
1SPRUIP4–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Fast Current Loop Driverlib Library

User's Guide
SPRUIP4–May 2019

Fast Current Loop Driverlib Library

This user's guide provides a description of the fast current loop software library application program
interface (API), which can be used for high-bandwidth, inner-loop control of AC servo drives with C2000
MCUs.

This document also explains the header files that are delivered with the library, and provides information
on which CLA resources are used by the library and which PIE flags are cleared by the library.

Contents
1 Introduction ... 2
2 FCL Library Details .. 2
3 Building and Linking an Application With the Library ... 5

List of Tables

1 Summary of FCL APIs .. 2
2 Summary of Common Variables Across the Application and Library... 3
3 Summary of CLA Resources Used by the Library... 4

Trademarks
Code Composer Studio is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIP4

Introduction www.ti.com

2 SPRUIP4–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Fast Current Loop Driverlib Library

1 Introduction

1.1 Reference Example
Use this guide in conjunction with the example projects that use Fast Current Loop in the MotorControl
SDK at:

C:\ti\c2000\C2000Ware_MotorControl_SDK_version\solutions\

The FCL software library can be found at:

C:\ti\c2000\C2000Ware_MotorControl_SDK_version\libraries\fcl\

2 FCL Library Details

2.1 API Overview
Table 1 lists the FCL APIs.

Table 1. Summary of FCL APIs

API Function Description
uint32_t FCL_getSwVersion(void) Returns a 32-bit constant; for this version the value returned is

0x00000006
void FCL_runComplexCtrl(void) Performs the Complex control as part of the FCL
void FCL_runPICtrl(void) Performs the PI control as part of the FCL
void FCL_runPICtrlWrap(void) Wrap-up function called by the user application at the

completion of the FCL in PI control mode

void FCL_runQEPWrap(void)
Called by the user application to handle the QEP feedback
completion.
This function is used only in FCL_LEVEL2.

void FCL_runComplexCtrlWrap(void) Wrap-up function called by the user application at the
completion of the FCL in Complex control mode

void FCL_initPWM(
uint32_t basePhaseU,
uint32_t basePhaseV, uint32_t basePhaseW)

Initializes PWMs for the FCL operation, this function is called by
the user application during the initialization or setup process.

void FCL_resetController(void) Called to reset the FCL variables and is useful when the user
wants to stop and restart the motor.

void FCL_initQEP(uint32_t baseA) This function initializes the eQEP peripheral for connecting to
the QEP

void FCL_initADC(uint32_t resultBaseA, ADC_PPBNumber
baseA_PPB, uint32_t resultBaseB, ADC_PPBNumber
baseB_PPB, uint32_t adcBasePhaseW)

This function initializes the ADCs that are used to sense the
motor phase currents

2.2 Header Files

2.2.1 Fast_Current_Loop.h
This header file contains general variables and pointers that are used across the application and the
library.

Macro FCL_LIB is predefined when building the library and is not defined when the header file is included
in the application. This helps applications use the same header file that is used by the library.

For example, in the following pointer declarations, when the header file is included in the library, the
pointers are defined as extern, but when the same header file is included in the application the pointers
are global. This helps the library work with variables that are common across the application and the
software library.
#ifdef FCL_LIB
extern
#endif

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIP4
http://www.ti.com/tool/C2000WARE-MOTORCONTROL-SDK
http://www.ti.com/tool/C2000WARE-MOTORCONTROL-SDK

www.ti.com FCL Library Details

3SPRUIP4–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Fast Current Loop Driverlib Library

CLARKE clarke1;

This file also defines the following typedef of a structure used by the library, but the variables of the
structure are initialized by the application, as shown in the provided example.
typedef struct _FCL_Parameters_ {

float32_t carrierMid, // Mid point value of carrier count
adcScale, // ADC conversion scale to pu
cmidsqrt3; // internal variable

float32_t
tSamp, // sampling time
Rd, // Motor resistance in D axis
Rq, // Motor resistance in Q axis
Ld, // Motor inductance in D axis
Lq, // Motor inductance in Q axis
Vbase, // Base voltage for the controller
Ibase, // Base current for the controller
wccD, // D axis current controller bandwidth
wccQ, // Q axis current controller bandwidth
Vdcbus, // DC bus voltage
BemfK, // Motor Bemf constant
Wbase; // Controller base frequency (Motor) in rad/sec

} FCL_Parameters_t;

Table 2 lists the variables needed by the library, which are supposed to be defined by the application. The
same information is available in the Fast_Current_Loop.h header file delivered with the library. So it is
sufficient if applications include the header file.

Table 2. Summary of Common Variables Across the Application and Library

Variable Name Description or Use
extern uint16_t lsw; Loop switch information controlled by both the library and the

application
extern QEP qep1; QEP feedback information accessed by both the application and

the library
extern FCL_PI_CONTROLLER pi_iq; PI IQ controller information accessed and handled by the CLA

tasks and CPU inside the library and by CPU in the application
extern FCL_PI_CONTROLLER pi_id; PI ID controller information accessed by both the library and the

application
extern SVGEN svgen1; Space Vector variables generated by the library are stored here.
extern RAMPGEN rg1; Ramping up voltage vector angle, used during start up
extern SPEED_MEAS_QEP speed1; Calculating speed from from QEP output
extern FCL_Parameters_t FCL_params; Current Loop parameter constants that are to be initialized by

the application. A reference function is provided in the example
provided with the library.

2.2.2 fcl_pi.h
This file defines the following typedef of PI variables used in the library.
typedef struct {

float32_t ref; // Input: reference set-point
float32_t fbk; // Input: feedback
float32_t err; // Output : error
float32_t out; // Output: controller output
float32_t carryOver; // Output : carrier over for next iteration
float32_t Kp; // Parameter: proportional loop gain
float32_t Ki; // Parameter: integral gain
float32_t Kerr; // Parameter: gain for latest error
float32_t KerrOld; // Parameter: gain for prev error
float32_t Umax; // Parameter: upper saturation limit
float32_t Umin; // Parameter: lower saturation limit }

FCL_PIController_t;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIP4

FCL Library Details www.ti.com

4 SPRUIP4–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Fast Current Loop Driverlib Library

2.3 CLA Resources Used
In this version of the library, the CLA resources in Table 3 are used and are unavailable for the user
applications when using the provided software library.

Table 3. Summary of CLA Resources Used by the Library

FLC Controller CLA Tasks Used
PI controller CLA TASK1, CLA TASK2, and CLA TASK4
Complex controller CLA TASK1, CLA TASK3, and CLA TASK4

2.3.1 CLA Task Prototypes
__interrupt void Cla1Task1();
__interrupt void Cla1Task2();
__interrupt void Cla1Task3();
__interrupt void Cla1Task4();

All the above tasks are declared and defined in the library. The assignment of the tasks to the appropriate
CLA vectors is done in the user application.

The example provided with the library shows how to assign the tasks. The relevant code snippet is given
below.

CLA_mapTaskVector(CLA1_BASE, CLA_MVECT_1, (uint16_t)(&Cla1Task1));
CLA_mapTaskVector(CLA1_BASE, CLA_MVECT_2, (uint16_t)(&Cla1Task2));
CLA_mapTaskVector(CLA1_BASE, CLA_MVECT_3, (uint16_t)(&Cla1Task3));
CLA_mapTaskVector(CLA1_BASE, CLA_MVECT_4, (uint16_t)(&Cla1Task4));

User applications are free to use the remaining CLA tasks, but these tasks are reserved according to
Table 3, depending on the FCL controller option chosen.

2.4 Flags Cleared by the Library
Because the library uses the previously mentioned CLA tasks, it also clears the respective PIE IFR flag
bits associated with the tasks.

2.5 Application Dependencies
The user application must initialize and clear the flags defined in this section for the library to be properly
operational.

As shown in the example, all the parameters must be initialized before enabling any interrupts in the
application initialization phase.

2.5.1 Initializing Current Loop Parameters for the Library
The following function, provided in the example code, initializes FCL_Pars. For more information, see
Section 2.2.1 and Table 2.
initFCLVars();

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIP4

www.ti.com Building and Linking an Application With the Library

5SPRUIP4–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Fast Current Loop Driverlib Library

2.5.2 Initializing PWM and PWM Access Pointers for the Library
The following code, shown in the example, initializes the PWM modules for the FCL library. This makes
the library more portable, but it adds a slight cycle count during the execution of the library.

FCL_initPWM(EPWM1_BASE, EPWM2_BASE, EPWM3_BASE);

2.5.3 Initializing the ADC Int Flag and ADC PPB Result Register Pointers for the Library
The following code, shown in the example, initializes the ADC modules for Fast control loop library. This
makes the library more portable but adds a slight cycle count during the execution of library.

FCL_initADC (ADCARESULT_BASE, ADC_PPB_NUMBER1,
ADCBRESULT_BASE, ADC_PPB_NUMBER1,
ADCA_BASE);

2.5.4 Initializing the EQEP Access Pointer for the Library
The following code, shown in the example, initializes the EQEP registers pointer for the library to access.

FCL_initQEP(EQEP1_BASE);

2.5.5 Configuring and Clearing the CLA TASK1 Trigger
User applications, as shown in the provided example, must be configured to trigger the CLA TASK1 by the
same event that triggers the ADC SOC.

The following code in the example shows the initialization of CLA and setting up the CLA TASK1 trigger.
This must be performed before enabling the PWM clocks.

//initialize CLA for FCL library
configureCLA();

//Enable EPWM1 INT trigger for CLA TASK1
CLA_setTriggerSource(CLA_TASK_1, CLA_TRIGGER_EPWM1INT);

Similarly, the user application must also clear the event that triggers the CLA task in the user code. This is
also shown in the example provided with the library.

EPWM_clearEventTriggerInterruptFlag(EPWM1_BASE);

3 Building and Linking an Application With the Library
The example project(s) using the library demonstrates integrating this library into an application running
from flash/RAM.

The appropriate linker command files are also provided with the example project(s).Because the library
uses CLA, RAM must be shared across the CPU and CLA. The example project(s) shows how to do this
as well.

The library file 'fcl_cpu_cla.lib' is an index library that selects between a COFF ABI format or an EABI
format library. The settings of the example project determines the choice of format to use.

The library is built with compiler version v18.12.1 LTS using Code Composer Studio™ v9 IDE.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIP4

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	Fast Current Loop Driverlib Library
	1 Introduction
	1.1 Reference Example

	2 FCL Library Details
	2.1 API Overview
	2.2 Header Files
	2.2.1 Fast_Current_Loop.h
	2.2.2 fcl_pi.h

	2.3 CLA Resources Used
	2.3.1 CLA Task Prototypes

	2.4 Flags Cleared by the Library
	2.5  Application Dependencies
	2.5.1 Initializing Current Loop Parameters for the Library
	2.5.2 Initializing PWM and PWM Access Pointers for the Library
	2.5.3 Initializing the ADC Int Flag and ADC PPB Result Register Pointers for the Library
	2.5.4 Initializing the EQEP Access Pointer for the Library
	2.5.5 Configuring and Clearing the CLA TASK1 Trigger

	3 Building and Linking an Application With the Library

	Important Notice

