Application Report
Live Firmware Update With Device Reset on C2000™

MCUs

Wi} TEXAS INSTRUMENTS

Sira Rao and Baskaran Chidambaram
ABSTRACT

This document presents details on Live Firmware Update (LFU) with Device Reset on devices with two Flash
banks, detailing the challenges involved and suggestions on how to address them. For simplicity of illustration,
an LED-based example is used (included as part of C2000ware).

Table of Contents

I 1331 o Yo 11T 4o T PSRRI 2
2 ResoUrces ReQUITE FOr LIFU.............ooo ittt h et e et e e s a et e e a bt e e sbt e e e ssb e e e enbeeennteeennbeeas 2
B 1 =T oY A I T L S PO SPPPPP 3
4 Static Code iN LUottt e b e e s et e e s b e e e bt e s b e et e e e b e e e bt e s ae e e b e eae e e be e e e e 5
5 LED Example Application @nd LU FIOW.............ooooiiiiiiiiii sttt e et e e e e et e e e e e s nsbeeaeesensaneeaeas 6
6 RUNNING the LED EXAMIPIE............ooiiiiiiiiiiiie ettt ettt e e e ettt e e e s et st e e e e e s asbeeee e e s nsaeeeeeaaasssaeaeeeaansbeeeeeesnnsseeeaesansnnes 8
6.1 Serial Flash Programmer UDAAte...........oouuiiiiiiiiiii ettt ettt sa et e s bt e e sab e e e abe e e s be e e e s be e e sneeesnneeeeas 8
6.2 Programming Static Code — Loading via Code Composer Studio™ (CCS)........cccirveuiireiireeeieeeieeteee e 9
6.3 Live Firmware Update Of APPICAtION.oiiiiiiiee it e bttt e s bt e bt e e et e e sne e e e snneees 16
6.4 Limitations and TroUDIESNOOTING.uiiiiiie ittt ettt st e et e e st et e sbe e e e anb e e aneeeennees 18
T REVISION HISTOIY ... ittt e et e e e e ettt e e e s e taeeeee e e s staeeeeeesnsbaeeeeeaanssseeeeeeannsseeeeesassaseeaesasnsaneens 18

List of Figures

Figure 3-1. Flash Memory Contents for Bank 0 @and Bank 1...........oouiiiiiiiiiiiii e 3
Figure 5-1. Code Flow After Entering main() of APPlICAtION........coouiiiiiiiii e 7
Figure 6-1. Flash Settings to Only Erase NECESSAry SECIOTS.........couiiiiiiiiiiii ittt e e 9
Figure 6-2. Selecting Kernel to Load to FIash Bank O...........ceoiiiiiiiiiii e 10
Figure 6-3. CCS Window view After Programming Bank 0 Flash Kernel...........coccoooiiiiiiii e 11
Figure 6-4. CCS Memory Browser View to Verify Successful Kernel Programming of Bank O............ccccooviiiiiiiiiiiniec e, 11
Figure 6-5. LFU Serial Command Invoked From Windows Command Prompt............cooouiiiiiioiiieeiniee e 12
Figure 6-6. Successful Completion of LFU Command to Program Flash Bank 1..........ccocuiiiiiiiiiii e 12
Figure 6-7. CCS Memory Browser View to Verify Successful Programming of Application on Bank 1..........ccccoovviiniiiiiiinene 13
Figure 6-8. Selecting Kernel to Load to FIash Bank 1. 13
Figure 6-9. CCS Memory Browser View to Verify Successful Kernel Programming of Bank 1.........ccccoiiiiiiiiiiiec e, 14
Figure 6-10. CCS Window View After Programming Bank 1 Flash Kernel............ccoouiiiiiii e 14
Figure 6-11. LFU Serial Command Invoked From Windows Command Prompt...........ccocueieiiiiiiiiee e 15
Figure 6-12. Successful Completion of LFU Command to Program Flash Bank O..............cooiiiiiiiiiiie e, 15
Figure 6-13. LFU Serial Command Invoked From Windows Command Prompt...........cccciiiiiiiiiiiiiniie e 16
Figure 6-14. Successful completion of LFU Command to Program Flash BankK...........ccccovuiiiiiiiiiiie e 17
Figure 6-15. LFU COde FIOW DIBGIam.......ccoiuiiiiiie ittt ettt a et e et e e sttt rab et e eabb e e e ate e e sabeeeebbeeennee 18
Trademarks

C2000™, Code Composer Studio™, are trademarks of Texas Instruments.
All trademarks are the property of their respective owners.

SPRUIUSA — MARCH 2020 — REVISED AUGUST 2021 Live Firmware Update With Device Reset on C2000™ MCUs 1
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/tool/C2000WARE
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU8A&partnum=

13 TEXAS
INSTRUMENTS

Introduction www.ti.com

1 Introduction

In applications like server power supply, metering, and so forth. the system is desired to be run continuously to
reduce downtime. But typically during firmware upgrades due to bug fixes, new features, and/or performance
improvements, the system is removed from service causing downtime for associated entities as well. This can
be handled with redundant modules but with increase in total system cost. An alternate approach, called Live
Firmware Update (LFU), allows firmware to be updated while the system is still operating. Switching to new
firmware can be done either with or without resetting the device, with the latter being more complex.

2 Resources Required for LFU

LFU is feasible when the device has enough resources of various kinds — CPU bandwidth, Memory, and
Peripheral availability:

+ CPU Bandwidth — The new firmware has to be transferred using a communication peripheral and written
to flash memory while the application is still operating. This means CPU need to have enough available
bandwidth to support LFU.

* Memory — The non-volatile memory that is used here is Flash memory. Flash read and write operations
cannot be simultaneously performed on the same Flash bank. However read and write operations can be
simultaneously performed on different Flash banks. Hence, the ideal scenario is for the device to contain dual
Flash banks. In devices with single Flash banks, LFU is particularly challenging, but still feasible provided:

— The complete application code (or a portion of it that controls the output(s) the user is interested in) and
Flash APIs need to run from RAM memory while the new firmware is updated to Flash. This means there
should be enough RAM memory that can be utilized.

— Some devices support Flash APls in ROM; in those devices the application code can run from RAM and
Flash APIs can run from ROM memory, thus reducing the RAM requirement.

» Peripheral Availability — A spare communication peripheral using the new image can be transferred from the
host to the device.

LFU is easier to implement in devices with multiple Flash banks. In this document and the reference example,
it is assumed that the device has 2 Flash banks. The device considered is TMS320F28004x, which has dual
flash banks. Their address space is 64K x 16 each, with addresses ranging from 0x80000-0x8FFFF, and
0x90000-0x9FFFF.

2 Live Firmware Update With Device Reset on C2000™ MCUs SPRUIUBA — MARCH 2020 — REVISED AUGUST 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU8A&partnum=

13 TEXAS
INSTRUMENTS
www.ti.com Memory Layout

3 Memory Layout

The Flash memory has been partitioned as shown in Figure 3-1.

Flash Bank 0 Flash Bank 1
Bank Selection Logic Sector 0
+
SCI Kernel SCI Kernel
+ +
Flash API Flash API
Sector 1
KEY | REV KEY | REV
START (64) | (5 | (ap) START(64) | (32) | (32)
Sector 2
Sector 3
Application Application
Sector 15

Figure 3-1. Flash Memory Contents for Bank 0 and Bank 1

Assuming each Flash bank has 16 sectors, two sectors have been allocated to Static code (code that will not
change between applications). This is described in Section 4.

A few locations in sector 2 have been reserved to store the below entries:

« START — when this 64-bit field is set in a specific Flash bank (to 0X5ASA5A5A5A5A5A5A) by the Serial
Communications Interface (SCI) Flash Kernel, it indicates that the corresponding Flash bank has been
erased (Application sectors) and programming/verification is about to begin. In this example, the START field
is located at addresses 0x82000 in BANKO and 0x92000 in BANK1.

SPRUIUSA — MARCH 2020 — REVISED AUGUST 2021 Live Firmware Update With Device Reset on C2000™ MCUs 3
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU8A&partnum=

13 TEXAS
INSTRUMENTS

Memory Layout www.ti.com

REV - this represents a 32-bit Firmware revision number that is set by the SCI Flash Kernel which is used
by the Bank Selection Logic to determine which the latest image is between Flash bank 0 and 1. REV starts
at OXFFFFFFFF and is decremented on each subsequent Flash programming cycle. Thus, the Bank with the
lower revision number is considered the latest one. Firmware revision field is handled by the flash kernel for
simplicity. In practice, the last downloaded image may not be the latest firmware version and the application
image would contain the firmware version, but that assumption is made with this model where the kernel
updates the REV field. In this example, the REYV field is located at address 0x82006 in BANKO and 0x92006
in BANK1. As an example, if the REV in BANKO is FFFF FFFA, and the REV in BANK1 is FFFF FFF9,
BANK1 will be considered the latest firmware and will execute.

KEY- The image in a bank is considered as valid if this location contains a valid KEY (0x5B5B5B5B). This
Key is written to by the SCI Flash Kernel, and is read and tested by the Bank Selection Logic. In this
example, the KEY field is located at addresses 0x82004 in BANKO and 0x92004 in BANK1.

The rest of sector 2 and sectors 3-15 can be used to store the application image. This allows the static code in
sectors 0 and 1 to be programmed once, and remain unchanged during LFU.

Live Firmware Update With Device Reset on C2000™ MCUs SPRUIUBA — MARCH 2020 — REVISED AUGUST 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU8A&partnum=

13 TEXAS
INSTRUMENTS
www.ti.com Static Code in LFU

4 Static Code in LFU
Static code that is used to support LFU consists of:

» Bank Selection Logic — when there are two (or more) Flash banks containing application firmware, logic that
determines which Flash bank to boot is necessary. A common implementation of this logic centers on a
firmware revision number. As described, the lower revision number is the latest image in this Example. Bank
selection logic is placed at the default flash boot address (0x80000 in F28004x), so that once Boot ROM code
completes execution, execution will transfer to bank selection logic. Bank selection logic is only included in
Bank0, not in Bank1.

* Flash Kernel — it is the job of the Flash kernel to receive the Firmware image from the host using a peripheral,
and call the Flash programming APlIs to write it to flash memory. In this document, the SCI flash Kernel is
used since the SCI peripheral is used to transfer the new firmware image. The detailed step by step flow is
documented in the file header of flashapi_ex2_ldfu.c.

— In ablank device (where application firmware is not present in either flash banks) the bank selection logic
will identify there is no valid KEY in either Flash bank, and will wait for an LFU command over SCI. This
will use the Flash Kernel to update the firmware on to bank1 as the kernel code is first programmed to
bank0, and therefore executes from bankO.

— If one or both banks contains a valid application, bank selection logic will transfer control to the code entry
point (codestart) of the corresponding bank. In this example, the codestart address is 0OX8EFFO0 for Bank0
and Ox9EFFO for Bank1.

— During LFU, the application will make a call to the Flash Kernel to receive and update the firmware.

» Flash API — Flash APIs provide interfaces to erase and program Flash memory. These APIs need to run from
the bank which is NOT being updated.

The static code is configured as a single example - flashapi_ex2_sci_kernel project (included in C2000Ware at
<C2000Ware>\driverlib\f28004x\examples\flash). This example supports multiple build configurations, of which
those relevant to LFU are listed below:

* BANKO_LDFU - Links the bank selection logic and flash kernel to Bank 0 (addresses 0x80000 - O0x81FFF).
Uses Flash APl symbols in flash.

 BANKO_LDFU_ROM - Links the bank selection logic and flash kernel to Bank 0 (addresses 0x80000 -
0x81FFF). Uses Flash API symbols in ROM; Rev A of F28004x cannot be used with this build configuration,
since it does not support Flash APIs in ROM.

* BANK1_LDFU - Links the flash kernel to Bank 1 (0x90000 - 0x91FFF). Uses Flash APl symbols in flash.

« BANK1_LDFU_ROM - Links the flash kernel to Bank 1 (0x90000 - 0x91FFF). Uses Flash APl symbols in
ROM; Rev A of F28004x cannot be used with this build configuration, since it does not support Flash APls in
ROM.

For more details, see the flashapi_ex2_sciKernel.c in the flashapi_ex2_sci_kernel project (included in
C2000Ware at <C2000Ware>\driverlib\f28004x\examples\flash).

SPRUIUSA — MARCH 2020 — REVISED AUGUST 2021 Live Firmware Update With Device Reset on C2000™ MCUs 5
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU8A&partnum=

I3 TEXAS
INSTRUMENTS
LED Example Application and LFU Flow www.ti.com

5 LED Example Application and LFU Flow

This example (flashapi_ex3_live_firmware_update project) is designed to demonstrate LFU with the LED
blinking periodically. This is achieved using the Live Device Firmware Update (Live DFU or LDFU) command,
which is part of SCI kernel. This is to be used with the Serial Flash Programmer (PC tool).

In this example, an SCI auto baud lock is performed and the byte used for auto baud lock is echoed back.
Two interrupts are initialized and enabled: SCI Rx FIFO interrupt and CPU Timer 0 interrupt. The CPU Timer 0
interrupt occurs every 1 second; the interrupt service routine (ISR) for CPU Timer 0 toggles an LED based on
the build configuration that is running.

* LED1 is toggled with the BANKO_FLASH build configuration. “BANKO” is a pre-defined symbol in this build
configuration, and when this symbol is defined, the project sets up GPIOs associated with LED1.

* LED2 is toggled with the BANK1_FLASH build configuration. “BANK1” is a pre-defined symbol in this build
configuration, and when this symbol is defined, the project sets up GPIOs associated with LED2.

The application images generated by building the above build configurations are the ones that will be used
to illustrate LFU in this document. Note that other than the changes described above between the two build
configurations, there are no other differences between the two application images. Hence, this is a relatively
simple example for LFU illustration.

The SCI Rx FIFO interrupt is set for a FIFO interrupt level of 10 bytes. The number of bytes in a packet from the
Serial Flash Programmer (when using the LDFU command) is 10. When a command is sent to the device from
the Serial Flash Programmer, the SCI Rx FIFO ISR receives a command from the 10 byte packet in the FIFO. If
the command matches the Live Device Firmware Update (Live DFU) command, then the code branches to the
Live DFU function (liveDFU()) located inside of the SCI Flash Kernel (flashapi_ex2_ldfu.c) for the corresponding
bank. So if the application on BankO is executing, control will pass to liveDFU() on BankO0, located at 0x81000.

If the application on Bank1 is executing, control will pass to liveDFU() on Bank1, located at 0x91000. Within this
function, execution passes to the IdfuLoad() function in order to erase the appropriate bank, load a hex formatted
program (in the appropriate SCI boot format) into flash, and verify the program. Then the watchdog is configured
for a reset. At the end, the watchdog is enabled in order for a reset to occur. When the device resets, it boots
and loads the new Firmware.

6 Live Firmware Update With Device Reset on C2000™ MCUs SPRUIUBA — MARCH 2020 — REVISED AUGUST 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU8A&partnum=

I} TEXAS
INSTRUMENTS
www.ti.com LED Example Application and LFU Flow

Figure 5-1 depicts the flow of the code at a high level after the code enters main() of the application. For
more details, see the flashapi_ex3_live_firmware_update.c located in the flashapi_live_firmware_update project
(included in C2000Ware at <C2000Ware>\driverlib\f28004x\examples\flash).

/ Live Firmware Update App \

Device Init
(Clocks, GPIO)

Register
CPU Timer
Interrupt

A

SCI Autobaud
Lock

Register
SClI Interrupt

SCI Int CPU Timer Int
€« — - — «----4 }F-—-- »
SCI Kernel If DFU cmd, Infinite Loop
branch to Toggle LED X
bank kernel

NG S I

Figure 5-1. Code Flow After Entering main() of Application

SPRUIUSA — MARCH 2020 — REVISED AUGUST 2021 Live Firmware Update With Device Reset on C2000™ MCUs 7
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU8A&partnum=

I3 TEXAS
INSTRUMENTS
Running the LED Example www.ti.com

6 Running the LED Example
6.1 Serial Flash Programmer Update

The serial flash programmer (serial_flash_programmer.exe) supplied with C2000ware takes both the kernel

and application image as parameters. Typically, the kernel is transferred first over to the SCI bootloader and
executed from RAM or Flash on the device. The kernel program then takes the application image over SCI (from
serial programmer running on PC) and programs the application image in flash memory.

In the case of LFU, the static content including flash kernel is first programmed to flash sectors 0 and 1

of Flash banks 0 and 1. This is described in Section 6.2. After this, the serial flash programmer needs

to be modified to transfer only the application image. This can be done by commenting the line “#define
kernel” in serial_flash_programmer.cpp. The serial flash programmer can be regenerated by compiling

the project in Visual C (called serial_flash_programmer_appln.exe). The pre-built executable is placed at
<C2000Ware>\utilities\flash_programmers\serial_flash_programmer\). Thus, the user needs to take no action
here.

8 Live Firmware Update With Device Reset on C2000™ MCUs SPRUIUBA — MARCH 2020 — REVISED AUGUST 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU8A&partnum=

13 TEXAS
INSTRUMENTS
www.ti.com Running the LED Example

6.2 Programming Static Code — Loading via Code Composer Studio™ (CCS)

The hardware used in the illustrated steps is an F28004x ControlCARD on a Control CARD docking station
Rev4.1. If a JTAG connection is available, then CCS can be used to load Flash banks 0 and 1 with static code.
Note:

Note

Make sure you have the settings in CCS (or your target configuration file — by right clicking

and selecting properties) as shown in Figure 6-1 before loading the images. Build the
flashapi_ex2_sci_kernel project in both BANKO_LDFU and BANK1_LDFU configurations, and load
each to target. The CCS flash plugin will load the contents on to flash.

2 Frogram 1ecten (A Moot pages ad ac
page 0 and page 1 Lechont Canmot share the Lame Lgred mesce,

Cammiber Sectons Surng Progeam Load 80 incresrs poformence

(1350 Settingn

Ertwe Flash

& Meceviary Secton Ondy (Tor Progeam Load

Selected Sectors Ondy
Flash Bask O
< >
Rantore Defauity Apeh
? 2 el ey Appdy and Clese Cancel

Figure 6-1. Flash Settings to Only Erase Necessary Sectors

SPRUIUSA — MARCH 2020 — REVISED AUGUST 2021 Live Firmware Update With Device Reset on C2000™ MCUs 9
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU8A&partnum=

13 TEXAS

INSTRUMENTS
Running the LED Example www.ti.com
1. Load BANKO static image (BANKO_LDFU of flashapi_ex2_sci_kernel project).
v+ Select a program O X ‘
v & flashapi_ex2_sc_kernel
v & BANKO_LDFU
« flashapi_ex2_sci_kernel.out

e flashapi_ex3_live_firmware_update

Figure 6-2. Selecting Kernel to Load to Flash Bank 0
10 Live Firmware Update With Device Reset on C2000™ MCUs SPRUIUBA — MARCH 2020 — REVISED AUGUST 2021

Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU8A&partnum=

13 TEXAS

INSTRUMENTS

www.ti.com

Running the LED Example

After the static contents are loaded on BANKO, the first thing that happens is the execution of the bank
selection logic that will determine that application firmware is not programmed in either bank.

Control will pass to the flash kernel, which will be ready to program the application in BANK1. The CCS view
will look Figure 6-3 (the program will not stop at main(), but will be running, awaiting a SClI command):

w'¢ workspace_v8_2 - Source not found. - Code Composer Studio

Eile Edit View Project Jools BRun Scipts Window Help

»hd

¥ Debug

& Qe

BR8P LSEe~vig AavP A

v ¥ 28004x-ControlCARD-NewTargetConfiguration.coxml [Code Composer Studio - Device Debugging]
+® Texas Instruments XDS100v2 USB Debug Probe_0/C28xx CPU1 (Running)
® Texas Instruments XDS100v2 USB Debug Probe_0/CLA1_0 (Disconnected : Unknown)

4 flashapi_ex3_live_firmware_update.c

e device.c d sci.h 4 flashapi_ex2_Idfu.c 4 flashapi_ex2_sci_kernel.c 4 flashapi_ex2_sci_get,

Break at address “0x3fc7a5" with no debug information available, or outside of program code.

View Disassembly...

Configure when this editor is shown | Preferences...

Figure 6-3. CCS Window view After Programming Bank 0 Flash Kernel

2. \Verify the Kernel content of BANKO by opening the Memory Browser window in CCS, and entering address

0x80000.

0 Memory Browser

Data ™,

N wvve~Hé|rs-

Data:0x80000 <Memory Rendering 5> =~
16-Bit Hex - Tl Style v

gx00080000

oxeees80008
9xe0e80016
0xeo0es80021
oxeees8002C
0x00080037
oxe0es80042
oxeeesee4D
0xeee80058
9xe0080063
©x2008006E
oxeee80079
Ox00080084

[XI3sFes 2006 06C4 1E44 8FO9 2006 06C4 1E46 7648 18F1
28A9 5B5B 28A8 5B5B 8F@9 2004 0FC4 610E 8F08 2004 6FC4
610A 7648 105A 7648 0B36 0201 7648 O5FA 1E42 6FOF 0644
OF46 6607 0200 1901 ©F46 6006 0644 6004 0049 EFF@ 6F03
0048 EFF@ FEB6 FF69 @006 0048 15E9 FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF ©©2F 0068 006F 006D 0065 002F
00750062 OO6E 0075 0073 9065 0072 0O2F 0074 0069 GO2F
0063 00320030 0030 20300077 0061 0072 0865 GO2F 2072
0065 0070 0O6F 0073 PO2F 0066 0032 0038 0030 0030 0034
0078 002F 8072 0965 206C PO65 0061 @073 @65 POSF 0070
O06E 0067 0O2F 0064 0072 ©OES 0B76 0O6S5 0072 PR6C BOES
0062 02F 0066 0932 0038 0030 0030 0034 PO78 BO2F 0B64
0072 0069 0076 0065 0072 006C 0069 0062 PO2F 0066 0O6C

Figure 6-4. CCS Memory Browser View to Verify Successful Kernel Programming of Bank 0

SPRUIUBA — MARCH 2020 — REVISED AUGUST 2021

Submit Document Feedback

Live Firmware Update With Device Reset on C2000™ MCUs

Copyright © 2021 Texas Instruments Incorporated

1

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU8A&partnum=

I3 TEXAS
INSTRUMENTS
Running the LED Example www.ti.com

3. Now switch to the Windows command prompt, and
execute the command below: serial_flash_programmer_applin.exe -
d f28004x -k f28004x_fw_upgrade_example\flashapi_ex2_sci_kernel.ixt -a
flashapi_ex3_live_firmware_updateBANK1FLASH.txt -b 9600 -p COMx where x = COM port corresponding
to the JTAG connection between the PC and the target board. The COM port number can be found by
looking up Ports in Device Manager. This will be populated by virtue of the fact that there is a USB cable
connected between the target and the computer, which provides both JTAG and SCI functionality. The
example uses a baud rate of 9600. flashapi_ex3_live_firmware updateBANK1FLASH.txt is generated by
building the CCS project flashapi_ex3_live_firmware_update in build configuration BANK1_FLASH.

R =

corporated. All rights reserved.

t settings

\What operation do you want to perform?
1

3

Figure 6-5. LFU Serial Command Invoked From Windows Command Prompt
4. Once LDFU (8) command is selected, the kernel will receive and program the application in BANK1. The
application size_ls about 36KB. Download time will be about 30 seconds.

o) CAWINDOWS\system32\cmd.exe

cation.

e 3 91 8e eo\utilities\flash programmers\serial flash programmer>_

Figure 6-6. Successful Completion of LFU Command to Program Flash Bank 1
5. After transfer is complete, enter 0 to indicate end of command operations. Verify the Application content of
BANK1 by opening the Memory Browser window in CCS, and entering address 0x92000.

12 Live Firmware Update With Device Reset on C2000™ MCUs SPRUIUSA — MARCH 2020 — REVISED AUGUST 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU8A&partnum=

13 TEXAS

INSTRUMENTS

www.ti.com

Running the LED Example

0 Memory Browser

Data v

')v[’-]vov

Data:0x92000 <Memory Rendering 5>
16-Bit Hex - Tl Style v

0x00092000

0x00092008
0x00092016
oxeee92021
oxeee9sz2e2C
0xeee92837
0x00092042
0x0009204D
0x00092058
0x00092063
©x0009206E
0x00092079
0x000952084

BT} 5A5A 5A5A 5ASA 5B5B 5B5B FFFD FFFF FE@4 7C43 1E42
7649 32EB 5200 6006 8FO9 505A 8241 7649 288E 0648 7649
32FB 5200 6006 8FO9 505A 8242 7649 288E 9243 520F 6906
8F@9 505A 0243 7649 288E 9642 D400 D503 7640 8044 D401
D503 9642 7640 8044 D401 8642 7640 8097 0642 7640 80B5
9642 7640 80CD 5C43 8642 7640 8071 9642 7640 8OES 9642
7640 80FD 0648 7640 8115 F607 7708 FF69 FEB4 0006 FER4
7D44 7C43 1E42 7649 32EB 5200 6008 8F40 9130 8F09 5000
ABAS 7649 288E 7622 2744 2BAA 5603 9143 16A9 5638 FF5A
5603 9143 2DA9 9403 FF66 FFSE 88A9 0220 9742 BAAS 06C4
89A6 CAAB CBAA 1EA7 0220 8742 8AA9 C3C4 761A FE84 0006
FE@4 7C43 1E42 7649 32EB 5200 6008 8F40 9100 8F09 5000
ARAS 7649 288E 9243 520F 6908 8F40 9105 8FO9 5000 AGAS

Figure 6-7. CCS Memory Browser View to Verify Successful Programming of Application on Bank 1

The kernel will also update the KEY and revision number in BANK1 sector 2. Now the static image, in
programmed BANKO and application image, is programmed in BANK1.

6. At this point, the user can reset the board to see LED2 start blinking.

7. Next load BANK1 static image (BANK1_LDFU of flashapi_ex2_sci_kernel project).

0x90000.

«# Select a program O X

v & flashapi_ex2_sci_kernel
@ BANKO_LDFU
v & BANK1_LDFU
 flashapi_ex2_sci_kernel.out
& flashapi_ex3_live_firmware_update

Cancel

Figure 6-8. Selecting Kernel to Load to Flash Bank 1
8. Verify the Kernel content of BANK1 by opening the Memory Browser window in CCS, and entering address

SPRUIUSA — MARCH 2020 — REVISED AUGUST 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

Live Firmware Update With Device Reset on C2000™ MCUs 13

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU8A&partnum=

Running the LED Example

13 TEXAS
INSTRUMENTS

www.ti.com

0 Memory Browser ©

Data v

gv[qjv'v:-r-:;— -

Data:0x90000 <Memory Rendering 5> *
16-Bit Hex - Tl Style v

0x000950000

ex0ee90eeB
©xe0e90016
2xeee%0021
exeeesee2C
2xeee90e37
0x000950042
exeeesee4d
ox00e90e58
©x200950063
0x0009006E
ox0ee9ee79
0x00090084

EEXE] 158D FFFF FFFF O2F 0068 006F 006D 0065 002F 0075
0062 0O6E 0075 0073 0065 0072 O2F 0074 0069 0O2F 0063
0032 0030 0030 0030 0077 0061 0072 PO6S5 9O2F 0072 0065
0070 0O6F 0073 @O2F 0066 0032 0038 9030 0030 0034 0078
902F 0872 9065 0O6C 9965 0B61 8073 BR6S5 9O5F 0070 8068
9067 BO2F 9064 8972 P69 0976 POES 0972 POEC 8969 9062
P02F 9066 0032 0038 0930 0030 9034 078 002F 0064 0072
9069 0076 0065 0072 PO6C 0O69 P62 0O2F P66 8O6C 0061
0073 0068 0O2E 0068 0000 RO O2F PO6S OOEF BOED BO65
002F 0075 0062 PO6E 0075 0073 0065 0072 002F 0074 0069
902F 0063 0032 0930 0030 0030 0077 8061 8072 8865 PO2F
9072 9065 0070 GO6F 0973 OO2F PO66 032 0038 0930 0030
9034 0078 PO2F 0972 9065 006C PO65 0061 0073 0065 POSF

Figure 6-9. CCS Memory Browser View to Verify Successful Kernel Programming of Bank 1

After the static contents are loaded on to BANK1, execution stops at main(). This occurs for the kernel on
Bank1 because bank selection logic resides only on Bank0, not on Bank1. Thus, for Bank1, execution flow

follows the conventional flow of codestart leading up to main().

% workspace_v8_2 - flashapi_ex2_sci_kernel/flashapi_ex2_sci_kernel.c - Code Composer Studio
File Edit View Project Tools Run Scripts Window Help

(=g ROPER> B ELEvRUEPyLerigryrangvid § -

Debug
v ¥ 28004x-ControlCARD-NewTargetConfiguration.coxml [Code Composer Studio - Device Debugging]
v & Texas Instruments XDS100v2 USB Debug Probe_0/C28xx_CPU1 (Suspended - HW Breakpoint)
= main() at flashapi_ex2_sci_kernel.c:137 0x09187F
_args_main() at args_main.c131 0x091B8A
= ¢_int00(at boot28.asm:264 0x0915E1 (_c_int00 does not contain frame information)
«® Texas Instruments XDS100v2 USB Debug Probe_0/CLA1_0 (Disconnected : Unknown)

m

@ flashapi_ex3_live_firmware_updatec & device.c dscih U flashapi_ex2 Idfuc @ flashapi_ex2_sci_kemel.c =

132// main - This is an example code demonstrating F@21 Flash API usage.
133 // This code is in Flash
134//
135
136uint32_t main(void)
+137§
138 1/
139 // flush SCIA TX port by waiting while it is busy, driverlib.
140 1/
141 sciaFlush();

4 flashapi_ex2_sci_get

Figure 6-10. CCS Window View After Programming Bank 1 Flash Kernel

14 Live Firmware Update With Device Reset on C2000™ MCUs

Copyright © 2021 Texas Instruments Incorporated

SPRUIUBA — MARCH 2020 — REVISED AUGUST 2021

Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU8A&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Running the LED Example

9. Press Runin CCS, the bank selection logic will run and execute application from BANK1. Then, execute the
below command from command line in PC.

serial_flash_programmer_appln.exe -d f28004x -

k 28004x_fw_upgrade_example\flashapi_ex2_sci_kernel.txt -a

flashapi_ex3_live firmware_updateBANKOFLASH.txt -b 9600 -p COMx where x = COM

port corresponding to the JTAG connection between the PC and the target board.
flashapi_ex3_live_firmware_updateBANKOFLASH.txt is generated by building the CCS project
flashapi_ex3_live_firmware_update in build configuration BANKO_FLASH.

corporated. All rights reserved.

t settings

\What operation do you want to perform?
1

7=

Figure 6-11. LFU Serial Command Invoked From Windows Command Prompt
10. Control will pass to flash kernel from the application and, once LDFU (8) command is selected, the kernel
will receive and program the application in BANKO.
11. After transfer is complete, enter 0 to indicate end of command operations.

CAWINDOWS\system32\cmd.exe

xiting the Application.

C:\ti\c2eee\CzeeeWare 3 91 80 ee\utilities\flash programmers\serial flash programmer>

Figure 6-12. Successful Completion of LFU Command to Program Flash Bank 0

SPRUIUSA — MARCH 2020 — REVISED AUGUST 2021 Live Firmware Update With Device Reset on C2000™ MCUs 15

Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU8A&partnum=

I3 TEXAS
INSTRUMENTS
Running the LED Example www.ti.com

The kernel will also update the KEY and revision number in BANKO sector 2. Now the static image in
programmed BANK1 and application image is programmed in BANKO.
12. At this point, as before, the user can reset the board, to see LED1 start blinking.

6.3 Live Firmware Update of Application

After programming the static contents, disconnect the debugger and set the boot mode switches to flash boot
mode. When the device boots up, it will jump to Flash. The default flash entry point is 0x80000, which is where
the static code (Bank selection logic + SCI Flash Kernel) has been programmed in Bank0. The bank selection
logic will execute and determine that valid images exist in both Banks 0 and 1 (based on KEY and revision
number). BankO will be selected to run because, in Section 6.1, it was programmed later so it will be deemed the
newest version based on the REV field. So the application firmware in Bank0 will be executed.

The application blinks LED1 at every 1 second. At the same time the application also monitors the serial port to
check if it is getting any image for live firmware update.

To perform live firmware updates, build the updated application for BANK1

configuration and execute the command shown in Figure 6-13 from the host

PC in the command line. Enter ‘8’ for LDFU when the menu is listed.

serial_flash_programmer_appln.exe -d f28004x -k f28004x_fw_upgrade_example\flashapi_ex2_sci_kernel.ixt -a
flashapi_ex3_live_firmware_updateBANK1FLASH.txt -b 9600 -p COMx.

Figure 6-13. LFU Serial Command Invoked From Windows Command Prompt

If it receives an image, control will jump to the flash kernel in BankO and update the firmware image on Bank1.
After transfer is complete, enter 0 to indicate end of command operations. When the new image is being
downloaded to Bank1, the application continues to run on BankO (LED1 continues to blink at the usual 1s rate).
This is because LFU processing occurs in a background loop, not the SCI Receive interrupt. This allows other
interrupts, such as the CPU Timer interrupt that toggles the LEDs, to be serviced.

16 Live Firmware Update With Device Reset on C2000™ MCUs SPRUIUBA — MARCH 2020 — REVISED AUGUST 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU8A&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Running the LED Example
[B cAwNDOWssystemizemd.oe - - 0 x

Exiting the Application.

:\ti\c2o C2@08Ware 3 81 @0 ee\utilities\flash programmers\serial flash programmer>

Figure 6-14. Successful completion of LFU Command to Program Flash Bank

After the Watchdog timer resets, the device resets, and control is passed to the newest application image in
Bank1, and LED2 will start blinking.

Note

The manual device reset is no longer required.

SPRUIUSA — MARCH 2020 — REVISED AUGUST 2021 Live Firmware Update With Device Reset on C2000™ MCUs 17
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU8A&partnum=

Running the LED Example

13 TEXAS
INSTRUMENTS

www.ti.com

This process can be repeated to update the image in alternate banks. Figure 6-15 illustrates the flow described

above.

Device Reset

<

Bank Selection
Logic

Valid App
exists on
Bank 0 or 1?

Latest App
Exists on
Bank 0?

Await user command to

Load App on Bank1

Execute Bank 1
App (LED2 blinks)

LFU Command

A

Execute Bank 0
App (LED1 blinks)

Update Bank 0
App

LFU Command

A

Update Bank 1
App

WatchDog Timer

Resets

Figure 6-15. LFU Code Flow Diagram

6.4 Limitations and Troubleshooting

* One point for the user to note is that since the Bank Selection Logic resides in BankO, if Flash corruption
occurs when the Application is being updated on BankO, it is possible that the Static contents of BankO,
although located at different sectors, end up corrupted as well. This would include the Bank selection logic +
SCI Flash Kernel + Flash APIs (if running from Flash). The user would then have to repeat the steps involved
in programming static code to get the system operational again.

* While programming the Flash kernel in Section 6.2, the erase settings for Flash should be set to “Necessary
Sectors only”, otherwise, while Programming Kernel on BANK1, the Application on BANK1 will be erased.

7 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision * (March 2020) to Revision A (August 2021)

» Updated the numbering format for tables, figures and cross-references throughout the document................... 2

18 Live Firmware Update With Device Reset on C2000™ MCUs

SPRUIUBA — MARCH 2020 — REVISED AUGUST 2021

Copyright © 2021 Texas Instruments Incorporated

Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIU8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIU8A&partnum=

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with Tl products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an
application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other Tl intellectual property right or to any third party intellectual property right. Tl disclaims responsibility for, and you
will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such Tl products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for
TI products.

Tl objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Table of Contents
	1 Introduction
	2 Resources Required for LFU
	3 Memory Layout
	4 Static Code in LFU
	5 LED Example Application and LFU Flow
	6 Running the LED Example
	6.1 Serial Flash Programmer Update
	6.2 Programming Static Code – Loading via Code Composer Studio™ (CCS)
	6.3 Live Firmware Update of Application
	6.4 Limitations and Troubleshooting

	7 Revision History

