newly allocated memory

information back to the memory space of the master core. Compiler-based parallelism offered by OpenMP

and application interface based task offl oading offered by OpenCL are currently being evaluated for OpenCV

implementation on multiple cores.

Multicore SoCs often feature heterogeneous processors that access shared external memory simultane-

ously. For this reason, developers using OpenCV in SoC applications must consider memory bandwidth in

addition to memory capacity. Application performance depends on how quickly and effi ciently memory is

accessed. Simply adding more memory to a system won’t always help. Direct Memory Access (DMA) adds

Figure 5. Memory storage organization in OpenCV.

additional channels through which the processing cores can access external memory, which allows design-

ers to increase bandwidth and reduce contention between cores. Through the use of enhanced DMA units,

the processor does not have to directly control repetitive, low-level memory access. Figure 6 shows the

performance improvement gained by using DMA to accelerate external memory access in three common

 image-processing algorithms. The test image is divided into slices and moved from external memory to

internal RAM by DMA, processed and then copied out again by DMA. The performance using this method is

much improved over processing the same image in-place in external memory.

Function
Slice-based processing with DMA

 (ms)
In-place processing with cache

(ms)

Gaussian filtering 6.1 7.7

Luma extraction 3.0 10.9

Canny edge detection 41.4 79.1

Given the challenges inherent in bringing OpenCV to embedded devices, it is worth investigating other

computer vision offerings that already exist in the embedded space. The next section of this article examines

TI-provided alternatives to OpenCV. These packages are smaller than OpenCV, but they show the perfor-

mance that is possible on embedded devices with highly optimized software and a deep understanding of the

underlying architecture.

Separate from OpenCV, TI provides optimized libraries to help developers achieve real-time performance with

vision and image-processing applications on TI’s embedded devices. The proprietary Vision Library (VLIB)

and open source Image Library (IMGLIB) are separate collections of algorithms that are optimized for TI’s

C64x+™ DSPs. IMGLIB is distributed with full source code, a combination of optimized C and assembly that

can be modifi ed and rebuilt for newer DSP architectures, including C674x and C66x, to take advantage of

all available architectural resources. TI also provides example application code to setup dual-buffered DMA

transfers, which can speed up the image and vision kernels by 4 to 10 times compared to operating on data

in external memory. These libraries are designed to convert most fl oating-point processing into fi xed-point

approximations in order to utilize SIMD extensions available in the C64x+ instruction set.

Despite the availability of these proprietary vision software offerings, OpenCV has the benefi t of broad

industry familiarity. Additionally, OpenCV boasts a development community actively contributing fi xes and

enhancements to the library, which continually improves and expands its capabilities and feature set. OpenCV

has already been ported to several general-purpose processors (GPPs), including ARM®, but obtaining

real-time performance often requires additional assistance from dedicated accelerators or co-processors

on embedded devices. In the embedded space, DSP+ARM SoC processors and other multicore devices

with high-performance, fl oating-point DSPs or hardware accelerators are excellent platforms to accelerate

8 Texas Instruments

OpenCV on TI’s DSP+ARM platforms: Mitigating the challenges of porting OpenCV to embedded platforms July 2011

TI’s other vision offerings

in the embedded space

Figure 6. Performance benchmarks for three image-processing algorithms with and without DMA on TI’s

OMAP3530 DaVinci™ digital media processor at 720 MHz.

OpenCV processing. Vision developers can utilize each core as appropriate to maximize the overall perfor-

mance of their embedded system. Properly balancing processing and I/O tasks between cores can allow

embedded developers to obtain real-time vision performance using OpenCV. The next section describes one

effort to port and optimize OpenCV for TI’s DSP+ARM® SoC processors.

TI’s C6-Integra DSP+ARM processors are an attractive target for porting of OpenCV to the embedded space

due to their processing capability, high level of integration and power requirements. These processors allow

application developers to exploit the strengths of two embedded processor cores. The ARM runs Linux and

acts as a GPP, managing I/O transactions such as video input and output and a USB-based user interface.

Meanwhile, the fl oating-point DSP acting as a processing engine enables real-time performance for OpenCV

functions. Properly utilizing the power of the DSP core presents two major challenges: coordinating basic

communication between heterogeneous processing cores, and passing large data buffers from one memory

space to the other. TI provides software solutions for both of these problems.

C6EZAccel is a software development tool from TI that provides ARM-side APIs that call into optimized DSP

libraries. This abstracts the low-level complexities of heterogeneous multi-core development, including IPC.

The DSP side of C6EZAccel consists of an algorithm server that waits to receive messages from the ARM.

Each message specifi es one or more functions to be executed and provides the data buffers and confi gu-

ration parameters to be used. C6EZAccel allows the ARM application to specify data using the standard

OpenCV data types. Figure 7 gives a high-level view of C6EZAccel used by a C6-Integra DSP+ARM proces-

sor. The C6EZAccel tool also supports asynchronous calls to OpenCV APIs so that DSP processing can occur

in parallel to other work on the ARM side. When used in asynchronous mode, C6EZAccel APIs save context

information before starting DSP processing. The ARM application can then poll to check for DSP comple-

tion and use its saved context to restore data structures and pointers returning from the DSP. Figure 8 on

the following page illustrates how asynchronous processing on the DSP can greatly accelerate the overall

application. The DSP side algorithm links with a static OpenCV library that is built from the mainline OpenCV

9Texas Instruments

OpenCV on TI’s DSP+ARM platforms: Mitigating the challenges of porting OpenCV to embedded platforms July 2011

Figure 7. High-level view of a C6-Integra DSP+ARM application using the C6EZAccel framework.

DSP acceleration of

OpenCV on TI’s

C6-Integra™

DSP+ARM processors

source code with minimal modifi cations using TI’s optimizing C compiler. There is a lot of room to further

optimize the DSP side OpenCV library by rewriting OpenCV functions with the DSP architecture in mind, but

the compiler-optimized library provides a useful starting point that developers can start exploring today.

In order to easily call OpenCV APIs on the DSP, the ARM application also uses its own version of the

OpenCV library. This library is used to load and prepare data for processing, as well as to call simple APIs that

do not necessitate using the DSP. C6EZAccel also includes a custom version of OpenCV’s cvAlloc function

that is statically linked into the ARM application to override the default behavior and allocate contiguous data

buffers using a Linux module called CMEM. This design allows the ARM application to freely share OpenCV-

allocated data buffers with the DSP without modifying and rebuilding the entire ARM side OpenCV library.

Sharing OpenCV structures and data buffers between the ARM and the DSP requires two additional steps:

address translation and cache management. Address translation involves converting virtual memory pointers

on the ARM side to physical addresses that the DSP can interpret, then restoring the virtual address after

DSP processing so that the data can be read and reused later in the ARM application. Cache management

maintains data coherence between the independent ARM and DSP applications by writing back and invalidat-

ing cached memory that has been or will be modifi ed by the other core. C6EZAccel ensures cache coherence

in the ARM application by invalidating output buffers and writing back and invalidating input buffers prior

to invoking the DSP side OpenCV APIs. Some OpenCV data structures require additional massaging before

they can be passed on to the IPC framework; C6EZAccel takes care of this work as well. All of these tasks

are handled transparently by C6EZAccel, so the ARM application looks very similar to an “ordinary” OpenCV

application outside the embedded space.

The current performance of OpenCV on an ARM Cortex-A8 versus a DSP is summarized in Figure 9. Note

that the DSP side OpenCV library is largely un-optimized, so there is a lot of room for future improvement.

Even so, early results are promising; the DSP yields signifi cant improvement beyond the ARM-only OpenCV

library.

10 Texas Instruments

OpenCV on TI’s DSP+ARM platforms: Mitigating the challenges of porting OpenCV to embedded platforms July 2011

Figure 8. Asynchronous DSP processing accelerates an embedded application.

11Texas Instruments

OpenCV Function

ARM Cortex™-A8
with NEON

(ms)

ARM Cortex-A8
with C674x DSP

(ms)

Performance
Improvement

(cycle reduction)

Performance
Improvement

(x-factor)

cvWarpAffine 52.2 41.24 21.0% 1.25

cvAdaptiveThreshold 85.029 33.433 60.68% 2.54

cvDilate 3.354 1.340 60.47% 2.50

cvErode 3.283 2.211 32.65% 1.48

cvNormalize 52.258 14.216 72.84% 3.68

cvFilter2D 36.21 11.838 67.3% 3.05

cvDFT 594.532 95.539 83.93% 6.22

cvCvtColor 16.537 14.09 14.79% 1.17

cvMulSpectrum 89.425 15.509 78.18% 5.76

cvIntegral 8.325 5.789 30.46% 1.44

cvSmooth 122.57 57.435 53.14% 2.14

cvHoughLines2D 2405.844 684.367 71.55% 3.52

cvCornerHarris 666.928 168.57 74.72% 3.91

cvCornerEigenValsandVecs 3400.336 1418.108 58.29% 2.40

cvGoodFeaturesToTrack 19.378 4.945 74.48% 4.29

cvMatchTemplate 1571.531 212.745 86.46% 7.43

cvMatchshapes 7.549 3.136 58.45% 2.48

OpenCV is among the largest and most widely used tools in computer vision applications, and it has already

started to migrate from servers and desktop PCs to the increasingly capable world of embedded devices.

This paper has examined some of the key challenges faced by OpenCV in that transition, including tighter

system constraints and diffi culty in effectively utilizing custom embedded architectures. It has also shown

the performance advantage developers can achieve by running OpenCV on a DSP compared to an ARM-only

approach. Texas Instruments is currently accelerating OpenCV on its DSP and DSP+ARM platforms, offering

vision developers an embedded hardware solution with high performance, high integration and low power

consumption as well as a user-friendly framework with which developers can implement OpenCV. TI’s sup-

port of OpenCV for its DSP and DSP+ARM platforms provides a great opportunity for embedded developers

to address their performance, power and integration challenges and create a unique niche in the world of

embedded vision.

Conclusion

SPRY175© 2011 Texas Instruments Incorporated

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI’s standard terms and
conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no
 liability for applications assistance, customer’s applications or product designs, software performance, or infringement of patents. The publication of information
regarding any other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

C6000, C64x+, C6-Integra and DaVinci are trademarks of Texas Instruments Incorporated. All other trademarks are the property of their respective owners.

Figure 9. Performance benchmark for OpenCV functions on ARM Cortex-A8 (with NEON) versus C674x DSP. Im-

age resolution: 640×480; ARM compiler: CS2009 (with –o3, -mfpu=neon); DSP compiler: TI CGT 7.2 (with –o3);

both cores tested using TI TMSC6A816x C6-Integra™ DSP+ARM processor (ARM: 1 GHz, DSP: 800 MHz).

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications

Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers

Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps

DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy

DSP dsp.ti.com Industrial www.ti.com/industrial

Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical

Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and www.ti.com/automotive
Automotive

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com Wireless www.ti.com/wireless-apps

RF/IF and ZigBee® Solutions www.ti.com/lprf

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/communications
http://amplifier.ti.com
http://www.ti.com/computers
http://dataconverter.ti.com
http://www.ti.com/consumer-apps
http://www.dlp.com
http://www.ti.com/energy
http://dsp.ti.com
http://www.ti.com/industrial
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/security
http://logic.ti.com
http://www.ti.com/space-avionics-defense
http://power.ti.com
http://www.ti.com/automotive
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/wireless-apps
http://www.ti.com/lprf
http://e2e.ti.com

