
Application Note
Live Firmware Update Without Device Reset on C2000™

MCUs

Baskaran Chidambaram and Sira Rao

ABSTRACT

This document presents details on live firmware update (LFU) without device reset on devices with multiple
Flash banks, such as the TMS320F28003x.

Table of Contents
1 Introduction...2
2 Key Innovations.. 2
3 Building Blocks for LFU...2
4 Details of Proposed Solution...2

4.1 Flash Bank Organization..2
4.2 LFU Concepts and Factors Impacting Performance.. 3
4.3 Hardware Support for LFU... 4
4.4 LFU Compiler Support... 5
4.5 Application LFU Flow... 6

5 Results and Conclusion...8
6 Revision History..8

List of Figures
Figure 4-1. Dual-Bank Flash Partitioning...3
Figure 4-2. Interrupt Vector Swap..4
Figure 4-3. RAM Block Swap...5
Figure 4-4. Application LFU Flow.. 7
Figure 5-1. Steps Before LFU Switchover... 8
Figure 5-2. LFU Switchover Steps...8

Trademarks
C2000™ is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.

www.ti.com Table of Contents

SPRUIU9B – AUGUST 2020 – REVISED SEPTEMBER 2022
Submit Document Feedback

Live Firmware Update Without Device Reset on C2000™ MCUs 1

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com/product/TMS320F280039C
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU9B&partnum=

1 Introduction
In applications like server power supplies, the system is desired to be run continuously to reduce downtime.
But typically during firmware upgrades - due to bug fixes, new features, and/or performance improvements -
the system is removed from service causing downtime. This can be handled with redundant modules but with
increase in total system cost. An alternate approach, called Live Firmware Update (LFU), allows firmware to
be updated while the system is still operating. Switching to new firmware can be done either with or without
resetting the device, with the latter being more complex.

2 Key Innovations
There are two key innovations in the proposed solution:

• A Compiler LFU initialization routine that initializes variables in the new firmware, executing in tandem
with Control ISRs of the old firmware. Preceding this, the download and installation (programming) of
the new firmware occurs, also in tandem with the Control ISRs of the old firmware. These steps can be
time-consuming, but the tandem execution means that application functionality is not compromised while the
necessary steps for LFU execute.

• Switchover to new firmware at the best time (beginning of the idle time) with interrupts disabled for a very
short period of time (< 100 CPU clock cycles), made possible through hardware LFU support in the MCU
(swapping of interrupt vectors and function pointers). This step is very short, and decoupling this from the
previous step allows activation of new firmware to be very fast.

3 Building Blocks for LFU
The LFU design consists of several building blocks:

• A desktop Host application that issues an LFU command
• An LFU bootloader on the target device’s Flash to communicate with the Host and implement LFU
• A communication peripheral connecting the host to the target (for example, Serial Communication Interface

(SCI))
• An LFU-ready application to be downloaded and activated
• Compiler with LFU support
• The target MCU with LFU related hardware support, such as Flash memory with multiple physically separate

Flash banks, and so forth. Dual or more Flash banks allow application firmware resident on one Flash bank to
execute, while the other Flash bank is being updated.

4 Details of Proposed Solution
4.1 Flash Bank Organization
The dual-bank Flash is partitioned as shown in Figure 4-1. Two sectors in each bank are allocated to the
LFU bootloader, which comprises of Flash bank selection logic, the SCI kernel, and Flash APIs. These do not
change during firmware upgrades. Bank 1 does not contain bank selection logic. The rest of the Flash sectors
in the bank are allocated to the application. Bank selection logic allows the bootloader to determine which, if
any, of the Flash banks are programmed with application firmware, and which bank contains the most recent
application firmware version. Thus, bank selection logic is the entry point of the software system. The SCI kernel
implements the transfer of the image from the host, and programming of Flash through Flash programming APIs
(resident either in Flash or in ROM). A few locations in Sector 2 are reserved to store the below information:

• START – Indicates that Flash erase is complete and program/verification is about to begin
• KEY– The firmware in a bank is considered valid if this location contains a specific pattern
• Firmware Revision number (REV) – used by the bank selection logic to determine the newer firmware version

between banks 0 and 1

Introduction www.ti.com

2 Live Firmware Update Without Device Reset on C2000™ MCUs SPRUIU9B – AUGUST 2020 – REVISED SEPTEMBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU9B&partnum=

Bank Selection Logic

and

SCI Kernel

And

Flash API

Custom Bootloader

START (64) KEY (32) REV (32)

Application

Flash Bank 0

Codestart

SCI Kernel

And

Flash API

Custom Bootloader

START (64) KEY (32) REV (32)

Application

Flash Bank 1

Codestart

Sector 0

Sector 1

Sector 2

Sector 3

Sector 15

Figure 4-1. Dual-Bank Flash Partitioning

4.2 LFU Concepts and Factors Impacting Performance
The key considerations when creating LFU-ready firmware are operational continuity during LFU, and LFU
switchover time. These two are closely related. Operational continuity is achieved through the persistence of
state, keeping existing static and global variables in RAM at the same addresses between firmware versions,
and avoiding re-initialization of those variables when the new firmware is activated. LFU Compiler support
enables this.

Activating the new firmware involves branching to the LFU entry point of the new firmware, executing the
compiler's LFU initialization routine, arriving inside the main() of the new image, and performing additional
initialization. This is where interrupts are briefly disabled, and initialization that needs interrupts to be disabled
is performed (for example, Interrupt vector updates, function pointer updates), before interrupts are re-enabled.
This last time interval is defined as the LFU switchover time.

LFU is simplified when there is hardware support to swap Flash banks, where either Flash bank can be mapped
to a fixed address space, considered the Active bank. The Inactive bank is mapped to a different address space
and is the bank that is updated. C2000™ MCUs do not currently support Flash bank swap, so active and inactive
banks need to be tracked, and you need to use the linker command file to create application firmware targeted to
specific banks.

Function pointers and Interrupt vectors need to be re-initialized inside main(), since their locations are different
between Flash banks. C2000 MCUs support a large number of interrupt vectors (typically 192), so it is not
practical to re-initialize all of them. Usually, only a few are used, and the rest are assigned to a default vector.
LFU-specific hardware features (Interrupt vector swapping, RAM block swapping) enable a significant reduction
in the LFU switchover time.

www.ti.com Details of Proposed Solution

SPRUIU9B – AUGUST 2020 – REVISED SEPTEMBER 2022
Submit Document Feedback

Live Firmware Update Without Device Reset on C2000™ MCUs 3

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU9B&partnum=

4.3 Hardware Support for LFU
4.3.1 Multiple Flash Banks

To enable seamless transfer of control from old firmware to new firmware multi-bank Flash support is a critical
feature. Flash technology used on the devices does not permit simultaneous Reads and Writes to a Flash bank,
so this model allows one bank to execute firmware, and other bank(s) to be programmed.

4.3.2 Interrupt Vector Table Swap

Multiple components of switchover time were analyzed to assess optimization opportunities and the update of
the interrupt vector map entries was found to be one of the prime factors impacting switchover time. The number
of vectors to be updated varies from a few to the entire table (192 vectors). The update for a single entry can
take about 5 cycles and hence the update of the vector table itself can take up to 960 cycles (4.8 us at 200MHz).

In order to reduce the switchover time, a shadow vector memory and capability to swap it with active vector
memory is implemented. The switchover code can update the shadow vector memory when the application
execution is in progress. Once the vector memory is updated, the swap be completed in one clock cycle. Both
memories can be used in ping-pong fashion for successive software upgrades.

A representative implementation of Interrupt vector swap is shown in Figure 4-2. Figure 4-2(a) is the
configuration before swap and Figure 4-2(b) after the swap. The overall vector memory is divided into two
blocks – Block A that spans from address 0x0000_0D00 to 0x0000_0EFF and Block B that spans from address
0x0100_0900 to 0x0100_0AFF. Block A holds the active vector table and Block B holds the shadow vector
table. During LFU, shadow memory entries get updated before switchover, and the swap is executed during
switchover. This reduces the switchover time from a maximum of 960 cycles to a single cycle.

0x0000_0D00

Block A

0x0000_0EFF

0x0100_0900

Block B

0x0100_0AFF

0x0100_0900

Block A

0x0100_0AFF

0x0000_0D00

Block B

0x0000_0EFF

(a) Configuration before swap (a) Configuration after swap

Inactive Vector Table

Active Vector Table

Figure 4-2. Interrupt Vector Swap

Details of Proposed Solution www.ti.com

4 Live Firmware Update Without Device Reset on C2000™ MCUs SPRUIU9B – AUGUST 2020 – REVISED SEPTEMBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU9B&partnum=

4.3.3 RAM Block Swap

Similar to Vector Table Swap physical RAM memory blocks can be swapped as shown in Figure 4-3.

If physical memory Block 1 contains function pointers for the current firmware, then the same relative locations in
physical memory of Block 2 can be populated with function pointers of the new firmware before LFU switchover.
During LFU switchover, a simple swap operation is initiated by the user application code that takes just 1
CPU clock cycle. This allows user-application code to maintain function pointers in LS0, yet have two different
physical blocks that map to the LS0 address range. After the swap, the physical RAM block previously mapped
to the Block1 address space would now be mapped to the Block0 address space, and vice versa, enabling
seamless function pointer access in the new firmware.

Logical

Address

0x0000_8000

0x0000_8FFF

Normal Mode

0x8000

Block-1

LS0

0x87FF

0x8800

Block-2

LS1

0x8FFF

Swap Mode

0x8000

Block-2

LS0

0x87FF

0x8800

Block-1

LS1

0x8FFF

Figure 4-3. RAM Block Swap

4.3.4 Hardware Register Flags

Execution can reach main() either after a device reset and through a C initialization routine call to main(), or
during LFU, from the LFU entry point calling the LFU Compiler initialization routine and then main(). In the former
case, device specific initializations in main() need to occur, but not in the LFU case. To distinguish the two, a
hardware flag in a register is supported, which indicates whether LFU is currently active or not.

4.4 LFU Compiler Support
The Compiler provides the following support for LFU:

1. LFU Initialization routine, named __TI_auto_init_warm
2. LFU attributes for variables
3. LFU modes

The Compiler requires the old firmware executable to be provided as a reference image while building the new
firmware executable. This allows the compiler to identify common variables and their locations, and also identify
new variables and deleted variables.

The compiler defines two new LFU attributes for variables, called preserve and update. “Preserve” is used
to maintain the addresses of common variables between firmware versions. “Update” is used to indicate new
variables that the compiler can assign addresses without constraints and also initialize during the Compiler’s
LFU initialization routine, named __TI_auto_init_warm(). Examples of how these attributes can be used are
listed below:

float32_t __attribute__((preserve)) BUCK_update_test_variable1_cpu;

float32_t __attribute__((update)) BUCK_update_test_variable2_cpu;

www.ti.com Details of Proposed Solution

SPRUIU9B – AUGUST 2020 – REVISED SEPTEMBER 2022
Submit Document Feedback

Live Firmware Update Without Device Reset on C2000™ MCUs 5

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU9B&partnum=

With the above assignments, the generated memory map file contains “.TI.bound” sections corresponding to the
preserve variables and a single “.TI.update” section where all the update variables are collected into.

To make things easier for the application developer, different LFU modes are available. The default mode is
called preserve (not to be confused with the corresponding variable attribute described above), which has the
following properties:

• With a reference (old) image provided, common variables do not even need to be specified as preserve.
This will be the default attribute for common variables, and they are not initialized in the Compiler’s LFU
initialization routine. Hence, it maintains the state.

• Any new variables that do not have any attributes specified are assigned addresses, but these variables are
not initialized in the Compiler’s LFU initialization routine. The Compiler’s LFU initialization routine initializes
variables only when declared with the update attribute.

4.5 Application LFU Flow
The detailed steps associated with LFU are outlined below:

1. Boot to Bank Selection Logic and Execute Application: On device reset, execution starts at the default boot to
flash entry point, 0x80000, which is where the bank selection logic function is located. This function checks for
valid applications in the Flash banks, picks the recent most version, and branches to the corresponding firmware
version’s entry point (codestart). The entry point is the gateway to the C runtime initialization routine and main()
of the application.

2. Initiate LFU: The user invokes LFU on the target MCU through a host initiated LFU command from the host
side.

3. Receive LFU command in Application: (Step 1 in Figure 4-4) The application receives the LFU command in its
SCI Receive Interrupt ISR (CommandLogISR).

4. Parse LFU command and Branch to LFU Bootloader: (Step 2 in Figure 4-4) A specific background task
function (Run LFU) parses the LFU command, disables the SCI interrupt, and branches to a LFU function in the
LFU bootloader in the same Flash bank, located at a fixed address.

5. Download new Firmware and Program to Flash: (Step 3 in Figure 4-4) The LFU function in the LFU
bootloader receives an application image from the host and programs it into the Inactive Flash bank. At this
point, background task functions in the old firmware have stopped executing, however Control ISRs from the old
firmware continue executing to keep the application functionality unaffected.

6. Branch to LFU entry point of new Firmware: (Step 4 in Figure 4-4) When the new Firmware is successfully
downloaded and programmed, the custom bootloader branches to the LFU entry point (C_int_LFU) of the new
application image, located at a fixed address for each Flash bank, and is different from the regular Flash boot
entry point (codestart).

6. Execute Compiler LFU Initialization routine and branch to main() of new Firmware: The function at the LFU
entry point does the following:

a. The compiler's LFU initialization routine (__TI_auto_init_warm) is invoked. This initializes any variables that
have been indicated as needing initialization. (Step 5 in Figure 4-4).

b. A flag is set in a hardware LFU register to indicate LFU is in progress.

c. main() is called. (Step 6 in Figure 4-4).

7. Perform LFU specific initializations in main() prior to switchover: (Step 7 in Figure 4-4) In main(), initialization
progresses depending on whether or not LFU is in progress, by checking the above-mentioned flag.

If the flag is set, an LFU initialization function (Init_LFU) copies over any user indicated code from Flash to RAM
memory. Next, it updates the inactive interrupt vector table with the interrupt vector locations corresponding to
the new firmware. Similarly, a set of inactive function pointers is also updated corresponding to function pointer
locations in the new firmware.

8. Wait for optimal LFU switchover point: (Step 8 in Figure 4-4) A simple state machine with software flags is
used to determine the end of a Control ISR and the beginning of idle time. This is the optimal time to switchover
(IdentifyIdleTime), since it allows maximizing the utilization of idle time between Control loop interrupts.

Details of Proposed Solution www.ti.com

6 Live Firmware Update Without Device Reset on C2000™ MCUs SPRUIU9B – AUGUST 2020 – REVISED SEPTEMBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU9B&partnum=

9. Execute the LFU switchover: (Step 9 in Figure 4-4) It is important to note that even though execution is
already inside main() of the new firmware, old Control loop ISRs are still executing to keep the application
functionality unaffected. Once the optimal LFU switchover point is identified, the LFU switchover steps
(ActivateApp) occur. First, global interrupts are disabled. Hardware Interrupt vector table swapping and RAM
block swapping are executed. Then the stack pointer is re-initialized, and global interrupts are re-enabled. Now,
ISRs and background task functions of the new firmware begin executing, representing completion of the LFU
switchover. Since global interrupts are disabled for a short duration, an interrupt occurring during this time would
continue to stay latched and interrupt the CPU when global interrupts are re-enabled.

Bank Selection Logic

and

SCI Kernel

And

Flash API

Custom Bootloader

START (64) KEY (32) REV (32)

Application

Flash Bank 0

Codestart

SCI Kernel

And

Flash API

Custom Bootloader

START (64) KEY (32) REV (32)

Application

Flash Bank 1

Sector 0

Sector 1

Sector 2

Sector 3

Sector 15

Run LFU

main()

Init_LFU

_TI_auto_init_warm

C_int_LFU

IdentifyIdleTime

ActivateApp

CommandLogISR(1)

LFU command

Codestart

Run LFU

main()

Init_LFU

_TI_auto_init_warm

C_int_LFU

IdentifyIdleTime

ActivateApp

CommandLogISR

(6)(5)

(9)

(8)

(7)

(2)

(3)

(4)

Figure 4-4. Application LFU Flow

www.ti.com Details of Proposed Solution

SPRUIU9B – AUGUST 2020 – REVISED SEPTEMBER 2022
Submit Document Feedback

Live Firmware Update Without Device Reset on C2000™ MCUs 7

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU9B&partnum=

5 Results and Conclusion
In Figure 5-1, the steps that occur prior to the LFU switchover are depicted: download firmware and
program Flash bank, LFU Compiler Initialization routine (the function __TI_auto_init_warm()), then LFU specific
initializations in main() (the function init_lfu()).

Figure 5-1. Steps Before LFU Switchover

Figure 5-2 illustrates the actual LFU switchover. The topmost waveform (00) represents the LFU switchover, the
second waveform (01) represents the ISR CPU load (80% for old firmware and 40% for new firmware), and the
bottom waveform (03) represents the regulated output voltage. The switchover occurs in 0.6 µs (or 72 CPU clock
cycles), which includes function calls and GPIO set/reset times. Switchover occurs about 40 cycles after the ISR
ends. It takes about 20 cycles to exit the ISR, and then about 15 cycles to exit the loop that is waiting for the
optimal time to switchover.

Figure 5-2. LFU Switchover Steps

This application note demonstrates the systematic implementation of LFU for real-time control applications and
specifically high availability systems needing operation without downtime. Switchover to new firmware is able to
be completed within 10s of CPU clock cycles with the available LFU building blocks, including a novel application
LFU software flow, hardware LFU support, and Compiler LFU support.

6 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision A (August 2021) to Revision B (September 2022) Page
• Updated the numbering format for tables, figures and cross-references throughout the document...................2
• Added Section 2... 2

Results and Conclusion www.ti.com

8 Live Firmware Update Without Device Reset on C2000™ MCUs SPRUIU9B – AUGUST 2020 – REVISED SEPTEMBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU9B&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	2 Key Innovations
	3 Building Blocks for LFU
	4 Details of Proposed Solution
	4.1 Flash Bank Organization
	4.2 LFU Concepts and Factors Impacting Performance
	4.3 Hardware Support for LFU
	4.3.1 Multiple Flash Banks
	4.3.2 Interrupt Vector Table Swap
	4.3.3 RAM Block Swap
	4.3.4 Hardware Register Flags

	4.4 LFU Compiler Support
	4.5 Application LFU Flow

	5 Results and Conclusion
	6 Revision History

