SK-TDA4VM User's Guide

ABSTRACT

This document provides the SK-TDA4VM capabilities and interface details.

This design incorporates HDMI® technology.

Table of Contents

1 Introduction	3
1.1 Inside the Box	
1.2 Key Features and Interfaces	
1.3 Thermal Compliance	
1.4 EMC, EMI, and ESD Compliance	
2 User Interfaces	
2.1 Power Input	
2.2 User Inputs.	
2.3 Standard Interfaces	
2.4 Expansion Interfaces	
3 Mechanicals	
4 Circuit Details	
4.1 Top Level Diagram	
4.2 Interface Mapping	
4.3 I2C Address Mapping	
4.4 GPIO Mapping	
4.5 Identification EEPROM	
5 Usage Notes and Advisories	
5.1 Usage Notes	
5.2 Advisories	
6 References	
7 Revision History	
List of Figures	
Figure 2-1. User Interfaces (Top)	4
Figure 2-2. User Interfaces (Bottom)	
Figure 2-3. RJ45 LED Indicators [J8]	
Figure 4-1. SK-TDA4VM Functional Block Diagram	
3	
List of Tables	
Table 2-1. Recommended External Power Supply	6
Table 2-2. Power Supply Allocation	
Table 2-3. Processor Boot Mode Settings [SW1 Switch 1-3]	
Table 2-4. USB Type C Mode Setting [SW1 Switch 4]	
Table 2-5. UART to COM Port Mapping	
Table 2-6. Expansion Header Pin Definition [J3]	
Table 2-7. Fan Header Pin Definition [J16]	
Table 2-8. CAN-FD Interface Assignment	
Table 2-9. CAN-FD Header Pin Definition [J1][J2][J5][J6]	
Table 2-10. Expansion Header Pin Definition [J3]	
Table 2-11. Camera 1 Flex Pin Definition [J18]	
Table 2-12. Camera 2 Flex Pin Definition [J19]	
Table 2-13. Camera IO Voltage Control	
Table 2-14. 40-Pin High-Speed Camera Expansion Pin Definition [J24]	
Table 2-15. Test Automation Interface Pin Definition [J25]	
Table 4-1. Interface Mapping Table	
Table 4-2. I2C Mapping Table	
Table 4-3. GPIO Mapping Table	
Table 4-4. Board ID Information	

Trademarks

All trademarks are the property of their respective owners.

The terms HDMI, HDMI High-Definition Multimedia Interface, HDMI trade dress, and the HDMI Logos are trademarks or registered trademarks of HDMI Licensing Administrator Inc.

www.ti.com Introduction

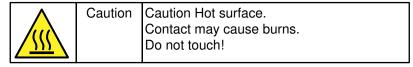
1 Introduction

1.1 Inside the Box

The SK-TDA4VM kit includes:

- SK-TDA4VM
- Micro-SD Card
- USB Cable (Type-A to Micro-B) for serial terminal/logging
- Paper Card with Start-up Link/Support Information

The EVM is powered from a Type-C power supply, but is NOT INCLUDED. For more information on the types of supplies recommended with the EVM, see Table 2-1.


1.2 Key Features and Interfaces

- Processor
 - Texas Instruments Jacinto TDA4VM
- Optimized Power Management Solution
 - Dynamic Voltage Scaling
 - Multiple Clock and Power Domains
- Memory
 - 4GByte LPDDR4 DRAM (2133 MHz)
 - 512 Mb Non-Volatile Flash, Octal-SPI NOR
 - Multimedia Card (MMC)/Secure Digital Card (Micro SD) Cage, UHS-I
- USB
 - USB3.1 (Gen1) Hub to 3x Type A (Host)
 - USB3.1 (Gen1) Type C (DFP and UFP modes)
 - USB2.0 Micro B (for Quad UART-over-USB Transceiver)
- Display
 - VESA Display Port (v1.4), supports 4K UHD with MST support
 - DVI (v1.0) via HDMI Type A, supports 1080p
- Wired Network
 - Gigabit Ethernet (RJ45 Connector)
 - 4x CAN-FD Headers (1x3)
- Camera Interfaces
 - 2x 15-Pin Flex Cable Interface (CSI-2L)
 - 40-pin High Speed Connector (dual CSI-4L, I2C, GPIO, and so forth)
- Expansion/Add-on
 - M.2 Key E Interface (PCIe/Gen3 x 1 Lane, USB2.0, SDIO, I2S, UART, I2C)
 - M.2 Key M Interface (PCIe/Gen3 x 2 Lane)
 - 40-pin Header (2x20) (I2C, SPI, UART, I2S, GPIO, PWM, and so forth)
 - Fan Header (5V)
- · User Control/Indication
 - Pushbuttons (Reset, Power/User Defined)
 - LEDs (Power, User Defined, Serial Port)
 - User Configuration (Boot Mode, USB Mode)
 - External JTAG/Emulator Support (20-pin Header)
- REACH and RoHS Compliant
- EMI/EMC Radiation Compliant

STRUMENTS Introduction www.ti.com

1.3 Thermal Compliance

There is elevated heat on the processor/heatsink, use caution particularly at elevated ambient temperatures! Although the processor/heatsink is not a burn hazard, caution should be used when handling the EVM due to increased heat in the area of the heatsink

1.4 EMC, EMI, and ESD Compliance

Components installed on the product are sensitive to Electrostatic Discharge (ESD). It is recommended this product be used in an ESD controlled environment. This may include a temperature and/or humidity controlled environment to limit the buildup of ESD. It is also recommended to use ESD protection such as wrist straps and ESD mats when interfacing with the product.

The product is used in the basic electromagnetic environment as in laboratory condition and the applied standard will be as per EN IEC 61326-1:2021.

2 User Interfaces

Figure 2-1 and Figure 2-2 identify the key user interfaces on the EVM (top and bottom view)

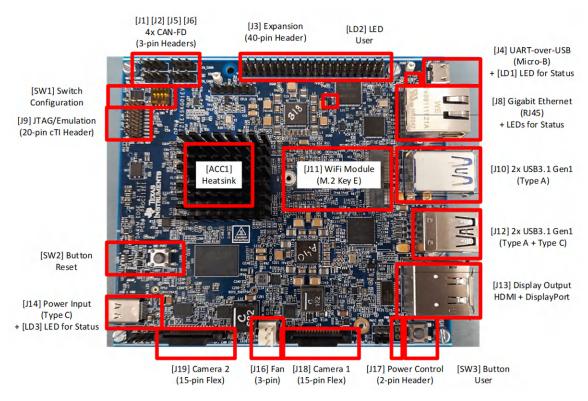
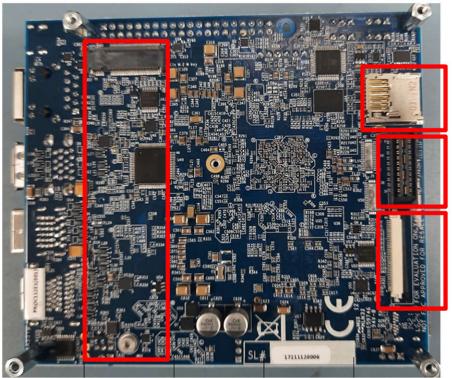



Figure 2-1. User Interfaces (Top)

www.ti.com User Interfaces

[J22] SSD Module (M.2 Key M)

[J23] microSD Card Cage (UHS-I)

[J24] Camera (40-pin Samtec)

[J25] Automation/ Control (40-pin Flex)

Figure 2-2. User Interfaces (Bottom)

2.1 Power Input

A power supply is not included with the EVM and must be purchased separately.

External Power Supply or Power Accessory Requirements:

- Nominal Output Voltage: 5-20VDC
 Maximum Output Current: 5000 mA
- · Efficiency Level V

Note

TI recommends using an external power supply or power accessory that complies with applicable regional safety standards such as (by example) UL, CSA, VDE, CCC, PSE, and so forth.

2.1.1 Power Input [J14] With LED for Status [LD3]

The dedicated power input connector is a USB Type C connector [J14] with Power Delivery 3.0 support. The input can accept wide range of input voltages (5V to 20V). The exact power required for the EVM is largely dependent on the application and the connected peripherals. The recommended supplies are listed in Table 2-1. These supplies are 20V Type C supplies capable of supplying up to 60W of power (20VDC at 3A). The minimum supply required is 15W supply (5VDC at 3A). However, a 5V supply may limit available processing with TDA4VM as well as limit some of the available peripherals. USB peripherals require VBUS and depending on their power needs, may have too much voltage drop from a 5V input supply. This is a reason higher voltage supply is recommended.

There are many USB Type C power supply manufactures and models available in the market, and it is not possible to test the EVM with every combination.

User Interfaces www.ti.com

Table 2-1 lists a few recommended supplies the EVM has tested.

Table 2-1, Recommended External Power Supply

Manufacturer	Part #	Digikey #
GlobTek, Inc.	TR9CZ3000USBCG2R6BF2	1939-1794-ND
Qualtek	QADC-65-20-08CB	Q1251-ND

The EVM is designed to power up automatically upon insertion of power. A red power led [LD3] will be illuminated when a valid power source is connected.

2.1.2 Power Budget Considerations

The exact power required for the EVM is largely dependent on the application, usage of the on-board peripherals, and power needs of add-on devices. Table 2-2 shows the designs power allocations. (Again, the input supply must be capable of supplying the power needs for your application.)

Table 2-2. Power Supply Allocation

Function	Power	Description	
Processor Core	Up to 15W	Processor, Memory	
On-board Peripherals	Up to 3W	SD Card, Ethernet, Logic, and so forth	
USB Port(s)	Up to 19W	USB HubType A Ports (2.8A at 5V)Type C Ports (0.9A at 5V)	
Camera Ports	Up to 2W	Cam Ports (0.5A at 3.3V)	
Expansion Interface(s)	Up to 20W	M.2 Type E (1A at 3.3V)M2 Type M (1A at 3.3V)40p Expansion(2A at 3.3V, 1.5A at 4V)	
Display(s)	Up to 3W	HDMI TransceiverHDMI Panel (55mA at 5V)DP Panel (0.5A at 3.3V)	

2.2 User Inputs

The EVM supports several mechanisms for the user to configure, control, and provide input to the system.

2.2.1 Board Configuration Settings [SW1]

Dip Switch [SW1] is used to configure different options available on the EVM, including processor boot mode and USB mode for the Type C interface.

Table 2-3. Processor Boot Mode Settings [SW1 Switch 1-3]

TDA4VM Boot Source	SW1.1	SW1.2	SW1.3
MicroSD Card [J23]	OFF	OFF	OFF
Non-Volatile Flash (xSPI)	OFF	OFF	ON
USB3.1 Type A [J10][J12]	ON	ON	OFF
USB Type C (DFP) [J12] (1)	OFF	ON	OFF
M.2 Key M [J22]	OFF	ON	ON
UART (for Flashing)	ON	OFF	ON
No Boot (JTAG/Emulator)	ON	OFF	OFF

⁽¹⁾ For USB booting from Type C, requires mode be set to DFP.

Table 2-4. USB Type C Mode Setting [SW1 Switch 4]

USB3.1 Type C Mode	SW1.4
Downstream Facing Peripheral (DFP)	OFF
Upstream Facing Peripheral (UFP)	ON

2.2.2 Reset Pushbutton [SW2]

When pressed [SW2], the EVM is issued a Power-On (Cold) Reset, and is held in reset until the button is released.

www.ti.com User Interfaces

2.2.3 User Pushbutton [SW3] With User LED Indication [LD2]

The pushbutton [SW3] can be used for several different functions.

Function 1: System Wake from Shutdown. After software-initiated power down (using GPIO0_55), pressing pushbutton [SW3] will re-enable and boot the EVM.

Function 2: Power Management Input/Interrupt. The pushbutton [SW3] is connected with Power Management IC (IO4), and can be programmed for different power related functions (ex. Wake from Sleep).

Function 3: User Defined Input/Interrupt. The pushbutton [SW3] is connected with the TDA4VM processor (GPIO0_4), and can be programmed for variety of user input/interrupt needs.

A red LED [LD2] is available as user indicator, and is controlled via the TDA4VM processor (GPIO0_64)

2.3 Standard Interfaces

The EVM provides industry standard interfaces/connectors to connect a wide variety of peripherals. As these interfaces are standard, specific pin information is not provided in this document.

2.3.1 Uart-Over-USB [J4] With LED for Status [LD1]

Four UART ports of the TDA4VM are interfaced with UART-over-USB transceiver. When the EVM's USB micro-B connector (J4) is connected to a Host-PC using supplied USB cable (Type-A to Micro-B), the computer can establish Virtual Com Port(s) which can be used with any terminal emulation application. Virtual Com Port drivers for the transceiver (CP2108-B02-GM) can be obtained from https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers.

Once installed, the Host-PC will create four Virtual Com Ports. Depending on the other Host-PC resources available - the Virtual COM Ports not be located at COM1-4. However, they will remain in the same numerical order.

Table 2-5. UART to COM Port Mapping

TDA4VM UART	Host-PC COM Port
WKUP_UART0	COM 1
MCU_UART0	COM 2
UART0	COM 3
UART1	COM 4

The circuit is powered through BUS power and therefore the COM connection not be lost when the EVM power is removed. An LED [LD1] is used to indicate an active COM connection with Host-PC.

2.3.2 Gigabit Ethernet [J8] With Integrated LEDs for Status

A wired Ethernet network is supported via RJ45 cable interface [J8], and is compatible with IEEE 802.3 10BASE-Te, 100BASE-TX, and 1000BASE-T specifications. The connector includes status indicators for link and activity.

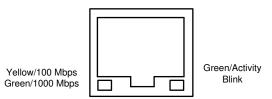


Figure 2-3. RJ45 LED Indicators [J8]

Power-Over-Ethernet (PoE) is not supported.

2.3.3 JTAG/Emulation Interface [J9]

The EVM supports JTAG emulation/debugger through a dedicated emulation connector [J9]. The connector is aligned with the Texas Instrument 20-pin CTI header standard (2x20, 1.27mm pitch), and is compatible with Texas Instruments modules (XDS110, XDS200, XDS560v2) and 3rd party modules.

User Interfaces www.ti.com

Table 2-6. Expansion Header Pin Definition [J3]

Pin #	Pin Name	Description (TDA4VM Pin #)	Dir
1	TMS	Test Mode Select (TMS)	Input
2	TRSTn	Test Reset	Input
3	TDI	Test Data Input	Input
4	TDIS	Target Disconnect	Output
5	Vref	Target Voltage Detect, 3.3V	Output
6	<no pin=""></no>	No Pin/Key	
7	TDO	Test Data Output	Output
8	GND	Ground	
9	RTCK	Test Clock Return	Output
10	GND	Ground	
11	TCK	Test Clock	Input
12	GND	Ground	
13	EMU0	Emulation Pin 0	Bi-Dir
14	EMU1	Emulation Pin 1	Bi-Dir
15	RESETz	Target Reset	Input
16	GND	Ground	
17		Open	
18		Open	
19		Open	
20	GND	Ground	

Note

In the DIR column, output is to the JTAG module, input is from the JTAG module. Bi-Dir signals can be configured as either input or output.

2.3.4 USB3.1 Gen1 Interfaces [J10] [J12]

The EVM supports three USB3.1 Gen1 Type A ports [J10][J12], which operate in Host mode. The combined VBUS output for these ports is limited to 2.8A.

Also supported is one USB3.1 Gen1 Type C interface [J12], which can function as either a DFP or UFP. For details on how to select USB mode, see Section 2.2.1. The VBUS output for this port is limited to 0.9A. When operating as UFP, the EVM cannot be powered from this port.

Note
he USB2.0 Micro-B connector [J4] is discussed in Uart-over-USB section.
N-4-
Note
he VBUS power output capability assumes the selected input supply is capable of supply power fo
ooth EVM and connected peripherals.
Note
An example optional add-on USB Camera module for this interface is the Logitech USB C270.
Note

The maximum length for the IO cables are required to be less than 3 meters.

www.ti.com User Interfaces

2.3.5 M.2 Key E Connector [J11] for Wi-Fi Networking Modules

The EVM supports a Mini-PCIe M.2, Key E slot (2230) for expansion modules [J11]. This expansion interface is primarily used for BT/Wi-Fi modules, and supports the following interfaces: PCI Express (PCIe) (1x), USB2.0, secure data/secure digital IO (SDIO), universal asynchronous receiver/transmitter (UART), inter-IC sound (I2S), and inter-integrated circuit (I2C).

Note

An example optional add-on Wireless Network module for this interface is the Intel M.2 Type E Wi-Fi/ 9260NGW.

2.3.6 Stacked DisplayPort and HDMI Type A [J13]

The EVM supports DisplayPort panel via standard DP cable interface [J13]. The interface supports resolutions to 4K UHD (3840x2160) including MST (Mutli-Stream Transport) for supporting multiple panels. A second display interface is supported via HDMI connector [J13], and supports resolutions up to 1080p (1920x1080). The interface is DVI, and therefor does not support the integrated audio. Both DisplayPort and HDMI interfaces can be used simultaneous.

2.3.7 M.2 Key M Connector [J22] for SSD Modules

The EVM supports a Mini-PCIe M.2, Key M slot (2280) for expansion modules [J22]. This expansion interface is primarily used for Solid State Drives (SSD), and supports the following interfaces: PCIe (2x) and I2C.

2.3.8 MicroSD Card Cage [J23]

The EVM supports a micro-SD card cage. It supports UHS-1 class memory cards, including SDHC and SXDC. The connector is a PUSH-PUSH connector, meaning you push to insert the card and push again to remove the card.

A MicroSD Card is included with the EVM kit.

2.4 Expansion Interfaces

The EVM supports expansion interfaces that have non-standard/custom pinouts. Each of those interfaces are introduced and specific pin information is provided.

2.4.1 Heatsink [ACC1] With [J16] Fan Header

The heatsink supports cooling of the device at ambient temperatures. If your environment or use case requires additional cooling, a fan can be added to the Heatsink.

The fan connector is a 3-pin header (WURTH ELEKTRONIK, Part number 61900311121).

Table 2-7. Fan Header Pin Definition [J16]

Pin#	Pin Name	Description	Direction
1	<open></open>	Unconnected	n/a
2	5V	Main 5V Supply	Output
3	GND	Ground	

User Interfaces www.ti.com

2.4.2 CAN-FD Connector(s) [J1] [J2] [J5] [J6]

The EVM supports four (4x) CAN Bus interfaces.

Table 2-8. CAN-FD Interface Assignment

Connector Ref	TDA4VM Resource
J1	MCU CAN0
J2	CAN9
J5	CAN0
J6	CAN5

Each Controller Area Network (CAN) Bus interface is supported on a 3-pin, 2.54 mm pitch header. The interface meets ISO 11898-2 and ISO 11898-5 physical standards, and supports CAN and optimized CAN-FD performance up to 8 Mbps. Each includes CAN Bus end-point termination. If the EVM is included in a network with more than two nodes, the termination my need to be adjusted.

Table 2-9. CAN-FD Header Pin Definition [J1][J2][J5][J6]

Pin#	Pin Name	Description	Direction
1	CAN-H	High-Level CAN Bus Line	Bi-Dir
2	GND	Ground	
3	CAN-L	Low-Level CAN Bus Line	Bi-Dir

2.4.3 Expansion Header [J3]

The EVM includes a 40-pin (2x20, 2.54mm pitch) expansion interface [J3]. The expansion connector supports variety of interfaces including: I2C, serial peripheral interface (SPI), I2S with Audio clock, UART, pulse width modulator (PWM), and GPIO. All signals on the interfaces are 3.3V levels.

Table 2-10. Expansion Header Pin Definition [J3]

Pin#	Pin Name	Description (TDA4VM Pin #)	Dir
1	Power	Power, 3.3V	Output
2	Power	Power, 5.0V	Output
3	I2C_SDA	I2C Bus #5, Data (AA27)	Bi-Dir
4	Power	Power, 5.0V	Output
5	I2C_SCL	I2C Bus #5, Clock (Y26)	Bi-Dir
6	GND	Ground	
7	GP_CLK/GPIO	REFCLK0/GPIO0 #7 (AD22)	Bi-Dir
8	UART_TXD	UART #2 Transmit (AA24)	Output
9	GND	Ground	
10	UART_RXD	UART #2 Receive (AA26)	Input
11	GPIO	GPIO0 #71 (AA28)	Bi-Dir
12	I2S_SCLK	McASP #6 ACLKX (AC23)	Bi-Dir
13	GPIO	GPIO0 #82 (AA29)	Bi-Dir
14	GND	Ground	
15	GPIO	GPIO0 #11 (AD21)	Bi-Dir
16	GPIO	GPIO0 #5 (AH23)	Bi-Dir
17	Power	Power, 3.3V	Output
18	GPIO	GPIO1 #12 (U3)	Bi-Dir
19	SPI_MOSI	SPI #5 Data 0 (V25)	Bi-Dir
20	GND	Ground	
21	SPI_MISO	SPI #5 Data 1 (W24)	Bi-Dir
22	GPIO	GPIO0 #8 (AE20)	Bi-Dir
23	SPI_SCLK	SPI #5 Clock (W29)	Bi-Dir

www.ti.com User Interfaces

Table 2-10. Expansion Header Pin Definition [J3] (continued)

Pin#	Pin Name	Description (TDA4VM Pin #)	Dir
24	SPI_CS0	SPI #5 Chip Select 0 (W27)	Bi-Dir
25	GND	Ground	
26	SPI_CS1	SPI #5 Chip Select 1 (W25)	Bi-Dir
27	ID_SDA	Wkup I2C Data (H24)	Bi-Dir
28	ID_SCL	Wkup I2C Clock (J25)	Bi-Dir
29	GPIO	GPIO0 #93 (U27)	Bi-Dir
30	GND	Ground	
31	GPIO	GPIO0 #94 (U24)	Bi-Dir
32	PWM0	PWM3_A (V23)	Output
33	PWM1	PWM3_B (W23)	Output
34	GND	Ground	
35	12S_FS	McASP #6 FSX (AG22)	Bi-Dir
36	GPIO	GPIO0_97 (Y28)	Bi-Dir
37	GPIO	GPIO0_115 (AA3)	Bi-Dir
38	I2S_DIN	McASP #6 (AF22)	Bi-Dir
39	GND	Ground	
40	I2S_DOUT	McASP #6 (AJ23)	Bi-Dir

Note

In the DIR column, output is to the expansion module, input is from the expansion module. Bi-Dir signals can be configured as either input or output.

Note

All the signals on the Expansion connector can support other functions including GPIO. For full list of functions available on each pin, see the *TDA4VM Jacinto™ Processors for ADAS and Autonomous Vehicles Silicon Revisions 1.0 and 1.1.* Functions like UART and PWM set as INPUT or OUTPUT can be Bi-Dir when configured as GPIO.

2.4.4 Camera Interface, 15-Pin Flex Connectors [J18] [J19]

The EVM supports two (2) 15-pin flex (1.0mm pitch) connectors [J18][J19] for interfacing with camera modules. Each camera interface provides MIPI CSI-2 interface (2Lane), Clock/Control signals, and power (3.3V) to the camera.

To enable camera modules with same addressing to be used simultaneously, I2C mux is used to select each camera. The voltage level for Clock/Control signals is selectable between 1.8V/3.3V.

Table 2-11. Camera 1 Flex Pin Definition [J18]

Pin#	Pin Name	Description	Dir
1 / 1A	GND	Ground	
3 / 2A	CSI0_D0_N	CSI Port 0 Data Lane 0	Input
5 / 3A	CSI0_D0_P	CSI Port 0 Data Lane 0	Input
7 / 4A	GND	Ground	
9 / 5A	CSI0_D1_N	CSI Port 0 Data Lane 1	Input
11 / 6A	CSI0_D1_P	CSI Port 0 Data Lane 1	Input
13 / 7A	GND	Ground	
15 / 8A	CSI0_CLK_N	CSI Port 0 CLK	Input
17 / 9A	CSI0_CLK_P	CSI Port 0 CLK	Input
19 / 10A	GND	Ground	
21 / 11A	CAM1_PWDN	Pwr-Dwn (GPIO0-116)	Output

User Interfaces www.ti.com

Table 2-11. Camera 1 Flex Pin Definition [J18] (continued)

Pin #	Pin Name	Description	Dir
23 / 12A	CAM1_AUX	AUX (GPIO0-117)	Bi-Dir
25 / 13A	I2C_SCL	I2C Clock #3, Mux 0	Output
27 / 14A	I2C_SDA	I2C Data # 3, Mux 0	Bi-Dir
29 / 15A	Power	Power, 3.3V	Output

Table 2-12. Camera 2 Flex Pin Definition [J19]

Pin #	Pin Name	Description	Dir
1 / 1A	GND	Ground	
3 / 2A	CSI1_D0_N	CSI Port 1 Data Lane 0	Input
5 / 3A	CSI1_D0_P	CSI Port 1 Data Lane 0	Input
7 / 4A	GND	Ground	
9 / 5A	CSI1_D1_N	CSI Port 1 Data Lane 1	Input
11 / 6A	CSI1_D1_P	CSI Port 1 Data Lane 1	Input
13 / 7A	GND	Ground	
15 / 8A	CSI1_CLK_N	CSI Port 1 CLK	Input
17 / 9A	CSI1_CLK_P	CSI Port 1 CLK	Input
19 / 10A	GND	Ground	
21 / 11A	CAM2_PWDN	Pwr-Dwn (GPIO0-119)	Output
23 / 12A	CAM2_AUX	AUX (GPIO0-120)	Bi-Dir
25 / 13A	I2C_SCL	I2C Clock #3, Mux 1	Output
27 / 14A	I2C_SDA	I2C Data # 3, Mux 1	Bi-Dir
29 / 15A	Power	Power, 3.3V	Output

Note

In the DIR/Level column, output is to the camera module, input is from the camera module. Bi-Dir signals can be configured as either input or output.

2.4.5 Camera Interface, 40-Pin High Speed [J24]

The EVM includes a 40-pin (2x20, 2.54 mm pitch) high speed camera interface [J24]. The expansion connector supports two CSI-2 (4 Lanes each), power, and control signals (I2C, GPIO, and so forth): All control signals are configurable for 3.3V or 1.8V voltage levels.

Table 2-13. Camera IO Voltage Control

GPIO0 #118 (Pin Y1)	Camera IO Level	
Low or '0'	1.8V (Default)	
High or '1'	3.3V	

Table 2-14. 40-Pin High-Speed Camera Expansion Pin Definition [J24]

Pin #	Pin Name	Description (TDA4VM Pin #)	Dir
1	Power		Output
2	I2C_SCL	I2C Bus #3, Clock (T26)	Bi-Dir
3	Power		Output
4	I2C_SDA	I2C Bus #3, Data (T25)	Bi-Dir
5	CSI0_CLK_P	CSI Port 0 Clock	Input
6	GPIO/PWMA	GPIO0 #74 (AG26)	Bi-Dir
7	CSI0_CLK_N	CSI Port 0 Clock	Input
8	GPIO/PWMB	GPIO0 #75 (AF27)	Bi-Dir
9	CSI0_D0_P	CSI Port 0 Data Lane 0	Input
10	REFCLK	REFCLK2 (W26)	Bi-Dir

www.ti.com User Interfaces

Table 2-14. 40-Pin High-Speed Camera Expansion Pin Definition [J24] (continued)

Pin #	Pin Name	Description (TDA4VM Pin #)	Dir
11	CSI0_D0_N	CSI Port 0 Data Lane 0	Input
12	GND	Ground	
13	CSI0_D1_P	CSI Port 0 Data Lane 1 Input	
14	RESETz	GPIO0 #79 (AG29)	Output
15	CSI0_D1_N	CSI Port 0 Data Lane 1	Input
16	GND	Ground	
17	CSI0_D2_P	CSI Port 0 Data Lane 2	Input
18	GPIO	GPIO0 #76 (AF26)	Bi-Dir
19	CSI0_D2_N	CSI Port 0 Data Lane 2	Input
20	GPIO	GPIO0 #77 (AE25)	Bi-Dir
21	CSI0_D3_P	CSI Port 0 Data Lane 3	Input
22	GPIO	GPIO0 #78 (AF29)	Bi-Dir
23	CSI0_D3_N	CSI Port 0 Data Lane 3	Input
24	GND	Ground	
25	CSI1_CLK_P	CSI Port 1 Clock	Input
26	CSI1_D3_P	CSI Port 1 Data Lane 3	Input
27	CSI1_CLK_N	CSI Port 1 Clock	Input
28	CSI1_D3_N	CSI Port 1 Data Lane 3	Input
29	CSI1_D0_P	CSI Port 1 Data Lane 0	Input
30	Power	Power, 3.3V	Output
31	CSI1_D0_N	CSI Port 1 Data Lane 0	Input
32	Power	Power, 3.3V	Output
33	CSI1_D1_P	CSI Port 1 Data Lane 1	Input
34	Power	Power, 3.3V	Output
35	CSI1_D1_N	CSI Port 1 Data Lane 1	Input
36	Power	Power, 3.3V	Output
37	CSI1_D2_P	CSI Port 1 Data Lane 2	Input
38	Power	Power, IO Level (1.8 or 3.3V)	Output
39	CSI1_D2_N	CSI Port 1 Data Lane 2	Input
40	Power	Power, IO Level (1.8 or 3.3V)	Output

Note

In the DIR column, output is to the expansion module, input is from the expansion module. Bi-Dir signals can be configured as either input or output.

2.4.6 Automation and Control Connector [J25]

The EVM supports an interface to allow for automated control of the system, including functions like on/off, reset, and boot mode settings.

Table 2-15. Test Automation Interface Pin Definition [J25]

Pin	Pin Name	Description (TDA4VM Pin #)	Dir
1	Power	Power, 3.3V	Output
2	Power	Power, 3.3V	Output
3	Power	Power, 3.3V	Output
4	<open></open>		N/A
5	<pre><open></open></pre>		N/A
6	<open></open>		N/A

User Interfaces www.ti.com

Table 2-15. Test Automation Interface Pin Definition [J25] (continued)

Pin	Pin Name	Description (TDA4VM Pin #)	Dir
7	GND	Ground	
8	<open></open>		N/A
9	<open></open>		N/A
10	<open></open>		N/A
11	<open></open>		N/A
12	<open></open>		N/A
13	<open></open>		N/A
14	<open></open>		N/A
15	<open></open>		N/A
16	GND	Ground	
17	<open></open>		N/A
18	<open></open>		N/A
19	<open></open>		N/A
20	<open></open>		N/A
21	<open></open>		N/A
22	<open></open>		N/A
23	<open></open>		N/A
24	<open></open>		N/A
25	GND	Ground	
26	POWERDOWNZ	EVM Power Down	Input
27	PORz	EVM Power-On/Cold Reset	Input
28	RESETz	EVM Warm Reset	Input
29	<open></open>		N/A
30	INT1z	EXTINTN (AC18)	Input
31	INT2z	WKUP_GPIO0 #5 (F29)	Bi-Dir
32	<open></open>		N/A
33	BOOTMODE_RSTz	Bootmode Buffer Reset	Input
34	GND	Ground	
35	<pre><open></open></pre>		N/A
36	I2C_SCL	I2C Bus #2, Clock (AA1)	Bi-Dir
37	BOOTMODE_SCL	Bootmode Buffer I2C Clock	Input
38	I2C_SDA	I2C Bus #2, Data (AA3)	Bi-Dir
39	BOOTMODE_SDA	Bootmode Buffer I2C Data	Bi-Dir
40	GND	Ground	
41	GND	Ground	
42	GND	Ground	

Note

In the DIR/Level column, output is to the camera module, input is from the camera module. Bi-Dir signals can be configured as either input or output.

Note

The signal polarity is identified with a trailing 'z' in the Pin Name, which indicates the signal is active LOW. For example, POWERDOWNz is an active low signal, meaning '0' = EVM is Powered Down, '1' = EVM is NOT Powered Down.

www.ti.com Mechanicals

3 Mechanicals

This section has yet to be completed.

4 Circuit Details

This sections provides additional details on the EVM design and processor connections.

4.1 Top Level Diagram

Figure 4-1 shows the functional block diagram of the EVM Board.

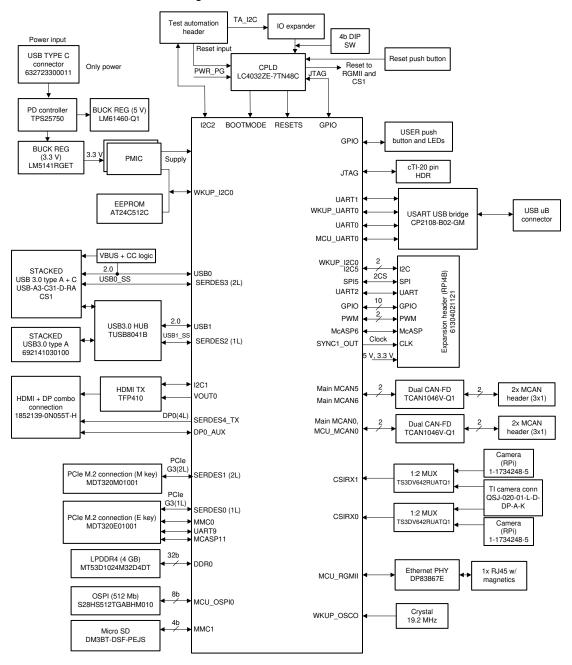


Figure 4-1. SK-TDA4VM Functional Block Diagram

Circuit Details Www.ti.com

4.2 Interface Mapping

The TDA4VM Interface Mapping table is provided in Table 4-1.

Table 4-1. Interface Mapping Table

Connected Peripheral	TDA4VM Resources	Components / Part Numbers
Memory, LPDDR4 DRAM	DDR0	Micron MT53D1024M32D4DT
Memory, xSPI NOR Flash	MCU_OSPI0	Cypress S28HS512TGABHM010
Micro-SD Card Cage	MMC1	
EEPROM, Board Identification	WKUP_I2C0	Microchip Tech AT24C512C
Wired Ethernet	MCU_RGMII1, MCU_MDIO	Texas Instruments DP83867E
USB Type C + CC Controller	USB0 (SERDES3)	Texas Instruments TUSB321
USB Type A (3x)	USB1 (SERDES2)	Texas Instruments TUSB8041
HDMI	DPI0, I2C1	Texas Instruments TFP410
Display Port	DP0 (SERDES4)	
PCIe – M.2 Socket (E-Key 2230)	PCIe0 (SERDES0), USB1, MMC0, McASP11, UART9, I2C0	
PCIe – M.2 Socket (M-Key 2280)	PCIe1 (SERDES1), I2C0	
CSI Rx Interface	CSI0, CSI1, I2C3	
UART Terminal (UART-to-USB)	WKUP_UART0, MCU_UART0, UART0, UART1	Silicon Labs CP2108
CAN (4x)	MCU_MCAN0, MCAN0, MCAN5, MCAN9	Texas Instruments TCAN1046V
Expansion Header (40-pin)	McASP6, SPI5, UART2, I2C5	
Test Automation Header	I2C2	

4.3 I2C Address Mapping

Table 4-2 provides the complete I2C address mapping details for the EVM.

Table 4-2. I2C Mapping Table

	TDA4VM	TDA4VM Resources	
Connected Peripheral	I2C Port	I2C Address	Components / Part Numbers
Power Management IC	WKUP_I2C0	0x48-4B	Texas Instruments PTPS65941213
Power Management IC	WKUP_I2C0	0x4C-4F	Texas Instruments PTPS65941111
EEPROM, Board Id	WKUP_I2C0	0x51	Microchip Tech AT24C512C
Expansion Header (40p)	WKUP_I2C0	Add-on	
Power Management IC	MCU_I2C0	0x12	Texas Instruments PTPS65941213
Input PD Controller	I2C0	0x20	Texas Instruments TPS25750
PCIe M.2 Key E/M	I2C0	0x71, Add-on	Texas Instruments TCA9543A
HDMI DDC	I2C1	Add-on	
Camera Expansion	I2C3	0x70, Add-on	Texas Instruments TCA9543A
Expansion Header (40p)	I2C5	Add-On	

www.ti.com Circuit Details

4.4 GPIO Mapping

The General Purpose IOs (GPIO) of TDA4VM SoC are broken into two major groups, WKUP and MAIN. For this design, there is not much functional difference between the IOs. Table 4-3 describes the GPIO mapping of TDA4VM SoC with the EVM peripherals and provides the default settings.

Table 4-3. GPIO Mapping Table

TDA4VM Pin Name	GPIO	Function	Dir/Level	Remarks
WKUP_GPIO0_3	WKUP_GPIO0_3	MCU CAN Bus #0 Stand-by	Output	'0' – Normal Mode '1' – Standby Mode (default)
WKUP_GPIO0_4	WKUP_GPIO0_4	SW3 Pushbutton	Input	'0' – SW3 is Pressed '1' – SW2 is NOT Pressed (default)
WKUP_GPIO0_5	WKUP_GPIO0_5	EEPROM Write Protect	Output	'0' – EEPROM is NOT Write Protected (default) '1' – EEPROM is Write Protected
WKUP_GPIO0_6	WKUP_GPIO0_6	Test Automation Interrupt #2	Input	'0' - To Be Defined by User '1' - To Be Defined by User (default)
WKUP_GPIO0_7	WKUP_GPIO0_7	Power Management IC Interrupt	Input	'0' – Active Interrupt Request '1' – No Interrupt Request (default)
WKUP_GPIO0_8	WKUP_GPIO0_8	SD Card Power Enable	Output	'0' – SD Card Power Disabled '1' – SD Card Power Enable (default)
WKUP_GPIO0_9	WKUP_GPIO0_9	SD Card IO Voltage Selection	Output	'0' – SD Card IO Voltage is 1.8V '1' – SD Card IO Voltage is 3.3V (default)
WKUP_GPIO0_10	WKUP_GPIO0_10	Ethernet PHY Reset	Output	'0' – Ethernet is Reset '1' – Ethernet is NOT Reset (default)
WKUP_GPIO0_11	WKUP_GPIO0_11	M.2 Key M Interface Signal (RSTz)	Output	RSTz, See M.2 Key M specification for more details. (Default = '0')
MCU_OSPI1_DQS	WKUP_GPIO0_31	Flash Memory Interrupt	Input	'0' – Active Interrupt Request '1' – No Interrupt Request (default)
MCU_OSPI1_CSN0	WKUP_GPIO0_36	M.2 Key E Interface Signal (SDIO_RESET#)	Output	SDIO_RESET#, See M.2 Key E specification for more details. (Default = '0')
MCU_OSPI1_CSN1	WKUP_GPIO0_37	M.2 Key E Interface Signal (SDIO_WAKE#)	Output	SDIO_WAKE#, See M.2 Key E specification for more details. (Default = '1')
MCU_SPI0_CS0	WKUP_GPIO0_55	System Power Down	Output	'0' - Normal Operation (default) '1' - System Power Down/Off
PMIC_POWER_EN0	WKUP_GPIO0_66	Ethernet PHY Interrupt	Input	'0' – Active Interrupt Request '1' – No Interrupt Request (default)
PRG1_PRU0_GPO4	GPIO0_5	40-pin Expansion Header Signal (GPIO)	Bi-Dir	Expansion Board Specific (Pin 16)
PRG1_PRU0_GPO6	GPIO0_7	40-pin Expansion Header Signal (REFCLK0/GPIO)	Bi-Dir	Expansion Board Specific (Pin 7)
PRG1_PRU0_GPO7	GPIO0_8	40-pin Expansion Header Signal (GPIO)	Bi-Dir	Expansion Board Specific (Pin 22)
PRG1_PRU0_GPO10	GPI00_11	40-pin Expansion Header Signal (GPIO)	Bi-Dir	Expansion Board Specific (Pin 15)
PRG0_PRU0_GPO18	GPIO0_61	M.2 Key E Interface Signal (W_DISABLE1#)	Output	W_DISABLE1#, See M.2 Key E specification for more details. (Default = '1')
PRG0_PRU0_GPO19	GPIO0_62	M.2 Key E Interface Signal (W_DISABLE2#)	Output	W_DISABLE2#, See M.2 Key E specification for more details. (Default = '1')
PRG0_PRU1_GPO1	GPIO0_64	User LED (LD2)	Output	'0' – LED [LD2] is OFF (default) '1' – LED [LD2] is ON

Circuit Details Www.ti.com

Table 4-3. GPIO Mapping Table (continued)

TDA4VM Pin Name	GPIO	Function	Dir/Level	Remarks
PRG0_PRU1_GPO2	GPIO0_65	CAN Bus #0 Stand-by	Output	'0' – Normal Mode '1' – Standby Mode (default)
PRG0_PRU1_GPO3	GPIO0_66	CAN Bus #5 Stand-by	Output	'0' – Normal Mode '1' – Standby Mode (default)
PRG0_PRU1_GPO4	GPIO0_67	CAN Bus #9 Stand-by	Output	'0' – Normal Mode '1' – Standby Mode (default)
PRG0_PRU1_GPO8	GPIO0_71	40-pin Expansion Header Signal (GPIO)	Bi-Dir	Expansion Board Specific (Pin 11)
PRG0_PRU1_GPO9	GPIO0_72	M.2 Key E Interface Signal (RTSz)	Output	RSTz, See M.2 Key E specification for more details. (Default = '0')
PRG0_PRU1_GPO11	GPIO0_74	CSI Expansion Signal (GPIO)	Bi-Dir	CSI2 Expansion Board Specific (Pin 6)
PRG0_PRU1_GPO12	GPIO0_75	CSI Expansion Signal (GPIO)	Bi-Dir	CSI2 Expansion Board Specific (Pin 8)
PRG0_PRU1_GPO13	GPIO0_76	CSI Expansion Signal (GPIO)	Bi-Dir	CSI2 Expansion Board Specific (Pin 18)
PRG0_PRU1_GPO14	GPIO0_77	CSI Expansion Signal (GPIO)	Bi-Dir	CSI2 Expansion Board Specific (Pin 20)
PRG0_PRU1_GPO15	GPIO0_78	CSI Expansion Signal (GPIO)	Bi-Dir	CSI2 Expansion Board Specific (Pin 22)
PRG0_PRU1_GPO16	GPIO0_79	CSI Expansion Signal (RESETz)	Output	'0' – CSI Board is Reset (Default) '1' – CSI Board is NOT Reset
PRG0_PRU1_GPO19	GPIO0_82	40-pin Expansion Header Signal (GPIO)	Bi-Dir	Expansion Board Specific (Pin 13)
RGMII5_TX3	GPIO0_87	HDMI Monitor Enable	Output	'0' – Power Down '1' – Normal Operation (default)
RGMII5_TD2	GPIO0_88	CSI Expansion Interface Selection	Output	CSI I2C MUX select '0' - Camera/Flex Selected (default) '1' - 40-pin Camera Expansion Selected
RGMII5_RD3	GPIO0_93	40-pin Expansion Header Signal (GPIO)	Bi-Dir	Expansion Board Specific (Pin 29)
RGMII5_RD2	GPIO0_94	40-pin Expansion Header Signal (GPIO)	Bi-Dir	Expansion Board Specific (Pin 31)
RGMII5_RD1	GPIO0_95	M.2 Key E Interface Signal (UART_WAKE#)	Output	UART_WAKE#, See M.2 Key E specification for more details. (Default = '1')
RGMII6_TX_CTL	GPIO0_97	40-pin Expansion Header Signal (GPIO)	Bi-Dir	Expansion Board Specific (Pin 36)
SPI0_CS0	GPIO0_111	Display Port Monitor Enable	Output	'0' – Monitor is Disabled (default) '1' – Monitor is Enabled
SPI0_D1	GPIO0_115	40-pin Expansion Header Signal (GPIO)	Bi-Dir	Expansion Board Specific (Pin 37)
SPI1_CS0	GPIO0_116	Camera #0 Flex Signal (PwrDwn)	Output	Camera Specific (Pin 11a) '0' – Normal Operation (default) '1' – Power Down
SPI1_CS1	GPIO0_117	Camera #0 Flex Signal (GPIO)	Bi-Dir	Camera Specific (Pin 12a)
SPI1_CLK	GPIO0_118	CSI I2C/GPIO Voltage Selection	Output	'0' – 1.8 V IO (default) '1' – 3.3 V IO
SPI1_D0	GPIO0_119	Camera #1 Flex Signal (PwrDwn)	Output	Camera Specific (Pin 11a) '0' – Normal Operation (default) '1' – Power Down
SPI1_D1	GPIO0_120	Camera #1 Flex Signal (GPIO)	Bi-Dir	Camera Specific (Pin 12a)

www.ti.com Circuit Details

Table 4-3. GPIO Mapping Table (continued)

TDA4VM Pin Name	GPIO	Function	Dir/Level	Remarks
UART1_CTSN	GPIO0_127	HDMI Transceiver Enable	Output	'0' – Power Down (default) '1' – Normal Operation
UART1_RTSN	GPIO1_0	HDMI Monitor Detect	Input	'0' – No Monitor Detected (default) '1' – Monitor Detected
MCAN1_RX	GPIO1_3	USB Type C Cable Orientation	Input	'0' – Low Position Detected (default) '1' – High Position Detected
EXT_REFCLK1	GPIO1_12	40-pin Expansion Header Signal (GPIO)	Bi-Dir	Expansion Board Specific (Pin 18)

Note

In the DIR/Level column, output is to the peripheral/module, input is from the peripheral/module. Bi-Dir signals can be configured as either input or output.

4.5 Identification EEPROM

The SK-TDA4VM board identified and revision information are stored in an on-board EEPROM. The first 259 bytes of memory are pre-programmed with EVM identification information. The format of that data is provided in Table 4-4. The remaining 32509 bytes are available for data or code storage.

The EEPROM is accessible from WKUP I2C0 port of TDA4VM processor at address 0x51.

Table 4-4. Board ID Information

Field Name	Offset / Size	Value	Comments	
MAGIC	0000 / 4B	0xEE3355AA	Header Identifier	
M_TYPE	0004 /1B	0x1	Fixed length and variable position board ID header	
M_LENGTH	0005 /2B	0x37	Size of payload	
B_TYPE	0007 /1B	0x10	Payload type	
B_LENGTH	0008 /2B	0x2E	Offset to next header	
B_NAME	000A /16B	J721EX-EAIK	Name of the board	
DESIGN_REV	001A /2B	E2	Revision number of the design	
PROC_NBR	001C /4B	112	PROC number	
VARIANT	0020 /2B	1	Design variant number	
PCB_REV	0022 /2B	E2	Revision number of the PCB	
SCHBOM_REV	0024 /2B	0	Revision number of the schematic	
SWR_REV	0026 /2B	1	First software release number	
VENDORID	0028 /2B	1		
BUILD_WK	002A /2B		Week of the year of production	
BUILD_YR	002C /2B		Year of production	
BOARDID	002E /6B	0		
SERIAL_NBR	0034 /4B		Incrementing board number	
DDR_INFO	TYPE	1		
	Length	2	Offset to next header	
	DDR control	2	DDR Control Word	
MAC_ADDR	TYPE	1	Payload type	
	Length	2	Size of payload	
	MAC control	2	MAC header control word	
	MAC_adrs	192		
END_LIST	TYPE	1	End Marker	

5 Usage Notes and Advisories

5.1 Usage Notes

i001: The board can reset during boot and/or normal use.

Details: This can be due to insufficient power supply providing power to the SK (via the Type C connector). Make sure the external supply meets the requirements detailed in Section 2 of this document. If the supply has multiple output options and/or connections, make sure the correct option is selected that enables the input supply to negotiate to the recommended voltage (20V). Operating from a 5V input will likely limit the available processing power and could be a cause of the board resetting under boot/normal conditions.

5.2 Advisories

i002: The processor can reset due to over-heating when operating at higher loading and/or environment with elevated temperatures.

Details: At the time of creating this advisory, the default SDK does not include thermal monitoring/management. When operating the processor at higher loading, the temperature can become elevated and eventually exceed its maximum device temperature causing the processor to reset. The included heatsink does help with thermal dissipation, but additional thermal management may be needed for some applications.

Workaround(s): Adding a fan to the heatsink or increasing air-flow across the SK will help reduce the temperature of the processor and will eliminate the thermal reset condition in most circumstances.

Quantity	Description	Manufacturer	Part Number
1	DC Fan, 5 Volt, 25 mm x 25 mm ⁽¹⁾	CUI Devices	CFM-2510b-0130-275 ⁽³⁾
2	Screw	TBD	TBD
1	Connector Housing, 3 Pos, Female, 2.54 mm ⁽²⁾	Wurth Elektronik	61900311621
2	Connector Socket, 22-28AWG, Crimp	Wurth Elektronik	61900113722DEC

- (1) TBD Fan direction (blow downward or upward)
- (2) Attach fan's black wire to housing connector position 2 (middle), red wire to position 3 (away from board edge). Pin 1 is open (board edge)
- (3) Manufacture part numbers are included as reference. They can be replaced with compatible components from other manufactures.

i003: The board can reset when using SSD drives and/or higher processor loading.

Details: For Revision A and previous versions only. Version A1 and later revisions have updated design to resolve this item. The power regulator supplying power to the processor and PCle M.2 slots is under-sized, and some applications can cause the regulator to reset when higher loading occurs. Operating the SK at elevated temperatures can also cause the application to draw additional power also causing the regulator to be over-loaded.

Workaround(s): Keeping the processor/SK at lower temperatures with a fan or other means will reduce the required power. The circuit components can be updated to increase the power capacity of on-board regulator. See below of a list of components to be updated.

Reference	Description	Manufacturer	Part Number
L15	Power Inductor, 1.2uH, 21.6 A, 20%	Coilcraft	XAL7070-122MEC
R134	Resistor, 1m-Ohm, 0.5W, 1206 package	STACKPOLE ELECTRONICS	CSNL1206FT1L00 ⁽¹⁾
R123	Resistor, 649-Ohms, 0.1W, 0402 package	PANASONIC-ECG	ERJ-2RKF6490X ⁽¹⁾
C268	Capacitor, Ceramic, 0.047uF, 25V, 0402 package	Murata	GRM155R71E473JA88D ⁽¹⁾
C272	Capacitor, Ceramic, 1000pF, 16V, 0402 package	Kemet	C0402C102M4REC7867 ⁽¹⁾

(1) Manufacture part numbers are included as reference. They can be replaced with compatible components from other manufactures.

www.ti.com References

6 References

- CP210x USB to UART Bridge VCP Drivers
- Texas Instruments: TDA4VM Jacinto™ Processors for ADAS and Autonomous Vehicles Silicon Revisions 1.0 and 1.1 Data Sheet

7 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision D (February 2024) to Revision E (October 2025) Added HDMI trademark information......1

Page

STANDARD TERMS FOR EVALUATION MODULES

- Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, and/or
 documentation which may be provided together or separately (collectively, an "EVM" or "EVMs") to the User ("User") in accordance
 with the terms set forth herein. User's acceptance of the EVM is expressly subject to the following terms.
 - 1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM ("Software") shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms that accompany such Software
 - 1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system.
- 2 Limited Warranty and Related Remedies/Disclaimers:
 - 2.1 These terms do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement.
 - 2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for a nonconforming EVM if (a) the nonconformity was caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI, (b) the nonconformity resulted from User's design, specifications or instructions for such EVMs or improper system design, or (c) User has not paid on time. Testing and other quality control techniques are used to the extent TI deems necessary. TI does not test all parameters of each EVM. User's claims against TI under this Section 2 are void if User fails to notify TI of any apparent defects in the EVMs within ten (10) business days after the defect has been detected.
 - 2.3 Tl's sole liability shall be at its option to repair or replace EVMs that fail to conform to the warranty set forth above, or credit User's account for such EVM. Tl's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by Tl and that are determined by Tl not to conform to such warranty. If Tl elects to repair or replace such EVM, Tl shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period.

WARNING

Evaluation Kits are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems.

User shall operate the Evaluation Kit within TI's recommended guidelines and any applicable legal or environmental requirements as well as reasonable and customary safeguards. Failure to set up and/or operate the Evaluation Kit within TI's recommended guidelines may result in personal injury or death or property damage. Proper set up entails following TI's instructions for electrical ratings of interface circuits such as input, output and electrical loads.

NOTE:

EXPOSURE TO ELECTROSTATIC DISCHARGE (ESD) MAY CAUSE DEGREDATION OR FAILURE OF THE EVALUATION KIT; TI RECOMMENDS STORAGE OF THE EVALUATION KIT IN A PROTECTIVE ESD BAG.

3 Regulatory Notices:

3.1 United States

3.1.1 Notice applicable to EVMs not FCC-Approved:

FCC NOTICE: This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.

3.1.2 For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:

CAUTION

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Interference Statement for Class B EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- · Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

3.2 Canada

3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210 or RSS-247

Concerning EVMs Including Radio Transmitters:

This device complies with Industry Canada license-exempt RSSs. Operation is subject to the following two conditions:

(1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concernant les EVMs avec appareils radio:

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concerning EVMs Including Detachable Antennas:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types lated in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur

3.3 Japan

- 3.3.1 Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page 日本国内に輸入される評価用キット、ボードについては、次のところをご覧ください。
 - https://www.ti.com/ja-jp/legal/notice-for-evaluation-kits-delivered-in-japan.html
- 3.3.2 Notice for Users of EVMs Considered "Radio Frequency Products" in Japan: EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required to follow the instructions set forth by Radio Law of Japan, which includes, but is not limited to, the instructions below with respect to EVMs (which for the avoidance of doubt are stated strictly for convenience and should be verified by User):

- 1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan,
- 2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or
- 3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above. User will be subject to penalties of Radio Law of Japan.

【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 開発キットの中には技術基準適合証明を受けていないものがあります。 技術適合証明を受けていないもののご使用に際しては、電波法遵守のため、以下のいずれかの 措置を取っていただく必要がありますのでご注意ください。

- 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用 いただく。
- 2. 実験局の免許を取得後ご使用いただく。
- 3. 技術基準適合証明を取得後ご使用いただく。
- なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。 上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・イ

ンスツルメンツ株式会社

東京都新宿区西新宿6丁目24番1号

西新宿三井ビル

- 3.3.3 Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page 電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。https://www.ti.com/ja-jp/legal/notice-for-evaluation-kits-for-power-line-communication.html
- 3.4 European Union
 - 3.4.1 For EVMs subject to EU Directive 2014/30/EU (Electromagnetic Compatibility Directive):

This is a class A product intended for use in environments other than domestic environments that are connected to a low-voltage power-supply network that supplies buildings used for domestic purposes. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

- 4 EVM Use Restrictions and Warnings:
 - 4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS.
 - 4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages.
 - 4.3 Safety-Related Warnings and Restrictions:
 - 4.3.1 User shall operate the EVM within TI's recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm.
 - 4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees.
 - 4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User's handling and use of the EVM and, if applicable, User assumes all responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements.
- 5. Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free.

6. Disclaimers:

- 6.1 EXCEPT AS SET FORTH ABOVE, EVMS AND ANY MATERIALS PROVIDED WITH THE EVM (INCLUDING, BUT NOT LIMITED TO, REFERENCE DESIGNS AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY EPIDEMIC FAILURE WARRANTY OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.
- 6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS SHALL BE CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSORS OR ANY OTHER THIRD PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT, REGARDLESS OF WHEN MADE, CONCEIVED OR ACQUIRED.
- 7. USER'S INDEMNITY OBLIGATIONS AND REPRESENTATIONS. USER WILL DEFEND, INDEMNIFY AND HOLD TI, ITS LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES, EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, "CLAIMS") ARISING OUT OF OR IN CONNECTION WITH ANY HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS. THIS OBLIGATION SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY OTHER LEGAL THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED.

- 8. Limitations on Damages and Liability:
 - 8.1 General Limitations. IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE TERMS OR THE USE OF THE EVMS, REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST TIMORE THAN TWELVE (12) MONTHS AFTER THE EVENT THAT GAVE RISE TO THE CAUSE OF ACTION HAS OCCURRED.
 - 8.2 Specific Limitations. IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY USE OF AN EVM PROVIDED HEREUNDER, INCLUDING FROM ANY WARRANTY, INDEMITY OR OTHER OBLIGATION ARISING OUT OF OR IN CONNECTION WITH THESE TERMS, , EXCEED THE TOTAL AMOUNT PAID TO TI BY USER FOR THE PARTICULAR EVM(S) AT ISSUE DURING THE PRIOR TWELVE (12) MONTHS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM SHALL NOT ENLARGE OR EXTEND THIS LIMIT.
- 9. Return Policy. Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s), excluding any postage or packaging costs.
- 10. Governing Law: These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025