Application Note
Live Firmware Update Without Device Reset on C2000
MCUs

i3 TEXAS INSTRUMENTS

Baskaran Chidambaram, , Sira Rao, Matt Kukucka
ABSTRACT

This document presents details on Live Firmware Update (LFU) without device reset on devices with multiple
Flash banks, such as the TMS320F28003x or TMS320F28P55x.

Table of Contents

I L2 e Yo [T T2 4o TSR 2
2 KEY INNOVALIONS. ...ttt oottt e e oottt e e e e e s e teee e e e e ateeeeee e e abeeeeee e e saeeeaeeeannteeeeeeeanbeeeaeeaannnneaaenn 2
B3 = W] o [T T T = Lo Yo L3R T ol T L OSSR 2
4 Details of Proposed SOIULION.............oooouiiiii et e e e e et e e e e e e et r e e e e e e e eaabeeeeeesabeeeeeeeeannens 2
4.1 FIash Bank OrganizZation............c.eeiiuieeiiiieeiiieestiee ettt e e eteeesteeeeatteeeaseee s neeeassteeeaseeeaanseeeanseeeaanseeeanseeeanseeeeanseeeanneeesnnnneenn 2
4.2 LFU Concepts and Factors Impacting PerfOrmManCe..........c..oii ittt e et e e eee e s e nneeeas 3
4.3 Hardware SUPPOIt FOr LFU.... ...ttt e e ettt e e e et e e e e e e s eabaeeeeeeeaassaeeeeeaassbeeeeeesastenseeesaasbeneaasaanes 4
4.4 LFU COMPIIET SUPPOIL. ... .eeeiieeieiitiiee ettt e e ettt e e e e ettt e e e e e et e eeeeeeetaeeeeeeeasasaeeaeaaaasteeeaeesaasseseaesaassssesaeeaassssessessasanneaesaanes 5
SR Y o] o] o= 1 o o T I U o PSP URRRR 6
5 ReSUItS aNd CONCIUSION...........oiiiiii ettt e et e e sttt e e ettt e st e e e aseeeeenseeeanseeeaaneeeesaseeesnseeeeanteeeanneeeansaeeeanseeennnes 8
6 Example IMPIemENtatioNns...............ooooiiii e e e e e e e e e e e e e e e e e e e e e e e e ————————————————araaaaaes 9
T REVISION HISTOKY ... ... e ettt oottt e e oottt e e e e o e te et e e e e e s bt eeeee e e anbeeeeaeaanbeeeeee e e nneseeeeeaannbeeeaeeaansneeaaenn 10

Figure 4-1. Dual-Bank Flash Partitioning.........cooo oottt e et e et e e s e b e e e e e e nneeeee s 3
Figure 4-2. INTErrUPt VECIOT SWAPD.......coi ettt ettt e et e et e e sttt e e et e e sa et e e sseeeeameeeeeaneeeeemeeeeanseeeeneeeeanseeeanneeeenneas 4
[ To UL =T TR NV I =] o G T o F PSSP 5
Figure 4-4. APPICAtION LU FIOW..... ..ottt e e e e ettt e e e e e a bttt e e e e b bttt e e e e anbb e e e e e e aanbeeeeeennsneeas 7
Figure 5-1. Steps Before LFU SWILChOVET.......... . ittt ettt e et e e sne e e e sne e e e et e e enneeesnneean 8
[ To UL T T2 I U IS (o g To Y= RS =Y SRS 8
Trademarks

All trademarks are the property of their respective owners.

SPRUIU9C — AUGUST 2020 — REVISED OCTOBER 2025 Live Firmware Update Without Device Reset on C2000 MCUs 1
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated


https://www.ti.com/product/TMS320F280039C
https://www.ti.com/product/TMS320F28P550SJ
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU9C&partnum=

13 TEXAS
INSTRUMENTS

Introduction www.ti.com

1 Introduction

In applications like server power supplies, the system is desired to be run continuously to reduce downtime.
But typically during firmware upgrades - due to bug fixes, new features, and/or performance improvements -
the system is removed from service causing downtime. This can be handled with redundant modules but with
increase in total system cost. An alternate approach, called Live Firmware Update (LFU), allows firmware to
be updated while the system is still operating. Switching to new firmware can be done either with or without
resetting the device, with the latter being more complex.

2 Key Innovations
There are two key innovations in the proposed design:

» A Compiler LFU initialization routine that initializes variables in the new firmware, executing in tandem
with Control ISRs of the old firmware. Preceding this, the download and installation (programming) of
the new firmware occurs, also in tandem with the Control ISRs of the old firmware. These steps can be
time-consuming, but the tandem execution means that application functionality is not compromised while the
necessary steps for LFU execute.

» Switchover to new firmware at the best time (beginning of the idle time) with interrupts disabled for a very
short period of time (< 100 CPU clock cycles), made possible through hardware LFU support in the MCU
(swapping of interrupt vectors and function pointers). This step is very short, and decoupling this from the
previous step allows activation of new firmware to be very fast.

3 Building Blocks for LFU

The LFU design consists of several building blocks:

* A desktop Host application that issues an LFU command

* An LFU bootloader on the target device’s Flash to communicate with the Host and implement LFU

» A communication peripheral connecting the host to the target (for example, SCI or CAN)

* An LFU-ready application to be downloaded and activated

* Compiler with LFU support

* The target MCU with LFU related hardware support, such as Flash memory with multiple physically separate
Flash banks, and so forth. Dual or more Flash banks allow application firmware resident on one Flash bank to
execute, while the other Flash bank is being updated.

4 Details of Proposed Solution
4.1 Flash Bank Organization

The dual-bank Flash is partitioned as shown in Figure 4-1. Two sectors in each bank are allocated to the

LFU bootloader, which comprises of Flash bank selection logic, the SCI kernel, and Flash APIs. These do not
change during firmware upgrades. Bank 1 does not contain bank selection logic. The rest of the Flash sectors

in the bank are allocated to the application. Bank selection logic allows the bootloader to determine which, if
any, of the Flash banks are programmed with application firmware, and which bank contains the most recent
application firmware version. Thus, bank selection logic is the entry point of the software system. The SCI kernel
implements the transfer of the image from the host, and programming of Flash through Flash programming APls
(resident either in Flash or in ROM). A few locations in Sector 2 are reserved to store the below information:

» START - Indicates that Flash erase is complete and program/verification is about to begin

» KEY- The firmware in a bank is considered valid if this location contains a specific pattern

+ Firmware Revision number (REV) — used by the bank selection logic to determine the newer firmware version
between banks 0 and 1

2 Live Firmware Update Without Device Reset on C2000 MCUs SPRUIU9C — AUGUST 2020 — REVISED OCTOBER 2025
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated


https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU9C&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Details of Proposed Solution
Flash Bank O Flash Bank 1
Custom Bootloader Custom Bootloader
Sector 0
Bank Selection Logic SCI Kernel
and And
SCI Kernel Sector 1 Flash API
And
Flash API
START (64) | KEY (32) | REV (32) START (64) | KEY (32) | REV (32)
Sector 2
Sector 3
[ ]
.
[ ]
.
Application . Application
.
[ ]
.
[ ]
.
[ ]
Sector 15

Figure 4-1. Dual-Bank Flash Partitioning

4.2 LFU Concepts and Factors Impacting Performance

The key considerations when creating LFU-ready firmware are operational continuity during LFU, and LFU
switchover time. These two are closely related. Operational continuity is achieved through the persistence of
state, keeping existing static and global variables in RAM at the same addresses between firmware versions,
and avoiding re-initialization of those variables when the new firmware is activated. LFU Compiler support
enables this.

Activating the new firmware involves branching to the LFU entry point of the new firmware, executing the
compiler's LFU initialization routine, arriving inside the main() of the new image, and performing additional
initialization. This is where interrupts are briefly disabled, and initialization that needs interrupts to be disabled
is performed (for example, Interrupt vector updates, function pointer updates), before interrupts are re-enabled.
This last time interval is defined as the LFU switchover time.

LFU is simplified when there is hardware support to swap Flash banks, where either Flash bank can be mapped
to a fixed address space, considered the Active bank. The Inactive bank is mapped to a different address space
and is the bank that is updated. C2000 MCUs do not currently support Flash bank swap, so active and inactive
banks need to be tracked, and you need to use the linker command file to create application firmware targeted to
specific banks.

Function pointers and Interrupt vectors must be re-initialized inside main(), since the locations are different
between Flash banks. C2000 MCUs support a large number of interrupt vectors (typically 192), so this is not
practical to re-initialize all of them. Usually, only a few are used, and the rest are assigned to a default vector.
LFU-specific hardware features (Interrupt vector swapping, RAM block swapping) enable a significant reduction
in the LFU switchover time.

SPRUIU9C — AUGUST 2020 — REVISED OCTOBER 2025
Submit Document Feedback

Live Firmware Update Without Device Reset on C2000 MCUs 3

Copyright © 2025 Texas Instruments Incorporated


https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU9C&partnum=

13 TEXAS
INSTRUMENTS

Details of Proposed Solution www.ti.com

4.3 Hardware Support for LFU
4.3.1 Multiple Flash Banks

To enable seamless transfer of control from old firmware to new firmware multi-bank Flash support is a critical
feature. Flash technology used on the devices does not permit simultaneous Reads and Writes to a Flash bank,
so this model allows one bank to execute firmware, and other bank(s) to be programmed.

4.3.2 Interrupt Vector Table Swap

Multiple components of switchover time were analyzed to assess optimization opportunities and the update of
the interrupt vector map entries was found to be one of the prime factors impacting switchover time. The number
of vectors to be updated varies from a few to the entire table (192 vectors). The update for a single entry can
take about 5 cycles and as a result, the update of the vector table can take up to 960 cycles (4.8 us at 200MHz).

In order to reduce the switchover time, a shadow vector memory and capability to swap it with active vector
memory is implemented. The switchover code can update the shadow vector memory when the application
execution is in progress. Once the vector memory is updated, the swap be completed in one clock cycle. Both
memories can be used in ping-pong fashion for successive software upgrades.

A representative implementation of Interrupt vector swap is shown in Figure 4-2. Figure 4-2(a) is the
configuration before swap and Figure 4-2(b) after the swap. The overall vector memory is divided into two
blocks — Block A that spans from address 0x0000_0DO0O0 to 0x0000_OEFF and Block B that spans from address
0x0100_0900 to 0x0100_OAFF. Block A holds the active vector table and Block B holds the shadow vector
table. During LFU, shadow memory entries get updated before switchover, and the swap is executed during
switchover. This reduces the switchover time from a maximum of 960 cycles to a single cycle.

(a) Configuration before swap (a) Configuration after swap
0x0000_0D00 0x0100_0900
Block A Block A
0x0000_OEFF 0x0100_OAFF
0x0100_0900 0x0000_0D00
Block B Block B
0x0100_OAFF 0x0000_OEFF
Inactive Vector Table
Active Vector Table

Figure 4-2. Interrupt Vector Swap

4 Live Firmware Update Without Device Reset on C2000 MCUs SPRUIU9C — AUGUST 2020 — REVISED OCTOBER 2025
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated


https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU9C&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Details of Proposed Solution

4.3.3 RAM Block Swap
Similar to Vector Table Swap physical RAM memory blocks can be swapped as shown in Figure 4-3.

If physical memory Block 1 contains function pointers for the current firmware, then the same relative locations in
physical memory of Block 2 can be populated with function pointers of the new firmware before LFU switchover.
During LFU switchover, a simple swap operation is initiated by the user application code that takes just 1

CPU clock cycle. This allows user-application code to maintain function pointers in LSO, yet have two different
physical blocks that map to the LSO address range. After the swap, the physical RAM block previously mapped
to the Block1 address space is how mapped to the BlockO address space, and vice versa, enabling seamless
function pointer access in the new firmware.

Logical Normal Mode Swap Mode
Address
0x0000_8000 0x8000 0x8000
Block-1 Block-2
LSO LSO
0x87FF OX87FF
0x8800 0x8800
Block-2 Block-1
LS1 LS1
Ox8FFF Ox8FFF
0x0000_8FFF

Figure 4-3. RAM Block Swap

4.3.4 Hardware Register Flags

Execution can reach main() either after a device reset and through a C initialization routine call to main(), or
during LFU, from the LFU entry point calling the LFU Compiler initialization routine and then main(). In the former
case, device specific initializations in main() need to occur, but not in the LFU case. To distinguish the two, a
hardware flag in a register is supported, which indicates whether LFU is currently active or not.

4.4 LFU Compiler Support
The Compiler provides the following support for LFU:

1. LFU Initialization routine, named __ Tl _auto_init_warm
2. LFU attributes for variables
3. LFU modes

The Compiler requires the old firmware executable to be provided as a reference image while building the new
firmware executable. This allows the compiler to identify common variables and their locations, and also identify
new variables and deleted variables.

The compiler defines two new LFU attributes for variables, called preserve and update. “Preserve” is used

to maintain the addresses of common variables between firmware versions. “Update” is used to indicate new
variables that the compiler can assign addresses without constraints and also initialize during the Compiler’s
LFU initialization routine, named __ Tl _auto_init_warm(). Examples of how these attributes can be used are
listed below:

float32_t _ attribute _((preserve)) BUCK update_test variable1_cpu;
float32_t _ attribute _((update)) BUCK update test variable2 cpu;

SPRUIU9C — AUGUST 2020 — REVISED OCTOBER 2025 Live Firmware Update Without Device Reset on C2000 MCUs 5
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated


https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU9C&partnum=

13 TEXAS
INSTRUMENTS

Details of Proposed Solution www.ti.com

With the above assignments, the generated memory map file contains “.Tl.bound” sections corresponding to the
preserve variables and a single “.Tl.update” section where all the update variables are collected into.

To make things easier for the application developer, different LFU modes are available. The default mode is
called preserve (not to be confused with the corresponding variable attribute described above), which has the
following properties:

* With a reference (old) image provided, common variables do not even need to be specified as preserve. This
is the default attribute for common variables, and they are not initialized in the LFU initialization routine of the
compiler. As a result, it maintains the state.

* Any new variables that do not have any attributes specified are assigned addresses, but these variables are
not initialized in the Compiler’s LFU initialization routine. The Compiler’s LFU initialization routine initializes
variables only when declared with the update attribute.

4.5 Application LFU Flow
The detailed steps associated with LFU are outlined below:

1. Boot to Bank Selection Logic and Execute Application: On device reset, execution starts at the default boot to
flash entry point, 0x80000, which is where the bank selection logic function is located. This function checks for
valid applications in the Flash banks, picks the recent most version, and branches to the corresponding firmware
version’s entry point (codestart). The entry point is the gateway to the C runtime initialization routine and main()
of the application.

2. Initiate LFU: The user invokes LFU on the target MCU through a host initiated LFU command from the host
side.

3. Receive LFU command in Application: (Step 1 in Figure 4-4) The application receives the LFU command in
the SCI Receive Interrupt ISR (CommandLogISR).

4. Parse LFU command and Branch to LFU Bootloader: (Step 2 in Figure 4-4 ) A specific background task
function (Run LFU) parses the LFU command, disables the SCI interrupt, and branches to a LFU function in the
LFU bootloader in the same Flash bank, located at a fixed address.

5. Download new Firmware and Program to Flash: (Step 3 in Figure 4-4 ) The LFU function in the LFU
bootloader receives an application image from the host and programs the image into the Inactive Flash bank. At
this point, background task functions in the old firmware have stopped executing, however Control ISRs from the
old firmware continue executing to keep the application functionality unaffected.

6. Branch to LFU entry point of new Firmware: (Step 4 in Figure 4-4 ) When the new Firmware is successfully

downloaded and programmed, the custom bootloader branches to the LFU entry point (C_int_LFU) of the new
application image, located at a fixed address for each Flash bank, and is different from the regular Flash boot

entry point (codestart).

6. Execute Compiler LFU Initialization routine and branch to main() of new Firmware: The function at the LFU
entry point does the following:

a. The compiler's LFU initialization routine (__TI_auto_init_warm) is invoked. This initializes any variables that
have been indicated as needing initialization. (Step 5 in Figure 4-4 ).

b. A flag is set in a hardware LFU register to indicate LFU is in progress.
¢. main() is called. (Step 6 in Figure 4-4 ).

7. Perform LFU specific initializations in main() prior to switchover: (Step 7 in Figure 4-4 ) In main(), initialization
progresses depending on whether or not LFU is in progress, by checking the above-mentioned flag.

If the flag is set, an LFU initialization function (Init_LFU) copies over any user indicated code from Flash to RAM
memory. Next, it updates the inactive interrupt vector table with the interrupt vector locations corresponding to
the new firmware. Similarly, a set of inactive function pointers is also updated corresponding to function pointer
locations in the new firmware.

6 Live Firmware Update Without Device Reset on C2000 MCUs SPRUIU9C — AUGUST 2020 — REVISED OCTOBER 2025
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated


https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU9C&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Details of Proposed Solution

8. Wait for optimal LFU switchover point: (Step 8 in Figure 4-4 ) A simple state machine with software flags is
used to determine the end of a Control ISR and the beginning of idle time. This is the optimal time to switchover
(IdentifyldleTime), since it allows maximizing the utilization of idle time between Control loop interrupts.

9. Execute the LFU switchover. (Step 9 in Figure 4-4 ) It is important to note that even though execution is
already inside main() of the new firmware, old Control loop ISRs are still executing to keep the application
functionality unaffected. Once the optimal LFU switchover point is identified, the LFU switchover steps
(ActivateApp) occur. First, global interrupts are disabled. Hardware Interrupt vector table swapping and RAM
block swapping are executed. Then the stack pointer is re-initialized, and global interrupts are re-enabled. Now,
ISRs and background task functions of the new firmware begin executing, representing completion of the LFU
switchover. Since global interrupts are disabled for a short duration, an interrupt occurring during this time would
continue to stay latched and interrupt the CPU when global interrupts are re-enabled.

Flash Bank 0 Flash Bank 1
Custom Bootloader Custom Bootloader
Sector 0
Bank Selection Logic SCI Kernel
and And
» SCI Kernel Sector 1 Flash API
And
Flash API
(3)
START (64) | KEY (32) | REV (32) START (64) | KEY (32) | REV (32)
Sector 2
(2) | = >
{ un LFU | > | Run LFU |
- | - ]
-mam() | main() I:
Sector 3 0
Init_LFU ector Init_LFU
[ ]
_TI_auto_init_warm ° | _TI_auto_init_warm I:
@) . [am— ®) | ®
C_int_LFU N :l C_int_LFU I
Application . (8) Application
.
IdentifyldleTime ° “» ldentifyldleTime
. 9)
ActivateApp 4 ActivateApp
[ ]
(1) » CommandLogISR ° CommandLogISR
LFU command
Codestart Sector 15 Codestart

Figure 4-4. Application LFU Flow

SPRUIU9C — AUGUST 2020 — REVISED OCTOBER 2025
Submit Document Feedback

Live Firmware Update Without Device Reset on C2000 MCUs 7

Copyright © 2025 Texas Instruments Incorporated


https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU9C&partnum=

13 TEXAS
INSTRUMENTS

Results and Conclusion www.ti.com

5 Results and Conclusion

In Figure 5-1, the steps that occur prior to the LFU switchover are depicted: download firmware and
program Flash bank, LFU Compiler Initialization routine (the function __TI_auto_init_warm()), then LFU specific
initializations in main() (the function init_Ifu()).

Download Firmware and _TI_auto_init_warm executes Init_Ifu time consuming
Program Flash Bank in tandem with ISR because of memcpy()

Figure 5-1. Steps Before LFU Switchover

Figure 5-2 illustrates the actual LFU switchover. The topmost waveform (00) represents the LFU switchover, the
second waveform (01) represents the ISR CPU load (80% for old firmware and 40% for new firmware), and the
bottom waveform (03) represents the regulated output voltage. The switchover occurs in 0.6us (or 72 CPU clock
cycles), which includes function calls and GPIO set/reset times. Switchover occurs about 40 cycles after the ISR
ends. It takes about 20 cycles to exit the ISR, and then about 15 cycles to exit the loop that is waiting for the
correct time to switchover.

Output Stays Old Firmware ActivateApp Occurs  New firmware ISR
Regulated ISR (Longer) During Idle Time (shorter)

Figure 5-2. LFU Switchover Steps

This application note demonstrates the systematic implementation of LFU for real-time control applications and
specifically high availability systems needing operation without downtime. Switchover to new firmware is able to
be completed within 10 seconds of CPU clock cycles with the available LFU building blocks, including a novel
application LFU software flow, hardware LFU support, and Compiler LFU support.

8 Live Firmware Update Without Device Reset on C2000 MCUs SPRUIU9C — AUGUST 2020 — REVISED OCTOBER 2025
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated


https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU9C&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Example Implementations

6 Example Implementations

Examples demonstrating the LFU hardware features on F28003x and F28P55x devices are released in the

C2000WARE-DIGITALPOWER-SDK and C2000WARE. The software available helps accelerate time to market.

F28003x

TIDM-02011 demonstrates LFU without device reset leveraging the LFU hardware support on F28003x devices.

LFU is illustrated for both the C28x CPU and the Control Law Accelerator (CLA), and is implemented in the
C2000™ Digital Power Buck Converter BoosterPack reference design. The TIDM-02011 Design Guide details
the LFU capabilities with the main control loop running on either the C28x CPU or the CLA.

TIDA-010062 also demonstrates LFU without device reset on F28003x devices. This example displays the LFU
capabilities on the LLC stage with the main control loop running on the CLA and background processes running
on the C28x CPU. The TIDA-010062 Design Guide details how LFU is implemented in the reference design.

Note
For detailed information on the LFU without device reset implementation on C2000™ devices, please
refer to the TIDM-02011 Design Guide.

F28P55x

Two example applications were developed to demonstrate the LFU hardware features on F28P55x devices.
LFU has been implemented for the C28x CPU, the Control Law Accelerator (CLA), and Neural Processing Unit
(NPU). Note that the CPU and CLA have independent applications due to application use-case; either the CPU
or CLA are controlling blinking LEDs.

The following examples can be found in C2000Ware
(C2000Ware_x_xx_xx_xx\driverlib\f28p55x\examples\flash):

1. [fu_cpu_cpu: LFU without device reset for the CPU and NPU
2. Ifu_cla_npu: LFU without device reset for the CLA and NPU

To demonstrate LFU for the NPU, the LFU_BANKO_NPU/LFU_BANK1_NPU build configurations (which adds
the RUNNING_ON_NPU pre-defined symbol) are included in both the CPU and CLA applications. The arc fault
detect model and the associated test vectors (generated from Model Composer) are executed by the NPU to
compare to golden output before the background loop is executed. Note that a reset is necessary to properly
initialize the NPU when adding NPU support to the application for the first time.

SPRUIU9C — AUGUST 2020 — REVISED OCTOBER 2025 Live Firmware Update Without Device Reset on C2000 MCUs
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

9


https://www.ti.com/tool/C2000WARE-DIGITALPOWER-SDK
https://www.ti.com/tool/C2000WARE
https://www.ti.com/tool/TIDM-02011
https://www.ti.com/lit/ug/tidu986/tidu986.pdf
https://www.ti.com/lit/ug/tiduey4/tiduey4.pdf
https://www.ti.com/tool/TIDA-010062
https://www.ti.com/lit/tiduet7
https://www.ti.com/lit/ug/tiduey4/tiduey4.pdf
https://dev.ti.com/edgeaistudio/
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU9C&partnum=

13 TEXAS

INSTRUMENTS
Revision History www.ti.com
7 Revision History
Changes from Revision B (September 2022) to Revision C (October 2025) Page
* Added Example Implementations for F28003x and F28P55X deViCes............ceeiiiiiiiiiiiiiieieiieieeeeeeeeeeea 9
Changes from Revision A (August 2021) to Revision B (September 2022) Page
» Updated the numbering format for tables, figures and cross-references throughout the document.................. 2
L Vo (o =0 IR T=T o1 o] o SRS 2
10 Live Firmware Update Without Device Reset on C2000 MCUs SPRUIUSC — AUGUST 2020 — REVISED OCTOBER 2025

Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated


https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU9C&partnum=

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with Tl products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an
application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other Tl intellectual property right or to any third party intellectual property right. Tl disclaims responsibility for, and you fully
indemnify Tl and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on
ti.com or provided in conjunction with such Tl products. TI's provision of these resources does not expand or otherwise alter TI's applicable
warranties or warranty disclaimers for Tl products. Unless Tl explicitly designates a product as custom or customer-specified, TI products
are standard, catalog, general purpose devices.

Tl objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated
Last updated 10/2025


https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com/lit/pdf/SZZQ076
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	2 Key Innovations
	3 Building Blocks for LFU
	4 Details of Proposed Solution
	4.1 Flash Bank Organization
	4.2 LFU Concepts and Factors Impacting Performance
	4.3 Hardware Support for LFU
	4.3.1 Multiple Flash Banks
	4.3.2 Interrupt Vector Table Swap
	4.3.3 RAM Block Swap
	4.3.4 Hardware Register Flags

	4.4 LFU Compiler Support
	4.5 Application LFU Flow

	5 Results and Conclusion
	6 Example Implementations
	7 Revision History

