
User's Guide
F29H85x Flash API Version 21.00.00.00

ABSTRACT

Flash is an electrically erasable/programmable non-volatile memory that can be programmed and erased many 
times to ease code development. Flash memory can be used primarily as a program memory for the core, and 
secondarily as static data memory. This guide describes the usage of the flash API library to perform erase, 
program and verify operations for the on-chip Flash memory of F29H85x devices.

Table of Contents
1 Introduction.............................................................................................................................................................................3

1.1 Differences From C28x...................................................................................................................................................... 3
1.2 Function Listing Format......................................................................................................................................................6

2 F29H85x Flash API Overview.................................................................................................................................................7
2.1 Introduction........................................................................................................................................................................ 7
2.2 API Overview......................................................................................................................................................................7
2.3 Using API........................................................................................................................................................................... 8

3 API Functions........................................................................................................................................................................10
3.1 Initialization Functions......................................................................................................................................................10
3.2 Flash State Machine Functions........................................................................................................................................ 11
3.3 Read Functions................................................................................................................................................................ 28
3.4 Informational Functions....................................................................................................................................................32
3.5 Utility Functions................................................................................................................................................................32

4 SECCFG and BANKMGMT Programming Using the Flash API........................................................................................35
4.1 BANKMGMT Programming..............................................................................................................................................36
4.2 SECCFG Programming....................................................................................................................................................38

5 Allowed Programming Ranges for All Modes....................................................................................................................39
6 Recommended FSM Flows.................................................................................................................................................. 40

6.1 New Devices From Factory..............................................................................................................................................40
6.2 Recommended Erase Flow..............................................................................................................................................40
6.3 Recommended Bank Erase Flow.....................................................................................................................................41
6.4 Recommended Program Flow......................................................................................................................................... 42

7 References............................................................................................................................................................................ 42
A Flash State Machine Commands........................................................................................................................................ 43
B Typedefs, Defines, Enumerations and Structure.............................................................................................................. 44

B.1 Type Definitions............................................................................................................................................................... 44
B.2 Defines.............................................................................................................................................................................44
B.3 Enumerations...................................................................................................................................................................44
B.4 Structures........................................................................................................................................................................ 47

Revision History.......................................................................................................................................................................47

List of Figures
Figure 1-1. F29H85x Flash Architecture......................................................................................................................................5
Figure 6-1. Recommended Erase Flow..................................................................................................................................... 40
Figure 6-2. Recommended Bank Erase Flow............................................................................................................................41
Figure 6-3. Recommended Program Flow.................................................................................................................................42

List of Tables
Table 2-1. Summary of Initialization Functions............................................................................................................................ 7
Table 2-2. Summary of Flash State Machine (FSM) Functions................................................................................................... 7
Table 2-3. Summary of Read Functions...................................................................................................................................... 8
Table 2-4. Summary of Information Functions............................................................................................................................. 8

www.ti.com Table of Contents

SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

F29H85x Flash API Version 21.00.00.00 1

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


Table 2-5. Summary of Utility Functions...................................................................................................................................... 8
Table 3-1. Uses of Different Programming Modes.....................................................................................................................16
Table 3-2. Permitted Programming Range for Fapi_issueProgrammingCommand() ............................................................... 16
Table 3-3. Permitted Programming Range for Fapi_issueAutoEcc512ProgrammingCommand().............................................21
Table 3-4. Permitted programming range for Fapi_issueDataAndEcc512ProgrammingCommand()........................................ 22
Table 3-5. Permitted Programming Range for Fapi_issueDataOnly512ProgrammingCommand()........................................... 24
Table 3-6. 64-Bit ECC Data Interpretation................................................................................................................................. 25
Table 3-7. Permitted Programming Range for Fapi_issueEccOnly64ProgrammingCommand()...............................................25
Table 3-8. STATCMD Register...................................................................................................................................................28
Table 3-9. STATCMD Register Field Descriptions..................................................................................................................... 28
Table 4-1. BANKMGMT Registers............................................................................................................................................. 36
Table 4-2. BANKMODE Values..................................................................................................................................................36
Table 4-3. SECCFG Start Addresses........................................................................................................................................ 38
Table 5-1. Main Array Ranges................................................................................................................................................... 39
Table 5-2. BANKMGMT Programming Ranges......................................................................................................................... 39
Table 5-3. SECCFG Programming Ranges............................................................................................................................... 39
Table A-1. Flash State Machine Commands............................................................................................................................. 43

Trademarks
Arm® is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
All trademarks are the property of their respective owners.

Trademarks www.ti.com

2 F29H85x Flash API Version 21.00.00.00 SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


1 Introduction
This reference guide provides a detailed description of Texas Instruments' F29H85x Flash API Library 
(F29H85x_NWFlashAPI_v21.00.00.00.lib) functions that can be used to erase, program and verify Flash on 
F29H85x devices. Note that Flash API v21.00.00.00 can only be used with F29H85x devices. The Flash API 
Library is provided in the F29H85x SDK at "f29h85x-sdk > source > flash_api"

1.1 Differences From C28x
C28 Flash API Function Signature C29 Flash API Function Signature

Fapi_FlashStatusType Fapi_getFsmStatus(void);

Fapi_FlashStatusType Fapi_getFsmStatus(
         uint32_t u32StartAddress,
         uint32_t u32UserFlashConfig
         );

Fapi_StatusType Fapi_checkFsmForReady(void);

Fapi_StatusType Fapi_checkFsmForReady(
         uint32_t u32StartAddress,
         uint32_t u32UserFlashConfig
         );

Fapi_StatusType Fapi_setActiveFlashBank(
         Fapi_FlashBankType oNewFlashBank
         );

No longer required/deprecated

void Fapi_flushPipeline(void);
void Fapi_flushPipeline(
         uint32_t u32UserFlashConfig
         );

Fapi_StatusType Fapi_setupBankSectorEnable(
         uint32_t reg_address,
         uint32_t value
         );

Fapi_StatusType Fapi_setupBankSectorEnable(
         uint32_t *pu32StartAddress,
         uint32_t u32UserFlashConfig,
         uint32_t reg_address,
         uint32_t value
         );

Fapi_StatusType 
Fapi_issueAsyncCommandWithAddress(
         Fapi_FlashStateCommandsType oCommand,
         uint32 *pu32StartAddress
         );

Fapi_StatusType 
Fapi_issueAsyncCommandWithAddress(
         Fapi_FlashStateCommandsType oCommand,
         uint32_t *pu32StartAddress,
         uint8_t u8Iterator,
         uint32_t  u32UserFlashConfig
         );

Fapi_StatusType Fapi_issueAsyncCommand(
         Fapi_FlashStateCommandsType oCommand
         );

Fapi_StatusType Fapi_issueAsyncCommand(
         uint32_t u32StartAddress,
         uint32_t  u32UserFlashConfig,
         Fapi_FlashStateCommandsType oCommand
         );

Fapi_StatusType Fapi_issueBankEraseCommand(
         uint32 *pu32StartAddress
         );

Fapi_StatusType Fapi_issueBankEraseCommand(
         uint32_t *pu32StartAddress,
         uint8_t u8Iterator,
         uint32_t  u32UserFlashConfig
         );

Fapi_StatusType Fapi_doBlankCheck(
         uint32 *pu32StartAddress,
         uint32 u32Length,
         Fapi_FlashStatusWordType 
*poFlashStatusWord
         );

Fapi_StatusType Fapi_doBlankCheck(
         uint32_t *pu32StartAddress,
         uint32_t u32Length,
         Fapi_FlashStatusWordType 
*poFlashStatusWord,
         uint8_t u8Iterator,
         uint32_t  u32UserFlashConfig
         );

Fapi_StatusType Fapi_doVerify(
         uint32 *pu32StartAddress,
         uint32 u32Length,
         uint32 *pu32CheckValueBuffer,
         Fapi_FlashStatusWordType 
*poFlashStatusWord
         );

Fapi_StatusType Fapi_doVerify(
         uint32_t *pu32StartAddress,
         uint32_t u32Length,
         uint32_t *pu32CheckValueBuffer,
         Fapi_FlashStatusWordType 
*poFlashStatusWord,
         uint8_t u8Iterator,
         uint32_t  u32UserFlashConfig
         );

www.ti.com Introduction

SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

F29H85x Flash API Version 21.00.00.00 3

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


C28 Flash API Function Signature C29 Flash API Function Signature

Fapi_StatusType Fapi_doVerifyBy16bits(
         uint16 *pu16StartAddress,
         uint32 u16Length,
         uint16 *pu16CheckValueBuffer,
         Fapi_FlashStatusWordType 
*poFlashStatusWord
         );

Deprecated. Use
Fapi_StatusType Fapi_doVerifyByByte(
         uint8_t *pu8StartAddress,
         uint32_t u32Length,
         uint8_t *pu8CheckValueBuffer,
         Fapi_FlashStatusWordType 
*poFlashStatusWord,
         uint8_t u8Iterator,
         uint32_t  u32UserFlashConfig
         );

Fapi_StatusType Fapi_issueProgrammingCommand(
         uint32 *pu32StartAddress,
         uint16 *pu16DataBuffer,
         uint16  u16DataBufferSizeInWords,
         uint16 *pu16EccBuffer,
         uint16  u16EccBufferSizeInBytes,
         Fapi_FlashProgrammingCommandsType oMode
         );

Fapi_StatusType Fapi_issueProgrammingCommand(
         uint32_t *pu32StartAddress,
         uint8_t  *pu8DataBuffer,
         uint8_t  u8DataBufferSizeInBytes,
         uint8_t  *pu8EccBuffer,
         uint8_t  u8EccBufferSizeInBytes,
         Fapi_FlashProgrammingCommandsType oMode,
         uint32_t  u32UserFlashConfig
         );

Fapi_StatusType 
Fapi_issueDataOnly512ProgrammingCommand(
         uint32 *pu32StartAddress,
         uint16 *pu16DataBuffer,
         uint16  u16DataBufferSizeInWords
         );

Fapi_StatusType 
Fapi_issueDataOnly512ProgrammingCommand(
         uint32_t *pu32StartAddress,
         uint8_t *pu8DataBuffer,
         uint8_t  u8DataBufferSizeInBytes,
         uint32_t u32UserFlashConfig,
         uint8_t  u8Iterator
         );

Fapi_StatusType 
Fapi_issueAutoEcc512ProgrammingCommand(
         uint32 *pu32StartAddress,
         uint16 *pu16DataBuffer,
         uint16  u16DataBufferSizeInWords
         );

Fapi_StatusType 
Fapi_issueAutoEcc512ProgrammingCommand(
         uint32_t *pu32StartAddress,
         uint8_t  *pu8DataBuffer,
         uint8_t  u8DataBufferSizeInWords,
         uint32_t  u32UserFlashConfig,
         uint8_t  u8Iterator
         );

Fapi_StatusType 
Fapi_issueDataAndEcc512ProgrammingCommand(
         uint32 *pu32StartAddress,
         uint16 *pu16DataBuffer,
         uint16  u16DataBufferSizeInWords,
         uint16 *pu16EccBuffer,
         uint16  u16EccBufferSizeInBytes
         );

Fapi_StatusType 
Fapi_issueDataAndEcc512ProgrammingCommand(
         uint32_t *pu32StartAddress,
         uint8_t  *pu8DataBuffer,
         uint8_t  u8DataBufferSizeInWords,
         uint8_t  *pu8EccBuffer,
         uint8_t  u8EccBufferSizeInBytes,
         uint32_t u32UserFlashConfig,
         uint8_t  u8Iterator
         );

Fapi_StatusType 
Fapi_issueEccOnly64ProgrammingCommand(
         uint32 *pu32StartAddress,
         uint16 *pu16EccBuffer,
         uint16  u16EccBufferSizeInBytes
         );

Fapi_StatusType 
Fapi_issueEccOnly64ProgrammingCommand(
         uint32_t *pu32StartAddress,
         uint8_t *pu8EccBuffer,
         uint8_t  u8EccBufferSizeInBytes,
         uint32_t u32UserFlashConfig,
         uint8_t  u8Iterator
         );

uint8 Fapi_calculateEcc(
         uint32 u32Address,
         uint64 u64Data
         );

uint8_t Fapi_calculateEcc(
         uint32_t *pu32Address,
         uint64_t *pu64Data,
         uint8_t  u8Iterator
         );

Introduction www.ti.com

4 F29H85x Flash API Version 21.00.00.00 SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


Unlike F28P65x devices, the F29H85x memory model uses an interleaved flash bank system to keep up with the 
CPU processing speed. Figure 1-1 shows a diagram of the flash architecture.

Figure 1-1. F29H85x Flash Architecture

This means that program and erase commands must be called twice, once for each interleaved bank. The exact 
specifics are handled within FlashAPI, with reads and writes now done through up to four Flash Read Interfaces 
(FRI-n) rather than a raw bank base address. There are four BankModes to choose from, affecting the memory 
split between CPUs 1 and 3 and whether or not swap is enabled. More specifics can be found in the F29H85x 
and F29P58x Real-Time Microcontrollers Technical Reference Manual.

To meet the requirements of this new architecture, several new parameters have been added to the functions, as 
shows above:

• u32StartAddress: Tells Flash API which flash controller (FLCx) to use
• u8Iterator: additional parameter for the user/API to track the command iteration between first interleaved 

bank and second interleaved bank
• u32UserFlashConfig: Passes merged data about bank types and FOTA to the Flash API

Additionally, the F29 series of devices are byte/8-bit addressable, unlike the C28's 16-bit addressability.

For specific documentation on the flash architecture, see the F29H85x and F29P58x Real-Time Microcontrollers 
Technical Reference Manual.

www.ti.com Introduction

SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

F29H85x Flash API Version 21.00.00.00 5

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruj79
https://www.ti.com/lit/pdf/spruj79
https://www.ti.com/lit/pdf/spruj79
https://www.ti.com/lit/pdf/spruj79
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


1.2 Function Listing Format
This is the general format of an entry for a function, compiler intrinsic, or macro. A short description of what 
function_name() does.

Synopsis

Provides a prototype for function_name().

 <return_type> function_name(  
                   <type_1> parameter_1,  
                   <type_1> parameter_2,  
                   <type_n> parameter_n 
                            ) 

Parameters

parameter_1 [in]             Type details of parameter_1 
parameter_2 [out]            Type details of parameter_2 
parameter_n [in/out]         Type details of parameter_3

Parameter passing is categorized as follows:
• in — Indicates the function uses one or more values in the parameter that you give it without storing any 

changes.
• out — Indicates the function saves one or more of the values in the parameter that you give it. You can 

examine the saved values to find out useful information about your application.
• in/out — Indicates the function changes one or more of the values in the parameter that you give it and saves 

the result. You can examine the saved values to find out useful information about your application.

Description

Describes the function. This section also describes any special characteristics or restrictions that can apply:

• Function blocks or can block the requested operation under certain conditions
• Function has pre-conditions that cannot be obvious
• Function has restrictions or special behavior

Restrictions

Specifies any restrictions in using this function.

Return Value

Specifies any value or values returned by the function.

See Also

Lists other functions or data types related to the function.

Sample Implementation

Provides an example (or a reference to an example) that illustrates the use of the function. Along with the Flash 
API functions, these examples can use the functions from the device_support folder or driverlib folder provided in 
the F29H85x SDK, to demonstrate the usage of a given Flash API function in an application context.

Introduction www.ti.com

6 F29H85x Flash API Version 21.00.00.00 SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


2 F29H85x Flash API Overview

2.1 Introduction
The Flash API is a library of routines, that when called with the proper parameters in the proper sequence, 
erases, programs, or verifies Flash memory. The Flash API can be used to program BANKMGMT and SECCFG 
memory as well.

Note
Read the data manual for the Flash memory map and Flash waitstate specifications. Note 
that this reference guide assumes that the user has already read the Flash Module chapter 
in the F29H85x and F29P58x Real-Time Microcontrollers Technical Reference Manual. Also, 
pay special attention to the functions Fapi_issueAsyncCommand(), Fapi_setupBankSectorEnable(), 
Fapi_issueBankEraseCommand() on this device. Usage of these functions is demonstrated in the 
flash API usage example provided in the F29H85x SDK at “f29h85x-sdk > examples > driverlib > 
single_core > flash" (for bank mode 0) and "f29h85x-sdk > examples > driverlib > multi_core > flash" 
(for bank mode 2).

2.2 API Overview
Table 2-1. Summary of Initialization Functions

API Function Description
Fapi_initializeAPI() Initializes the API for first use or frequency change

Table 2-2. Summary of Flash State Machine (FSM) Functions
API Function Description
Fapi_setActiveFlashBank() Initializes Flash Wrapper and bank for an erase or program 

command.
Deprecated.

Fapi_setupBankSectorEnable() Configures the Write/Erase protection for the sectors.

Fapi_issueBankEraseCommand() Issues bank erase command to the Flash State Machine for the 
given bank address.

Fapi_issueAsyncCommandWithAddress() Issues an erase sector command to FSM for the given address

Fapi_issueProgrammingCommand() Sets up the required registers for programming and issues the 
command to the FSM

Fapi_issueProgrammingCommandForEccAddress() Remaps an ECC address to the main data space and then call 
Fapi_issueProgrammingCommand() to program ECC

Fapi_issueAutoEcc512ProgrammingCommand() S Sets up the required registers for 512-bit (64 byte) programming with 
AutoECC generation mode and issues the command to the FSM

Fapi_issueDataAndEcc512ProgrammingCommand() Sets up the required registers for 512-bit (64 byte) programming with 
user provided flash data and ECC, and issues the command to the 
FSM

Fapi_issueDataOnly512ProgrammingCommand() Sets up the required registers for 512-bit (64 byte) programming with 
user provided flash data and issues the command to the FSM

Fapi_issueEccOnly64ProgrammingCommand() Sets up the required registers for 64-bit (8 byte) ECC programming 
with user provided ECC data and issues the command to the FSM

Fapi_issueAsyncCommand() Issues a command (Clear Status) to FSM for operations that do not 
require an address

Fapi_checkFsmForReady() Returns whether or not the Flash state machine (FSM) is ready or 
busy

Fapi_getFsmStatus() Returns the STATCMD status register value from the Flash Wrapper

www.ti.com F29H85x Flash API Overview

SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

F29H85x Flash API Version 21.00.00.00 7

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruj79
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


Table 2-3. Summary of Read Functions
API Function Description
Fapi_doBlankCheck() Verifies specified Flash memory range against erased state

Fapi_doVerify() Verifies specified Flash memory range against supplied values

Fapi_doVerifyByByte() Verifies specified Flash memory range against supplied values by 
byte

Table 2-4. Summary of Information Functions
API Function Description
Fapi_getLibraryInfo() Returns the information specific to the compiled version of the API 

library

Table 2-5. Summary of Utility Functions
API Function Description
Fapi_flushPipeline() Flushes the data cache in Flash Wrapper

Fapi_calculateEcc() Calculates the ECC for the supplied address and 64-bit word

Fapi_isAddressEcc() Determines if the address falls in ECC ranges

Fapi_getUserConfiguration() Calculates the value for u32UserFlashConfig given the desired 
configuration parameters.

Fapi_setUserConfiguration() Commits the u32UserFlashConfig value

2.3 Using API
This section describes the flow for using various API functions.

2.3.1 Initialization Flow

2.3.1.1 After Device Power Up

After the device is first powered up, the Fapi_getUserConfiguration(), Fapi_SetFlashCPUConfiguration(), and 
Fapi_initializeAPI() functions must be called before any other API function (except for the Fapi_getLibraryInfo() 
function) can be used. This procedure sets several required user-configurable variables and configures the Flash 
Wrapper based on the user specified operating system frequency.

2.3.1.2 On System Frequency Change

If the System operating frequency is changed after the initial call to the Fapi_initializeAPI() function, this function 
must be called again before any other API function (except the Fapi_getLibraryInfo() function) can be used. This 
procedure updates the API's internal state variables

2.3.2 Building With the API

2.3.2.1 Object Library Files

The Flash API object file is distributed in the Arm® standard EABI elf format.

2.3.2.2 Distribution Files

The following API files are distributed in the f29h85x-sdk > source > flash_api > flash folder:

• F29H85x_NWFlashAPI_v21.00.00.00.lib– This is the Flash API EABI elf object format library (FPU32 flag 
enabled for build) for F29H85x devices. The F29H85x Flash API is NOT embedded into the Boot ROM of 
this device, it is wholly software. In order for the application to be able to erase or program flash (including 
BANKMGMT and SECCFG), this library file must be linked to the application.

• Fixed point version of the API library is not provided.
• Include Files:

– FlashTech_F29H85x_C29x.h – The master include file for F29H85x devices. This file sets up compile 
specific defines and then includes the FlashTech.h master include file.

– hw_flash_command.h – Definitions of the flash write/erase protection registers

F29H85x Flash API Overview www.ti.com

8 F29H85x Flash API Version 21.00.00.00 SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


• The following include files are not necessary to include directly in the user's code, but are listed here for user 
reference:
– FlashTech.h – This include file lists all public API functions and includes all other include files.
– Registers.h – Definitions common to all register implementations and includes the appropriate register 

include file for the selected device type.
– Registers_C29x.h – Containts Little Endian and Flash memory controller registers structure.
– Types.h – Contains all the enumerations and structures used by the API.
– Constants/F29H85x.h – Constant definitions for F29H85x devices.

2.3.3 Key Facts for Flash API Usage

Here are some important facts about API usage:

• Names of the Flash API functions start with a prefix “Fapi_”.
• Flash API does not configure the PLL. The user application must configure the PLL as needed and pass 

the configured CPUCLK value to Fapi_initializeAPI() function (details of this function are given later in this 
document).

• Flash API does not check the PLL configuration to confirm the user input frequency. This is up to the 
system integrator - TI suggests to use the DCC module to check the system frequency. For an example 
implementation, see the F29H85x SDK driverlib clock configuration function.

• Flash API does not configure the SSU registers or obtain the flash semaphore. User applications must 
configure them as needed. For details of these registers, see the F29H85x and F29P58x Real-Time 
Microcontrollers Technical Reference Manual.

• Always configure waitstates as per the device-specific data manual before calling the Flash API functions. 
The Flash API issues an error if the waitstate configured by the application is not appropriate for the 
operating frequency of the application.

• Flash API execution is interruptible. There cannot be any read/fetch access from the Flash bank on which 
an erase/program operation is in progress. Therefore, the Flash API functions, the user application functions 
that call the Flash API functions, and any ISRs (Interrupt service routines) must be executed from RAM 
or the flash bank on which there is no any active erase/program operation in progress. For example, the 
above mentioned conditions apply to the entire code-snippet shown below in addition to the Flash API 
functions. The reason for this is because the Fapi_issueAsyncCommandWithAddress() function issues the 
erase command to the FSM, but it does not wait until the erase operation is over. As long as the FSM is busy 
with the current operation, the Flash bank being erased cannot be accessed.

//
// Erase Sector
//
oReturnCheck = Fapi_issueProgrammingCommand(Fapi_EraseSector, u32Index,
                                   0, u32UserFlashConfig);

//
// Wait until the Flash erase operation is over
//
while(Fapi_checkFsmForReady(u32Index, u32UserFlashConfig) == Fapi_Status_FsmBusy);

• Flash API does not configure (enable/disable) watchdog. The user application can configure watchdog and 
service it as needed.

• The Main Array flash programming must be aligned to 64-bit address boundaries (alignment on 128-bit 
address boundary is suggested) and each 64-bit word may only be programmed once per write/erase cycle.

• It is permissible to program the data and ECC separately. However, each 64-bit dataword and the 
corresponding ECC word may only be programmed once per write/erase cycle.

• Note that there cannot be any access to the Flash bank on which the Flash erase/program operation is in 
progress.

• Verification/blank check operations cannot be performed by default when in SSUMODE2 or SSUMODE3. If a 
user wants to perform a verify/blank check operation in SSUMODE2 or SSUMODE3, the user must provide 
the necessary read APR permissions. For details on SSU configuration, see the F29H85x and F29P58x 
Real-Time Microcontrollers Technical Reference Manual.

www.ti.com F29H85x Flash API Overview

SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

F29H85x Flash API Version 21.00.00.00 9

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRUJ79
https://www.ti.com/lit/pdf/SPRUJ79
https://www.ti.com/lit/pdf/spruj79
https://www.ti.com/lit/pdf/spruj79
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


• The Flash state machine also internally performs a verify operation after an erase/program pulse to validate 
the success of the operation. Successive program/program verify loops (or erase/erase verify loops) using 
the provided functions are done as needed to verify proper erase/programming. If the flash Wrapper state 
machines fail to completely program or erase all target bits in the flash within the number of program/erase 
pulses configured in the maximum pulse count setting, the FAILVERIFY bit is set in the STATCMD register.

3 API Functions

3.1 Initialization Functions

3.1.1 Fapi_initializeAPI()

Initializes the Flash API

Synopsis

Fapi_StatusType Fapi_initializeAPI( 
                     Fapi_FmcRegistersType *poFlashControlRegister,
                     uint32 u32HclkFrequency 
                                  ) 

Parameters
poFlashControlRegister [in] Pointer to the Flash Wrapper Registers' base address. Use 

FLASHCONTROLLER1_BASE.

u32HclkFrequency [in] System clock frequency in MHz

Description

This function is required to initialize the Flash API before any other Flash API operation is performed. This 
function must also be called if the System frequency or RWAIT (the waitstate value) is changed.

Note
RWAIT register value must be set before calling this function.

Return Value
• Fapi_Status_Success (success)
• Fapi_Error_InvalidHclkValue (failure: System clock does not match specified wait value)

Sample Implementation

(Refer to the flash programming example provided in the F29H85x SDK at “f29h85x-sdk > examples > driverlib > 
single_core > flash > flash_mode0_128_program”)

API Functions www.ti.com

10 F29H85x Flash API Version 21.00.00.00 SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


3.2 Flash State Machine Functions

3.2.1 Fapi_setActiveFlashBank()

Initializes the Flash Wrapper for erase and program operations. This function is deprecated with F29 devices 
and has been kept for legacy purposes.

Synopsis

Fapi_StatusType Fapi_setActiveFlashBank( 
                       Fapi_FlashBankType oNewFlashBank 
                                       )

Parameters
oNewFlashBank [in] Bank number to set as active. Always use Fapi_FlashBank0 

irrespective of which flash bank is targeted for erase/program 
operations on any CPU.

Description

This function sets the Flash Wrapper for further operations to be performed on the bank. This function is required 
to be called after the Fapi_initializeAPI() function and before any other Flash API operation is performed.

Note
Irrespective of which flash bank is targeted for the erase and program operations, the user application 
needs to call this only once and that can be with Fapi_FlashBank0.

Return Value
• Fapi_Status_Success (Success)
• Fapi_Status_FsmBusy (failure: FSM busy with another command)
• Fapi_Error_InvalidBaseRegCntlAddress (failure: Flash control register base address provided by user 

does not match the expected address)
• Fapi_Error_InvalidBank (failure: Bank specified does not exist on device)
• Fapi_Error_InvalidHclkValue (failure: System clock does not match specified wait value)

www.ti.com API Functions

SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

F29H85x Flash API Version 21.00.00.00 11

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


3.2.2 Fapi_setupBankSectorEnable()

Configures Write(program)/Erase protection for the sectors.

Synopsis

Fapi_StatusType Fapi_setupBankSectorEnable( 
                              uint32_t *pu32StartAddress,
                              uint32_t u32UserFlashConfig,
                              uint32_t reg_address,
                              uint32_t value 
                                          )

Parameters
pu32StartAddress [in] Flash memory address being written to

u32UserFlashConfig [in] User flash configuration bitfield

reg_address [in] Register address for Write/Erase protection configuration. Protection 
masks apply to both banks in an interleaved pair.
Use FLASH_NOWRAPPER_O_CMDWEPROTA for the first 32 
(0-31) sectors.
Use FLASH_NOWRAPPER_O_CMDWEPROTB for the remaining 
main-array (32-128) sectors.
Use FLASH_NOWRAPPER_O_CMDWEPROTNM for BANKMGMT 
and SECCFG

value [in] 32-bit mask indicating which sectors to mask from the erase and 
program operations.

Description

On this device, all of the flash main and nonmain (BANKMGMT, and SECCFG) sectors are protected from 
the erase and program operations by default. User applications must disable the protection for the sectors on 
which they want to perform erase and/or program operations. This function can be used to enable/disable the 
protection. This function must be called before each erase and program command as shown in the flash API 
usage example provided in the F29H85x SDK.

First input parameter for this function can be the address of any of these 
three registers: FLASH_NOWRAPPER_O_CMDWEPROTA, FLASH_NOWRAPPER_O_CMDWEPROTB, 
FLASH_NOWRAPPER_O_CMDWEPROTNM

CMDWEPROTA register is used to configure the protection for the first 32 sectors (0 to 31) of a bank. Each 
bit in this register corresponds to one sector of an interleaved bank. Therefore, when programming, users must 
configure this register twice (once for each bank in the bank pair B0/2 or B1/3). For example: Bit 0 of this register 
is used to configure the protection for Sector 0 and Bit 31 of this register is used to configure the protection 
for Sector 31. A 32-bit user-provided sector mask (second parameter passed to this function) indicates which 
sectors the user wants to mask from the erase and program operations, that is, sectors that are not erased and 
programmed. If a bit in the mask is 1, that particular sector is not erased/programmed. If a bit in the mask is 0, 
that particular sector is erased or programmed.

CMDWEPROTB register is used to configure the protection for interleaved sectors 32 – 127 in the main-array 
flash bank. Each bit in this register is used to configure protection for eight sectors together. This means bit 0 is 
used to configure the protection for all of the sectors 32 to 39 together, bit 1 is used to configure the protection 
for all of the sectors 40 to 47 together, and so on. A 32-bit user-provided sector mask (second parameter passed 
to this function) indicates which sectors the user wants to mask from the erase and program operations, that 
is, sectors that are not erased and programmed. If a bit in the mask is 1, that particular set of sectors is not 
erased/programmed. If a bit in the mask is 0, that particular set of sectors is erased/programmed.

API Functions www.ti.com

12 F29H85x Flash API Version 21.00.00.00 SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


CMDWEPROT_NM register is used to configure the protection for the BANKMGMT and SECCFG regions. Only 
bit 0 in this register is used to configure the protection. If bit 0 is configured as 1, BANKMGMT and SECCFG 
are not programmed. If bit 0 is configured as 0, the region(s) is programmed. Other bits of this register can be 
configured as 1s. Both the BANKMGMT and SECCFG regions can both be erased and programmed.

Note
There are no separate dedicated CMDWEPROT_x registers for each bank. Hence, these registers 
must be configured before each and every flash erase and program command for any bank.

Return Value
• Fapi_Status_Success (success)

Sample Implementation

(Refer to the flash programming example provided in the F29H85x SDK at “f29h85x-sdk > examples > driverlib > 
single_core > flash > flash_mode0_128_program”)

3.2.3 Fapi_issueAsyncCommandWithAddress()

Issues an erase command to the Flash State Machine along with a user-provided sector address.

Synopsis

Fapi_StatusType Fapi_issueAsyncCommandWithAddress(              
                               Fapi_FlashStateCommandsType oCommand, 
                               uint32_t *pu32StartAddress,
                               uint8_t  u8Iterator,
                               uint32_t u32UserFlashConfig
                                                 )

Parameters
oCommand [in] Command to issue to the FSM. Use Fapi_EraseSector.

pu32StartAddress [in] Flash sector address for erase operation

u8Iterator [in] Iterator for program and erase operations on interleaved banks.
0: Data Flash/non-interleaved
1: B0 or B2 (dependent on provided address)
2: B1 or B3 (dependent on provided address)

uint32 u32UserFlashConfig [in] User flash configuration bitfield

Description

This function issues an erase command to the Flash State Machine for the user-provided sector address. When 
operating on an interleaved bank, this function must be called twice (once with each iterator value) to erase 
both underlying banks. The 128-bit aligned start address stays the same during these two calls. This function 
does not wait until the erase operation is over; it just issues the command and returns back. Hence, this function 
always returns success status when the Fapi_EraseSector command is used. The user application must wait 
for the Flash Wrapper to complete the erase operation before returning to any kind of Flash accesses. The 
Fapi_checkFsmForReady() function can be used to monitor the status of an issued command.

Note
This function does not check STATCMD after issuing the erase command. The user application must 
check the STATCMD value when FSM has completed the erase operation. STATCMD indicates 
if there is any failure occurrence during the erase operation. The user application can use the 
Fapi_getFSMStatus function to obtain the STATCMD value. The user application can alsouse the 
Fapi_doBlankCheck() function to verify that the Flash is erased.

www.ti.com API Functions

SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

F29H85x Flash API Version 21.00.00.00 13

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


Return Value
• Fapi_Status_Success (success)
• Fapi_Status_FsmBusy (FSM busy)
• Fapi_Error_InvalidBaseRegCntlAddress (failure: Flash control register base address provided by user 

does not match the expected address.)
• Fapi_Error_FeatureNotAvailable (failure: User requested a command that is not supported.)
• Fapi_Error_FlashRegsNotWritable (failure: Flash register write failed. The user can make sure that the API 

is executing from the correct CPU.)
• Fapi_Error_InvalidAddress (failure: User provided an invalid address. For the valid address range, see the 

F29H85x and F29P58x Real-Time Microcontrollers Data Sheet.)

Sample Implementation

(Refer to the flash programming example provided in the F29H85x SDK at “f29h85x-sdk > examples > driverlib > 
single_core > flash > flash_mode0_128_program”)

3.2.4 Fapi_issueBankEraseCommand()

Issues a bank erase command to the Flash State Machine along with a user-provided sector mask.

Synopsis

Fapi_StatusType Fapi_issueBankEraseCommand(
                                          uint32_t *pu32StartAddress,
                                          uint8_t u8Iterator,
                                          uint32_t  u32UserFlashConfig
                                          )

Parameters
pu32StartAddress [in] Flash bank address for bank erase operation

u8Iterator [in] Iterator for program and erase operations on interleaved banks.
0: Data Flash/non-interleaved
1: B0 or B2 (dependent on provided address)
2: B1 or B3 (dependent on provided address)

u32UserFlashConfig [in] User flash configuration bitfield

Description

This function issues a bank erase command to the Flash state machine for the user-provided bank address. If 
the FSM is busy with another operation, the function returns indicating the FSM is busy, otherwise it proceeds 
with the bank erase operation. When operating on interleaved banks, this function must be called twice (once 
with each iterator value, the start address stays the same).

Return Value
• Fapi_Status_Success (success)
• Fapi_Status_FsmBusy (FSM busy)
• Fapi_Error_FlashRegsNotWritable (Flash registers not writable)
• Fapi_Error_InvalidBaseRegCntlAddress (failure: Flash control register base address provided by user 

does not match the expected address.)

Sample Implementation

(Refer to the flash programming example provided in the F29H85x SDK at “f29h85x-sdk > examples > driverlib > 
single_core > flash > flash_mode0_128_program”)

API Functions www.ti.com

14 F29H85x Flash API Version 21.00.00.00 SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRSP93
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


3.2.5 Fapi_issueProgrammingCommand()

Sets up data and issues program command to valid Flash, BANKMGMT, and SECCFG memory addresses

Synopsis

Fapi_StatusType Fapi_issueProgrammingCommand(
                            uint32_t *pu32StartAddress,
                            uint8_t  *pu8DataBuffer,
                            uint8_t  u8DataBufferSizeInBytes,
                            uint8_t  *pu8EccBuffer,
                            uint8_t  u8EccBufferSizeInBytes,
                            Fapi_FlashProgrammingCommandsType oMode,
                            uint32_t  u32UserFlashConfig
                            );

Parameters
pu32StartAddress [in] Start address in Flash for the data and ECC to be programmed. The 

start address can always be even.

pu8DataBuffer [in] Pointer to the Data buffer address. Data buffer can be 64-bit aligned.

u8DataBufferSizeInBytes [in] Number of bytes in the Data buffer

pu8EccBuffer [in] Pointer to the ECC buffer address

u8EccBufferSizeInBytes [in] Number of bytes in the ECC buffer

oMode [in] ECC mode

u32UserFlashConfig [in] User flash configuration bitfield

Note
The pu8EccBuffer can contain ECC corresponding to the data at the 64-bit aligned main array, 
BANKMGMT, or SECCFG address. The LSB of the pu8EccBuffer corresponds to the lower 32 bits of 
the main array and the MSB of the pu8EccBuffer corresponds to the upper 32 bits of the main array.

Description

This function sets up the programming registers of the Flash State Machine based on the supplied parameters. 
It offers four different programming modes to the user for use in different scenarios as mentioned in Table 3-1. 
This function sets up the programming registers of the Flash State Machine based on the supplied parameters. It 
offers four different programming modes to the user for use in different scenarios as mentioned in Table 3-1.

www.ti.com API Functions

SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

F29H85x Flash API Version 21.00.00.00 15

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


Table 3-1. Uses of Different Programming Modes
Programming Mode (oMode) Arguments Used Usage Purpose
Fapi_DataOnly pu32StartAddress,

pu8DataBuffer,
u8DataBufferSizeInWords

Used when any custom programming utility 
or an user application (that embed/use Flash 
API) has to program data and corresponding 
ECC separately. Data is programmed using 
Fapi_DataOnly mode and then the ECC 
is programmed using Fapi_EccOnly mode. 
Generally, most of the programming utilities 
do not calculate ECC separately and 
instead use Fapi_AutoEccGeneration mode. 
However, some Safety applications can 
require to insert intentional ECC errors in 
their Flash image (which is not possible 
when Fapi_AutoEccGeneration mode is 
used) to check the health of the SECDED 
(Single Error Correction and Double Error 
Detection) module at run time. In such case, 
ECC is calculated separately (using the 
Fapi_calculateEcc() function as applicable). 
Application can want to insert errors in either 
main array data or in the ECC as needed. 
In such scenarios, after the error insertion, 
Fapi_DataOnly mode and Fapi_EccOnly 
modes can be used to program the data and 
ECC respectively.

Fapi_AutoEccGeneration pu32StartAddress,
pu8DataBuffer,
u8DataBufferSizeInBytes

Used when any custom programming utility 
or user application (that embed/use Flash 
API to program Flash at run time to store 
data or to do a firmware update) has to 
program data and ECC together without 
inserting any intentional errors. This is the 
most prominently used mode.

Fapi_DataAndEcc pu32StartAddress,
pu8DataBuffer,
u8DataBufferSizeInBytes,
pu8EccBuffer,
u8EccBufferSizeInBytes

Purpose of this mode is not different than that 
of using Fapi_DataOnly and Fapi_EccOnly 
modes together. However, this mode is 
beneficial when both the data and the 
calculated ECC can be programmed at the 
same time.

Fapi_EccOnly pu8EccBuffer,
u8EccBufferSizeInBytes

See the usage purpose given for 
Fapi_DataOnly mode.

Table 3-2 shows the allowed programming range for the function.

Table 3-2. Permitted Programming Range for Fapi_issueProgrammingCommand() 
Flash API Main Array ECC BANKMGMT and SECCFG
Fapi_issueProgrammingComman
d() 128bit, 
Fapi_AutoEccGeneration mode

Allowed Allowed Allowed

Fapi_issueProgrammingComman
d() 128bit, Fapi_DataOnly mode

Allowed Not allowed Allowed

Fapi_issueProgrammingComman
d() 128bit, Fapi_DataAndEcc 
mode

Allowed Allowed Allowed

Fapi_issueProgrammingComman
d() 128bit, Fapi_EccOnly mode

Not allowed Allowed Not allowed

Note
Users must always program ECC for their flash image, as ECC check is enabled at power up. The 
BANKMGMT and SECCFG sectors must only be programmed using AutoEccGeneration. Additionally, 
512-bit programming (with any mode) of the BANKMGMT and SECCFG sectors is not supported.

API Functions www.ti.com

16 F29H85x Flash API Version 21.00.00.00 SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


Programming modes:

Fapi_DataOnly – This mode only programs the data portion in Flash at the address specified. It can program 
from 1 bit up to 16 bytes. However, review the restrictions provided for this function to know the limitations of 
flash programming data size. The supplied starting address to program at plus the data buffer length cannot 
cross the 128-bit aligned address boundary. Arguments 4 and 5 are ignored when using this mode.

Fapi_AutoEccGeneration – This mode programs the supplied data in Flash along with automatically generated 
ECC. The ECC is calculated for every 64-bit data aligned on a 64-bit memory boundary. Hence, when using 
this mode, all the 64 bits of the data can be programmed at the same time for a given 64-bit aligned memory 
address. Data not supplied is treated as all 1s (0xFFFF). Once ECC is calculated and programmed for a 64-bit 
data, those 64 bits can not be reprogrammed (unless the sector is erased) even if it is programming a bit from 
1 to 0 in that 64-bit data, since the new ECC value collides with the previously programmed ECC value. When 
using this mode, if the start address is 128-bit aligned, then either 16 or 8 bytes can be programmed at the same 
time as needed. If the start address is 64bit aligned but not 128-bit aligned, then only 8bytes can be programmed 
at the same time. The data restrictions for Fapi_DataOnly also exist for this option. Arguments 4 and 5 are 
ignored.

Note
Fapi_AutoEccGeneration mode programs the supplied data portion in Flash along with automatically 
generated ECC. The ECC is calculated for 64-bit aligned address and the corresponding 64-bit data. 
Any data not supplied is treated as 0xFFFF. Note that there are practical implications of this when 
writing a custom programming utility that streams in the output file of a code project and programs 
the individual sections one at a time into flash. If a 64-bit word spans more than one section (that is, 
contains the end of one section, and the start of another), values of 0xFFFF cannot be assumed for 
the missing data in the 64-bit word when programming the first section. When you go to program the 
second section, you are not able to program the ECC for the first 64-bit word since it was already 
(incorrectly) computed and programmed using assumed 0xFFFF for the missing values. One way to 
avoid this problem is to align all sections linked to flash on a 64-bit boundary in the linker command 
file for your code project.

Here is an example:

SECTIONS
 { 
 .text          : > FLASH, palign(8)
 .cinit         : > FLASH, palign(8)
 .const         : > FLASH, palign(8)
 .init_array    : > FLASH, palign(8)
 .switch        : > FLASH, palign(8)
 }

If you do not align the sections in flash, you must track incomplete 64-bit words in a section and combine them 
with the words in other sections that complete the 64-bit word. This is difficult to do, so it is recommended to 
align your sections on 64-bit boundaries.

Some 3rd party Flash programming tools or TI Flash programming kernel examples, or any custom Flash 
programming solution can assume that the incoming data stream is all 128-bit aligned and can not expect that a 
section might start on an unaligned address. Thus, it can try to program the maximum possible (128 bits) words 
at a time assuming that the address provided is 128-bit aligned. This can result in a failure when the address is 
not aligned. So, it is suggested to align all the sections (mapped to Flash) on a 128-bit boundary.

Fapi_DataAndEcc – This mode programs both the supplied data and ECC in Flash at the address specified. 
The data supplied must be aligned on a 64-bit memory boundary and the length of data must correlate to the 
supplied ECC. That means, if the data buffer length is 8 bytes, the ECC buffer must be 1 byte. If the data buffer 
length is 16 bytes, the ECC buffer must be 2 bytes in length. If the start address is 128-bit aligned, then either 16 
or 8 bytes can be programmed at the same time as needed. If the start address is 64-bit aligned but not 128-bit 
aligned, then only 8 bytes can be programmed at the same time.

The LSB of pu8EccBuffer corresponds to the lower 64 bits of the main array and the MSB of pu8EccBuffer 
corresponds to the upper 64 bits of the main array.

www.ti.com API Functions

SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

F29H85x Flash API Version 21.00.00.00 17

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


The Fapi_calculateEcc() function can be used to calculate ECC for a given 64-bit aligned address and the 
corresponding data.

Fapi_EccOnly – This mode programs only the ECC portion in Flash ECC memory space at the address (Flash 
main array address can be provided for this function and not the corresponding ECC address) specified. It 
can program either 2 bytes (both LSB and MSB at a location in ECC memory) or 1 byte (LSB at a location in 
ECC memory). The LSB of pu8EccBuffer corresponds to the lower 64 bits of the main array and the MSB of 
pu8EccBuffer corresponds to the upper 64bits of the main array. Arguments two and three are ignored when 
using this mode.

Note
The length of pu8DataBuffer and pu8EccBuffer cannot exceed 16 and 2, respectively.

Note
This function does not check STATCMD after issuing the program command. The user application 
must check the STATCMD value when FSM has completed the program operation. STATCMD 
indicates if there is any failure occurrence during the program operation. The user application can 
use the Fapi_getFsmStatus function to obtain the STATCMD value.
Also, the user application can use the Fapi_doVerify() function to verify that the Flash is programmed 
correctly.

This function does not wait until the program operation is over; it just issues the command and returns back. 
Hence, the user application must wait for the Flash Wrapper to complete the program operation before returning 
to any kind of Flash accesses. The Fapi_checkFsmForReady() function can be used to monitor the status of an 
issued command.

Restrictions
• As described above, this function can program only a max of 128 bits (given the address provided is 128-bit 

aligned) at a time. If the user wants to program more than that, this function can be called in a loop to 
program 128 bits (or 64 bits as needed by application) at a time.

• The Main Array flash programming must be aligned to 64-bit address boundaries and each 64-bit word can 
only be programmed once per write or erase cycle.

• It is alright to program the data and ECC separately. However, each 64-bit dataword and the corresponding 
ECC word can only be programmed once per write or erase cycle.

Return Value
• Fapi_Status_Success (success)
• Fapi_Status_FsmBusy (FSM busy)
• Fapi_Error_InvalidBaseRegCntlAddress (failure: Flash control register base address provided by user 

does not match the expected address)
• Fapi_Error_AsyncIncorrectDataBufferLength (failure: Data buffer size specified is incorrect. This error is 

also be returned if Fapi_EccOnly mode is selected when programming to the BANKMGMT or SECCFG 
spaces)

• Fapi_Error_AsyncIncorrectEccBufferLength (failure: ECC buffer size specified is incorrect)
• Fapi_Error_AsyncDataEccBufferLengthMismatch (failure: Data buffer size either is not 64-bit aligned or 

data length crosses the 128-bit aligned memory boundary)
• Fapi_Error_FlashRegsNotWritable (failure: Flash register writes failed. The user can make sure that the 

API is executing from the correct CPU).
• Fapi_Error_FeatureNotAvailable (failure: User passed a mode that is not supported)
• Fapi_Error_InvalidAddress (failure: User provided an invalid address. For the valid address range, see the 

F29H85x and F29P58x Real-Time Microcontrollers Data Sheet.)

API Functions www.ti.com

18 F29H85x Flash API Version 21.00.00.00 SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRSP93
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


Sample Implementation

For more information, see the flash programming example provided in the F29H85x SDK at: “f29h85x-sdk > 
examples > driverlib > single_core > flash > flash_mode0_128_program”.

3.2.6 Fapi_issueAutoEcc512ProgrammingCommand()

Sets up data and issues 512-bit (64 bytes) AutoEcc generation mode program command to valid Flash, 
BANKMGMT, and SECCFG memory addresses.

Synopsis

Fapi_StatusType Fapi_issueAutoEcc512ProgrammingCommand(
                                            uint32_t *pu32StartAddress,
                                            uint8_t  *pu8DataBuffer,
                                            uint8_t  u8DataBufferSizeInWords,
                                            uint32_t  u32UserFlashConfig,
                                            uint8_t  u8Iterator
                                            );        

Parameters

pu32StartAddress [in] 1024-bit aligned flash address to program the provided data and ECC.

pu8DataBuffer [in] Pointer to the Data buffer address. Address of the Data buffer can be 1024-bit aligned.

u8DataBufferSizeInWords [in] Number of bytes in the Data buffer. Max Databuffer size in words can not exceed 64.

u32UserFlashConfig [in] User flash configuration bitfield

uint8u8Iterator [in] Iterator for program and erase operations on interleaved banks.
0: Data Flash/non-interleaved
1: B0or B2(dependent on provided address)
2: B1 or B3 (dependent on provided address)

Description

This function automatically generates 8 bytes of ECC data for the user provided 512-bit data (second 
parameter) and programs the data and ECC together at the user provided 512-bit aligned flash address (first 
parameter). When this command is issued, the flash state machine programs all of the 512-bits along with ECC. 
Hence, when using this mode, data not supplied is treated as all 1s (0xFFFF). Once ECC is calculated and 
programmed for a 512-bit data, those 512-bits cannot be reprogrammed (unless the sector is erased) even if 
it is programming a bit from 1 to 0 in that 512-bit data, since the new ECC value collides with the previously 
programmed ECC value.

www.ti.com API Functions

SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

F29H85x Flash API Version 21.00.00.00 19

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


Note
512bit programming programs to one interleaved bank at a time. As a result, it must be called 
twice, once with each iterator (for a total of 1024-bits of data), to have fully contiguous data. The 
pu32StartAddress for each of these calls must remain the same. If both interleaved banks are not 
programmed, data appears similar to the following:

Address Data

0x10000000 Data bytes 0-15

0x10000010 0xFFFF

0x10000020 Data bytes 16-31

0x10000030 0xFFFF

And so on. If the ordering of the data buffer is important, an example of how to properly format the buffer so that 
it maintains its order in flash can be found in this function's sample implementation. ("f29h85x-sdk > examples > 
driverlib > single_core > flash > flash_mode0_512_program").

Note
Fapi_issueAutoEcc512ProgrammingCommand() function programs the supplied data portion in Flash 
along with automatically generated ECC. The ECC is calculated for 512bit aligned address and the 
corresponding 512-bit data. Any data not supplied is treated as 0xFFFF. Note that there are practical 
implications of this when writing a custom programming utility that streams in the output file of a code 
project and programs the individual sections one at a time into flash. If a 512-bit word spans more 
than one section (that is, contains the end of one section, and the start of another), values of 0xFFFF 
cannot be assumed for the missing data in the 64-bit word when programming the first section. When 
you program the second section, you are not able to program the ECC for the first 512-bit word since 
it was already (incorrectly) computed and programmed using assumed 0xFFFF for the missing values. 
One way to avoid this problem is to align all sections linked to flash on a 512-bit boundary in the linker 
command file for your code project.

Here is an example:

SECTIONS 
    { 
        .text : > FLASH, palign(64) 
        .cinit : > FLASH, palign(64) 
        .const : > FLASH, palign(64) 
        .init_array : > FLASH, palign(64) 
        .switch : > FLASH, palign(64)
    }

If you do not align the sections in flash, you must track incomplete 512-bit words in a section and combine them 
with the words in other sections that complete the 512-bit word. This is difficult to do. Hence, it is recommended 
to align your sections on 512-bit boundaries.

Some 3rd party Flash programming tools or TI Flash programming kernel examples, or any custom 
Flash programming solution can assume that the incoming data stream is all 512-bit aligned and can 
not expect that a section might start on an unaligned address. Thus, it can try to program the maximum 
possible (512-bits) words at a time assuming that the address provided is 512-bit aligned. This can result 
in a failure when the address is not aligned. So, it is suggested to align all the sections (mapped to 
Flash) on a 512-bit boundary.

API Functions www.ti.com

20 F29H85x Flash API Version 21.00.00.00 SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


For the allowed programming range for the function, see Table 3-3.

Table 3-3. Permitted Programming Range for Fapi_issueAutoEcc512ProgrammingCommand()
Flash API Main Array ECC BANKMGMT and SECCFG
Fapi_issueAutoEcc512Programm
ingCommand()

Allowed Allowed Not allowed

Note
The length of pu8DataBuffer cannot exceed 64.

Note
This function does not check STATCMD after issuing the program command. The user application 
must check the STATCMD value when FSM has completed the program operation. STATCMD 
indicates if there is any failure occurrence during the program operation. The user application can 
use the Fapi_getFsmStatus function to obtain the STATCMD value.

Also, the user application can use the Fapi_doVerify() function to verify that the Flash is programmed 
correctly.

This function does not wait until the program operation is over; it just issues the command and returns back. 
Hence, the user application must wait for the Flash Wrapper to complete the program operation before returning 
to any kind of Flash accesses. The Fapi_checkFsmForReady() function can be used to monitor the status of an 
issued command.

Restrictions
• As described above, this function can program only a max of 512 bits (given the address provided is 512-bit 

aligned) at a time. If the user wants to program more than that, this function can be called in a loop to 
program 512 bits at a time.

• The Main Array flash programming must be aligned to 512-bit address boundaries and 64 bytes may only be 
programmed once per write or erase cycle.

• 512-bit address range starting with a BANKMGMT or SECCFG address shall always be programmed using 
128bit Fapi_issueProgrammingCommand().

Return Value
• Fapi_Status_Success (success)
• Fapi_Status_FsmBusy (FSM busy)
• Fapi_Error_AsyncIncorrectDataBufferLength (failure: Data buffer size specified is incorrect. Also, this 

error is returned if Fapi_EccOnly mode is selected when programming to the BANKMGMT or SECCFG 
spaces,)

• Fapi_Error_FlashRegsNotWritable (failure: Flash register writes failed. The user can make sure that the 
API is executing from the correct CPU).

• Fapi_Error_FeatureNotAvailable (failure: User passed a mode that is not supported.)
• Fapi_Error_InvalidAddress (failure: User provided an invalid address.) For the valid address range, see the 

F29H85x and F29P58x Real-Time Microcontrollers Data Sheet.)

Sample Implementation

(For more information, see the flash programming example provided in the F29H85x SDK at “f29h85x-sdk > 
examples > driverlib > single_core > flash > flash_mode0_512_program”)

www.ti.com API Functions

SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

F29H85x Flash API Version 21.00.00.00 21

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRSP93
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


3.2.7 Fapi_issueDataAndEcc512ProgrammingCommand()

Sets up the flash state machine registers for the 512-bit (64 bytes) programming with user provided flash data 
and ECC data and issues the programing command to valid Flash memory.

Synopsis

Fapi_StatusType Fapi_issueDataAndEcc512ProgrammingCommand(
                                    uint32_t *pu32StartAddress,
                                    uint8_t  *pu8DataBuffer,
                                    uint8_t  u8DataBufferSizeInWords,
                                    uint8_t  *pu8EccBuffer,
                                    uint8_t  u8EccBufferSizeInBytes,
                                    uint32_t u32UserFlashConfig,
                                    uint8_t  u8Iterator
                                    )

Parameters
pu32StartAddress [in] 1024-bit aligned flash address to program the provided data and 

ECC.

pu8DataBuffer [in] Pointer to the Data buffer address. Address of the Data buffer can be 
1024-bit aligned.

u8DataBufferSizeInWords [in] Number of bytes in the Data buffer. Max Databuffer size in words can 
not exceed 64.

pu8EccBuffer [in] Pointer to the ECC buffer address

u8EccBufferSizeInBytes [in] Number of bytes in the ECC buffer. Max Eccbuffer size in words can 
not exceed 16.

u32UserFlashConfig [in] User flash configuration bitfield

u8Iterator [in] Iterator for program and erase operations on interleaved banks.
0: Data Flash/non-interleaved
1: B0 or B2 (dependent on provided address)
2: B1 or B3 (dependent on provided address)

Description

This function programs both the user provided 512-bit data (second parameter) and 8 bytes of ECC data (fourth 
parameter) together at the user provided 512-bit aligned flash address. The address of data provided must be 
aligned on a 512-bit memory boundary and the length of data must correlate to the supplied ECC. That means, if 
the data buffer length is 64 bytes, the ECC buffer must be 8 bytes (1 ECC bytes corresponding to 64-bit data).

Each byte of pu8EccBuffer corresponds to each 64-bit of the main array data provided in the pu8DataBuffer. For 
more details, see Table 3-6.

The Fapi_calculateEcc() function can be used to calculate ECC for a given 64-bit aligned address and the 
corresponding data.

For allowed programming range for the function, see Table 3-4.

Table 3-4. Permitted programming range for Fapi_issueDataAndEcc512ProgrammingCommand()
Flash API Main Array ECC BANKMGMT and SECCFG
Fapi_issueDataAndEcc512Progr
ammingCommand()

Allowed Allowed Not allowed

Restrictions
• As described above, this function can program only a max of 512-bits (given the address provided is 512-bit 

aligned) at a time. If the user wants to program more than that, this function can be called in a loop to 
program 512-bits at a time.

• The Main Array flash programming must be aligned to 512-bit address boundaries and 64 bytes can only be 
programmed once per write or erase cycle.

API Functions www.ti.com

22 F29H85x Flash API Version 21.00.00.00 SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


• 512-bit address range starting with a BANKMGMT or SECCFG address will always be programmed using 
128-bit Fapi_issueProgrammingCommand().

Return Value
• Fapi_Status_Success (success)
• Fapi_Status_FsmBusy (FSM busy)
• Fapi_Error_AsyncIncorrectDataBufferLength (failure: Data buffer size specified is incorrect. Also, this 

error will be returned if Fapi_EccOnly mode is selected when programming to the BANKMGMT or SECCFG 
spaces.)

• Fapi_Error_AsyncIncorrectEccBufferLength (failure: ECC buffer size specified is incorrect.)
• Fapi_Error_AsyncDataEccBufferLengthMismatch (failure: Data buffer size either is not 64-bit aligned or 

data length crosses the 128-bit aligned memory boundary.)
• Fapi_Error_FlashRegsNotWritable (failure: Flash register writes failed. The user can make sure that the 

API is executing from the correct CPU.)
• Fapi_Error_FeatureNotAvailable (failure: User passed a mode that is not supported.)
• Fapi_Error_InvalidAddress (failure: User provided an invalid address. For the valid address range, see the 

F29H85x and F29P58x Real-Time Microcontrollers Data Sheet.)

Sample Implementation

(For more information, see the flash programming example provided in the F29H85x SDK at “f29h85x-sdk > 
examples > driverlib > single_core > flash > flash_mode0_512_program”).

3.2.8 Fapi_issueDataOnly512ProgrammingCommand()

Sets up the flash state machine registers for the 512-bit (64 bytes) programming with user provided flash data 
and issues the programing command to valid Flash.

Synopsis

Fapi_StatusType Fapi_issueDataOnly512ProgrammingCommand( 
                                     uint32 *pu32StartAddress, 
                                     uint8 *pu8DataBuffer, 
                                     uint8 u8DataBufferSizeInBytes,
                                     uint32 u32UserFlashConfig,
                                     uint8 u8Iterator 
                                                       ) 

Parameters
pu32StartAddress [in] 1024-bit aligned flash address to program the provided data.

pu8DataBuffer [in] Pointer to the Data buffer address. Data buffer can be 1024-bit 
aligned.

u8DataBufferSizeInBytes [in] Number of 8-bit words in the Data buffer. Max Databuffer size in 
bytes can not exceed 64.

u32UserFlashConfig [in] User flash configuration bitfield

u8Iterator [in] Iterator for program and erase operations on interleaved banks.
0: Data Flash/non-interleaved
1: B0 or B2 (dependent on provided address)
2: B1 or B3 (dependent on provided address)

www.ti.com API Functions

SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

F29H85x Flash API Version 21.00.00.00 23

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRSP93
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


Description

This function only programs the data portion in Flash at the address specified. It can program 512-bit 
data (Second parameter) at the user provided 512-bit aligned flash address. This function is used when 
a user application (that embed/use Flash API) has to program 512- bit of data and corresponding 64-bit 
of ECC data separately. 512-bit Data is programmed using Fapi_issueDataOnly512ProgrammingCommand () 
function and then the 64-bit ECC is programmed using Fapi_issueEccOnly64ProgrammingCommand() function. 
Generally, most of the programming utilities do not calculate ECC separately and instead use function 
Fapi_issueAutoEcc512ProgrammingCommand(). However, some Safety applications may require to insert 
intentional ECC errors in their Flash image (which is not possible when Fapi_AutoEccGeneration mode is used) 
to check the health of the Single Error Correction and Double Error Detection (SECDED) module at run time. 
In such case, ECC is calculated separately (using the Fapi_calculateEcc() function as applicable). Application 
may want to insert errors in either main array data or in the ECC as needed. In such scenarios, after the error 
insertion, Fapi_issueDataOnly512ProgrammingCommand() API and then the 64-bit ECC is programmed using 
Fapi_issueEccOnly64ProgrammingCommand() API can be used to program the data and ECC, respectively.

for allowed programming range for the function, see Table 3-5.

Table 3-5. Permitted Programming Range for Fapi_issueDataOnly512ProgrammingCommand()
Flash API Main Array ECC BANKMGMT and SECCFG
Fapi_issueDataOnly512Pr 
ogrammingCommand()

Allowed Not allowed Not allowed

Restrictions
• As described above, this function can program only a max of 512-bits (given the address provided is 512-bit 

aligned) at a time. If the user wants to program more than that, this function can be called in a loop to 
program 512-bits at a time.

• The Main Array flash programming must be aligned to 512-bit address boundaries and 64 bytes may only be 
programmed once per write or erase cycle.

• 512-bit address range starting with a BANKMGMT or SECCFG address shall always be programmed using 
128-bit Fapi_issueProgrammingCommand().

Return Value
• Fapi_Status_Success (success)
• Fapi_Status_FsmBusy (FSM busy)
• Fapi_Error_AsyncIncorrectDataBufferLength (failure: Data buffer size specified is incorrect. Also, this 

error is returned if the Fapi_EccOnly mode is selected when programming to the BANKMGMT or SECCFG 
spaces.)

• Fapi_Error_FlashRegsNotWritable (failure: Flash register writes failed. Make sure that the API is executing 
from the correct CPU).

• Fapi_Error_FeatureNotAvailable (failure: User passed a mode that is not supported.)
• Fapi_Error_InvalidAddress (failure: User provided an invalid address. For the valid address range, see the 

F29H85x and F29P58x Real-Time Microcontrollers Data Sheet).

Sample Implementation

(For more information, see the flash programming example provided in the F29H85x SDK at “f29h85x-sdk > 
examples > driverlib > single_core > flash > flash_mode0_512_program”)

3.2.9 Fapi_issueEccOnly64ProgrammingCommand()

Sets up the flash state machine registers for the 64-bit (8 bytes) programming with user provided ECC data and 
issues the programing command to valid Flash, BANKMGMT, and SECCFG memory.

API Functions www.ti.com

24 F29H85x Flash API Version 21.00.00.00 SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRSP93
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


Synopsis

Fapi_StatusType Fapi_issueEccOnly64ProgrammingCommand(
                                       uint32_t *pu32StartAddress,
                                       uint8_t *pu8EccBuffer,
                                       uint8_t  u8EccBufferSizeInBytes,
                                       uint32_t u32UserFlashConfig,
                                       uint8_t  u8Iterator
                                       );

Parameters
pu32StartAddress [in] 512-bit aligned flash address to program the provided ECC data.

pu8EccBuffer [in] Pointer to the ECC buffer address

u8EccBufferSizeInBytes [in] Number of bytes in the ECC buffer. Max Eccbuffer size in bytes can 
not exceed 16.

u32UserFlashConfig User Flash configuration.

u8Iterator Iterator for program and erase operations on interleaved banks.
0: Data Flash/non-interleaved
1: B0 or B2 (dependent on provided address)
2: B1 or B3 (dependent on provided address)

Description

This function only programs the ECC portion in Flash ECC memory space at the address (Flash main array 
address can be provided for this function and not the corresponding ECC address) specified. It can program 
64-bit of ECC data (second parameter) at the ECC address corresponding to the user provided 512-bit aligned 
flash address. 64-bit ECC data can be split as 8 bytes ECC data correlated to 512-bit aligned data (4 × 128, 
each 2 bytes corresponding to each 128 data).

For more information, see Table 3-6.

Table 3-6. 64-Bit ECC Data Interpretation
512 Bits Data (4 * 128bits)
1st 128-Bit Data 2nd 128-Bit Data 3rd 128-Bit Data 4th 128-Bit Data
LSB of pu8EccBuffer[0] LSB of pu8EccBuffer[1] LSB of pu8EccBuffer[2] LSB of pu8EccBuffer[3]

MSB of pu8EccBuffer[0] MSB of pu8EccBuffer[1] MSB of pu8EccBuffer[2] MSB of pu8EccBuffer[3]

For allowed programming range for the function, see Table 3-7.

Table 3-7. Permitted Programming Range for Fapi_issueEccOnly64ProgrammingCommand()
Flash API Main Array ECC BANKMGMT and SECCFG
Fapi_issueEccOnly64Prog 
rammingCommand()

Not allowed Allowed Not allowed

Restrictions
• As described above, this function can program only a max of 64-bits ECC at a time. If the user wants to 

program more than that, this function can be called in a loop to program 64-bits at a time.
• The Main Array flash programming must be aligned to 512-bit address boundaries and 64-bit ECC word can 

only be programmed once per write or erase cycle.
• ECC can not be programmed for BANKMGMT or SECCFG locations. 512-bit address range 

starting with a BANKMGMT or SECCFG address shall always be programmed using 128-bit 
Fapi_issueProgrammingCommand().

Return Value
• Fapi_Status_Success (success)
• Fapi_Status_FsmBusy (FSM busy)

www.ti.com API Functions

SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

F29H85x Flash API Version 21.00.00.00 25

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


• Fapi_Error_AsyncDataEccBufferLengthMismatch (failure: Data buffer size either is not 64-bit aligned or 
data length crosses the 128-bit aligned memory boundary.)

• Fapi_Error_FlashRegsNotWritable (failure: Flash register writes failed. The user can make sure that the 
API is executing from the correct CPU.)

• Fapi_Error_FeatureNotAvailable (failure: User passed a mode that is not supported.)
• Fapi_Error_InvalidAddress (failure: User provided an invalid address. For the valid address range, see the 

F29H85x and F29P58x Real-Time Microcontrollers Data Sheet.)

Sample Implementation

(For more information, see the flash programming example provided in the F29H85x SDK at “f29h85x-sdk > 
examples > driverlib > single_core > flash > flash_mode0_512_program”)

3.2.10 Fapi_issueAsyncCommand()

Issues a command to the Flash State Machine. See the description for the list of commands that can be issued 
by this function.

Synopsis

Fapi_StatusType Fapi_issueAsyncCommand( 
                           uint32 u32StartAddress,
                           uint32 u32UserFlashConfig,
                           Fapi_FlashStateCommandsType oCommand  
                                      )

Parameters
u32StartAddress [in] 32-bit start address in Flash to program/erase/verify.

u32UserFlashConfig [in] User flash configuration bitfield

oCommand [in] Command to issue to the FSM. Use Fapi_ClearStatus command.

Description

This function issues a command to the Flash State Machine for commands not requiring any additional 
information (such as address). On this device, Fapi_ClearStatus command can be issued to the Flash State 
Machine using this function. Note that Fapi_ClearStatus command can be issued (only if STATCMD is not zero) 
before each program and erase command as shown in the flash programming example provided in the F29H85x 
SDK. A new program or erase command can be given only when the STATCMD is zero (achieved by issuing the 
Fapi_ClearStatus command).

Return Value
• Fapi_Status_Success (success)
• Fapi_Status_FsmBusy (FSM busy)
• Fapi_Error_FeatureNotAvailable (failure: User passed a command that is not supported.)

Sample Implementation

(For more information, see the flash programming example provided in the F29H85x SDK at “f29h85x-sdk > 
examples > driverlib > single_core > flash > flash_mode0_128_program”)

API Functions www.ti.com

26 F29H85x Flash API Version 21.00.00.00 SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRSP93
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


3.2.11 Fapi_checkFsmForReady()

Returns the status of the Flash State Machine

Synopsis

Fapi_StatusType Fapi_checkFsmForReady(
                     uint32 u32StartAddress,
                     uint32 u32UserFlashConfig
                                     )

Parameters
u32StartAddress [in] 32-bit start address in Flash to program/erase/verify

u32UserFlashConfig User flash configuration

Description

This function returns the status of the Flash State Machine indicating if it is ready to accept a new command or 
not. The primary use is to check if an Erase or Program operation has finished.

Return Value
• Fapi_Status_FsmBusy (FSM is busy and cannot accept new command except for suspend commands)
• Fapi_Status_FsmReady (FSM is ready to accept new command)

3.2.12 Fapi_getFsmStatus()

Returns the value of the STATCMD register for the corresponding FLC (FLC1 or FLC2) based on the address 
provided

Synopsis

Fapi_FlashStatusType Fapi_getFsmStatus(
                          uint32 u32StartAddress,
                          uint32 u32UserFlashConfig
                                      ) 

Parameters
u32StartAddress [in] 32-bit start address in Flash to program/erase/verify

u32UserFlashConfig [in] User flash configuration bitfield

Description

This function returns the value of the STATCMD register for the corresponding FLC (FLC1 or FLC2) based 
on the address provided. This register allows the user application to determine whether an erase or program 
operation is successfully completed or in progress or suspended or failed. Each flash controller (FLC1 and 
FLC2) has its own STATCMD register. The user application can check the value of the appropriate register to 
determine if there is any failure after each erase and program operation.

www.ti.com API Functions

SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

F29H85x Flash API Version 21.00.00.00 27

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


Return Value
Table 3-8. STATCMD Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FAILMI
SC

FAILIN
VDATA

FAILIL
LADD

R

FAILVE
RIFY

FAILW
EPRO

T

CMDIN
PROG
RESS

CMDP
ASS

CMDD
ONE

RO(1) - 
0x0

RO - 
0x0

RO - 
0x0

RO - 
0x0

RO - 
0x0

RO - 
0x0

RO - 
0x0

RO - 
0x0

(1) RO – Read Only

Table 3-9. STATCMD Register Field Descriptions
Bit Name Description Reset value

12 FAILMISC

Command failed due to error other than write/erase 
protect violation or verify error.
0: No Fail
1: Fail

0x0

8 FAILINVDATA

Program command failed because an attempt was 
made to program a stored 0 value to a 1.
0: No Fail
1: Fail

0x0

6 FAILILLADDR
Command failed due to the use of an illegal address.
0: No Fail
1: Fail

0x0

5 FAILVERIFY
Command failed due to verify error.
0: No Fail
1: Fail

0x0

4 FAILWEPROT

Command failed due to Write/Erase Protect Sector 
violation.
0: No Fail
1: Fail

0x0

2 CMDINPROGRESS
Command in Progress
0: Command complete
1: Command is in progress

0x0

1 CMDPASS
Command Pass - valid when CMD_DONE field is 1
0: Fail
1: Pass

0x0

0 CMDDONE
Command Done
0: Command not Done
1: Command Done

0x0

3.3 Read Functions

3.3.1 Fapi_doBlankCheck()

Verifies region specified is erased value

Synopsis

Fapi_StatusType Fapi_doBlankCheck( 
                        uint32 *pu32StartAddress, 
                        uint32 u32Length,
                        Fapi_FlashStatusWordType *poFlashStatusWord,
                        uint8 u8Iterator,
                        uint32 u32UserFlashConfig
                                )

API Functions www.ti.com

28 F29H85x Flash API Version 21.00.00.00 SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


Parameters
pu32StartAddress [in] Start address for region to blank check

u32Length [in] Length of region in 32-bit words to blank check

poFlashStatusWord [in/out] Returns the status of the operation if result is not 
Fapi_Status_Success
->au32StatusWord[0] Address of first non-blank location
->au32StatusWord[1] Data read at first non-blank location
->au32StatusWord[2] Value of compare data (always 0xFFFFFFFF)
->au32StatusWord[3] N/A

u8Iterator [in] Iterator for program and erase operations on interleaved banks.
0: Data Flash/non-interleaved
1: B0 or B2 (dependent on provided address)
2: B1 or B3 (dependent on provided address)

u32UserFlashConfig [in] User flash configuration bitfield

Description

This function checks if the flash is blank (erased state) starting at the specified address for the length of 
32-bit words specified. If a non-blank location is found, corresponding address and data are returned in the 
poFlashStatusWord parameter. When operating on interleaved banks, this function must be called twice (once 
with each iterator value, the start address stays the same).

Users cannot perform blank check operations when in SSUMODE2 and SSUMODE3. If a user wants to 
perform a blank check operation in SSUMODE2 or SSUMODE3, the user can provide the necessary read 
APR permissions. Refer to the F29H85x and F29P58x Real-Time Microcontrollers Technical Reference Manual 
for details on SSU configuration.

Note that Flash state machine also internally performs a verify operation after an erase/program pulse to validate 
the success of the operation. Successive program/program verify loops (or erase/erase verify loops) using the 
provided functions are done as needed to verify proper erase/programming. If the flash Wrapper state machines 
fail to completely program or erase all target bits in the flash within the number of program/erase pulses 
configured in the maximum pulse count setting, the FAILVERIFY bit is set in the STATCMD register.

Restrictions

None

Return Value
• Fapi_Status_Success (success) - specified Flash locations are found to be in erased state
• Fapi_Error_Fail (failure: region specified is not blank)
• Fapi_Error_InvalidAddress (failure: User provided an invalid address. For the valid address range), see the 

F29H85x and F29P58x Real-Time Microcontrollers Data Sheet.

3.3.2 Fapi_doVerify()

Verifies region specified against supplied data

Synopsis

Fapi_StatusType Fapi_doVerify( 
                     uint32 *pu32StartAddress, 
                     uint32 u32Length, 
                     uint32 *pu32CheckValueBuffer, 
                     Fapi_FlashStatusWordType *poFlashStatusWord,
                     uint8 u8Iterator,
                     uint32 u32UserFlashConfig
                             )

www.ti.com API Functions

SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

F29H85x Flash API Version 21.00.00.00 29

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruj79
https://www.ti.com/lit/pdf/SPRSP93
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


Parameters
pu32StartAddress [in] start address for region to verify

u32Length [in] length of region in 32-bit words to verify

pu32CheckValueBuffer [in] address of buffer to verify region against. Data buffer can be 128-bit 
aligned.

poFlashStatusWord [in/out] returns the status of the operation if result is not 
Fapi_Status_Success
->au32StatusWord[0] address of first verify failure location
->au32StatusWord[1] data read at first verify failure location
->au32StatusWord[2] value of compare data
->au32StatusWord[3] N/A

u8Iterator [in] Iterator for program and erase operations on interleaved banks.
0: Data Flash/non-interleaved
1: B0 or B2 (dependent on provided address)
2: B1 or B3 (dependent on provided address)

u32UserFlashConfig [in] User flash configuration bitfield

Description

This function verifies the device against the supplied data starting at the specified address for the length of 32-bit 
words specified. If a location fails to compare, these results are returned in the poFlashStatusWord parameter. 
When operating on interleaved banks, this function must be called twice (once with each iterator value, the start 
address stays the same).

Users cannot perform verification operations when in SSUMODE2 and SSUMODE3. If a user wants to perform a 
verify operation in SSUMODE2 or SSUMODE3, the user can provide the necessary read APR permissions. For 
details on SSU configuration, see the F29H85x and F29P58x Real-Time Microcontrollers Technical Reference 
Manual.

Note that Flash state machine also internally performs a verify operation after an erase/program pulse to validate 
the success of the operation. Successive program/program verify loops (or erase/erase verify loops) using the 
provided functions are done as needed to verify proper erase/programming. If the flash Wrapper state machines 
fail to completely program or erase all target bits in the flash within the number of program/erase pulses 
configured in the maximum pulse count setting, the FAILVERIFY bit is set in the STATCMD register.

Restrictions

None

Return Value
• Fapi_Status_Success (success: region specified matches supplied data)
• Fapi_Error_Fail (failure: region specified does not match supplied data)
• Fapi_Error_InvalidAddress (failure: User provided an invalid address. For the valid address range, see the 

F29H85x and F29P58x Real-Time Microcontrollers Data Sheet.

API Functions www.ti.com

30 F29H85x Flash API Version 21.00.00.00 SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruj79
https://www.ti.com/lit/pdf/spruj79
https://www.ti.com/lit/pdf/SPRSP93
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


3.3.3 Fapi_doVerifyByByte()

Verifies region specified against supplied data by byte

Synopsis

Fapi_StatusType Fapi_doVerifyByByte(
                             uint8_t *pu8StartAddress,
                             uint32_t u32Length,
                             uint8_t *pu8CheckValueBuffer,
                             Fapi_FlashStatusWordType *poFlashStatusWord,
                             uint8_t u8Iterator,
                             uint32_t  u32UserFlashConfig
                             );

Parameters
pu32StartAddress [in] start address for region to verify

u32Length [in] length of region in bytes to verify

pu8CheckValueBuffer [in] address of buffer to verify region against. Data buffer can be 128-bit 
aligned.

poFlashStatusWord [in/out] returns the status of the operation if result is not 
Fapi_Status_Success
->au32StatusWord[0] address of first verify failure location
->au32StatusWord[1] data read at first verify failure location
->au32StatusWord[2] value of compare data
->au32StatusWord[3] N/A

u8Iterator [in] Iterator for program and erase operations on interleaved banks.
0: Data Flash/non-interleaved
1: B0 or B2 (dependent on provided address)
2: B1 or B3 (dependent on provided address)

u32UserFlashConfig [in] User flash configuration bitfield

Description

This function verifies the device against the supplied data starting at the specified address for the length of 
bytes specified. If a location fails to compare, these results are returned in the poFlashStatusWord parameter. 
When operating on interleaved banks, this function must be called twice (once with each iterator value, the start 
address stays the same).

Users cannot perform verification operations when in SSUMODE2 and SSUMODE3. If a user wants to perform a 
verify operation in SSUMODE2 or SSUMODE3, the user can provide the necessary read APR permissions. For 
details on SSU configuration, see the F29H85x and F29P58x Real-Time Microcontrollers Technical Reference 
Manual.

Please also note that Flash state machine also internally performs a verify operation after an erase/program 
pulse to validate the success of the operation. Successive program/program verify loops (or erase/erase verify 
loops) using the provided functions are done as needed to verify proper erase/programming. If the flash Wrapper 
state machines fail to completely program or erase all target bits in the flash within the number of program/erase 
pulses configured in the maximum pulse count setting, the FAILVERIFY bit is set in the STATCMD register.

Restrictions

None

Return Value
• Fapi_Status_Success (success: region specified matches supplied data)
• Fapi_Error_Fail (failure: region specified does not match supplied data)
• Fapi_Error_InvalidAddress (failure: User provided an invalid address. For the valid address range, see the 

F29H85x and F29P58x Real-Time Microcontrollers Data Sheet.

www.ti.com API Functions

SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

F29H85x Flash API Version 21.00.00.00 31

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruj79
https://www.ti.com/lit/pdf/spruj79
https://www.ti.com/lit/pdf/SPRSP93
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


3.4 Informational Functions

3.4.1 Fapi_getLibraryInfo()

Returns information about this compile of the Flash API

Synopsis

Fapi_LibraryInfoType Fapi_getLibraryInfo(void)

Parameters

None

Description

This function returns information specific to the compile of the Flash API library. The information is returned in a 
struct Fapi_LibraryInfoType. The members are as follows:

• u8ApiMajorVersion – Major version number of this compile of the API. This value is 21.
• u8ApiMinorVersion – Minor version number of this compile of the API. Minor version is 00 for F29H85x 

devices.
• u8ApiRevision – Revision version number of this compile of the API. This value is 00 for this release.

Revision number is 00 for this release.

• oApiProductionStatus – Production status of this compile (Alpha_Internal, Alpha, Beta_Internal, Beta, 
Production).

Production status is Production for this release.

• u32ApiBuildNumber – Build number of this compile.
• u8ApiTechnologyType – Indicates the Flash technology supported by the API. This field returns a value of 

0x5.
• u8ApiTechnologyRevision – Indicates the revision of the technology supported by the API
• u8ApiEndianness – This field always returns as 1 (Little Endian) for F29H85x devices.
• u32ApiCompilerVersion – Version number of the Code Composer Studio code generation tools used to 

compile the API

Return Value
• Fapi_LibraryInfoType (gives the information retrieved about this compile of the API)

3.5 Utility Functions

3.5.1 Fapi_flushPipeline()

Flushes the Flash Wrapper pipeline buffers

Synopsis

void Fapi_flushPipeline(
                        uint32_t u32UserFlashConfig
                       )

Parameters
u32UserFlashConfig [in] User flash configuration bitfield

API Functions www.ti.com

32 F29H85x Flash API Version 21.00.00.00 SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


Description

This function flushes the Flash Wrapper data cache. The data cache must be flushed before the first non-API 
Flash read after an erase or program operation.

Return Value

None

3.5.2 Fapi_calculateEcc()

Calculates the ECC for the supplied address and 64-bit value

Synopsis

uint8 Fapi_calculateEcc(
                uint32 *pu32Address
                uint64 *pu64Data,
                uint8 u8Iterator
                       )

Parameters
pu32Address [in] Pointer to the address of the 64-bit value to calculate the ECC

pu64Data [in] Pointer to the address of the 64-bit value to calculate ECC on (can 
be in little endian order)

u8Iterator [in] Iterator for interleaved banks to program/read/erase
1: For 128-bit program and read
2: For 512-bit program, read, and erase

Description

This function calculates the ECC for a 64-bit aligned word including address. There is no need to provide a 
left-shifted address to this function anymore. TMS320F28P65x Flash API takes care of it. When operating on 
interleaved banks, this function must be called twice (once with each iterator value, the start address stays the 
same).

Return Value
• 8-bit calculated ECC (upper 8 bits of the 16-bit return value can be ignored)
• If an error occurs, the 16-bit return value is 0xDEAD

3.5.3 Fapi_isAddressEcc()

Indicates is an address is in the Flash Wrapper ECC space

Synopsis

boolean Fapi_isAddressEcc( 
                 uint32 u32Address 
                         )

Parameters
u32Address [in] Address to determine if it lies in ECC address space

Description

This function returns True if address is in ECC address space or False if it is not.

www.ti.com API Functions

SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

F29H85x Flash API Version 21.00.00.00 33

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


Return Value
• FALSE (Address is not in ECC address space)
• TRUE (Address is in ECC address space)

3.5.4 Fapi_getUserConfiguration()

Calculates a Flash API configuration bitfield based on the user-defined configuration parameters.

Synopsis

uint32_t Fapi_getUserConfiguration(
                                  Fapi_FlashBankType    BankType,
                                  Fapi_FOTAStatus  FOTAStatus
                                  );

Parameters
BankType [in] The type of bank the Flash API will be writing to. This can always be 

C29Bank.

FOTAStatus [in] Whether or not FOTA is enabled:
FOTA_Image: FOTA is enabled
Active_Bank: FOTA is disabled

Description

This function calculates a Flash API configuration bitfield based on the user-defined configuration parameters.

Return Value
• 32-bit bitfield representing the user settings

3.5.5 Fapi_setFlashCPUConfiguration()

Commits the user flash configuration settings

Synopsis

uint32_t Fapi_SetFlashCPUConfiguration(
                                  Fapi_BankMode    u32BankModeValue,
                                  );

Parameters
u32BankModeValue [in] User flash configuration bitfield

Description

This function commits the Flash API bankmode configuration based on the user-supplied bank mode parameter. 
This determines the address ranges passed to the Flash API, regardless of the device's BANKMODE register. 
Users must always call this function after updating the BANKMODE for the device or as a part of initialization.

For example, if the BANKMODE register = 0x3 (Mode 0) and Bank Mode 1 is passed to this function, when 
using Fapi_* functions, the user can use Bank Mode 1 address ranges. When reading directly from flash, the 
user can use Bank Mode 0 address ranges.

Return Value
• Fapi_Status_Success (success)
• Fapi_Status_FsmBusy (FSM busy)
• Fapi_Error_FlashRegsNotWritable (failure: Flash register writes failed. The user can make sure that the 

API is executing from the correct CPU).
• Fapi_Error_FeatureNotAvailable (failure: User passed a mode that is not supported)

API Functions www.ti.com

34 F29H85x Flash API Version 21.00.00.00 SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


3.5.6 Fapi_issueProgBankMode()

Erases and then programs the BANKMGMT sector of the specified FLC.

Synopsis

Fapi_StatusType Fapi_issueProgBankMode(
                        Fapi_BankMgmtAddress    u32StartAddress,
                        Fapi_BankMode  u32BankMode, 
                        Fapi_FlashStatusWordType   *poFlashStatusWord,
                        uint32_t    u32UserFlashConfig
);

Parameters
Fapi_BankMgmtAddress [in] The FLC to issue the programming command to.

Fapi_BankMode [in] Bank Mode to program the device to

Fapi_FlashStatusWordType [in/out] Returns the status of the operation if result is not 
Fapi_Status_Success
->au32StatusWord[0] Address of first non-blank location
->au32StatusWord[1] Data read at first non-blank location
->au32StatusWord[2] Value of compare data (always 0xFFFFFFFF)
->au32StatusWord[3] N/A

u32UserFlashConfig [in] User flash configuration bitfield

Description

This function erases and programs the inactive BANKMGMT sector with the given Bank Mode at the 
corresponding FLC. After programming the BANKMGMT sector, an external reset (XSRn) can be issued in 
order for boot ROM to read the new value and write it to the SSU register, completing the bank mode switch.

Return Value

• Fapi_Status_Success (success)
• Fapi_Status_FsmBusy (FSM busy)
• Fapi_Error_FlashRegsNotWritable (failure: Flash register writes failed. The user can make sure that the 

API is executing from the correct CPU).
• Fapi_Error_FeatureNotAvailable (failure: User passed a mode that is not supported)

4 SECCFG and BANKMGMT Programming Using the Flash API
Each Flash bank is made up of 2KB physical sectors. The nominal size (for example, 512KB) denotes the size of 
the MAIN region. Each Flash bank also includes two special regions:

• SECCFG: for storing SSU configuration settings
• BANKMGMT: for storing bank mode settings and firmware update metadata

The C29 Flash API supports programming of both the SECCFG and BANKMGMT sectors. For more information, 
see the F29H85x and F29P58x Real-Time Microcontrollers Technical Reference Manual.

Note
The BANKMGMT and SECCFG sectors must always be programmed with AutoEccGeneration 
enabled. 512-bit programming in any mode (including with AutoEccGeneration) is not 
supported. Thus, the BANKMGMT and SECCFG regions must always be programmed using 
Fapi_issueProgrammingCommand() with AutoEccGeneration.

www.ti.com API Functions

SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

F29H85x Flash API Version 21.00.00.00 35

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/spruj79
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


4.1 BANKMGMT Programming
Users can program the BANKMGMT using the Fapi_issueProgBankMode() function. This memory range can 
also be programmed manually by following the process below:

1. Issue an erase sector command. Users can always provide an active FLC1 or FLCS2 address (see the table 
below) when erasing the BANKMGMT sector from Flash API.

Bank Mode FLC1 BANKMGMT Sector Address FLC2 BANKMGMT Sector Address

Mode 0 0x10D8 0000 N/A

Mode 1 0x10D8 0000 N/A

Mode 2 0x10D8 0000 N/A

Mode 3 0x10D8 0000 0x10D9 0000

Note
Users can always give an erase sector command using Fapi_issueAsyncCommandWithAddress() 
before programming the BANKMGMT sector. For an example on how to erase a sector, see the flash 
programming example located in the F29 SDK at "f29h85x-sdk > examples > driverlib > single_core > 
flash > flash_mode0_128_program".

2. Issue a 128-bit programming command to the BANKMGMT sector, use the below tables to determine the 
correct values to program. A valid FLC1 address must be provided when programming the BANKMGMT 
sector using Flash API.

Table 4-1. BANKMGMT Registers
Register Value Notes

BANK_STATUS[63:0] 0x55555555_55555555 Offset 0 in the data buffer (see the below code snippet).

BANK_UPDATE_CTR[63:0] 0x00000000_00000000 Offset 8 in the data buffer (see the below code snippet).
When programming the BANKMGMT sector, can always 
be set to 0. Flash API internally reads the counter from 
the active BANKMGMT sector, decrements it by 1, and 
program it to the inactive sector

BANKMODE[63:0] Refer to BANKMODE Values Offset 16 in the data buffer (see the below code snippet).
Contains the current BANKMODE value

Table 4-2. BANKMODE Values
BANKMODE BANKMODE[63:0] Value Buffer With Offset

Mode 0 0x03 Buffer[16] = 0x03

Mode 1 0x06 Buffer[16] = 0x06

Mode 2 0x09 Buffer[16] = 0x09

Mode 3 0x0C Buffer[16] = 0x0C

SECCFG and BANKMGMT Programming Using the Flash API www.ti.com

36 F29H85x Flash API Version 21.00.00.00 SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


An example programming flow, assuming the sector has already been erased:

uint8 Buffer[32] = { 
    0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, // BANK_STATUS
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // BANK_UPDATE_CTR
    0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // BANKMODE
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF  // Unused
};

ClearFSMStatus(u32Index, u32UserFlashConfig);

Fapi_setupBankSectorEnable((uint32 *)u32Index, u32UserFlashConfig, 
FLASH_NOWRAPPER_O_CMDWEPROTNM, 0x00000000);

oReturnCheck = Fapi_issueProgrammingCommand((uint32 *)u32Index,Buffer +i,
        16, 0, 0, Fapi_AutoEccGeneration, u32UserFlashConfig);

while(Fapi_checkFsmForReady(u32Index, u32UserFlashConfig) == Fapi_Status_FsmBusy);

if(oReturnCheck != Fapi_Status_Success)
{
    //
    // Check Flash API documentation for possible errors
    //
    Example_Error(oReturnCheck);
}

oFlashStatus = Fapi_getFsmStatus(u32Index, u32UserFlashConfig);
if(oFlashStatus != 3)
{
    //
    //Check FMSTAT and debug accordingly
    //
    FMSTAT_Fail();
}

3. After programming the BANKMGMT sector, an external reset (XSRn) must be issued in order for boot ROM 
to read the new value and write it to the SSU register.

For more information, see the F29H85x and F29P58x Real-Time Microcontrollers Technical Reference Manual.

www.ti.com SECCFG and BANKMGMT Programming Using the Flash API

SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

F29H85x Flash API Version 21.00.00.00 37

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRUJ79
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


4.2 SECCFG Programming
SECCFG sectors are a portion of Flash memory designated for storing the SSU user configuration, or User 
Protection Policy (UPP). Each CPU has an active SECCFG start address, and an alternate (reserve) SECCFG 
start address. The reserve (alternate) SECCFG sectors' start address can be used when erasing/programming 
SECCFG sector when using flash API. For SECCFG configuration details, see the F29H85x and F29P58x 
Real-Time Microcontrollers Technical Reference Manual.

Note
The user must always provide the entire sector length (0x1000) when programming SECCFG using 
Flash API. Unused sector locations can be written as 0xFF.

Table 4-3. SECCFG Start Addresses

Bank Mode CPUxSWAP Region
CPU1/CPU2 

Bank CPU1 Address CPU2 Address CPU3 Bank CPU3 Address
Mode 0 Active FLC1.B0/B1 0x10D8 1000 0x10D8 1800 FLC2.B0/B1 0x10D8 9000

Alternate FLC1.B2/B3 0x10D8 5000 0x10D8 5800 FLC2.B2/B3 0x10D8 D000

Mode 1 SWAP = 0 Active FLC1.B0/B1 0x10D8 1000 0x10D8 1800 FLC2.B0/B1 0x10D8 5000

Alternate FLC1.B2/B3 0x10D9 9000 0x10D9 9800 FLC2.B2/B3 0x10D9 D000

SWAP = 1 Active FLC1.B2/B3 0x10D8 1000 0x10D8 1800 FLC2.B2/B3 0x10D8 5000

Alternate FLC1.B0/B1 0x10D9 9000 0x10D9 9800 FLC2.B0/B1 0x10D9 D000

Mode 2 Active FLC1.B0/B1 0x10D8 1000 0x10D8 1800 FLC2.B0/B1 0x10D9 1000

Alternate FLC1.B2/B3 0x10D8 5000 0x10D8 5800 FLC2.B2/B3 0x10D9 5000

Mode 3 SWAP = 0 Active FLC1.B0/B1 0x10D8 1000 0x10D8 1800 FLC2.B0/B1 0x10D9 1000

Alternate FLC1.B2/B3 0x10D9 9000 0x10D9 9800 FLC2.B2/B3 0x10D9 D000

SWAP = 1 Active FLC1.B2/B3 0x10D8 1000 0x10D8 1800 FLC2.B2/B3 0x10D9 1000

Alternate FLC1.B0/B1 0x10D9 9000 0x10D9 9800 FLC2.B0/B1 0x10D9 D000

Steps for programming SECCFG are as follows:

1. Issue an erase sector command. Users can always provide an alternate (reserve) FLC address for the 
start address when erasing SECCFG using the Flash API. For more information, see the SECCFG Start 
Addresses.

2. Issue a 128-bit programming command to program the SECCFG sector.
a. Users can always use the AutoEccGeneration programming mode
b. The start address can be an alternate (reserve) sector address. For more information, see the SECCFG 

Start Addresses.
c. The entire sector length must be programmed, unused locations can be programmed as 0xFF.

3. After programming the SECCFG sector, an external reset (XSRn) can be issued in order for boot ROM to 
read the active SECCFG sector value and write it to the necessary SSU register.

SECCFG and BANKMGMT Programming Using the Flash API www.ti.com

38 F29H85x Flash API Version 21.00.00.00 SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruj79
https://www.ti.com/lit/pdf/spruj79
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


5 Allowed Programming Ranges for All Modes

Note
FOTA ranges are read only. To program them, configure the Flash API using the FOTA_Image 
parameter and pass in the active region addresses. The Flash API internally translates the 
address into the correct destination. For more information, see the F29H85x and F29P58x Real-
Time Microcontrollers Data Sheet and F29H85x and F29P58x Real-Time Microcontrollers Technical 
Reference Manual.

Table 5-1. Main Array Ranges
Bank Mode Region CPU1 Flash Address Range CPU3 Flash Address Range
Mode 0 Active 0x1000 0000 - 0x1040 0000 N/A

FOTA N/A N/A

Mode 1 Active 0x1000 0000 - 0x1020 0000 N/A

FOTA 0x1060 0000 - 0x1080 0000 N/A

Mode 2 Active 0x1000 0000 - 0x1020 0000 0x1040 0000 - 0x1060 0000

FOTA N/A N/A

Mode 3 Active 0x1000 0000 - 0x1010 0000 0x1040 0000 - 0x1050 0000

FOTA 0x1000 0000 - 0x1010 0000 0x1040 0000 - 0x1050 0000

Table 5-2. BANKMGMT Programming Ranges
Bank Mode FLC1 BANKMGMT Range FLC2 BANKMGMT Range

Mode 0 0x10D8 0000 - 0x10D80 0FFF N/A

Mode 1 0x10D8 0000 - 0x10D80 0FFF N/A

Mode 2 0x10D8 0000 - 0x10D80 0FFF N/A

Mode 3 0x10D8 0000 - 0x10D80 0FFF 0x10D9 0000 - 0x10D9 0FFF

Table 5-3. SECCFG Programming Ranges

Bank Mode CPUxSWAP Region
CPU1/CPU2 Bank FLC1 Address 

Range CPU3 Bank
FLC2 Address 

Range
Mode 0 Alternate FLC1.B2/B3 0x10D8 5000 

-0x10D8 5FFF
FLC2.B2/B3 0x10D8 C000 - 

0x10D8 CFFF

Mode 1 SWAP = 0 Alternate FLC1.B2/B3 0x10D9 9000 - 
0x10D9 9FFF

FLC2.B2/B3 0x10D8

SWAP = 1 Alternate FLC1.B0/B1 0x10D9 9000 - 
0x10D9 9FFF

FLC2.B0/B1 N/A

Mode 2 Alternate FLC1.B2/B3 0x10D8 5000 
-0x10D8 5FFF

FLC2.B2/B3 0x10D9 5000 - 
0x10D9 5FFF

Mode 3 SWAP = 0 Alternate FLC1.B2/B3 0x10D9 9000- 
0x10D9 9FFF

FLC2.B2/B3 0x10D9 D000 
-0x10D9 DFFF

SWAP = 1 Alternate FLC1.B0/B1 0x10D9 9000 - 
0x10D9 9FFF

FLC2.B0/B1 0x10D9 D000 
-0x10D9 DFFF

www.ti.com Allowed Programming Ranges for All Modes

SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

F29H85x Flash API Version 21.00.00.00 39

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRSP93
https://www.ti.com/lit/pdf/SPRSP93
https://www.ti.com/lit/spruj79
https://www.ti.com/lit/spruj79
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


6 Recommended FSM Flows

6.1 New Devices From Factory
Devices are shipped erased from the factory. It is recommended, but not required, to do a blank check on 
devices received to verify that they are erased.

6.2 Recommended Erase Flow
Figure 6-1 describes the flow for erasing a sector(s) on a device. For further information, see 3.2.11, 3.2.2, 3.2.3.

Figure 6-1. Recommended Erase Flow

Recommended FSM Flows www.ti.com

40 F29H85x Flash API Version 21.00.00.00 SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


6.3 Recommended Bank Erase Flow
Figure 6-2 describes the flow for erasing a Flash bank. For further information, see 3.2.11, 3.2.2, 3.2.4.

Figure 6-2. Recommended Bank Erase Flow

www.ti.com Recommended FSM Flows

SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

F29H85x Flash API Version 21.00.00.00 41

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


6.4 Recommended Program Flow
Figure 6-3 describes the flow for programming a device. This flow assumes the user has already erased all 
affected sectors or bank following the Recommended Erase Flow. For further information, see 3.2.11, 3.2.2, 
3.2.5.

Figure 6-3. Recommended Program Flow

7 References
• Texas Instruments: F29H85x and F29P58x Real-Time Microcontrollers Data Sheet
• Texas Instruments: F29H85x and F29P58x Real-Time Microcontrollers Technical Reference Manual

Recommended FSM Flows www.ti.com

42 F29H85x Flash API Version 21.00.00.00 SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRSP93
https://www.ti.com/lit/pdf/spruj79
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


A Flash State Machine Commands
Table A-1. Flash State Machine Commands

Command Description Enumeration Type API Call(s)
Program 
Data

Used to program data to any 
valid Flash address

Fapi_ProgramData Fapi_issueProgrammingCommand()

Fapi_issueDataAndEcc512ProgrammingCommand()
Fapi_issueAutoEcc512ProgrammingCommand()
Fapi_issueDataOnly512ProgrammingCommands()
Fapi_issueDataAndEcc512ProgrammingCommand()
Fapi_issueEccOnly65ProgrammingCommand()

Erase 
Sector

Used to erase a Flash 
sector located by the specified 
address

Fapi_EraseSector Fapi_issueAsyncCommandWithAddress()

Erase Bank Used to erase a Flash bank Fapi_EraseBank Fapi_issueBankEraseCommand()

Clear Status Clears the status register Fapi_ClearStatus Fapi_issueAsyncCommand()

www.ti.com Flash State Machine Commands

SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

F29H85x Flash API Version 21.00.00.00 43

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


B Typedefs, Defines, Enumerations and Structure

B.1 Type Definitions

typedef unsigned char boolean;
typedef uint32_t Fapi_FlashStatusType;

B.2 Defines

#define ATTRIBUTE_PACKED    __attribute__((packed))

#define HIGH_BYTE_FIRST     0
#define LOW_BYTE_FIRST      1

#ifndef TRUE
   #define TRUE              1
#endif

#ifndef FALSE
   #define FALSE             0
#endif

#if defined(_LITTLE_ENDIAN)
   #define CPU_BYTE_ORDER    LOW_BYTE_FIRST
#else
   #define CPU_BYTE_ORDER    HIGH_BYTE_FIRST
#endif

B.3 Enumerations

B.3.1 Fapi_FlashProgrammingCommandsType

This contains all the possible modes used in the Fapi_IssueProgrammingCommand().

typedef enum
{
   Fapi_AutoEccGeneration, /* This is the default mode for the command and will auto generate the 
ecc for the provided data buffer */
   Fapi_DataOnly,       /* Command will only process the data buffer */
   Fapi_EccOnly,        /* Command will only process the ecc buffer */
   Fapi_DataAndEcc         /* Command will process data and ecc buffers */
}  ATTRIBUTE_PACKED Fapi_FlashProgrammingCommandsType;

B.3.2 Fapi_FlashBankType

This is used to indicate which type of Flash bank is being used.

typedef enum
{
    C29Bank             /* C29 CPU 1 */
}  ATTRIBUTE_PACKED Fapi_FlashBankType;

B.3.3 Fapi_FlashStateCommandsType

This contains all the possible Flash State Machine commands.

typedef enum
{
   Fapi_ProgramData    = 0x0002,
   Fapi_EraseSector    = 0x0006,
   Fapi_EraseBank      = 0x0008,
   Fapi_ClearStatus    = 0x0010
}  ATTRIBUTE_PACKED Fapi_FlashStateCommandsType;

Typedefs, Defines, Enumerations and Structure www.ti.com

44 F29H85x Flash API Version 21.00.00.00 SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


B.3.4 Fapi_StatusType

This is the master type containing all possible returned status codes.

typedef enum
{
   Fapi_Status_Success=0,           /* Function completed successfully */
   Fapi_Status_FsmBusy,             /* FSM is Busy */
   Fapi_Status_FsmReady,            /* FSM is Ready */
   Fapi_Status_AsyncBusy,           /* Async function operation is Busy */
   Fapi_Status_AsyncComplete,       /* Async function operation is Complete */
   Fapi_Error_Fail=500,             /* Generic Function Fail code */
   Fapi_Error_StateMachineTimeout,  /* State machine polling never returned ready and timed out */
   Fapi_Error_OtpChecksumMismatch,  /* Returned if OTP checksum does not match expected value */
   Fapi_Error_InvalidDelayValue,    /* Returned if the Calculated RWAIT value exceeds 15  - Legacy 
Error */
   Fapi_Error_InvalidHclkValue,     /* Returned if FClk is above max FClk value - FClk is a 
calculated from HClk and RWAIT/EWAIT */
   Fapi_Error_InvalidCpu,           /* Returned if the specified Cpu does not exist */
   Fapi_Error_InvalidBank,          /* Returned if the specified bank does not exist */
   Fapi_Error_InvalidAddress,       /* Returned if the specified Address does not exist in Flash or 
OTP */
   Fapi_Error_InvalidReadMode,      /* Returned if the specified read mode does not exist */
   Fapi_Error_AsyncIncorrectDataBufferLength,
   Fapi_Error_AsyncIncorrectEccBufferLength,
   Fapi_Error_AsyncDataEccBufferLengthMismatch,
   Fapi_Error_FeatureNotAvailable,  /* FMC feature is not available on this device */
   Fapi_Error_FlashRegsNotWritable, /* Returned if Flash registers are not writable due to security 
*/
   Fapi_Error_InvalidCPUID          /* Returned if OTP has an invalid CPUID */ 
}  ATTRIBUTE_PACKED Fapi_StatusType;

B.3.5 Fapi_ApiProductionStatusType

This lists the different production status values possible for the API.

typedef enum
{
   Alpha_Internal,          /* For internal TI use only.  Not intended to be used by customers */
   Alpha,                   /* Early Engineering release.  May not be functionally complete */
   Beta_Internal,           /* For internal TI use only.  Not intended to be used by customers */
   Beta,                    /* Functionally complete, to be used for testing and validation */
   Production               /* Fully validated, functionally complete, ready for production use */
}  ATTRIBUTE_PACKED Fapi_ApiProductionStatusType;

B.3.6 Fapi_BankID

This contains all the possible Flash Bank IDs.

typedef enum
{
   Bank0,
   Bank1,
   Bank2,
   Bank3,
   Bank4
} ATTRIBUTE_PACKED Fapi_BankID;

B.3.7 Fapi_FLCID

Contains the NW controller addresses.

typedef enum
{
    FAPI_FLASHNW_FC1_BASE = (uint32_t)0x30100000U,
    FAPI_FLASHNW_FC2_BASE = (uint32_t)0x30110000U
} ATTRIBUTE_PACKED Fapi_FLCID;

www.ti.com Typedefs, Defines, Enumerations and Structure

SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

F29H85x Flash API Version 21.00.00.00 45

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


B.3.8 Fapi_BankMode

This contains all the possible bank modes.

typedef enum
{
   Mode0 = 0x3,    /* CPU1 4MB, No FOTA, CPU1SWAP X CPU3SWAP X */
   Mode1 = 0x6,    /* CPU1 4MB, FOTA Enabled, CPU1SWAP 0/1 CPU3SWAP X*/
   Mode2 = 0x9,    /* CPU1 2MB CPU3 2MB, No FOTA, CPU1SWAP X CPU3SWAP X*/
   Mode3 = 0xC     /* CPU1 2MB CPU3 2MB, FOTA Enabled, (CPU1SWAP 1 CPU3SWAP 1) or (CPU1SWAP 0 
CPU3SWAP 0)*/
} ATTRIBUTE_PACKED Fapi_BankMode;

B.3.9 Fapi_CPU1BankSwap

Contains the possible CPU1 flash bank mapping configurations.

typedef enum
{
   CPU1Swap0 = 0xC9,        //default mapping of CPU1 Banks
   CPU1Swap1 = 0x36,        //Alternate Mapping of CPU1 Banks
} ATTRIBUTE_PACKED Fapi_CPU1BankSwap;

B.3.10 Fapi_CPU3BankSwap

Contains the possible CPU3 flash bank mapping configurations.

typedef enum
{
   CPU3Swap0 = 0xC9,        //default mapping of CPU3 Banks
   CPU3Swap1 = 0x36,        //Alternate Mapping of CPU3 Banks
} ATTRIBUTE_PACKED Fapi_CPU3BankSwap;

B.3.11 Fapi_FOTAStatus

typedef enum
{
   FOTA_Image,    /* FOTA is enabled */
   Active_Bank    /* FOTA is disabled */
} ATTRIBUTE_PACKED Fapi_FOTAStatus;

B.3.12 Fapi_SECVALID

Contains the possible SECCFG mapping configurations.

typedef enum
{
   Base = 0xC9U,    /* BASE addresses are valid */
   Alt = 0x36       /* ALT addresses are valid */
} ATTRIBUTE_PACKED Fapi_SECVALID;

B.3.13 Fapi_BankMgmtAddress

Contains the start addresses for BANKMGMT programming.

typedef enum
{
    Fapi_BankMgmtFLC1Address = (uint32_t)0x10d80000U,
    Fapi_BankMgmtFLC2Address = (uint32_t)0x10d90000U

} ATTRIBUTE_PACKED Fapi_BankMgmtAddress;

Typedefs, Defines, Enumerations and Structure www.ti.com

46 F29H85x Flash API Version 21.00.00.00 SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


B.4 Structures

B.4.1 Fapi_FlashStatusWordType

This structure is used to return status values in functions that need more flexibility:

typedef struct
{
   uint32_t au32StatusWord[4];
}  ATTRIBUTE_PACKED Fapi_FlashStatusWordType;

B.4.2 Fapi_LibraryInfoType

This is the structure used to return API information:

typedef struct
{
   uint8_t  u8ApiMajorVersion;
   uint8_t  u8ApiMinorVersion;
   uint8_t  u8ApiRevision;
   Fapi_ApiProductionStatusType oApiProductionStatus;
   uint32_t u32ApiBuildNumber;
   uint8_t  u8ApiTechnologyType;
   uint8_t  u8ApiTechnologyRevision;
   uint8_t  u8ApiEndianness;
   uint32_t u32ApiCompilerVersion;
} Fapi_LibraryInfoType;

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision * (January 2025) to Revision A (July 2025) Page
• Added information on programming bank modes 1 and 3 in Section 3.5.5......................................................34
• Added information on bank modes 1 and 3 in Section 4..................................................................................35
• Added tables for allowed programming ranges in all modes in Section 5........................................................39

www.ti.com Typedefs, Defines, Enumerations and Structure

SPRUJE7A – JANUARY 2025 – REVISED JULY 2025
Submit Document Feedback

F29H85x Flash API Version 21.00.00.00 47

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJE7
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJE7A&partnum=


IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE 
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” 
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY 
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD 
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate 
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable 
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an 
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license 
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you 
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these 
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with 
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for 
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	1.1 Differences From C28x
	1.2 Function Listing Format

	2 F29H85x Flash API Overview
	2.1 Introduction
	2.2 API Overview
	2.3 Using API
	2.3.1 Initialization Flow
	2.3.1.1 After Device Power Up
	2.3.1.2 On System Frequency Change

	2.3.2 Building With the API
	2.3.2.1 Object Library Files
	2.3.2.2 Distribution Files

	2.3.3 Key Facts for Flash API Usage


	3 API Functions
	3.1 Initialization Functions
	3.1.1 Fapi_initializeAPI()

	3.2 Flash State Machine Functions
	3.2.1 Fapi_setActiveFlashBank()
	3.2.2 Fapi_setupBankSectorEnable()
	3.2.3 Fapi_issueAsyncCommandWithAddress()
	3.2.4 Fapi_issueBankEraseCommand()
	3.2.5 Fapi_issueProgrammingCommand()
	3.2.6 Fapi_issueAutoEcc512ProgrammingCommand()
	3.2.7 Fapi_issueDataAndEcc512ProgrammingCommand()
	3.2.8 Fapi_issueDataOnly512ProgrammingCommand()
	3.2.9 Fapi_issueEccOnly64ProgrammingCommand()
	3.2.10 Fapi_issueAsyncCommand()
	3.2.11 Fapi_checkFsmForReady()
	3.2.12 Fapi_getFsmStatus()

	3.3 Read Functions
	3.3.1 Fapi_doBlankCheck()
	3.3.2 Fapi_doVerify()
	3.3.3 Fapi_doVerifyByByte()

	3.4 Informational Functions
	3.4.1 Fapi_getLibraryInfo()

	3.5 Utility Functions
	3.5.1 Fapi_flushPipeline()
	3.5.2 Fapi_calculateEcc()
	3.5.3 Fapi_isAddressEcc()
	3.5.4 Fapi_getUserConfiguration()
	3.5.5 Fapi_setFlashCPUConfiguration()
	3.5.6 Fapi_issueProgBankMode()


	4 SECCFG and BANKMGMT Programming Using the Flash API
	4.1 BANKMGMT Programming
	4.2 SECCFG Programming

	5 Allowed Programming Ranges for All Modes
	6 Recommended FSM Flows
	6.1 New Devices From Factory
	6.2 Recommended Erase Flow
	6.3 Recommended Bank Erase Flow
	6.4 Recommended Program Flow

	7 References
	A Flash State Machine Commands
	B Typedefs, Defines, Enumerations and Structure
	B.1 Type Definitions
	B.2 Defines
	B.3 Enumerations
	B.3.1 Fapi_FlashProgrammingCommandsType
	B.3.2 Fapi_FlashBankType
	B.3.3 Fapi_FlashStateCommandsType
	B.3.4 Fapi_StatusType
	B.3.5 Fapi_ApiProductionStatusType
	B.3.6 Fapi_BankID
	B.3.7 Fapi_FLCID
	B.3.8 Fapi_BankMode
	B.3.9 Fapi_CPU1BankSwap
	B.3.10 Fapi_CPU3BankSwap
	B.3.11 Fapi_FOTAStatus
	B.3.12 Fapi_SECVALID
	B.3.13 Fapi_BankMgmtAddress

	B.4 Structures
	B.4.1 Fapi_FlashStatusWordType
	B.4.2 Fapi_LibraryInfoType


	Revision History



