
KeyStone Architecture II
Security Accelerator 2 (SA2)
for K2E and K2L Devices

User's Guide

Literature Number: SPRUHZ1
August 2014

Contents

Preface... 10
1 Introduction ... 11

1.1 Purpose of the Peripheral ... 12
1.2 Terminology Used in This Document .. 12
1.3 Features ... 13

1.3.1 Features Not Supported .. 14
1.4 Functional Block Diagram ... 14
1.5 Industry Standard(s) Compliance Statement ... 16

2 Architecture... 17
2.1 Clock Control.. 18
2.2 Memory Map .. 18
2.3 Security Accelerator Programming with the Low-Level Driver ... 18

2.3.1 SA2 LLD Common Interface APIs .. 18
2.3.2 SA2 LLD Channel Interface APIs ... 19

2.4 Protocol Descriptions .. 20
2.4.1 3GPP Air Cipher... 21

2.4.1.1 SA2 Hardware Engine Utilization ... 21
2.4.1.2 Supported Cipher Modes .. 21
2.4.1.3 Supported Authentication Modes ... 21
2.4.1.4 Protocol-Specific SA2 LLD Channel APIs ... 22
2.4.1.5 Descriptor Protocol-Specific Information Section ... 22

2.4.2 Data-Mode ... 23
2.4.2.1 SA2 Data Processing Engine Utilization ... 23
2.4.2.2 Supported Cipher Modes .. 24
2.4.2.3 Supported Authentication Modes ... 25
2.4.2.4 Protocol-Specific SA2 LLD Channel APIs ... 26
2.4.2.5 Descriptor Protocol-Specific Information Section ... 26

2.4.3 IPsec AH ... 27
2.4.3.1 SA2 Hardware Engine Utilization ... 27
2.4.3.2 Supported Cipher Modes .. 27
2.4.3.3 Supported Authentication Modes ... 27
2.4.3.4 Protocol-Specific SA2 LLD Channel APIs ... 28
2.4.3.5 Descriptor Protocol-Specific Information Section ... 28

2.4.4 IPsec ESP .. 29
2.4.4.1 SA2 Hardware Engine Utilization ... 30
2.4.4.2 Supported Cipher Modes .. 30
2.4.4.3 Supported Authentication Modes ... 30
2.4.4.4 Protocol-Specific SA2 LLD Channel APIs ... 31
2.4.4.5 Descriptor Protocol-Specific Information Section ... 31

2.4.5 SRTCP.. 32
2.4.5.1 SA2 Hardware Engine Utilization ... 32
2.4.5.2 Supported Cipher Modes .. 32
2.4.5.3 Supported Authentication Modes ... 32
2.4.5.4 Protocol-Specific SA2 LLD Channel APIs ... 33

2.4.6 SRTP.. 33

2 Contents SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com

2.4.6.1 SA2 Hardware Engine Utilization ... 34
2.4.6.2 Supported Cipher Modes .. 34
2.4.6.3 Supported Authentication Modes ... 34
2.4.6.4 Protocol-Specific SA2 LLD Channel APIs ... 34
2.4.6.5 Descriptor Protocol-Specific Information Section ... 37

2.5 Command Labels... 38
2.6 Descriptor Software Information Words ... 39
2.7 Security Contexts... 39

2.7.1 Generating Security Contexts ... 39
2.7.2 Security Context Memory Allocation .. 40

2.8 Security Context Cache ... 40
2.8.1 Security Context Fetch ... 40
2.8.2 Security Context Tiers .. 40
2.8.3 Security Context Identification and Security Context Pointers .. 41
2.8.4 Security Context Cache Control Flags ... 41
2.8.5 Context Cache Algorithm... 41

2.9 Packet Header Processor Modules .. 41
2.9.1 Command Label Generation... 42
2.9.2 Authentication Tag Verification .. 42
2.9.3 Authentication Tag Insertion ... 42
2.9.4 Packet Replay Protection .. 42
2.9.5 PHP1.. 42

2.9.5.1 Processing IPsec AH packets with PHP1 ... 43
2.9.5.2 Processing IPsec ESP Packets with PHP1 ... 43

2.9.6 PHP 3 ... 43
2.9.7 PHP2.. 44

2.9.7.1 Processing SRTP Packets with PHP2 ... 44
2.9.7.2 Processing Air Cipher packets with PHP2... 44

2.9.8 Procedure for Downloading Firmware onto the PHP PDSPs ... 45
2.9.8.1 Procedure for Downloading Firmware on the PHP PDSPs ... 45

2.10 Encryption and Decryption Engine ... 45
2.11 Authentication Engine ... 46
2.12 Air Cipher Engine... 46
2.13 Public Key Accelerator... 47

2.13.1 Programming Considerations... 47
2.13.2 Functional Description PKA Components... 47
2.13.3 Configuration and Status Registers.. 48

2.13.3.1 PKA_APTR, PKA_BPTR, PKA_CPTR, PKA_DPTR Registers 48
2.13.3.2 PKA_ALENGTH and PKA_BLENGTH Registers ... 49
2.13.3.3 PKA_SHIFT Register ... 49
2.13.3.4 PKA_FUNCTION Register. .. 49
2.13.3.5 PKA_COMPARE Register ... 49
2.13.3.6 PKA_MSW Register .. 50
2.13.3.7 PKA_DIVMSW Register.. 50

2.13.4 Vector RAM ... 50
2.13.4.1 RAM Size Requirements ... 50

2.13.5 PKA Input Requirements .. 51
2.13.6 Result Vector RAM Allocation .. 52

2.14 True Random Number Generator .. 52
2.14.1 Programming Considerations... 52
2.14.2 Initial Latency after Reset ... 53
2.14.3 Random Number Generation ... 53
2.14.4 Read Random Number .. 53

3SPRUHZ1–August 2014 Contents
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com

2.14.5 TRNG Example Configuration .. 53
2.14.5.1 TRNG Example Configuration... 53

2.15 Initializing the SA2 Using the SA2 LLD.. 53
2.15.1 SA2 Initialization with the SA2 LLD .. 54

2.16 SA2 LLD Channel Initialization and Configuration ... 54
2.16.1 SA2 LLD Channel Initialization and Configuration ... 54

2.17 Sending Packets to the SA2 for Processing.. 54
2.17.1 Sending Packets to the SA2 for Processing.. 55

2.18 SA2 Transmit Queues ... 55
2.19 Interrupt Support ... 55
2.20 DMA Event Support .. 56
2.21 Power Management.. 56

3 Data Flow Examples ... 57
3.1 Overview... 58
3.2 3GPP Air Cipher Examples ... 58

3.2.1 3GPP Air Cipher Encryption Example .. 58
3.2.1.1 3GPP Air Cipher Encryption Example Overview.. 58

3.2.2 3GPP Air Cipher Decryption Example.. 59
3.2.2.1 3GPP Air Cipher Decryption Example Overview ... 59

3.3 IPsec AH Examples .. 59
3.3.1 IPsec AH Authentication Tag Generation Example... 60

3.3.1.1 IPsec AH Authentication Verification Example Overview.. 60
3.3.2 IPsec AH Authentication Tag Verification Example... 61

3.3.2.1 IPsec AH Encryption Example Overview .. 61
3.4 IPsec ESP Examples .. 62

3.4.1 IPsec ESP Encryption Example ... 62
3.4.1.1 IPsec ESP Encryption Example Overview... 62

3.4.2 IPsec ESP Decryption Example ... 63
3.4.2.1 IPsec ESP Decryption Example Overview .. 63

3.5 SRTP Examples .. 64
3.5.1 SRTP Encryption Example... 64

3.5.1.1 SRTP Encryption Example Overview .. 64
3.5.2 SRTP Decryption Example... 65

3.5.2.1 SRTP Decryption Example Overview .. 65

4 Registers... 66
4.1 Security Accelerator System Register Region.. 67

4.1.1 Peripheral and Version Identification Register (PID) ... 68
4.1.2 Command Status Register (CMD_STATUS) .. 69
4.1.3 SA1 Port Flow Identification Register (SA1_FLOWID) ... 72
4.1.4 SA0 Port Flow Identification Register (SA0_FLOWID) ... 73
4.1.5 SA1 Next Engine Identification Register (SA1_ENG_ID) .. 74
4.1.6 SA0 Next Engine Identification Register (SA0_ENG_ID) .. 75

4.2 Context Cache Register Region.. 76
4.2.1 Context Cache Control Register (CTXCACH_CTRL) .. 77
4.2.2 Context Cache Security Context Pointer Register (CTXCACH_SC_PTR) 78
4.2.3 Context Cache Security Context Identification Register (CTXCACH_SC_ID) 79
4.2.4 Context Cache Miss Count Register (CTXCACH_MISSCNT) .. 80

4.3 PHP PDSP Control and Status Registers... 81
4.3.1 PDSP Control Register (PDSP_CONTROL) .. 82
4.3.2 PDSP Status Register .. 83
4.3.3 PDSP Cycle Count Register (PDSP_CYCLECOUNT) ... 84
4.3.4 PDSP Stall Count Register (PDSP_STALLCOUNT) ... 85
4.3.5 PDSP Constant Table Block Index 0 Register (PDSP_BLK_IDX0) .. 86

4 Contents SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com

4.3.6 PDSP Constant Table Block Index 1 Register (PDSP_BLK_IDX1) .. 87
4.3.7 PDSP Constant Table Programmable Pointer Register 0 (PDSP_POINTER0) 88
4.3.8 PDSP Constant Table Programmable Pointer Register 1 (PDSP_POINTER1) 89

4.4 Public Key Accelerator Register Region .. 90
4.4.1 Operand A Pointer Register (PKA_APTR)... 90
4.4.2 Operand B Pointer Register (PKA_BPTR)... 91
4.4.3 Operand C Pointer Register (PKA_CPTR) .. 92
4.4.4 Operand D Pointer Register (PKA_DPTR) .. 93
4.4.5 Operand A Length Register (PKA_ALENGTH).. 94
4.4.6 Operand B Length Register (PKA_BLENGTH).. 95
4.4.7 Shift Operation Register (PKA_SHIFT)... 96
4.4.8 Function Select Register (PKA_FUNCTION) .. 97
4.4.9 Compare Results Register (PKA_COMPARE) .. 98
4.4.10 Result Most Significant Word Address Register (PKA_MSW) ... 99
4.4.11 Division Remainder Most Significant Word Address Register (PKA_MSWDIV) 100

4.5 True Random Number Generator Register Region .. 101
4.5.1 Data Output Least Significant Word Register (TRNG_OUTPUT_L) 101
4.5.2 Data Output MSW Register (TRNG_OUTPUT_H) .. 102
4.5.3 Status Register (TRNG_STATUS) .. 103
4.5.4 Interrupt Acknowledge Register (TRNG_INTACK) .. 104
4.5.5 Control Register (TRNG_CONTROL)... 105
4.5.6 Configuration Register (TRNG_CONFIG) .. 106

A Additional Security Accelerator Details ... 107
A.1 Descriptor Software Information Word Configuration .. 108

A.1.1 Descriptor Software Information Word 0.. 109
A.1.2 Descriptor Software Information Word 1.. 112
A.1.3 Descriptor Software Information Word 2.. 113

A.2 Security Context Structure in Host Memory ... 114
A.2.1 Security Context Software-Only.. 114
A.2.2 Security Context PHP ... 115

A.2.2.1 KeyStone II Security Context Control Structure ... 116
A.2.3 Security Context Data Processing Engine.. 118

A.3 Security Context Control Flags.. 118
A.3.1 Evict Flag ... 118
A.3.2 Tear-Down Flag .. 118
A.3.3 No Payload Flag ... 119

5SPRUHZ1–August 2014 Contents
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com

List of Figures
1-1. Security Accelerator Functional Block Diagram .. 15
2-1. 3GPP Air Cipher Descriptor Protocol-Specific Information Diagram .. 22
2-2. Data-Mode Descriptor Protocol-Specific Information Diagram ... 26
2-3. IPsec AH Descriptor Protocol-Specific Information Diagram ... 29
2-4. IPsec ESP Descriptor Protocol-Specific Information Diagram ... 31
2-5. SRTP Descriptor Protocol-Specific Information Diagram ... 38
3-1. 3GPP Air Cipher Encryption Example ... 58
3-2. 3GPP Air Cipher Decryption Example... 59
3-3. IPsec AH Authentication Tag Generation Example.. 60
3-4. IPsec AH Authentication Verification Example ... 61
3-5. IPsec ESP Encryption Example .. 62
3-6. IPsec ESP Decryption Example .. 63
3-7. SRTP Encryption Example.. 64
3-8. SRTP Decryption Example.. 65
4-1. Peripheral and Version Identification Register ... 68
4-2. Command Status Register .. 69
4-3. SA1 Port Flow Identification Register.. 72
4-4. SA0 Port Flow Identification Register.. 73
4-5. SA1 Next Engine Identification Register .. 74
4-6. SA0 Next Engine Identification Register .. 75
4-7. Context Cache Control Register.. 77
4-8. Context Cache Security Context Pointer Register ... 78
4-9. Context Cache Security Context Identification Register .. 79
4-10. Context Cache Security Context Identification Register .. 80
4-11. PDSP Control Register .. 82
4-12. PDSP Status Register ... 83
4-13. PDSP Cycle Count Register .. 84
4-14. PDSP Stall Count Register.. 85
4-15. PDSP Constant Table Block Index 0 Register ... 86
4-16. PDSP Constant Table Block Index 1 Register ... 87
4-17. PDSP Constant Table Programmable Pointer 0 Register .. 88
4-18. PDSP Constant Table Programmable Pointer 1 Register .. 89
4-19. Operand A Pointer Register .. 90
4-20. Operand B Pointer Register .. 91
4-21. Operand C Pointer Register .. 92
4-22. Operand D Pointer Register .. 93
4-23. Operand A Length Register... 94
4-24. Operand B Length Register... 95
4-25. Shift Operation Register ... 96
4-26. Function Select Register .. 97
4-27. Compare Results Register .. 98
4-28. Result Most Significant Word Address Register ... 99
4-29. Division Remainder Most Significant Word Address Register .. 100
4-30. Data Output Least Significant Word Register ... 101
4-31. Data Output Most Significant Word Register.. 102
4-32. Status Register.. 103
4-33. Interrupt Acknowledge Register... 104

6 List of Figures SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com

4-34. Control Register... 105
4-35. Configuration Register ... 106
A-1. Descriptor Software Info 0 ... 109
A-2. Descriptor Software Info 1 ... 112
A-3. Descriptor Software Info 2 ... 113
A-4. Security Context Structure... 114
A-5. Security Context Control Structure Word 0.. 116
A-6. Security Context Control Structure Word 1.. 116

7SPRUHZ1–August 2014 List of Figures
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com

List of Tables
2-1. Security Accelerator Memory Map .. 18
2-2. SA2 LLD Channel Specific API Overview... 20
2-3. 3GPP Air Cipher Channel SA2 LLD APIs... 22
2-4. Cipher Mode to SA2 Data Processing Engine Mapping .. 24
2-5. Authentication Mode to SA2 Data Processing Engine Mapping ... 25
2-6. SA2 LLD Data-mode Channel APIs ... 26
2-7. SA2 LLD IPsec AH Channel APIs ... 28
2-8. SA2 LLD IPsec ESP Channel APIs.. 31
2-9. SA2 LLD SRTCP Channel APIs.. 33
2-10. SA2 LLD SRTP Channel APIs ... 35
2-11. PKA Status and Control Registers ... 48
2-12. Functional Roles of PKA_APTR, PKA_BPTR, PKA_CPTR, and PKA_DPTR Registers 49
2-13. Vector RAM Requirement for ACT Operations... 50
2-14. Supported ACTs vs. Modulus Length for 8 Kbyte Vector RAM .. 50
2-15. PKA Input Requirements ... 51
2-16. Minimum Memory Allocation for Result Vector... 52
4-1. Security Accelerator Register Regions ... 67
4-2. Security Accelerator System Register Region.. 67
4-3. Peripheral and Version Identification Register Field Descriptions ... 68
4-4. Command Status Register Field Descriptions ... 69
4-5. SA1 Port Flow Identification Register Field Descriptions ... 72
4-6. SA0 Port Flow Identification Register Field Descriptions ... 73
4-7. SA1 Next Engine Identification Register Field Descriptions .. 74
4-8. SA0 Next Engine Identification Register Field Descriptions .. 75
4-9. Context Cache Register Region.. 76
4-10. Context Cache Control Register Field Descriptions ... 77
4-11. Context Cache Security Context Pointer Register Field Descriptions... 78
4-12. Context Cache Security Context Identification Register Field Descriptions .. 79
4-13. Register Field Descriptions ... 80
4-14. PDSP Control/Status Register Region ... 81
4-15. PDSP Control Register Field Descriptions.. 82
4-16. PDSP Status Register Field Descriptions ... 83
4-17. PDSP Cycle Count Register Field Descriptions.. 84
4-18. PDSP Stall Count Register Field Descriptions ... 85
4-19. PDSP Constant Table Block Index 0 Register Field Descriptions ... 86
4-20. PDSP Constant Table Block Index Register 1 Field Descriptions ... 87
4-21. PDSP Constant Table Programmable Pointer Register 0 Field Descriptions 88
4-22. PDSP Constant Table Programmable Pointer Register 1 Field Descriptions 89
4-23. Public Key Accelerator Register Region .. 90
4-24. Operand A Pointer Register Field Descriptions .. 90
4-25. Operand B Pointer Register Field Descriptions .. 91
4-26. Operand C Pointer Register Field Descriptions .. 92
4-27. Operand D Pointer Register Field Descriptions .. 93
4-28. Operand D Pointer Register Field Descriptions .. 94
4-29. Operand D Pointer Register Field Descriptions .. 95
4-30. Shift Operation Register Field Descriptions... 96
4-31. Function Select Register Field Descriptions .. 97

8 List of Tables SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com

4-32. Compare Results Register Field Descriptions.. 98
4-33. Result Most Significant Word Address Register Field Descriptions ... 99
4-34. Division Remainder Most Significant Word Address Register Field Descriptions................................ 100
4-35. Public Key Accelerator Register Region... 101
4-36. Data Output Least Significant Word Register Field Descriptions... 101
4-37. Data Output Most Significant Word Register Field Descriptions ... 102
4-38. Status Register Field Descriptions ... 103
4-39. Interrupt Acknowledge Register Field Descriptions ... 104
4-40. Control Register Field Descriptions .. 105
4-41. Configuration Register Field Descriptions .. 106
A-1. Descriptor Software Info 0 Field Descriptions .. 109
A-2. KeyStone I Engine ID Mapping ... 110
A-3. KeyStone II Engine ID Mapping .. 111
A-4. Descriptor Software Info 1 Field Descriptions .. 112
A-5. Descriptor Software Info 2 Field Descriptions .. 113
A-6. Keystone II Security Context Control (SCCTL) Structure ... 116

9SPRUHZ1–August 2014 List of Tables
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Read This First
SPRUHZ1–August 2014

Preface

About This Manual
The Security Accelerator (SA2) provides hardware engines to perform encryption, decryption, and
authentication operations on packets for commonly supported protocols, including IPsec ESP and AH,
SRTP, and Air Cipher. The SA2 also provides the hardware modules to assist the host in generating
public keys and random numbers.

Notational Conventions
This document uses the following conventions:
• Commands and keywords are in boldface font.
• Arguments for which you supply values are in italic font.
• Terminal sessions and information the system displays are in screen font.
• Information you must enter is in boldface screen font.
• Elements in square brackets ([]) are optional.

Notes use the following conventions:

NOTE: Means reader take note. Notes contain helpful suggestions or references to material not
covered in the publication.

The information in a caution or a warning is provided for your protection. Please read each caution and
warning carefully.

CAUTION
Indicates the possibility of service interruption if precautions are not taken.

WARNING
Indicates the possibility of damage to equipment if precautions are
not taken.

Related Documentation from Texas Instruments

Multicore Navigator for KeyStone Devices User Guide SPRUGR9
KeyStone II Architecture Network Coprocessor (NETCP) for K2E and K2L Devices User Guide SPRUHZ0

All trademarks are the property of their respective owners.

10 Preface SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRUGR9
http://www.ti.com/lit/pdf/SPRUHZ0
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Chapter 1
SPRUHZ1–August 2014

Introduction

NOTE: The information in this document should be used in conjunction with information in the
device-specific Keystone Architecture data manual that applies to the part number of your
device.

Topic ... Page

1.1 Purpose of the Peripheral.. 12
1.2 Terminology Used in This Document .. 12
1.3 Features.. 13
1.4 Functional Block Diagram ... 14
1.5 Industry Standard(s) Compliance Statement.. 16

11SPRUHZ1–August 2014 Introduction
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Purpose of the Peripheral www.ti.com

1.1 Purpose of the Peripheral
The Security Accelerator (SA2) is one of the main components of the Network Coprocessor (NETCP)
peripheral. The SA2 works together with the Packet Accelerator (PA) and the Gigabit Ethernet (GbE)
switch subsystem to form a network processing solution. The purpose of the SA2 is to assist the host by
performing security related tasks. The SA2 provides hardware engines to perform encryption, decryption,
and authentication operations on packets for commonly supported protocols, including IPsec ESP and AH,
SRTP, and Air Cipher. The SA2 also provides the hardware modules to assist the host in generating
public keys and random numbers.

1.2 Terminology Used in This Document
This section defines terminology and acronyms that are used throughout this document.

Term Definition
3GPP 3rd Generation Partnership Project
AES Advanced Encryption Standard
CBC Cipher Block Chaining
CCM Counter with CBC MAC
CMAC Cipher-based Message Authentication Code
CTR Counter
DES Data Encryption Standard
FIPS Federal Information Processing System
GCM Galois Counter Mode
GMAC Galois Message Authentication Code
HMAC Hashed Mac Authentication Code
IETF Internet Engineering Task Force
IPsec Internet Protocol security
MD5 Message Digest 5
NIST National Institute of Standards and Technology
PDSP Packet data structure processor
PHP Packet header processor
PKA Public key accelerator
PS Protocol specific
RFC Request for comment
RISC Reduced instruction set controller
RTP Real-Time Transport Protocol
SC Security Context
SHA Secure Hash Algorithm
SRTP Secure Real-time Transport Protocol
SSL Secure Socket Layer
TRNG True random number generator
TSL Transport Layer Security

12 Introduction SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Features

1.3 Features
This section gives an overview of the features provided by the security accelerator.
• Protocol stack features provided:

– Provides IPsec protocol stack
• Support transport mode for both AH and ESP processing
• Support tunnel mode for both AH and ESP processing
• Full header parsing and padding checks
• Constructs initialization vector from header
• Supports anti-replay
• Supports true 64K bytes packet processing

– Provides SRTP protocol stack
• Supports F8 mode of processing
• Supports replay protection
• Supports true 64K bytes packet processing

– Provides 3GPP protocol stack, Wireless Air cipher standard
• AES counter
• ECSD A5/3 key generation
• GEA3 (GPRA) key generation
• GSM A5/3 key generation
• Kasumi
• Snow3G
• ZUC

• Features provided by respective hardware modules:
– IPSEC and SRTP Confidentiality Engine

• 3DES CBC cipher
• AES CTR cipher
• AES CBC cipher
• AES F8 cipher
• CCM cipher
• DES CBC cipher
• GCM cipher

– IPSEC and SRTP Integrity Engine provides hardware modules to support keyed (HMAC) and non-
keyed hash calculations:
• CMAC authentication
• GMAC authentication
• HMAC MD5 authentication
• HMAC SHA1 authentication
• HMAC SHA2 224 authentication
• HMAC SHA2 256 authentication
• AES XCBC authentication

– Air Confidentiality Engine
• AES CTR cipher
• ZUC
• Kasumi F8 cipher
• Snow3G F8 cipher

13SPRUHZ1–August 2014 Introduction
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Features www.ti.com

– Air Integrity Engine
• AES CMAC authentication
• Kasumi F9 authentication
• Snow3G F9 authentication
• ZUC-MAC authentication

– Programmable Header Parsing module
• PDSP based header processing engine for packet parsing, algorithm control and decode
• Carry out protocol related packet header and trailer processing

• Support null cipher and null authentication for debugging
• True Random number generator

– True (not pseudo) random number generator
– FIPS 140-1 Compliant
– Non-deterministic noise source for generating keys, IV, etc.

• Public Key accelerator
– High performance public key engine for large vector math operation
– Supports modulus size up to 4096 bits
– Extremely useful for public key computations

• Context cache module to automatically fetch security context

1.3.1 Features Not Supported
• SHA2 beyond 256
• RC4 stream cipher

1.4 Functional Block Diagram
Figure 1-1 shows the Security Accelerator (SA2) functional block diagram. The SA2 provides two ports to
interface to the packet streaming switch in the Network Coprocessor (NETCP). All data packets entering
and exiting the SA2 must use one of these two ports. The SA0 port is used for packets entering the SA2
from queue 647. The SA1 port is used for packets entering the SA2 from queue 646.

To encrypt, decrypt, and authenticate data packets, the SA2 provides the following modules:
• Security Context Cache: fetches and caches the security contexts that are used by the SA2 hardware

modules to encrypt, decrypt, and authenticate data packets.
• 2 Packet Header Processors (PHP1 & PHP3) PDSP: primarily used with the encryption and

decryption engine and the authentication engine to perform IPsec operations.
• Encryption and Decryption Engine: used with PHP1, PHP2 and PHP3 to perform encryption and

decryption operations. PHP1 and PHP3 use this engine for IPsec operations, while PHP2 uses this
engine for SRTP operations. This module can also be used with data-mode packets without engaging
the PHPs.

• Authentication Engine: used with PHP1 and PHP2 to perform authentication operations. PHP1 uses
this engine for IPsec operations, while PHP2 uses this engine for SRTP operations.This module can
also be used with data-mode packets without engaging the PHPs.

• PHP2 PDSP: primarily used with the encryption and decryption engine and the authentication engine
to perform SRTP operations, or the Air Cipher engine to perform 3GPP operations.

• Air Cipher Engine: used with PHP2 to perform Air Cipher encryption and decryption operations. This
module can also be used with data-mode packets without engaging the PHP2.

14 Introduction SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Connections

to Packet

Streaming

Switch

Connections to

Configuration

Bus

Security Context

Cache

PHP1 PDSP

Encryption and

Decryption Engine

Authentication

Engine

PHP2 PDSP

Air Cipher Engine

In
te

rco
n

n
ec

t

Public Key

Acclerator

True Random

Number Generator

SA0

Input/Output

Ports

SA1

Input/Output

Ports

www.ti.com Functional Block Diagram

In addition to the modules provided for packet processing, the SA2 also provides the following two
modules to assist the host in security related operations:
• Public Key Accelerator (PKA): used primarily for large vector math, as typically used in public key

operations.
• True Random Number Generator (TRNG): used primarily for generating random numbers.

Figure 1-1. Security Accelerator Functional Block Diagram

NOTE: The encryption and decryption engine, the authenticating engine, and the air cipher engine
do not have connections to the configuration bus. Since these engines are not connected to
the configuration bus, these modules do not contain memory-mapped registers and cannot
be accessed through register reads and writes. All configuration for these modules is taken
care of automatically by the PHP firmware.

15SPRUHZ1–August 2014 Introduction
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Industry Standard(s) Compliance Statement www.ti.com

1.5 Industry Standard(s) Compliance Statement
The SA2 is compliant with the following standards:
• RFC 1321 The MD5 Message-Digest Algorithm
• RFC 2104 HMAC: Keyed-Hashing for Message Authentication
• RFC 2246 Transport Layer Security Protocol
• RFC 3711 The Secure Real-time Transport Protocol (SRTP)
• RFC 4301 Security Architecture for IP
• RFC 4302 IP Authentication Header
• RFC 4303 IP Encapsulating Security Payload (ESP)
• RFC 4305 Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload

(ESP) and Authentication Header
• Secure socket layer protocol
• 3GPP TS 35.216 Specification of the 3GPP Confidentiality and Integrity, Algorithms UEA2 & UIA2

Document 2: Snow3G Specification
• 3GPP TS 35.222 Specification of the 3GPP Confidentiality and Integrity Algorithms EEA3 & EIA3

Document 3: ZUC Specification

16 Introduction SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Chapter 2
SPRUHZ1–August 2014

Architecture

This chapter describes the Security Accelerator architecture.

Topic ... Page

2.1 Clock Control... 18
2.2 Memory Map .. 18
2.3 Security Accelerator Programming with the Low-Level Driver 18
2.4 Protocol Descriptions ... 20
2.5 Command Labels ... 38
2.6 Descriptor Software Information Words .. 39
2.7 Security Contexts... 39
2.8 Security Context Cache .. 40
2.9 Packet Header Processor Modules ... 41
2.10 Encryption and Decryption Engine ... 45
2.11 Authentication Engine .. 46
2.12 Air Cipher Engine... 46
2.13 Public Key Accelerator ... 47
2.14 True Random Number Generator ... 52
2.15 Initializing the SA2 Using the SA2 LLD ... 53
2.16 SA2 LLD Channel Initialization and Configuration .. 54
2.17 Sending Packets to the SA2 for Processing .. 54
2.18 SA2 Transmit Queues ... 55
2.19 Interrupt Support.. 55
2.20 DMA Event Support .. 56
2.21 Power Management .. 56

17SPRUHZ1–August 2014 Architecture
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Clock Control www.ti.com

2.1 Clock Control
The Security Accelerator (SA) has one clock, which it receives from the Network Coprocessor (NETCP).
This clock is used to operate all of the SA2 logic. To reduce power consumption, this clock is disabled by
default; therefore, this clock must be enabled before using the SA2. For more information about this clock,
including the operating frequency, see the KeyStone II Architecture Network Coprocessor (NETCP) for
K2E and K2L Devices User Guide (SPRUHZ0), and the device-specific data manual. For more information
about power management for the SA2, see Section 2.21.

2.2 Memory Map
The memory map of the Security Accelerator (SA2) is shown in Table 2-1.

Table 2-1. Security Accelerator Memory Map (1)

Memory Region Address Offset
Security Accelerator System 00000h
Context Cache Module 00100h
PHP1 PDSP Module 01000h
PHP2 PDSP Module 01100h
PHP3 PDSP Module 01200h
Public Key Accelerator Module 20000h
Public Key Accelerator Vector RAM 22000h
True Random Number Generator Module 24000h

(1) The address offsets are relative to the base address of the SA2 module. See the NETCP user guide to determine the base
address of the SA2 module relative to the NETCP.

2.3 Security Accelerator Programming with the Low-Level Driver
To ease the task of programming the Security Accelerator (SA2) by abstracting many of the hardware
details, a low-level driver (LLD) software package has been generated for use with the SA2. Included with
the SA2 LLD are firmware images that must be loaded onto the PHP PDSPs before using the SA2 to
encrypt, decrypt, and authenticate packets. Due to interdependencies between the PHP firmware and the
SA2 LLD, all users must use the SA2 LLD to generate the security contexts for the SA2. Failure to use the
SA2 LLD to generate security contexts will result in undefined behavior.

The SA2 LLD provides a set of APIs that can be called to configure and control the SA2. The APIs
provided by the SA2 LLD can be divided into two main categories: common interface APIs and channel
interface APIs. These APIs are described in detail in the following sections.

2.3.1 SA2 LLD Common Interface APIs
The common interface APIs are provided primarily to abstract the SA2 hardware from the user, and
eliminates the need for the user to directly program the SA2 memory mapped registers. These APIs
handle all the SA2 register reads and writes that are required to initialize and use the SA2 hardware. The
common interface APIs provide the ability to enable, initialize, and use the hardware modules in the SA2.
The common interface provides APIs for configuring the following modules:
• SA2 System Configuration
• Security Context Cache
• Packet header processor 1 (PHP1)
• Packet header processor 3 (PHP3)
• Packet header processor 2 (PHP2)
• Public key accelerator (PKA)
• True random number generator (TRNG)

18 Architecture SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRUHZ0
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Security Accelerator Programming with the Low-Level Driver

Using the common interface APIs, the following list shows some of the tasks that can be performed:
• Reset, download, and update the PDSP firmware images on the SA2 PHP hardware modules
• Generate a 64-bit true random number from the TRNG hardware module
• Perform large integer arithmetic through the PKA hardware module
• Query SA2 states and statistics
• Monitor and report SA2 system errors

NOTE: For the full list of common interface APIs provided by the SA2 LLD, see the SA2 LLD
documentation.

2.3.2 SA2 LLD Channel Interface APIs
The channel interface APIs are provided to assist the SA2 with protocol-specific operations for the
protocols listed in Section 2.4. For each of these protocols, the SA2 LLD channel interface allows the user
to create channels allowing the SA2 to perform encryption, decryption, and authentication operations.
Each channel is differentiated through a separate channel identification value, which is specified by the
user. For each channel, the channel interface APIs perform the following tasks:
• Convert channel configuration information into security contexts for use by the SA2 encryption and

decryption, authentication, and PHP hardware modules
• Perform protocol-specific packet operations such as insertion of the ESP header, padding, and ESP

tail
• Decrypt and authenticate received SRTP packets when the SA2 hardware is not able to perform the

operations due to key validation failure
• Generate SA2 operation control command labels when operating in data mode
• Maintain protocol-specific channel statistics

For details about the protocol-specific operations that will be completed by each protocol, see Section 2.4.

NOTE: A subset of the channel-specific APIs is provided in Table 2-2. For the full list of channel
interface APIs provided by the SA2 LLD, see the SA2 LLD documentation.

19SPRUHZ1–August 2014 Architecture
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Protocol Descriptions www.ti.com

Table 2-2. SA2 LLD Channel Specific API Overview

API Description
Sa_chanGetBufferReq Get SA2 channel memory requirements.

This API is responsible for determining the SA2 LLD channel memory requirements for the protocol
that will be used.

Sa_chanCreate Create the SA2 LLD channel.
This API is responsible for instantiating the SA2 channel for the desired protocol. This API only
instantiates the channels, and does not configure that channel. The Sa_chanControl API must be used
to configure the channel.

Sa_chanClose Close the SA2 LLD channel.
This API is responsible for closing the SA2 channel. It will free the memory associated with the
channel, tear down the security context, return the security context ownership to the Host, and remove
the security context from the SA2 security context cache.
If the channel was setup for both TX and RX, then the above actions are completed for both the TX
and RX portions of the channel.

Sa_chanControl Configure the SA2 LLD channel.
This API is responsible for configuring the SA2 LLD channel. This API should be called multiple times
to configure a channel and for re-key operations.
1. . The first call to this function will set up the general settings such as the cipher mode,

authentication mode, and other configuration parameters.
• For IPsec ESP, this is where things like the block size, MAC size, and SPI are specified.
• For Air Cipher, this is where things like the count-C, fresh, and IV size are specified.

2. . The second call to this function will set up the protocol specific key information used for the
channel.

3. . Subsequent calls to this API are used to generate the TX and RX security contexts for the
channel.

Sa_chanSendData Prepare packet and descriptor for transmission to the SA2.
This API is responsible for completing protocol-specific operations to prepare the packet for
transmission to the SA2.
This API is also responsible for generating the information required for the descriptor so that the SA2
will have the information required to process the packet. These operations include generating the
descriptor software info words, and providing the updated packet and buffer lengths after making the
protocol-specific updates to the packet.

Sa_chanReceiveData Post process a packet after receiving it from the SA2.
This API is responsible for doing the post-SA2 protocol-specific operations on the decrypted and/or
integrity verified receive packet.

Sa_chanGetStats Get the statistics for the channel.
This API is responsible for getting the SA2 LLD channel protocol-specific statistics.

Sa_chanGetID Get the channel ID.
This API is responsible for getting the ID associated with the channel.

NOTE: The channel-level interface APIs do not communicate directly with the SA2 hardware.

2.4 Protocol Descriptions
This section describes the high-level protocols supported by the SA2 and the SA2 LLD. The types of
cipher modes and the authentication modes supported by each protocol are discussed in detail.

The following protocols are supported by the SA2 and the SA2 LLD. See the protocol-specific section
listed below for more details.
• 3GPP Air Cipher Section 2.4.1
• Data-Mode Section 2.4.2
• IPsec AH Section 2.4.3
• IPsec ESP Section 2.4.4
• SRTCP Section 2.4.5
• SRTP Section 2.4.6

20 Architecture SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Protocol Descriptions

2.4.1 3GPP Air Cipher
This section describes how to use the 3GPP air cipher protocol with the SA2 and the SA2 LLD and
provides details about the SA2 hardware engines used to perform air cipher encryption, decryption, and
authentication. This section also provides details about which cipher modes and authentication modes are
supported when using the 3GPP air cipher protocol.

NOTE: The information in this section is accurate for SA2 LLD version 1.0.4.1. See the
documentation provided with the version of the SA2 LLD that you are using for the most up-
to-date information.

2.4.1.1 SA2 Hardware Engine Utilization
Packets using the 3GPP air cipher protocol require the use of the following hardware engines:
• PHP2
• Air cipher engine

When sending a packet to the SA2, the SA2 transmit queue selected must adhere to the requirements in
Section 2.18. When it is in the appropriate queue, the NETCP packet DMA transfers the packet to the SA2
for encryption and authentication operations. There is no additional configuration needed to direct packets
between the PHP2 and the air cipher engine. All transmission between modules inside the SA2 is taken
care of by the packet command label, which is generated by PHP2 for the 3GPP air cipher protocol. For
more information on command labels, see Section 2.5. For more information about sending packets to the
SA2, see Section 2.17.1.

2.4.1.2 Supported Cipher Modes
The SA2 supports the following cipher modes for the 3GPP air cipher protocol:
• Null (no cipher)
• AES Counter
• ECSD A5/3 key generation
• GEA3 (GPRA) key generation
• GSM A5/3 key generation
• Kasumi F8
• Snow3G F8
• ZUC

The desired cipher mode can be selected when creating and configuring a channel using the SA2 LLD.
The cipher used can be selected on a per-channel basis, meaning that only one cipher can be used per
channel; however, different ciphers can be used by creating multiple channels and selecting a different
cipher for each channel. The same cipher also can be used for multiple channels. For more information on
creating and configuring channels see Section 2.16.1.

2.4.1.3 Supported Authentication Modes
The SA2 supports the following authentication modes for the 3GPP air cipher protocol:
• Null (no authentication)
• AES CMAC
• Kasumi F9
• Snow3G F9
• ZUC-MAC

21SPRUHZ1–August 2014 Architecture
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Short Info Command for

SA Encryption/Authentication

Beginning of PS Info Section

Protocol Descriptions www.ti.com

The desired authentication mode can be selected when creating and configuring a channel using the SA2
LLD. The authentication mode that is used can be selected on a per-channel basis, meaning that only one
authentication mode can be used per channel; however, different authentication modes can be used by
creating multiple channels and selecting a different authentication mode for each channel. The same
authentication mode also can be used for multiple channels. For more information on creating and
configuring channels see Section 2.16.1.

2.4.1.4 Protocol-Specific SA2 LLD Channel APIs
Table 2-3 lists the protocol-specific operations performed by the SA2 LLD channel specific APIs when
using the 3GPP air cipher protocol.

Table 2-3. 3GPP Air Cipher Channel SA2 LLD APIs

API 3GPP Air Cipher Channel Operations
Sa_chanSendData Prepare a 3GPP air cipher From-Air packet for transmission to the SA2.

This API is mainly responsible for generating the SA2-specific software information, which is required
for every packet that is sent to the SA2. This API only modifies the descriptor information and does not
make any modifications to the packet data for the 3GPP air cipher protocol.

Sa_chanReceiveData Prepare a 3GPP air cipher To-Air packet for transmission to the SA2.
This API is mainly responsible for generating the SA2-specific software information, which is required
for every packet that is sent to the SA2. This API only modifies the descriptor0 information and does
not make any modifications to the packet data for the 3GPP air cipher protocol.

NOTE: Table 2-3 only provides information specific to the 3GPP air cipher protocol. For an
overview of the functionality provided for all protocols by the SA2 LLD channel specific APIs,
see Table 2-2.

2.4.1.5 Descriptor Protocol-Specific Information Section
This section describes the descriptor protocol-specific information (PS info) section of the 3GPP air cipher
protocol. The content stored in descriptor PS info section will be discussed for both transmit and receive
packets.

2.4.1.5.1 Transmit Packet Descriptor Protocol-Specific Information
This section describes the transmit configuration required for the descriptor PS info section of 3GPP air
cipher packets. In this case, a transmit packet refers to a packet that is generated by the Host, and will be
sent to the SA2 for encryption and/or authentication operations.

For transmit operations, the PASAHO_SINFO_FORMAT_CMD macro should be used to create a
command with the offset to the encryption payload, and the length of the encryption payload in bytes. This
information must be placed in the PS info section of the descriptor so that the SA2 knows what section of
the packet needs to be processed.

For 3GPP air cipher packets requiring authentication, the SA2 automatically inserts the authentication tag
into the packet before the packet exits the SA2. The PS info section does not require any additional
configuration for 3GPP air cipher packets. A diagram of the PS info section of a 3GPP air cipher transmit
packet is shown in Figure 2-1.

Figure 2-1. 3GPP Air Cipher Descriptor Protocol-Specific Information Diagram

22 Architecture SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Protocol Descriptions

2.4.1.5.2 Receive Packet Descriptor Protocol-Specific Information
This section describes the information in the PS info section of receive packets. 3GPP air cipher packets
received by the SA2 and PA contain the PA/SA2/Host long info structure in the PS info section. This
structure is shared by both the PA and the SA2. From this structure, the offset to the 3GPP air cipher
header as well as additional information about the headers contained in the packet can be determined.
For more information about the PA/SA2/Host long info structure, see the KeyStone II Architecture Network
Coprocessor (NETCP) for K2E and K2L Devices User Guide (SPRUHZ0).

2.4.2 Data-Mode
This section describes how to use the data-mode configuration with the SA2 and the SA2 LLD. This
section provides details about the SA2 data processing engines used to perform encryption and
authentication. This section also provides details about which cipher modes and authentication modes are
supported when using data-mode.

The data-mode protocol is used when using the PHPs is not desired, or when using the other protocols is
not desired.

2.4.2.1 SA2 Data Processing Engine Utilization
The packets using data-mode can use of the following data processing engines:
• Encryption and decryption engine
• Authentication engine
• Air cipher engine

Unlike other protocols, data-mode does not use SA2 PHP modules. Since the PHPs are not used, they
cannot generate the command label for the packet, so the command label must be generated by the Host
processor and inserted into the PS info section of the packet before sending it to the SA2 for processing.
Data-mode command labels are discussed in more detail in Table 2-6 and Section 2.4.2.5.

For data-mode, the exact data processing engine that will be used is not as clearly defined as it is for the
other protocols, and depends on the cipher mode and authentication mode that is used for the packet. A
mapping between the cipher mode and data processing engine used is provided in Table 2-4. Similarly, a
mapping between the authentication mode and the data processing engine used is provided in Table 2-5.

Due to the fact that the SA2 data processing engines used to process a packet are not as clear as for the
other protocols, extra care must be taken to adhere to the requirements mentioned in Section 2.18 to
make sure that the correct transmit queue for the SA2 is used, so a deadlock condition can be avoided.
Once the packet is placed into the appropriate transmit queue, the NETCP packet DMA will transfer the
packet to the SA2 for encryption and authentication operations.

There is no additional configuration needed to direct the packet between the SA2 data processing
engines. All communication between the modules inside the SA2 will be taken care of by the packet
command label. For more information on command labels, see Section 2.5.

23SPRUHZ1–August 2014 Architecture
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRUHZ0
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Protocol Descriptions www.ti.com

2.4.2.2 Supported Cipher Modes
The SA2 supports the following cipher modes for the data-mode protocol:
• Null (no cipher)
• 3DES CBC
• AES CTR
• AES CBC
• AES F8
• CCM
• DES CBC
• GCM
• Kusami F8
• Snow3G F8
• ZUC

The desired cipher mode can be selected when creating and configuring a channel using the SA2 LLD.
The cipher that is used can be selected on a per-channel basis, meaning that only one cipher can be used
per channel; however, different ciphers can be used by creating multiple channels and selecting a different
cipher for each channel. The same cipher also can be used for multiple channels. For more information on
creating and configuring channels see Section 2.16.1.

Table 2-4 maps each of the cipher modes available in data-mode to the data processing engine in the
SA2 that will take care of encrypting and decrypting the packet.

Table 2-4. Cipher Mode to SA2 Data Processing Engine Mapping

Cipher Mode SA2 Data processing Engine Used
Null No data processing engines will be used to encrypt or decrypt the packet.
3DES CBC Encryption and Decryption Engine
AES CTR Encryption and Decryption Engine/Air Cipher Engine
AES CBC Encryption and Decryption Engine
AES F8 Encryption and Decryption Engine
CCM Encryption and Decryption Engine
DES CBC Encryption and Decryption Engine
GCM Encryption and Decryption Engine
ECSD A5/3 Key Generation Air Cipher Engine
GEA3 (GPRA) Key Generation Air Cipher Engine
GSM A5/3 Key Generation Air Cipher Engine
Kusami F8 Air Cipher Engine
Snow3G F8 Air Cipher Engine
ZUC Air Cipher Engine

24 Architecture SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Protocol Descriptions

2.4.2.3 Supported Authentication Modes
The SA2 supports the following authentication modes for the data-mode protocol:
• Null (no authentication)
• AES CMAC
• AES XCBC
• CMAC
• GMAC
• HMAC MD5
• HMAC SHA1
• HMAC SHA2 224
• HMAC SHA2 256
• Kasumi F9
• Snow3G F9
• ZUC-MAC

The desired authentication mode can be selected when creating and configuring a channel using the SA2
LLD. The authentication mode used can be selected on a per-channel basis, meaning that only one
authentication mode can be used per channel; however, different authentication modes can be used by
creating multiple channels and selecting a different authentication mode for each channel. The same
authentication mode also can be used for multiple channels. For more information on creating and
configuring channels see Section 2.16.1.

Table 2-5 maps each of the cipher modes available in data-mode to the data processing engine in the
SA2 that will handle authenticating the packet.

Table 2-5. Authentication Mode to SA2 Data Processing Engine Mapping

Cipher Mode SA2 Data Processing Engine Used
Null No data processing engines will be used to authenticate the packet.
AES CMAC Air Cipher Engine
AES XCBC Encryption and Decryption Engine
CMAC Authentication Engine
GMAC Authentication Engine
HMAC MD5 Authentication Engine
HMAC SHA1 Authentication Engine
HMAC SHA2-224 Authentication Engine
HMAC SHA2-256 Authentication Engine
Kusami F9 Air Cipher Engine
Snow3G F9 Air Cipher Engine
ZUC-MAC Air Cipher Engine

25SPRUHZ1–August 2014 Architecture
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Command Label

Beginning of PS Info Section

Protocol Descriptions www.ti.com

2.4.2.4 Protocol-Specific SA2 LLD Channel APIs
Table 2-3 lists the protocol-specific operations performed by the SA2 LLD channel-specific APIs when
using the data-mode protocol.

Table 2-6. SA2 LLD Data-mode Channel APIs

API Data-mode Channel Operations
Sa_chanSendData Prepare a data-mode packet and descriptor for transmission to the SA2.

This API is responsible for completing 3 tasks:
• Generate SA-specific software information (required for all packets to be delivered to the SA2)
• Update the data mode command label based on the payload information
• Perform Kasumi-F9 padding if required

Unlike for the other protocols, when generating the descriptor software information words, the
Section A.1.3 is also generated to specify the multicore navigator information for the packet.
Unlike for the other protocols, this API generates the command label. The command label contains
instructions on how the SA2 should process the packet, and needs to be placed in the protocol-specific
section of the descriptor. For more information on command labels, see Section 2.5.

Sa_chanReceiveData This API is used to post process a data-mode packet from the SA2, and supports removal of Kasumi-
F9 padding if required. See the SA2 LLD documentation for more detail.

NOTE: Table 2-6 provides information specific only to the data-mode protocol. For an overview of
the functionality provided for all protocols by the SA2 LLD channel-specific APIs, see
Table 2-2.

2.4.2.5 Descriptor Protocol-Specific Information Section
This section describes the descriptor protocol-specific information (PS info) section of the data-mode
protocol. The content stored in the descriptor PS info section is discussed for both transmit and receive
packets.

2.4.2.5.1 Transmit/Receive Packet Descriptor Protocol-Specific Information
This section describes the transmit and receive configuration required for the descriptor PS info section of
data-mode packets. In this case, both transmit packets (packets to be encrypted and/or authenticated) and
receive packets (packets to be decrypted and/or authenticated) must use the Host to generate the
command label using the SA2 LLD Sa_chanSendData API.

Before sending a data-mode packet to the SA2 for processing, the Host-generated command label must
be placed in the PS info section of the descriptor, so the SA2 knows how to process the packet. A
diagram of the PS info section of a data-mode packet is shown in Figure 2-2.

Figure 2-2. Data-Mode Descriptor Protocol-Specific Information Diagram

2.4.2.5.2 Authentication Tag Insertion
When using the data-mode protocol, the SA2 is not able to insert the authentication tag into the packet.
For packets where an authentication tag is generated, the SA2 places the authentication tag at the head
of the PS info section.

26 Architecture SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Protocol Descriptions

2.4.3 IPsec AH
This section describes how to use the IPsec AH protocol with the SA2 and the SA2 LLD. This section
provides a detailed view of the SA2 hardware used to perform air cipher encryption and authentication.
This section also provides details about which cipher modes and authentication modes are supported
when using the IPsec AH protocol.

NOTE: The information in this section is accurate for SA2 LLD version 1.0.4.1. See the
documentation provided with the version of the SA2 LLD that you are using for the most up-
to-date information.

2.4.3.1 SA2 Hardware Engine Utilization
The packets using the IPsec AH protocol use the following engines:
• PHP1
• PHP3
• Authentication engine

When sending a packet to the SA2, the SA2 transmit queue selected must adhere to the requirements in
Section 2.18. When it is in the appropriate queue, the NETCP packet DMA transfers the packet to the SA2
for the authentication operation. There is no additional configuration needed to direct the packet between
PHP1 and the authentication engine. All communication between modules inside the SA2 are taken care
of by the packet command label, which is generated by PHP1 for the IPsec AH protocol. For more
information on command labels, see Section 2.5.

2.4.3.2 Supported Cipher Modes
The SA2 and SA2 LLD only support the following cipher mode for the IPsec AH protocol:
• Null (no cipher)

The null cipher mode must be specified when creating and configuring a channel using the SA2 LLD. The
cipher must be selected on a per-channel basis, meaning that the cipher must be selected for each
channel. For more information on creating and configuring channels see Section 2.16.1.

2.4.3.3 Supported Authentication Modes
The SA2 and SA2 LLD support the following authentication modes for the IPsec AH protocol:
• Null (no authentication)
• AES XCBC
• CMAC
• GMAC
• HMAC MD5
• HMAC SHA1
• HMAC SHA2 224
• HMAC SHA2 256

The desired authentication mode can be selected when creating and configuring a channel using the SA2
LLD. The desired authentication mode is selected on a per-channel basis, meaning that only one
authentication mode can be used per channel; however, different authentication modes can be used by
creating multiple channels and selecting a different authentication mode for each channel. The same
authentication mode also can be used for multiple channels. For more information on creating and
configuring channels using the SA2 LLD see Section 2.16.1.

27SPRUHZ1–August 2014 Architecture
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Protocol Descriptions www.ti.com

2.4.3.4 Protocol-Specific SA2 LLD Channel APIs
Table 2-7 lists the protocol-specific operations performed by the SA2 LLD channel specific APIs when
using the IPsec AH protocol.

Table 2-7. SA2 LLD IPsec AH Channel APIs

API IPsec AH Channel Operations
Sa_chanSendData Prepare an IPsec AH packet and descriptor for transmission to the SA2.

The primary purpose of this API is to:
• Populate and insert AH Header following the external IP header for Tunnel mode or the original IP

header for transport mode.
• Extract the protocol (next header) from the original IP header, replace it with AH Transport (51)

and recalculate IPv4 header checksum.
• Provide SA2-specific software information (required for all packets to be delivered to SA2).

Sa_chanReceiveData Post-process an IPsec AH packet after receiving it from the SA2.
The primary purpose of this API is to:

• Extract the next header from the AH header and replace the one in the IP header with it.
• Update the packet size and protocol (IP) payload size of the external IP header.
• Remove the AH header.

NOTE: Table 2-7 only provides information specific to the IPsec AH protocol. For an overview of the
functionality provided for all protocols by the SA2 LLD channel specific APIs, see Table 2-2.

2.4.3.5 Descriptor Protocol-Specific Information Section
This section describes the descriptor protocol-specific information (PS info) section of the IPsec AH
protocol. The content stored in descriptor PS info section is discussed for both transmit and receive
packets.

2.4.3.5.1 Transmit Packet Descriptor Protocol-Specific Information
This section describes the transmit configuration required for the descriptor PS info section of IPsec AH
packets. In this case, a transmit packet refers to a packet that is generated by the Host and will be sent to
the SA2 for authentication operations.

For transmit operations, the PASAHO_SINFO_FORMAT_CMD macro should be used to create a
command with the offset to the IP payload and the length of the IP payload in bytes. This information must
be placed in the PS info section of the descriptor so that the SA2 knows what section of the packet needs
to be authenticated.

For IPsec AH operations, the SA2 is unable to insert the authentication tag into the packet, and the SA2
instead inserts the authentication tag into the PS info section. The authentication tag must then be
inserted into the packet by the Host or the PA.

If the Host will be used to insert the authentication tag, then only the PA/SA/Host short info command that
tells the SA2 how to process the packet needs to be written to the PS info section.

To insert the authentication tag into the packet using the PA, a second command can be generated using
the PA LLD Pa_formatRoutePatch API, which can then be inserted into the PS info section of the
descriptor after the PA/SA/Host short info command for the SA2. This way, after authentication the SA2
can route the packet to the PA and the PA can insert the authentication tag into the packet without Host
intervention. See Section 2.4.3.5.1.1 for details about how to use the PA to perform a blind patch after the
SA2 authenticates the packet. See Figure 2-3 for a diagram of the PS info section before sending the
packet to the SA2 for authentication.

NOTE: Section 2.4.3.5.1.1 defines the general procedure for doing a blind patch; however, the
procedure may change slightly as the SA2 LLD is updated. See the SA2 LLD documentation
and example code for the latest information on how to do a blind patch.

28 Architecture SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Short Info Command for

SA Authentication

PA Modify/Multiroute Engine

Blind Patch Command

Beginning of PS Info Section

www.ti.com Protocol Descriptions

2.4.3.5.1.1 Performing an Authentication Tag Blind Patch using the PA
Step 1. Use the PASAHO_SINFO_FORMAT_CMD macro to generate a short info command for SA2

authentication.
Step 2. Insert the authentication short info command in the PS info section in the descriptor.
Step 3. Call Pa_formatRoutePatch to generate the blind patch command for the PA modify/multiroute

engine.
Step 4. Insert the blind patch command in the PS info section of the descriptor.
Step 5. Send the packet to the SA2 to generate the authentication tag.
SA2 generates the authentication tag and writes it to the PS info section descriptor.
The packet is routed to the PA modify/multiroute engine.
The PA modify/multi-route engine patches the packet with the authentication tag.
The PA modify/multi-route engine routes the packet to its next destination.

Figure 2-3. IPsec AH Descriptor Protocol-Specific Information Diagram

NOTE: Routing the packet from the SA2 to the PA modify/multiroute engine must be configured
when setting up the TX security context for the SA2 LLD channel.

2.4.3.5.2 Receive Packet Descriptor Protocol-Specific Information
This section describes the information in the PS info section of receive packets. IPsec AH packets
received by the SA2 and PA will contain the PA/SA/Host long info structure in the PS info section. This
structure is shared by both the PA and the SA2. From this structure, the offset to the IPsec AH header, as
well as additional information about the headers contained in the packet can be determined. For more
information on the PA/SA/Host long info structure, see the NETCP User Guide.

2.4.4 IPsec ESP
This section describes how to use the IPsec ESP protocol with the SA2 and the SA2 LLD. This section
provides details about the SA2 engines used to perform IPsec ESP encryption, decryption, and
authentication. This section also provides details about which cipher modes and authentication modes are
supported when using the IPsec ESP protocol.

NOTE: The information in this section is accurate for SA2 LLD version 1.0.4.1. See the
documentation provided with the version of the SA2 LLD that you are using for the most up-
to-date information.

29SPRUHZ1–August 2014 Architecture
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Protocol Descriptions www.ti.com

2.4.4.1 SA2 Hardware Engine Utilization
Packets using the IPsec ESP protocol use the following engines:
• PHP1
• PHP3
• Encryption and decryption engine
• Authentication engine

When sending a packet to the SA2, the SA2 transmit queue selected must adhere to the requirements in
Section 2.18. When it is in the appropriate queue, the NETCP packet DMA transfers the packet to the SA2
for encryption and authentication operations. There is no additional configuration needed to direct the
packet between PHP1, the encryption and decryption engine(s), and the authentication engine(s).

All communication between modules inside the SA2 is taken care of by the packet command label, which
is generated by PHP1 and PHP3 for the IPsec ESP protocol. For more information on command labels,
see Section 2.5.

2.4.4.2 Supported Cipher Modes
The SA2 supports the following cipher modes for the IPsec ESP protocol:
• Null (no cipher)
• 3DES CBC
• AES CTR
• AES CBC
• CCM
• DES CBC
• GCM

The desired cipher mode can be selected when creating and configuring a channel using the SA2 LLD.
The cipher that is used can be selected on a per-channel basis, meaning that only one cipher can be used
per channel; however, different ciphers can be used by creating multiple channels and selecting a different
cipher for each channel. The same cipher can also be used for multiple channels. For more information on
creating and configuring SA2 LLD channels see Section 2.16.1.

2.4.4.3 Supported Authentication Modes
The SA2 supports the following authentication modes for the IPsec ESP protocol:
• Null (no authentication)
• AES XCBC
• CMAC
• GMAC
• HMAC MD5
• HMAC SHA1
• HMAC SHA2 224
• HMAC SHA2 256

The desired authentication mode can be selected when creating and configuring a channel using the SA2
LLD. The authentication mode that is used can be selected on a per-channel basis, meaning that only one
authentication mode can be used per channel; however, different authentication modes can be used by
creating multiple channels and selecting a different authentication mode for each channel. The same
authentication mode can also be used for multiple channels. For more information on creating and
configuring channels see Section 2.16.1.

30 Architecture SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Short Info Command for

SA Encryption/Authentication

Beginning of PS Info Section

www.ti.com Protocol Descriptions

2.4.4.4 Protocol-Specific SA2 LLD Channel APIs
Table 2-8 lists the protocol-specific operations that are performed by the SA2 LLD channel-specific APIs
when using the IPsec ESP protocol.

Table 2-8. SA2 LLD IPsec ESP Channel APIs

API IPsec ESP Channel Operations
Sa_chanSendData Prepare an IPsec ESP packet and descriptor for transmission to the SA2.

The primary purpose of this API is to:
• Populate and insert ESP Header following the external IP header for Tunnel mode or the original

IP header for transport mode.
• Compute the ESP padding size based on the encryption mode, insert padding bytes and ESP

trailer.
• Update the packet size and protocol (IP) payload size of the external IP header.
• Extract the protocol (next header) from the original IP header, replace it with ESP Transport (50)

and recalculate IPv4 header checksum.
• Reserve room for authentication data.
• Provide SA2-specific software information (required for all packets to be delivered to SA2).

Sa_chanReceiveData Post-process an IPsec ESP packet after receiving it from the SA2.
The primary purpose of this API is to:

• Verify the ESP padding bytes.
• Extract the next header from the ESP Trailer and replace the one in the IP header with it.
• Update the packet size and protocol (IP) payload size of the external IP header.
• Remove the ESP header, padding, ESP trailer and the authentication tag.

NOTE: Table 2-8 provides information specific only to the IPsec ESP protocol. For an overview of
the functionality provided for all protocols by the SA2 LLD channel specific APIs, see
Table 2-2.

2.4.4.5 Descriptor Protocol-Specific Information Section
This section describes the descriptor protocol-specific information (PS info) section of the IPsec ESP
protocol. The content stored in descriptor PS info section is discussed for both transmit and receive
packets.

2.4.4.5.1 Transmit Packet Descriptor Protocol-Specific Information
This section describes the transmit configuration required for the descriptor PS info section of IPsec ESP
packets. In this case, a transmit packet refers to a packet that is generated by the Host and sent to the
SA2 for encryption and/or authentication operations.

For transmit operations, the PASAHO_SINFO_FORMAT_CMD macro should be used to create a
command with the offset to the IP payload, and the length of the IP payload in bytes. This information
must be placed in the PS info section of the descriptor so that the SA2 knows what section of the packet
needs to be encrypted/authenticated.

For IPsec ESP operations, the SA2 automatically inserts the authentication tag into the packet before the
packet exits the SA2. The PS info section does not require any additional configuration for IPsec ESP
packets. For a diagram of the PS info section before sending the packet to the SA2 for encryption and/or
authentication, see Figure 2-4.

Figure 2-4. IPsec ESP Descriptor Protocol-Specific Information Diagram

31SPRUHZ1–August 2014 Architecture
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Protocol Descriptions www.ti.com

2.4.4.5.2 Receive Packet Descriptor Protocol-Specific Information
This section describes the information in the PS info section of receive packets. IPsec ESP packets
received by the SA2 and PA contain the PA/SA/Host long info structure in the PS info section. This
structure is shared by both the PA and the SA2. From this structure, the offset to the IPsec ESP header,
as well as additional information about the headers contained in the packet can be determined. For more
information on the PA/SA/Host long info structure, see the NETCP User Guide.

2.4.5 SRTCP
This section describes how to use the SRTCP protocol with the SA2 LLD. This section also provides
details about which cipher modes and authentication modes are supported when using the SRTCP
protocol.

NOTE: The information in this section is accurate for SA2 LLD version 1.0.4.1. See the
documentation provided with the version of the SA2 LLD that you are using for the most up-
to-date information.

2.4.5.1 SA2 Hardware Engine Utilization
SRTCP is only supported in software mode. The SA2 and the SA2 hardware engines are not used with
SRTCP.

2.4.5.2 Supported Cipher Modes
The SA2 supports the following cipher modes for the SRTCP protocol:
• Null (no cipher)
• AES CTR
• AES F8

The desired cipher mode can be selected when creating and configuring an SRTCP channel using the
SA2 LLD. The cipher that is used can be selected on a per-channel basis, meaning that only one cipher
can be used per channel; however, different ciphers can be used by creating multiple channels and
selecting a different cipher for each channel. The same cipher can also be used for multiple channels. For
more information on creating and configuring channels see Section 2.16.1.

2.4.5.3 Supported Authentication Modes
The SA2 supports the following authentication modes for the SRTCP protocol:
• Null (no authentication)
• HMAC MD5
• HMAC SHA1

The desired authentication mode can be selected when creating and configuring a channel using the SA2
LLD. The authentication mode used can be selected on a per-channel basis, meaning that only one
authentication mode can be used per channel; however, different authentication modes can be used by
creating multiple channels and selecting a different authentication mode for each channel. The same
authentication mode can also be used for multiple channels. For more information on creating and
configuring channels see Section 2.16.1.

32 Architecture SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Protocol Descriptions

2.4.5.4 Protocol-Specific SA2 LLD Channel APIs
Table 2-9 lists the protocol-specific operations performed by the SA2 LLD channel specific APIs when
using the SRTCP protocol.

Table 2-9. SA2 LLD SRTCP Channel APIs

API SRTCP Channel Operations
Sa_chanSendData Encrypt and authenticate an SRTCP packet.

This API is responsible for authenticating and encrypting a SRTCP packet by the DSP in software --
the SA2 hardware is not used for this process. Using this API, the DSP performs the following actions
in software:

• Perform re-key operation.
• Verify whether the master key is expired.
• If the master key is expired and the new key is not available, call API to request new key and

return error.
– If the master key is expired and the new key is available, derive the new session keys.
– If the session key is expired, derive the new session keys.

• Generate SRTP padding if necessary.
• Perform data encryption based on the specified cipher mode.
• Append the roc at the end of the packet and perform authentication operation based on the

specified mac mode.
• Append the MKI and the authentication tag at the end of packet.
• Update the packet size and protocol (TCP/UDP) payload size in the packet descriptor
• Update statistics

Sa_chanReceiveData Authenticate and decrypt an SRTCP packet.
This API is responsible for authenticating and decrypting a SRTCP packet by the DSP in software --
the SA2 hardware is not used for this process. Using this API, the DSP performs the following actions
in software:

• Perform re-key operation.
– Verify whether the master key is expired.

• If the master key is expired and the new key is not available, call API to request new
key and return error.

• If the master key is expired and the new key is available, derive the new session
keys.

– If the session key is expired, derive the new session keys.
• Record the authentication tag and remove MKI and authentication tag from the packet.
• Append the roll-over-counter at the end of the packet and perform authentication operation based

on the specified authentication mode.
• Perform data decryption based on the specified cipher mode if the authentication tag matches.

Otherwise, update the statistics and return error.
• Remove the MKI and the authentication tag at the end of packet.
• Update the packet size and protocol (TCP/UDP) payload size in the packet descriptor.
• Replay window updates.
• Update statistics.

NOTE: Table 2-9 only provides information specific to the SRTCP protocol. For an overview of the
functionality provided for all protocols by the SA2 LLD channel specific APIs, see Table 2-2.

2.4.6 SRTP
This section describes how to use the SRTP protocol with the SA2 and the SA2 LLD. This section
provides details about the SA2 hardware engines used to perform SRTP encryption, decryption, and
authentication. This section also provides details about which cipher modes and authentication modes are
supported when using the SRTP protocol.

33SPRUHZ1–August 2014 Architecture
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Protocol Descriptions www.ti.com

NOTE: The information in this section is accurate for SA2 LLD version 1.0.4.1. See the
documentation provided with the version of the SA2 LLD that you are using for the most up-
to-date information.

2.4.6.1 SA2 Hardware Engine Utilization
The packets using the SRTP protocol require the use of the following hardware engines:
• PHP2
• Encryption and decryption engine
• Authentication engine

When sending a packet to the SA2, the SA2 transmit queue selected must adhere to the requirements in
Section 2.18. When the packet is in the appropriate transmit queue, the NETCP packet DMA transfers the
packet to the SA2 for encryption and authentication operations. There is no additional configuration
needed to direct the packet between PHP2, the encryption and decryption engine, and the authentication
engine. All communication between modules inside the SA2 are taken care of by the packet command
label, which is generated by PHP2 for the SRTP protocol. For more information on command labels, see
Section 2.5.

2.4.6.2 Supported Cipher Modes
The SA2 supports the following cipher modes for the SRTP protocol:
• Null (no cipher)
• AES CTR
• AES F8

The desired cipher mode can be selected when creating and configuring a channel using the SA2 LLD.
The cipher used can be selected on a per-channel basis, meaning that only one cipher can be used per
channel; however, different ciphers can be used by creating multiple channels and selecting a different
cipher for each channel. The same cipher can also be used for multiple channels. For more information on
creating and configuring channels see Section 2.16.1.

2.4.6.3 Supported Authentication Modes
The SA2 supports the following authentication modes for the SRTP protocol:
• Null (no authentication)
• HMAC MD5
• HMAC SHA1

The desired authentication mode can be selected when creating and configuring a channel using the SA2
LLD. The authentication mode used can be selected on a per-channel basis, meaning that only one
authentication mode can be used per channel; however, different authentication modes can be used by
creating multiple channels and selecting a different authentication mode for each channel. The same
authentication mode can also be used for multiple channels. For more information on creating and
configuring channels see Section 2.16.1.

2.4.6.4 Protocol-Specific SA2 LLD Channel APIs
Table 2-9 lists the protocol-specific operations performed by the SA2 LLD channel specific APIs when
using the SRTP protocol.

34 Architecture SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Protocol Descriptions

Table 2-10. SA2 LLD SRTP Channel APIs

API SRTP Channel Operation
Sa_chanSendData Prepare an SRTP packet and descriptor for transmission to the SA2.

In Firmware mode, this API performs the following actions:
• Perform re-key operation.
• Verify whether the master key is expired.

– If the master key is expired and the new key is not available, call API to request new key and
return error.

– If the master key is expired and the new key is available, derive the new session keys and
generate the new SASS security context.

• If the session key is expired, derive the new session keys and generate the new SASS security
context.

• Generate SRTP padding if necessary.
• Update the packet size and protocol (TCP/UDP) payload size in the packet descriptor to reserve

room for the MKI and authentication tag.
• Provide SA2-specific software information (required for all packets to be delivered to SA2).
• Update statistics.

In software only mode, performs the following actions:
• Perform re-key operation.
• Verify whether the master key is expired.
• If the master key is expired and the new key is not available, call API to request new key and return

error.
– If the master key is expired and the new key is available, derive the new session keys.
– If the session key is expired, derive the new session keys.

• Generate SRTP padding if necessary.
• Perform data encryption based on the specified cipher mode.
• Append the roc at the end of the packet and perform authentication operation based on the specified

mac mode.
• Append the MKI and the authentication tag at the end of packet.
• Update the packet size and protocol (TCP/UDP) payload size in the packet descriptor.
• Update statistics.

35SPRUHZ1–August 2014 Architecture
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Protocol Descriptions www.ti.com

Table 2-10. SA2 LLD SRTP Channel APIs (continued)
API SRTP Channel Operation
Sa_chanReceiveData Post-process an SRTP packet after receiving it from the SA2.

This API is responsible for processing SRTP packets received from the SA2, as well as checking the
packet descriptor for any errors generated by the SA2 during processing. The errors that can be
generated during processing are:

• Replay protection for an old receive packet
• Replay protection for a duplicate receive packet
• Authentication failure
• Invalid Key
• Invalid MKI

In firmware mode, there are four different actions that the API can take depending on the error status of
the packet:
1. If there are no errors, then the API will take the following action:

• Remove the MKI and authentication tag
• Perform replay window updates
• Update the packet size and protocol (TCP/UDP) payload size in the packet descriptor
• Update statistics

2. If there are replay protection errors or an authentication failure error, then the API will update the
corresponding error statistic, and then return without taking any action on the packet.

3. If there is an invalid key, then the API will take the following action:
• Verify whether the master key is expired.

– If the master key is expired and the new key is not available, call API to request new
key and return error.

– If the master key is expired and the new key is available, derive the new session keys
and generate the new SASS security context.

• If the session key is expired, derive the new session keys and generate the new SASS
security context.

• Record the authentication tag and remove MKI and authentication tag from the packet.
• Append the roll-over-counter at the end of packet and perform authentication operation based

on the specified authentication mode and the new authentication session key.
• Perform data decryption based on the specified cipher mode and the new session keys if the

authentication tag matches. Otherwise, update the statistics and return error.
• Change internal state to the key transition state. Stay in this state until the replay window base

is within the new range. Call API to register the new security context and enter normal state.
4. If there is an invalid MKI, then the API will take the following action:

• If the new key is not available, call API to request new key and return error.
• If the new key is available and the MKI matches, derive the new session keys and generate

the new SASS security context.
• Record the authentication tag and remove MKI and authentication tag from the packet.
• Append the roc at the end of packet and perform authentication operation based on the

specified authentication mode and the new authentication session keys.
• Perform data decryption based on the specified cipher mode and the new session keys if the

authentication tag matches. Otherwise, update the statistics and return error.
• Change internal state to the key transition state. Stay in this state until the replay window base

is within the new range. Call API to register the new security context and enter normal state.
In software only mode, this API will perform the following actions:

• Perform re-key operation.
– Verify whether the master key is expired.

• If the master key is expired and the new key is not available, call API to request new
key and return error.

• If the master key is expired and the new key is available, derive the new session keys.
– If the session key is expired, derive the new session keys.

• Record the authentication tag and remove MKI and authentication tag from the packet.
• Append the roll-over-counter at the end of the packet and perform authentication operation based on

the specified authentication mode.
• Perform data decryption based on the specified cipher mode if the authentication tag matches.

Otherwise, update the statistics and return error.

36 Architecture SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Protocol Descriptions

Table 2-10. SA2 LLD SRTP Channel APIs (continued)
API SRTP Channel Operation
Sa_chanReceiveData • Remove the MKI and the authentication tag at the end of packet.

• Update the packet size and protocol (TCP/UDP) payload size in the packet descriptor.
• Replay window updates.
• Update statistics.

NOTE: Table 2-9 only provides information specific to the SRTP protocol. For an overview of the
functionality provided for all protocols by the SA2 LLD channel specific APIs, see Table 2-2.

2.4.6.5 Descriptor Protocol-Specific Information Section
This section describes the descriptor protocol-specific information (PS info) section for the SRTP protocol.
The content stored in descriptor PS info section is discussed for both transmit and receive packets.

2.4.6.5.1 Transmit Packet Descriptor Protocol-Specific Information
This section describes the transmit configuration required for the descriptor PS info section of SRTP
packets. In this case, a transmit packet refers to a packet that is generated by the Host, and will be sent to
the SA2 for encryption and/or authentication operations.

For transmit operations, the PASAHO_SINFO_FORMAT_CMD macro should be used to create a
command with the offset to the RTP payload, and the length of the RTP payload in bytes. This information
must be placed in the PS info section of the descriptor so that the SA2 knows what section of the packet
needs to be authenticated.

For SRTP operations, the checksum of a lower layer protocol may require a checksum to be calculated
(e.g., UDP or other L4 checksum) after the SA2 finishes processing the packet. If a checksum does need
to be recalculated, then this operation can be completed by the Host, or optionally by the PA without Host
intervention.

If the Host will be used to perform the checksum, or if a checksum is not needed, then only the
PA/SA/Host short info command needs to be written to the PS info section to tell the SA2 which portion of
the packet needs to be processed.

To use the PA to perform the checksum operation and insert the checksum into the packet, a second
command can be generated using the PA LLD Pa_formatTxRoute API, which can then be appended to
the PS info section of the descriptor after the command for the SA2. This way, after authentication the
SA2 can route the packet to the PA and the PA can insert the authentication tag into the packet without
Host intervention. See Section 2.4.6.5.1.1 for the procedure for using the PA to perform a checksum after
the SA2 authenticates the packet. For a diagram of the PS info section before sending the packet to the
SA2 for encryption and authentication, see Figure 2-5.

NOTE: Section 2.4.6.5.1.1 defines the general procedure for doing a CRC checksum using the PA;
however, the procedure may change slightly as the SA2 LLD is updated. See the SA2 LLD
documentation and example code for the latest information on how to do a blind patch.

37SPRUHZ1–August 2014 Architecture
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Short Info Command for

SA Encryption/Authentication

PA Modify/Multiroute Engine

Checksum Command

Beginning of PS Info Section

Command Labels www.ti.com

2.4.6.5.1.1 Performing a Checksum using the PA
Step 1. Use PASAHO_SINFO_FORMAT_CMD macro to generate short info command for SA2

encryption and authentication.
Step 2. Insert the short info command in the PS info section in the descriptor.
Step 3. Call Pa_formatTxRoute to generate the checksum command for the PA modify/multiroute

engine.
Step 4. Insert the checksum command in the PS info section of the descriptor.
Step 5. Send the packet to the SA2 for encryption and authentication.
The packet is routed to the PA modify/multiroute engine.
The PA modify/multi-route engine calculates the checksum and inserts it into the packet.
The PA modify/multi-route engine routes the packet to its next destination.

Figure 2-5. SRTP Descriptor Protocol-Specific Information Diagram

NOTE: Routing the packet from the SA2 to the PA modify/multiroute engine must be configured
when setting up the TX security context for the SA2 LLD channel.

2.4.6.5.2 Receive Packet Descriptor Protocol-Specific Information
This section describes the information in the PS info section of receive packets. SRTP packets received
by the SA2 and PA contain the PA/SA/Host long info structure in the PS info section. From this structure,
the offset to the SRTP header, as well as additional information about the headers contained in the packet
can be determined. For more information on the PA/SA/Host long info structure, see the NETCP User
Guide.

2.5 Command Labels
A command label is a set of instructions that tells the SA2 how a packet should be routed inside the SA2
when processing a packet. For example, if an IPsec ESP packet needs to be decrypted and then
authenticated, the command label will contain a set of instructions that tells the SA2 that the packet needs
to be routed to the encryption and decryption engine to decrypt the packet, and then to the authentication
engine to authenticate the packet.

A command label is required for every packet that is processed by the SA2, and can be generated in one
of two ways:
• If using the PHP modules in the SA2, then a command label will be generated by the appropriate PHP

module when the packet enters the SA2.
• If the packet is a data-mode packet, then the PHP modules are not being used, and the Host must use

the SA2 LLD Sa_chanSendData API to generate the command label. In this case, the Host will have to
place the command label at the start of the protocol-specific info section of the descriptor before the
packet is sent to the SA2.

38 Architecture SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Descriptor Software Information Words

NOTE: When using data-mode, packets must always originate from the Host. This is required
because the Host must use the SA2 LLD to generate the command label before sending the
packet to the SA2; otherwise, the packet will not have a command label and the SA2 will not
know how to process the packet. This means that during receive packet processing, packets
cannot be sent directly from a PA classify engine to the SA2 without directing the packet
back to the Host to generate the command label.

2.6 Descriptor Software Information Words
The descriptor software information words are used by the SA2 to store information about how the SA2
should process a packet. The SA2 LLD automatically generates the software info words.

For transmit operations, the software info words are generated by the Sa_chanSendData API. After calling
this API, the software info words should be placed in the software info words section of the descriptor
before sending the packet to the SA2 for processing.

For receive operations, the software info words are typically placed in the software info section of a PA
classify engine configuration packet. By placing the software info words into the PA classify engine
configuration packet, the software info words are automatically associated with that entry when the classify
information gets stored in the look-up table. Therefore, when the PA classifies a packet, the PA will
automatically place the software info words associated with the matching entry into the packet descriptor.
Because the software info words are placed into the descriptor automatically, this allows packets that are
classified by the PA to be sent directly to the SA2 (through the multicore navigator).

NOTE: Although the user is not required to know the structure of the descriptor software information
words used by the SA2, for reference these details are provided in Section A.1.

2.7 Security Contexts
The security contexts are one of the most important parts of the Security Accelerator configuration. A
security context is responsible for telling the SA2 what type of operation it needs to perform for a specific
channel and how to do the operation. Encoded inside each security context is information detailing which
SA2 processing engines should be used and what types of encryption, decryption, or authentication
should be performed by the SA2. The security contexts are used by the SA2 for all encryption, decryption,
and authentication operations.

2.7.1 Generating Security Contexts
The security contexts are generated by the SA2 LLD channel interface. The channel interface is
responsible for taking configuration parameters from the user application, and converting those
parameters into a security context that can be understood by the SA2. The parameters accepted by the
channel interface vary based on the protocol used. For more information on the channel interface for the
each protocol, see Section 2.4.

Since there is a strong dependency between the SA2 LLD and the PHP firmware that is responsible for
parsing the security contexts, the SA2 LLD channel interface must be used for generating security
contexts. Failure to use the SA2 LLD to generate the security contexts can result in undefined behavior.
For more information about the SA2 LLD channel interface, please see Section 2.3.2.

See Section 2.16.1 for the procedure to set up a channel and generate the associated security context.

39SPRUHZ1–August 2014 Architecture
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Security Contexts www.ti.com

2.7.2 Security Context Memory Allocation
The security contexts generated by the SA2 LLD channel interface must be stored in Host memory. The
memory for the security contexts must be allocated by the user application and must be 64-byte aligned,
and 320 bytes in size. The security contexts could be in one contiguous block of memory or scattered in
different memories. There is no limitation on which memory can be used to store the security contexts, so
the security context memory can be allocated in L2, MSMC, or DDR3.

To minimize the latency of using slower memory, such as DDR3, cache memory is provided inside the
SA2 for caching security contexts. Thus, for most applications external memory such as DDR3 can be
used to store the security contexts with little impact on performance. For more information on the security
context cache, see Section 2.8. Regardless of where in memory the security contexts are placed, for best
results the security contexts should be placed in non-cacheable memory.

NOTE: Although the user is not required to know the structure of the security contexts used by the
SA2, these details are provided in Section A.2 for reference.

2.8 Security Context Cache
This section describes SA2 security context cache architecture. The SA2 is equipped with a context cache
module to allow security contexts to be automatically fetched from Host memory. The security context
cache can store up to 64 security contexts locally within the SA2. This module allows the user application
to have any number of simultaneous security channels in Host memory, while still providing high
performance by storing the frequently used security contexts locally, and fetching other contexts when
required for processing.

2.8.1 Security Context Fetch
For ingress packets, the context cache module is responsible for searching the security context cache for
the corresponding security context. If the security context is found in the context cache, the cached
version of the security context is used to process the ingress packet and the SA2 begins processing the
packet immediately. If the security context is not located in the context cache, the context cache module
automatically fetches the security context from Host memory, adds it to the security context cache, and
then begins processing the packet.

If the security context cache is full of security context entries, the context cache module automatically
evicts cache entries to free space for the new channel to be stored. For more information about the cache
eviction policy see Section 2.8.5.

2.8.2 Security Context Tiers
In order to facilitate fast retrieval for performance critical connections, the context cache module allows
two tiers of security context entries. The first tier is dedicated to those connections that are performance
critical. A connection is designated as first tier by setting the most significant bit, or “first tier bit,” while
setting up the security context identification. The first tier connections have permanent residence within
context cache memory and are never evicted automatically by context cache module. The Host is able to
force eviction; however, in normal operation this should only need to be done in certain circumstances
such as when closing a channel. During these situations, the eviction will be taken care of automatically by
the SA2 LLD.

NOTE: For more information about manually evicting security contexts using security context control
flags, see Section A.3 For information about evicting security contexts through the MMR
interface, see the CTXCACH_SC_ID register.

Second tier connections are intended to be used as connections that are not performance critical. After
they are added to the security context cache, second tier connections are kept until there is no space
remaining in the context cache, or until evicted by the Host. If there is no space remaining in the context
cache, a new fetch request will automatically evict the second tier connections according to the
Section 2.8.5.

40 Architecture SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Security Context Cache

2.8.3 Security Context Identification and Security Context Pointers
For all operations, the context cache module requires a 32-bit security context pointer, a 16-bit security
context identification, along with control flags and other data with each request.

The 32-bit security context pointer is a pointer to a physical memory address where the security context is
located in Host memory. The security context pointer is used to fetch the security context from Host
memory for use by the SA2. The fetch operation only occurs if the security context is not already cached
inside the security context cache module. Each security context must be generated by the SA2 LLD and
must be a 64-byte aligned system address.

The 16-bit security context identification uses the most significant bit as “first tier bit” and remaining 15 bits
as the security index. When the most significant bit (first tier bit) has been set, it indicates that this is a first
tier connection, and after it is added to the security context cache it can only be evicted by the Host. The
context cache module uses the remaining 15 security index bits to determine if the security context exists
in the security context cache. If it is determined that the security context is cached locally, the cached
version of the security context is used to process the packet. Otherwise, the 32-bit security context pointer
is used to fetch the security context from Host memory. After being fetched, the security context is added
to the security context cache and the packet is processed by the SA2.

2.8.4 Security Context Cache Control Flags
The security context cache is able to recognize control flags which allow incoming packets to override the
default behavior of the cache. These control flags are used to do things such as manually evicting a
security context from the context cache module. In normal operation, the user application will not need to
set these flags manually because the SA2 LLD will automatically set them when appropriate. For more
information see Section A.3.

2.8.5 Context Cache Algorithm
This section describes the cache algorithm used by hardware to manage caching of security context. This
module implements four-way cache; where the four least significant bits of the security context
identification act as the cache way select. After the cache way has been identified, four comparisons are
done within selected cache way to look for a match based on the security context identification.

If the security context identification matches with any of the four elements stored in the cache way, then
context is believed to be locally cache. However, if the lookup fails the security context is fetched and first
empty cache way is marked with data from current security context. If there is no empty slot found within
the select cache way, the hardware will evict the least recently used and non-active security context which
is not “first tier.”

In order to avoid deadlock, the hardware does not allow marking all four security contexts within a given
cache way as “first tier.” The last “first tier” request is ignored when being added to the security context
cache if the remaining three contexts are “first tier.”

To use the caching mechanism efficiently as new security contexts are created, it is recommended to
linearly increment the security context identification values.

2.9 Packet Header Processor Modules
This section describes the architecture of the packet header processor (PHP) modules provided with
security accelerator (SA2). The SA2 contains two PHP modules, each dedicated to a specific task. Each
PHP module consists of a PDSP and some additional logic. The PDSP is a RISC processor that performs
tasks based on the firmware that is running on the PDSP. Although the hardware for each PHP module is
exactly the same, the PHP modules are differentiated by the firmware images that they use. Each
firmware image is designed to carry out a specific role in the system, and each firmware image must be
loaded onto the appropriate PHP module before using the PHP. The details of PHP1 are described in
Section 2.9.5, and the details of PHP2 are described in Section 2.9.7.

41SPRUHZ1–August 2014 Architecture
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Packet Header Processor Modules www.ti.com

The main features provided by the PHP are:
• Command Label Generation Section 2.9.1 for non-data-mode packets
• Authentication Tag Verification Section 2.9.2
• Authentication Tag Insertion Section 2.9.3
• Packet Replay Protection Section 2.9.4

2.9.1 Command Label Generation
A command label is a set of instructions that tells the SA2 how a packet should be routed internally to
accomplish the desired action on a packet. For example, if an IPsec ESP packet needs to be decrypted
and then authenticated, the command label will contain a set of instructions that tell the SA2 that the
packet needs to be routed to the encryption and decryption engine to decrypt the packet, and then to the
authentication engine to authenticate the packet.

A command label is required for every packet that is processed by the SA2, and can be generated in one
of two ways.
• If using the PHP modules in the SA2, a command label will be generated by the appropriate PHP

module when the packet enters the SA2.
• If the packet is a data mode packet, meaning that the PHP modules are not being used, the SA2 LLD

must be used to generate the command label. After the command label has been generated, it must be
placed in the protocol-specific information section of the descriptor before sending the packet to the
SA2. Without the command label, the SA2 will not know how to process the packet and it will be
dropped.

2.9.2 Authentication Tag Verification
The PHP modules provide the ability to verify a packet’s authentication. This functionality allows the SA2
to verify the authentication tag of packets coming from another source before sending the packet to the
Host for processing. The PHPs have the ability to verify the authentication tag of a packet by comparing
the authentication tag that already exists in the packet with the authentication value calculated by the SA2
authentication engine. If the authentication tags match, the authentication tag is correct. If the
authentication tags do not match, an authentication failure error code is placed in the ERROR_FLAGS
field in the descriptor.

2.9.3 Authentication Tag Insertion
The PHP modules provide the ability to insert an authentication tag into a packet. This functionality allows
authentication tags generated by the SA2 authentication engine to be inserted into packets without
involving the Host processor. The PHPs have the ability to take the authentication tag generated by the
authentication engine and insert that value into the packet before sending it out. Authentication tag
insertion can be completed by the PHPs for IPsec ESP packets and SRTP packets. Authentication tags
for IPsec AH packets must be inserted by the PA modify/multi-route engines or by the Host processor.

2.9.4 Packet Replay Protection
Replay protection is provided by the PHPs to prevent duplicate packets from entering the system. If
enabled, any duplicate packets that are found are dropped by the SA2. If this functionality is not desired, it
can be disabled when configuring the security context for the channel.

2.9.5 PHP1
PHP1 is used primarily for processing packets with IPsec AH and IPsec ESP protocols.

For IPsec packets, PHP1 is used in conjunction with the encryption and decryption engine, and the
authentication engine.

NOTE: Before using PHP1, the PHP1 firmware image that is provided with the SA2 LLD needs to be
loaded onto the PHP1 PDSP.

42 Architecture SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Packet Header Processor Modules

2.9.5.1 Processing IPsec AH packets with PHP1
The following sections describe the functions supported by PHP1 for IPsec AH packets.

2.9.5.1.1 Command Label Generation
PHP1 supports command label generation for IPsec AH packets. PHP1 generates a command label,
which is a set of instructions for the SA2, that specifies which engines should be used to process the
IPsec AH packet. This is automatically done when the packet enters the SA2.

2.9.5.1.2 Authentication Tag Insertion
PHP1 does not support authentication tag insertion for IPsec AH packets. Authentication tag insertion
must be done by the PA using a modify/multi-route engine or by the Host processor.

2.9.5.1.3 Authentication Tag Verification
PHP1 supports authentication tag verification for IPsec AH packets. For packets in which the
authentication tag needs to be verified, PHP1 can take the authentication tag generated by the SA2
authentication engine, compare it to the authentication tag that exists in the packet, and generate an error
in the error flags region of the descriptor if the authentication tags do not match.

2.9.5.1.4 Replay Protection
PHP1 supports replay protection for IPsec AH packets. PHP1 provides replay protection to prevent
duplicate packets from being processed by the SA2. Any duplicate IPsec AH packets that are found by the
SA2 are dropped.

2.9.5.2 Processing IPsec ESP Packets with PHP1
The following sections describe the functions supported by PHP1 for IPsec ESP packets.

2.9.5.2.1 Command Label Generation
PHP1 supports command label generation for IPsec ESP packets. PHP1 generates a command label,
which is a set of instructions for the SA2, that specifies which engines should be used to process the
IPsec ESP packet. This is automatically done when the packet enters the SA2.

2.9.5.2.2 Authentication Tag Insertion
PHP1 supports authentication tag insertion for IPsec ESP packets. For packets that require an
authentication tag to be generated and placed in a packet header, PHP1 can take the authentication tag
generated by the SA2 authentication engine, and insert it into the packet before leaving the SA2.

2.9.5.2.3 Authentication Tag Verification
PHP1 supports authentication tag verification for IPsec ESP packets. For packets in which the
authentication tag needs to be verified, PHP1 can take the authentication tag generated by the SA2
authentication engine, compare it to the authentication tag that exists in the packet, and generate an error
in the ERROR_FLAGS region of the descriptor if the authentication tags do not match.

2.9.5.2.4 Replay Protection
PHP1 supports replay protection for IPsec ESP packets. PHP1 provides replay protection to prevent
duplicate packets from being processed by the SA2. Any duplicate IPsec ESP packets that are found by
the SA2 are dropped.

2.9.6 PHP 3
PHP3 is identical to PHP1. However, it had its own FW image.

43SPRUHZ1–August 2014 Architecture
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Packet Header Processor Modules www.ti.com

2.9.7 PHP2
PHP2 is used primarily for processing packets with SRTP and Air Cipher protocols. For SRTP packets,
PHP2 is used in conjunction with the encryption and decryption engine, and the authentication engine. For
packets using Air Cipher protocols, PHP2 is used in conjunction with the air cipher engine.

NOTE: Before using PHP2, the PHP2 firmware image that is provided with the SA2 LLD needs to be
loaded onto the PHP2 PDSP.

2.9.7.1 Processing SRTP Packets with PHP2
The following sections describe the functions supported by PHP2 for SRTP packets.

2.9.7.1.1 Command Label Generation
PHP2 supports command label generation for SRTP packets. PHP2 will generate a command label, which
is a set of instructions for the SA2, that specifies which engines should be used to process the packet.
This is automatically done when the packet enters the SA2.

2.9.7.1.2 Authentication Tag Insertion
PHP2 supports authentication tag insertion for SRTP packets. For packets that require an authentication
tag to be generated and placed in a packet header, PHP2 can take the authentication tag generated by
the SA2 authentication engine, and then insert it into the packet before leaving the SA2.

2.9.7.1.3 Authentication Tag Verification
PHP2 supports authentication tag verification for SRTP packets. For packets in which the authentication
tag needs to be verified, PHP2 can take the authentication tag generated by the SA2 authentication
engine, compare it to the authentication tag that exists in the packet, and generate an error in the
ERROR_FLAGS region of the descriptor if the authentication tags do not match.

2.9.7.1.4 Replay Protection
PHP2 supports replay protection for SRTP packets. PHP2 provides replay protection to prevent duplicate
packets from being processed by the SA2. Any duplicate SRTP packets that are found by the SA2 are
dropped.

2.9.7.2 Processing Air Cipher packets with PHP2
The following sections describe the functions supported by PHP2 for air cipher packets.

2.9.7.2.1 Command Label Generation
PHP2 supports command label generation for air cipher packets. PHP2 will generate a command label,
which is a set of instructions for the SA2, that specifies which engines should be used to process the
packet. This is automatically done when the packet enters the SA2.

2.9.7.2.2 Authentication Tag Insertion
PHP2 supports authentication tag insertion for air cipher packets. For packets that require an
authentication tag to be generated and placed in a packet header, PHP2 can take the authentication tag
generated by the SA2 air cipher engine, and then insert it into the packet before leaving the SA2.

2.9.7.2.3 Authentication Tag Verification
PHP2 supports authentication tag verification for air cipher packets. For packets in which the
authentication tag needs to be verified, PHP2 can take the authentication tag generated by the SA2
authentication engine, compare it to the authentication tag that exists in the packet, and generate an error
in the ERROR_FLAGS region of the descriptor if the authentication tags do not match.

44 Architecture SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Packet Header Processor Modules

2.9.7.2.4 Replay Protection
Replay protection is not supported on PHP2 for air cipher packets.

2.9.8 Procedure for Downloading Firmware onto the PHP PDSPs
The procedure for downloading the firmware onto the PHPs is shown in Section 2.9.8.1.

2.9.8.1 Procedure for Downloading Firmware on the PHP PDSPs
Step 1. Put the PHP PDSPs in reset using the Sa_resetControl API with the sa_STATE_RESET

input.
Step 2. Download the PHP1 firmware image into PHP1 using the Sa_downloadImage API with a

pointer to SA2 PHP1 firmware image provided with the SA2 LLD.
Step 3. Download the PHP2 firmware image into PHP2 using the Sa_downloadImage API with a

pointer to SA2 PHP2 firmware image provided with the SA2 LLD.
Step 4. Download the PHP3 firmware image into PHP3 using the Sa_downloadImage API with a

pointer to SA2 PHP3 firmware image provided with the SA2 LLD
Step 5. Take the PHP PDSPs in out of reset and start running the firmware using the

Sa_resetControl API with the sa_STATE_ENABLE input.

2.10 Encryption and Decryption Engine
The SA2 encryption and decryption engine is responsible for encrypting and decrypting packets. Packets
are delivered to the encryption and decryption engine based on the set of instructions specified in the
command label for the packet. (For more information about command labels, see Section 2.5.) The
encryption and decryption engine can be used with the PHP modules or, if operating in data-mode, the
engine can be used without involving the PHPs. The encryption and decryption engine encrypts or
decrypts packets using the cipher that was specified when the security context for the corresponding
channel was created using the SA2 LLD. The following is a list of ciphers and authentication modes that
use the encryption and decryption engine.
• Null (no cipher)
• 3DES CBC
• AES Counter
• AES F8
• AES CBC
• AES XCBC
• DES CBC
• CCM
• GCM

NOTE: Not all ciphers are supported for all protocols. Please see the protocol Section 2.4 for the list
of ciphers that are supported for each protocol.

45SPRUHZ1–August 2014 Architecture
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Authentication Engine www.ti.com

2.11 Authentication Engine
The SA2 authentication engine is responsible for providing authentication tags for packets. Packets are
delivered to the authentication engine based on the set of instructions specified in the command label for
the packet. (For more information about command labels, see Section 2.5.) The authentication engine can
be used with the PHP modules or, if operating in data-mode, the authentication engine can be used
without involving the PHPs. The authentication engine generates an authentication tag using the
authentication mode that was specified when the security context for the corresponding channel was
created using the SA2 LLD. The following is a list of authentication modes supported by the authentication
engine.
• Null (no authentication)
• CBC MAC
• CMAC
• GMAC
• HMAC MD5
• HMAC SHA1
• HMAC SHA2-224
• HMAC SHA2-256
• MD5
• SHA1
• SHA2-224
• SHA2-256

NOTE: Not all authentication modes are supported for all protocols. See the protocol Section 2.4 for
a list of authentication modes that are supported for each protocol.

2.12 Air Cipher Engine
The SA2 air cipher engine is responsible for encrypting and decrypting air cipher packets. Packets are
delivered to the air cipher engine based on the instructions specified in the command label for the packet.
(For more information about command labels, see Section 2.5.) The air cipher engine can be used with
the PHP modules or, if operating in data-mode, the air cipher engine can be used without involving the
PHPs. The authentication engine encrypts or decrypts packets using the cipher that was specified when
the security context for the corresponding channel was created using the SA2 LLD. The following is a list
of ciphers supported by the air cipher engine:
• ECSD A5/3 key generation
• GEA3 (GPRA) key generation
• GSM A5/3 key generation
• Kasumi F8
• Snow3G F8
• ZUC

46 Architecture SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Public Key Accelerator

2.13 Public Key Accelerator
The Public Key Accelerator (PKA) module provides a high-performance public key engine to accelerate
the large vector math processing that is required for Public Key computations. The PKA provides the
following basic operations:
• Large vector add
• Large vector subtract
• Large vector compare (XOR)
• Vector shift left or right
• Large vector multiply
• Large vector divide
• Large vector exponentiation

The PKA module supports modulus sizes up to 4096-bits, and can execute a Diffie-Hellman
exponentiation operation (1024-bit modulus, 180-bit exponent).

Operand and result vectors are stored in an 8-Kbyte vector RAM. The vectors are sequentially cycled
through the processing engines of the PKA, with intermediate products from large or complex operations
temporarily stored in the vector RAM.

All PKA computations require a small amount of software processing on the Host processor. The Host is
responsible for configuring the PKA module for the intended operation, providing correct operand data,
and allocating space for the result vector. The following sections provide a set of restrictions to prevent the
Host from initiating an unsupported, or improperly defined, operation.

2.13.1 Programming Considerations
This section describes programming considerations for the PKA module. Configuration of the PKA module
can be accomplished using either the SA2 LLD or through directly programming the PKA registers in the
MMR interface. The SA2 LLD abstracts the MMR interface, providing data structures for the settings that
need to be configured, and then programming the registers with the values provided. If not using the SA2
LLD to program the PKA, then the PKA registers must be programmed directly. For more information
about the PKA registers, please see Section 4.4.

NOTE: The PKA module must be enabled before use. If using the SA2 LLD, the PKA module is
enabled automatically. If not using the SA2 LLD, the PKA module must be enabled by
programming the CMD_STATUS register in the SA2 system register region.

2.13.2 Functional Description PKA Components
The PKA module contains two main components: the control and status registers, and an 8-Kbyte vector
RAM. This section provides a brief overview of those components. The control and status registers are
covered in detail in Section 2.13.3, and the vector RAM is covered in detail in Section 2.13.4.

The PKA module is configured for operation through a set of 11 registers. Using these registers, the Host
specifies the function along with the length and location of the operand and result vectors. Both operand
and result vectors are stored in the 8-Kbyte vector RAM.

The vector RAM can be accessed through two interfaces. The first interface is the Host interface, which
allows the Host to populate the vector RAM with input operands, and retrieve result vectors. The second
interface is the RAM interface, which is dedicated to the mathematical processors in the PKA module.
During computation, vectors are sequentially cycled through the various math processors of the PKA, with
intermediate results from large or complex operations routinely written back to this RAM for temporary
storage. Memory allocation in the vector RAM must be performed with consideration to its secondary role
as the “working” space for the PKA module.

The Host is responsible for configuring the PKA for a valid operation, providing correct operand data, and
allocating space for the result vector. Section 2.13.5 and Section 2.13.6 provide a set of restrictions to
prevent the Host from initiating an improper operation. The PKA module does not perform any error
checking on the inputs, so adherence to these restrictions is essential.

47SPRUHZ1–August 2014 Architecture
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Public Key Accelerator www.ti.com

The PKA module begins operation when the ENABLE bit (bit 15) of the PKA_FUNCTION register is
asserted by the Host. This bit remains valid until the PKA module has completed the operation, at which
point it is driven low. The Host processor must poll this register to determine when an operation is
complete.

2.13.3 Configuration and Status Registers
The control registers are primarily inputs, written by the Host to configure the operation. The status
registers are primarily outputs, read by the Host to receive result information.

For the most part, the control registers describe the location and length of the operand data residing in the
vector RAM. Typically, these registers are written in order, from 0x00-0x28. The PKA_FUNCTION register
must be written last since bit 15 of this register serves as the enable bit for the PKA module. All
configuration and vector data must be set up before writing this register.

The enable bit of the function register also serves to notify the Host when the operation is complete. The
PKA module sets this bit to zero when it has completed its processing. The other status registers provide
information regarding the result, and would typically only be read following completion of the operation.

The PKA_COMPARE (read only) register provides the result of a compare operation. The PKA_MSW and
PKA_DIVMSW registers provide the location of the most significant words of the result vectors. The Host
should use these registers to unambiguously locate the result vectors in the RAM. The available registers
along with the primary function are shown in Table 2-11, and the subsequent sections provide a brief
overview of the how the registers are used. For more information about the PKA registers, see
Section 4.4.

Table 2-11. PKA Status and Control Registers

Register Name Control/Status Primary Function
PKA_APTR Control Location of the A-operand in vector RAM
PKA_BPTR Control Location of the B-operand in vector RAM
PKA_CPTR Control Location of the Result in vector RAM

(Location of C-operand for exponentiation operation)
PKA_DPTR Control Location of result and/or scratch space in vector RAM
PKA_ALENGTH Control Length in 32-bit words of the A-operand
PKA_BLENGTH Control Length in 32-bit words of the B-operand
PKA_SHIFT Control Number of bits to shift data (shift operation only)
PKA_FUNCTION Control/ Status Selection of operation Enable
PKA_COMP Status Result of compare operation
PKA_MSW Status Address of most significant word of result vector
PKA_DIVMSW Status Address of most significant word of remainder vector (divide operations only)

2.13.3.1 PKA_APTR, PKA_BPTR, PKA_CPTR, PKA_DPTR Registers
The registers discussed in this section provide the location of operand and result data in the vector RAM.
The addresses resident in these registers correspond to the least significant word of the vectors they
represent. Conventionally, the PKA_APTR and PKA_BPTR registers are dedicated to input operands, the
PKA_CPTR to the result vector, and the PKA_DPTR to “working” storage. The only exception is the
exponentiation operation, which requires three input operands. In that case, the PKA_CPTR register
specifies the 3rd input operand, and the PKA_DPTR register serves a dual role as both the result and
“working” space locator. The “working” space is defined as a fixed offset from the PKA_DPTR value.

48 Architecture SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Public Key Accelerator

Table 2-12 illustrates the role of these four registers for each function. The column labeled Mathematical
Operation depicts the function realized in terms of operands A, B, and C. These operands correspond to
the vectors specified by PKA_APTR, PKA_BPTR, and PKA_CPTR.

Table 2-12. Functional Roles of PKA_APTR, PKA_BPTR, PKA_CPTR, and PKA_DPTR Registers

Mathematical
Function Operation PKA_APTR PKA_BPTR PKA_CPTR PKA_DPTR
Multiply A x B Multiplicand Multiplier Result N/A
Add A + B Addend Addend Result N/A
Subtract A - B Minuend Subtrahend Result N/A
Right Shift A >> ShiftVal Input N/A Result N/A
Left Shift A << ShiftVal Input N/A Result N/A
Divide A/B Dividend Divisor Remainder Quotient
Compare A = B Input 1 Input 2 N/A N/A

A < B
A > B

Copy A → C Input N/A Result N/A
Exponentiation CA mod(B) Exponent Modulus Base Result
(2-bit ACT)
Exponentiation CA mod(B) Exponent Modulus Base Result
(4-bit ACT)

2.13.3.2 PKA_ALENGTH and PKA_BLENGTH Registers
The PKA_ALENGTH and PKA_BLENGTH registers store the vector lengths for the A and B operand data.
Vector lengths are specified in 32-bit words. The Host must zero-pad vectors that are not an integer
multiple of 32-bits.

For exponentiation operations the PKA_BLENGTH register has a dual role. Since an exponentiation
requires three input vectors, it serves as the length for both the B vector (modulus) and the C vector
(base). The base vector is zero-padded to the length of the modulus if necessary. For the divide operation,
PKA_ALENGTH must be greater than or equal to PKA_BLENGTH.

2.13.3.3 PKA_SHIFT Register
The PKA_SHIFT register is only meaningful for RIGHTSHIFT and LEFTSHIFT operations. The value in
this register specifies the number of bits to shift the input vector. A maximum value of 31 is permitted. Shift
operations greater than 31 bits in length are supported with a word shift, accomplished by the Host with
address translation, and a small shift (0-31 bits) handled by the PKA module.

2.13.3.4 PKA_FUNCTION Register.
The PKA_FUNCTION register is used to select the type of operation to be executed. Only one operation
may be selected at any time. Bit 15 of this register is the enable bit, which prompts the PKA module to
begin processing. When the operation is complete, the PKA module effectively disables itself by clearing
bit 15 to 0. This provides a convenient means for the Host to poll the PKA module for completion of the
operation.

2.13.3.5 PKA_COMPARE Register
The compare register provides the results of a compare operation. The result of a compare operation
between two operands (A and B) is one of the following: A is equal to B, A is less than B, or A is greater
than B.

49SPRUHZ1–August 2014 Architecture
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Public Key Accelerator www.ti.com

2.13.3.6 PKA_MSW Register
The PKA_MSW register is used to identify the location of the most significant, non-zero word of the result
vector. For an all-zero result vector, bit 15 is asserted, and the address specified in this register should be
ignored.

For the divide operation, two result vectors are generated: the quotient and remainder. This register
corresponds to the quotient vector. The MSW of the remainder vector is specified by the PKA_DIVMSW
register.

For modular exponentiation, this register corresponds to the most significant word of the result and the
PKA_DIVMSW is not used.

2.13.3.7 PKA_DIVMSW Register
The PKA_DIVMSW register is used to identify the location of the most significant, non-zero word of the
remainder vector for the divide operation. This register is only applicable to divide operation. For an all-
zero remainder vector bit 15 is asserted and the address specified in this register should be ignored.

2.13.4 Vector RAM
The PKA module employs an 8K byte vector RAM to hold the operand and result data. The RAM can be
accessed through two interfaces. The first interface allows the Host to access the RAM by using offset
0x00002000 relative to the PKA module. The second interface is dedicated to the PKA mathematical
engine. After an operation is started, the PKA module must have unrestricted access to the RAM, and the
Host must not attempt to read or write the RAM until the operation has completed.

2.13.4.1 RAM Size Requirements
The PKA module is specifically designed to support Diffie-Hellman and RSA key generation by performing
fast modular exponentiation. The maximum supported modulus length is only limited by the available size
of the vector RAM. The memory requirements for modular exponentiation with 2-bit and 4-bit ACTs are
described by the equations shown in Table 2-13. The requirement for exponentiation with a 2-bit ACT is
substantially less than for a 4-bit ACT. Based on the formula given in Table 2-13, Table 2-14 shows ACT
sizes that are supported for several different modulus lengths.

Table 2-13. Vector RAM Requirement for ACT Operations

Exponentiation Total Vector RAM Requirement (bytes)
2-bit ACT (11 x (length of modulus in bits)/8 + 192) bytes
4-bit ACT (23 x (length of modulus in bits)/8 + 192) bytes

Table 2-14. Supported ACTs vs. Modulus Length for 8 Kbyte Vector RAM

Modulus Length (bits)
256 512 1024 1536 2048 4096 (1)

ACT-2 ACT-2 ACT-2 ACT-2 ACT-2 ACT-2
ACT-4 ACT-4 ACT-4 ACT-4 ACT-4

(1) Using the formula provided in Table 2-13, there is not enough vector RAM to support ACT-4 4096 bit modulus operations.

50 Architecture SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Public Key Accelerator

2.13.5 PKA Input Requirements
A number of restrictions are imposed on the input vectors to prevent the Host from configuring an illegal
operation. Illegal operations encompass mathematically undefined operations (i.e., divide-by-zero) and
operations that are not supported by the PKA module. The Host processor must ensure that control and
vector data meet the requirements presented in Table 2-15. The PKA module does not check for illegal
operations.

Table 2-15. PKA Input Requirements

Function Requirement
Multiply • ALENGTH > 0

• BLENGTH > 0
Add • ALENGTH > 0

• BLENGTH > 0
Subtract • ALENGTH > 0

• BLENGTH > 0
• ALENGTH >= BLENGTH

RightShift • ALENGTH > 0
• BLENGTH > 0

LeftShift • ALENGTH > 0
• BLENGTH > 0

Divide • ALENGTH >1
• BLENGTH > 1
• B operand cannot be zero
• Most significant word of B operand cannot be zero
• ALENGTH >= BLENGTH

Compare • ALENGTH > 0
• BLENGTH > 0
• ALENGTH = BLENGTH

Copy • ALENGTH > 0
• BLENGTH > 0

Exponentiation (2-bit ACT) • ALENGTH > 0
• BLENGTH > 1
• BLENGTH >= ALENGTH
• A operand not zero
• C operand not zero
• B operand is odd (least significant bit set to 1)
• B operand > C operand
• Most significant word of B operand cannot be zero

Exponentiation (4-bit ACT) • ALENGTH > 0
• BLENGTH > 1
• BLENGTH >= ALENGTH
• A operand not zero
• C operand not zero
• B operand is odd (least significant bit set to 1)
• B operand > C operand
• Most significant word of B operand cannot be zero

51SPRUHZ1–August 2014 Architecture
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Public Key Accelerator www.ti.com

2.13.6 Result Vector RAM Allocation
The Host processor is responsible for allocating a block of contiguous memory for the result vector. This
block is implicitly allocated by the PKA_CPTR and/or PKA_DPTR registers, depending on the operation.
The Host processor must ensure sufficient free memory above these locations to accommodate the result
vector(s). Furthermore, since the PKA module often uses the allocated space for the result vector as
“working” memory, the requirement is not obvious and is contingent on the operation and the input vector
lengths. Table 2-16 illustrates the recommended minimum memory allocation for the result vector.

Table 2-16. Minimum Memory Allocation for Result Vector

Function Result Pointer Minimum Result Vector Length
Multiply PKA_CPTR ALENGTH + BLENGTH + 8
Add PKA_CPTR Max(ALENGTH,BLENGTH) + 1
Sub PKA_CPTR Max(ALENGTH,BLENGTH)
RightShift PKA_CPTR ALENGTH
LeftShift PKA_CPTR ALENGTH + 1
Divide PKA_DPTR Quotient.

ALENGTH
PKA_CPTR Remainder.

ALENGTH – BLENGTH + 1
Compare PKA_CPTR N/A
Exponentiation- 4 bit ACT PKA_DPTR (20 x BLENGTH) + 48
Exponentiation- 2 bit ACT PKA_DPTR (8 x BLENGTH) + 48

2.14 True Random Number Generator
The true random number generator (TRNG) module provides a true, non-deterministic noise source for the
purpose of generating keys, initialization vectors (IVs), and other random number requirements. The
TRNG module contains free running oscillators (FROs), a linear finite shift register (LFSR), and two 32-bit
output registers. Together, the two 32-bit output registers form a 64-bit random number.

In the TRNG module, the FROs are responsible for generating the random number. When the random
number is ready, it is captured and stored in the LFSR. When the output registers are read, the value in
the LFSR will be transferred to the 32-bit data output registers. After the random number has been read
and acknowledged, the TRNG core will start generating a new number by enabling the FROs and
capturing their outputs in the LFSR.

2.14.1 Programming Considerations
This section describes how to program the TRNG module. Configuration of the TRNG module can be
accomplished using either the SA2 LLD or through directly programming the TRNG registers in the MMR
interface. The SA2 LLD abstracts the MMR interface, providing data structures for the settings that need
to be configured, and then programming the registers with the values provided. If not using the SA2 LLD
to program the TRNG, then the TRNG registers will have to be programmed directly. For more information
about the TRNG registers, please see Section 4.5.

NOTE: The TRNG module must be enabled before use. If using the SA2 LLD, the TRNG module is
enabled automatically. If not using the SA2 LLD, the TRNG module must be enabled by
programming the CMD_STATUS register in the SA2 system register region.

52 Architecture SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com True Random Number Generator

2.14.2 Initial Latency after Reset
After enabling the TRNG by setting the TRNG_EN bit in the TRNG_CONTROL register, a number of FRO
output samples defined by STARTUP_CYCLES are gathered in the main LFSR before taking a snapshot
of the LFSR and offering that snapshot as the output data value. Depending on the configured value of the
STARTUP_CYCLES field, the initial latency for generating the first random number can be between 28

and 224 SA2 clock cycles.

2.14.3 Random Number Generation
After the first random value has been generated as described in Section 2.14.2, the
MIN_REFILL_CYCLES and MAX_REFILL_CYCLES fields in the TRNG_CONFIG register determine the
amount of samples taken to generate subsequent random values. Depending on the values of these
fields, it will take between 26 to 224 SA2 clock cycles to produce each subsequent 64-bit random number
after the initial reset latency has been gone through.

The 64-bit random numbers are accessible to the application in two 32-bit read-only registers
(TRNG_OUTPUT_L, TRNG_OUTPUT_H). After the value is shifted from the LSFR, the TRNG module will
immediately generate a new value, which is available after 26 to 224 SA2 clock cycles and is then shifted
into the LSFR.

2.14.4 Read Random Number
Poll the READY bit in the TRNG_STATUS to determine if a new random number is available to be read.
When a new random number has been generated, it can be read from the TRNG_OUTPUT_L and
TRNG_OUTPUT_H registers. After reading the random number, setting to 1 the READY bit in the
ACKNOWLEDGE register will clear the READY bit in the TRNG_STATUS register. After clearing the
ACKNOWLEDGE register, the TRNG module will automatically begin generating a new random number
as defined in Section 2.14.3.

2.14.5 TRNG Example Configuration
An example configuration for the TRNG module is shown in Section 2.14.5.1.

2.14.5.1 TRNG Example Configuration
Step 1. Enable the TRNG module.
Step 2. Set up the MAX_REFILL_CYCLES and MIN_REFILL_CYCLES fields in the

TRNG_CONFIGURATION register.
Step 3. Program the STARTUP_CYCLES field in the TRNG_CONFIG register.
Step 4. Enable the TRNG module by writing the TRNG_EN field in the TRNG_CONFIG register.
Step 5. Poll the READY bit TRNG_STATUS register to determine when a random number has been

generated.
Step 6. When the READY bit==1, read the random number from the TRNG_OUTPUT_L and

TRNG_OUTPUT_H registers and set to 1 the READY bit in the ACKNOWLEDGE register.

2.15 Initializing the SA2 Using the SA2 LLD
This section describes how to initialize the SA2 using the SA2 LLD.

NOTE: Section 2.15.1 is only meant to provide a succinct overview of the how to initialize the SA2
using the SA2 LLD. For more information about initializing the SA2 using the SA2 LLD, see
the documentation and the examples provided with the SA2 LLD.

53SPRUHZ1–August 2014 Architecture
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Initializing the SA2 Using the SA2 LLD www.ti.com

2.15.1 SA2 Initialization with the SA2 LLD
Step 1. Create SA2 LLD instance and enable SA2 modules using the Sa_create() API.
Step 2. Optionally, enable the public key accelerator module using the Sa_pkaInit() API.
Step 3. Load PHP PDSP Firmware onto PHP PDSPs.

(a) Reset PHP PDSPs using the Sa_resetControl() API
(b) Download the PHP1 PDSP firmware image on to PHP1 using the Sa_downloadImage()

API
(c) Download the PHP2 PDSP firmware image on to PHP2 using the Sa_downloadImage()

API
(d) Enable the PHP PDSPs and start executing the PHP firmware using the

Sa_resetControl() API

2.16 SA2 LLD Channel Initialization and Configuration
This section describes how to initialize an SA2 LLD channel using the SA2 LLD.

NOTE: Section 2.16.1 is meant to provide a succinct overview of the how to initialize an SA2 LLD
channel using the SA2 LLD, and only discusses the key points of initializing a SA2 LLD
channel. For more information about initializing the SA2 using the SA2 LLD, see the
documentation and the examples provided with the SA2 LLD.

2.16.1 SA2 LLD Channel Initialization and Configuration
Step 1. Set the desired channel ID and protocol in the Sa_ChanConfig_t data structure.
Step 2. Get the buffer size requirements for the channel using the Sa_chanGetBufferReq() API.
Step 3. Allocate memory for the channel based on the size requirement using the Osal_saMalloc()

API.
Step 4. Create the channel using the Sa_chanCreate() API.
Step 5. Setup the general configuration for the channel.

(a) Set the desired general configuration in the Sa_GenCtrlInfo_t data structure
(b) Store the general control information in the SA2 LLD channel using the Sa_chanControl()

API
Step 6. Setup the key configuration for the channel.

(a) Set the desired key configuration in the Sa_KeyCtrlInfo_t data structure
(b) Store the key control information in the SA2 LLD channel using the Sa_chanControl() API

Step 7. Create the TX SA2 security context by calling the Sa_chanControl() API.
The Sa_chanControl API will create the TX security context using the information stored in the SA2
LLD channel from the general configuration and key configuration.
Step 8. Create the RX SA2 security context by calling the Sa_chanControl() API
The Sa_chanControl API will create the TX security context using the information stored in the SA2
LLD channel from the general configuration and key configuration.

2.17 Sending Packets to the SA2 for Processing
The protocol-specific operations completed by the Sa_chanSendData() API will be different depending on
the protocol; however, the general procedure outlined below will be the same for all packets.

NOTE: Section 2.17.1 is meant to provide a succinct overview of the how to prepare a packet and
the descriptor so that it can be sent to the SA2 for processing. For more information about
sending packets to the SA2 for processing, see the documentation and the examples
provided with the SA2 LLD.

54 Architecture SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Sending Packets to the SA2 for Processing

2.17.1 Sending Packets to the SA2 for Processing
Step 1. Call the Sa_chanSendData() API to:

(a) Prepare the packet for processing by SA2 (protocol-specific operations)
(b) Calculate new packet size after protocol-specific packet modifications
(c) Generate information for descriptor software info word 0, and software info word 1, and if

required, software info word 2
• Includes correct settings for all software info fields described in Section 2.6

(d) For data-mode packets, the command label will also be generated
Step 2. Prepare descriptor for transmission to SA2.

• Link the packet buffer to the descriptor (if not already linked)
• Write the packet length, and buffer length output by the Sa_chanSendData() API to the

descriptor
• Copy software info words output by Sa_chanSendData() API to the software info words in

the descriptor
• Write the protocol-specific data to the descriptor. See Section 2.4 for more information

about what information needs to be placed in the protocol-specific info section for each
protocol.

Step 3. Push the packet onto the desired transmit queue for the SA2. See Section 2.18 for more
information about choosing the correct transmit queue for the SA2.

2.18 SA2 Transmit Queues
The SA2 has two transmit queues that are used for sending packets to the SA2, which are queue
numbers 646 and 647. Either queue can be used with the following restriction:
• Any hardware engine in the SA2 can only be used by packets in one SA2 transmit queues

Violation of this restriction will lead to a deadlock condition in the SA2.

Some examples of behavior that violate this restriction are as follows:
• Using one queue for transmit operations and the other queue for receive operations for the same

protocol.
– This example violates the above restriction because the transmit and receive operations will use the

same hardware modules, which means that both queues will be sharing the same hardware
modules inside the SA2.

• Using separate queues for 2 protocols that share the same hardware modules in the SA2. For
example, using queue 646 for SRTP packets and queue 647 for IPsec ESP traffic.
– This example violates the restriction because both IPsec ESP and SRTP share the encryption and

decryption hardware module, and the authentication hardware module.

Typically, it is recommended to use transmit queue 646 for 3GPP air cipher traffic and transmit queue 647
for IPsec ESP, IPsec AH, and SRTP traffic. Extra care must be taken for data-mode traffic since the
hardware processing engines that are used are not as clearly defined as for the other protocols.

2.19 Interrupt Support
The Security Accelerator (SA2) does not generate any interrupts. If interrupts are desired, then special
purpose queues in the Multicore Navigator, such as the accumulator queues, do provide support for
interrupts when a specific number of packets have been received. For more information, see the Multicore
Navigator for KeyStone Devices User Guide (SPRUGR9).

55SPRUHZ1–August 2014 Architecture
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRUGR9
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

DMA Event Support www.ti.com

2.20 DMA Event Support
All DMA events for the Security Accelerator (SA2) are handled thought the packet streaming switch and
the packet DMA controller in the network coprocessor (NETCP). For more information about the packet
streaming switch, see the KeyStone II Architecture Network Coprocessor (NETCP) for K2E and K2L
Devices User Guide (SPRUHZ0). For more information about the packet DMA controller, see the
KeyStone II Architecture Network Coprocessor (NETCP) for K2E and K2L Devices User Guide
(SPRUHZ0) or the Multicore Navigator for KeyStone Devices User Guide (SPRUGR9).

2.21 Power Management
The Security Accelerator (SA2) power is managed through the Network Coprocessor (NETCP) power
domain and through disabling the clock that operates the SA2 logic. The SA2 shares its power domain
with the other modules in the NETCP and, therefore, cannot be powered down independently of NETCP.

The clock for the SA2 is disabled by default, and can be controlled independently of the other modules in
the NETCP. For more information about power management for the SA2, see the KeyStone II Architecture
Network Coprocessor (NETCP) for K2E and K2L Devices User Guide (SPRUHZ0) or the device-specific
data manual.

56 Architecture SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRUHZ0
http://www.ti.com/lit/pdf/SPRUHZ0
http://www.ti.com/lit/pdf/SPRUGR9
http://www.ti.com/lit/pdf/SPRUHZ0
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Chapter 3
SPRUHZ1–August 2014

Data Flow Examples

This chapter provides examples of the data flow within the Network Coprocessor (NETCP) and Security
Accelerator (SA2) systems.

Topic ... Page

3.1 Overview ... 58
3.2 3GPP Air Cipher Examples .. 58
3.3 IPsec AH Examples .. 59
3.4 IPsec ESP Examples... 62
3.5 SRTP Examples ... 64

57SPRUHZ1–August 2014 Data Flow Examples
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Q646
Host Processor

Packet Generation
1

SA

FDQFDQ

AIRC

ENC/AUTH

RX

DMA

TX

DMA
DSTQ

3 4

52

Overview www.ti.com

3.1 Overview
This section shows simple system-level examples of using the SA2 with a variety of protocols. The
examples show interactions between the SA2 and other modules in the NETCP such as the PA, the GbE
switch, and the packet DMA. These examples also show interactions with the queue manager. Examples
are provided for the following protocols:
• 3GPP Air Cipher Examples (Section 3.2)
• IPsec AH Examples (Section 3.3)
• IPsec ESP Examples (Section 3.4)
• SRTP Examples (Section 3.5)

3.2 3GPP Air Cipher Examples
This section shows two examples using the3GPP air cipher protocol. The first example shows how to
encrypt a 3GPP air cipher packet and generate an authentication tag. The second example shows how to
decrypt a 3GPP air cipher packet and verify the authentication tag. The example is shown from a system
level perspective and shows interactions between the packet DMA, the SA2, and the queue manager.

In these examples, FDQ stands for free descriptor queue, and DSTQ stands for destination queue.

3.2.1 3GPP Air Cipher Encryption Example
In this example, the host generates a 3GPP air cipher packet and routes it to the SA2. The SA2 encrypts
the packet, generates and inserts the authentication tag, and routes it to a destination queue.

Figure 3-1. 3GPP Air Cipher Encryption Example

3.2.1.1 3GPP Air Cipher Encryption Example Overview
This is a step-by-step description of the example shown in Figure 3-1.
1. The host processor generates a packet and pushes it into the queue for the SA2.
2. The NETCP transmit packet DMA pops the descriptor from the SA2 transmit queue and transfers the

packet data to the SA2.
3. After the transfer completes, the NETCP transmit packet DMA pushes the transmit descriptor onto the

transmit completion queue. The SA2 performs the air cipher encryption operation on the air cipher
packet.

4. The NETCP receive packet DMA uses the configured receive flow to pop a descriptor from the free
descriptor queue and fills the linked data buffer with packet data.

5. After the data transfer completes, the NETCP receive packet DMA pushes the descriptor onto the
destination queue.

58 Data Flow Examples SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Q646Generic Source 1

SA

FDQFDQ

AIRC

DEC/AUTH

RX

DMA

TX

DMA
DSTQ

3 4

52

www.ti.com 3GPP Air Cipher Examples

3.2.2 3GPP Air Cipher Decryption Example
In this example (Figure 3-2) the 3GPP air cipher packet arrives from a generic source. The SA2 decrypts
and authenticates the packet and routes it to a destination queue.

Figure 3-2. 3GPP Air Cipher Decryption Example

3.2.2.1 3GPP Air Cipher Decryption Example Overview
This is a step-by-step description of the example shown in Figure 3-2.
1. A packet is pushed onto the transmit queue for the SA2 from a generic source.
2. The NETCP transmit packet DMA pops the descriptor from the SA2 transmit queue, and transfers the

packet data to the SA2.
3. After the transfer completes, the NETCP transmit packet DMA pushes the transmit descriptor onto the

transmit completion queue. The SA2 performs the air cipher decryption operation on the air cipher
packet.

4. The NETCP receive packet DMA uses the configured receive flow to pop a descriptor from the free
descriptor queue and fills the linked data buffer with packet data.

5. After the data transfer completes, the NETCP receive packet DMA pushes the descriptor onto the
destination queue.

3.3 IPsec AH Examples
This section shows two examples using the IPsec AH protocol. The first example shows how to generate
an authentication tag for an IPsec AH packet, and the second example shows how to verify an
authentication tag for an IPsec AH packet. The example is shown from a system-level perspective, and
shows interactions between the packet DMA, the SA2, the PA, the GbE switch, and the queue manager.
These examples assume that the IPsec AH packet will have L2/L3/L3/L4 headers (e.g., MAC/IP/IP/UDP).

In these examples, FDQ stands free descriptor queue, and DSTQ stands for destination queue.

For KeyStone II devices there are two (versus one in KeyStone I) engines for IPsec protocol in the SA2.
These examples still apply for both of the KeyStone families.

59SPRUHZ1–August 2014 Data Flow Examples
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

GbE Switch

Subsystem

Q648

SGMII0

SGMII1

PA Modify

Engine

FDQFDQ

7 8

RX

DMA

TX

DMA

AUTH

TAG INS
Q647

Host Processor

Packet Generation
Q6441 6 9

G
b

E

S
w

itch

10

12

13

FDQ

TX

DMA

11

SA

FDQFDQ

IPsec AH

AUTH

RX

DMA

TX

DMA

3 4

2 5

IPsec AH Examples www.ti.com

3.3.1 IPsec AH Authentication Tag Generation Example
In this example (Figure 3-3), the host generates a packet and sends it to the SA2 for encryption and
authentication tag generation. The SA2 then routes the packet to the PA modify/multiroute engine, where
the authentication tag is inserted into the packet using a blind patch. From the PA, the packet is routed to
the GbE switch subsystem to send the packet out over the network.

Figure 3-3. IPsec AH Authentication Tag Generation Example

3.3.1.1 IPsec AH Authentication Verification Example Overview
This is a step-by-step description of the example shown in Figure 3-3.
1. Host processor generates a packet and pushes it into the queue for the SA2.
2. The NETCP transmit packet DMA pops the descriptor from the SA2 transmit queue, and transfers the

packet data to the SA2.
3. After the transfer completes, the NETCP transmit packet DMA pushes the transmit descriptor onto the

transmit completion queue. The SA2 performs the IPsec AH authentication operations on the IPsec AH
packet.

4. The NETCP receive packet DMA uses the configured receive flow to pop a descriptor from the free
descriptor queue and fills the linked data buffer with packet data.

5. After the data transfer completes, the NETCP receive packet DMA pushes the descriptor onto the
destination queue. In this case, the destination queue is the input queue for the PA modify engine.

6. The NETCP transmit packet DMA pops the descriptor from the PA modify engine transmit queue, and
transfers the packet data to the modify engine.

7. After the transfer completes, the NETCP transmit packet DMA pushes the transmit descriptor onto the
transmit completion queue. When the PA modify engine receives the packet, it inserts the
authentication tag from the SA2 into the packet.

8. After the PA modify engine completes its operation, the NETCP receive packet DMA uses the
configured receive flow to pop a descriptor from the free descriptor queue and fills the linked data
buffer with packet data.

9. After the data transfer completes, the NETCP receive packet DMA pushes the descriptor onto the
destination queue. In this case, the destination queue is the input queue for the GbE switch.

10. The NETCP transmit packet DMA pops the descriptor from the PA modify engine transmit queue, and
transfers the packet data to the GbE switch.

11. After the transfer completes, the NETCP transmit packet DMA pushes the transmit descriptor onto the
transmit completion queue. When the GbE switch receives the packet, it sends it to the appropriate
GbE switch port, in this case, it is the port for SGMII0.

12. SGMII0 receives the packet from the GbE switch.
13. SGMII0 sends the packet out over the wire.

60 Data Flow Examples SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

PA L2

Engine

L2 Q647

PA L3

Engine 0
PA L3

Engine 1

RX

DMA
L3

FDQ

5

6 Q642 L3
TX

DMA
11

FDQ

12 PA L4

Engine

RX

DMA
L4

FDQ

14

13 DSTQ

GbE Switch

Subsystem

SGMII0

SGMII1

G
b

E

S
w

itch

2

1

3 4 15

SA

FDQFDQ

IPsec AH

AUTH

RX

DMA

TX

DMA

8 9

107

www.ti.com IPsec AH Examples

3.3.2 IPsec AH Authentication Tag Verification Example
In this example (Figure 3-4), an IPsec AH packet arrives from the SGMII. From the SGMII, the packet is
classified by the PA, then routed to the SA2 for authentication. Then the packet is returned to the PA
where the packet is finished being classified and is routed to a destination queue.

Figure 3-4. IPsec AH Authentication Verification Example

3.3.2.1 IPsec AH Encryption Example Overview
This is a step-by-step description of the example shown in Figure 3-4.
1. SGMII0 receives a packet from the wire.
2. The packet is routed into port 1 of the GbE switch.
3. The packet is routed out of port 0 of the GbE switch and transferred to the PA L2 classify engine. The

PA L2 classify engine classifies the packet based on the entries in the L2 classify engine lookup table.
4. The packet is routed to the PA L3 classify 0 engine, and the L3 classify engine 0 classifies the packet

based on the entries in the L3 classify engine 0 lookup table.
5. The NETCP receive packet DMA uses the configured receive flow to pop a descriptor from the free

descriptor queue and fills the linked data buffer with packet data.
6. After the data transfer completes, the NETCP receive packet DMA pushes the descriptor onto the

destination queue. In this case, the destination queue is the input queue for the SA2.
7. The NETCP transmit packet DMA pops the descriptor from the SA2 transmit queue, and transfers the

packet data to the SA2.
8. After the transfer completes, the NETCP transmit packet DMA pushes the transmit descriptor onto the

transmit completion queue. The SA2 performs the IPsec AH decryption and authentication operations
on the IPsec AH packet.

9. The NETCP receive packet DMA uses the configured receive flow to pop a descriptor from the free
descriptor queue and fills the linked data buffer with packet data.

10. After the data transfer completes, the NETCP receive packet DMA pushes the descriptor onto the
destination queue. In this case, the destination queue is the input queue for the PA L3 classify
engine 1.

11. The NETCP transmit packet DMA pops the descriptor from the PA L3 classify engine 1 transmit
queue, and transfers the packet data to the PA L3 classify engine 1.

12. After the transfer completes, the NETCP transmit packet DMA pushes the transmit descriptor onto the
transmit completion queue. When the PA L3 classify engine 1 receives the packet, it classifies the
packet based on the entries in the L3 classify engine 1 lookup table.

13. The packet is routed to the PA L4 classify engine, and it is classified based on the entries stored in the
L4 classify engine lookup table.

14. The NETCP receive packet DMA uses the configured receive flow to pop a descriptor from the free
descriptor queue and fills the linked data buffer with packet data.

15. After the data transfer completes, the NETCP receive packet DMA pushes the descriptor onto the
destination queue.

61SPRUHZ1–August 2014 Data Flow Examples
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

GbE Switch

Subsystem
SA

FDQFDQ

IPsec ESP

ENC/AUTH

RX

DMA

TX

DMA
Q648

SGMII0

SGMII1

Q647

3 4

Host Processor

Packet Generation
1 2 5

G
b

E

S
w

itc
h

6

8

9

FDQ

TX

DMA

7

IPsec ESP Examples www.ti.com

3.4 IPsec ESP Examples
This section shows two examples using the IPsec ESP protocol. The first example shows how to encrypt
an IPsec ESP packet and generate an authentication tag. The second example shows how decrypt an
IPsec ESP packet and verify the authentication tag. The example is shown from a system-level
perspective, and shows interactions between the packet DMA, the SA2, the PA, the GbE switch, and the
queue manager. These examples assume that the IPsec ESP packet will have L2/L3/L3/L4 headers (e.g.,
MAC/IP/IP/UDP). In these examples, FDQ stands free descriptor queue, and DSTQ stands for destination
queue.

3.4.1 IPsec ESP Encryption Example
In this example, the host generates a packet and sends it to the SA2 for encryption and authentication tag
generation and insertion. The SA2 then routes the packet to the GbE switch subsystem to send the packet
out over the network.

Figure 3-5. IPsec ESP Encryption Example

3.4.1.1 IPsec ESP Encryption Example Overview
This is a step-by-step description of the example shown in Figure 3-5.
1. Host processor generates a packet and pushes it into the queue for the SA2.
2. The NETCP transmit packet DMA pops the descriptor from the SA2 transmit queue, and transfers the

packet data to the SA2.
3. After the transfer completes, the NETCP transmit packet DMA pushes the transmit descriptor onto the

transmit completion queue. The SA2 performs the IPsec ESP encryption and authentication operations
on the IPsec ESP packet.

4. The NETCP receive packet DMA uses the configured receive flow to pop a descriptor from the free
descriptor queue and fills the linked data buffer with packet data.

5. After the data transfer completes, the NETCP receive packet DMA pushes the descriptor onto the
destination queue. In this case, the destination queue is the input queue for the GbE switch.

6. The NETCP transmit packet DMA pops the descriptor from the PA modify engine transmit queue, and
transfers the packet data to GbE switch.

7. After the transfer completes, the NETCP transmit packet DMA pushes the transmit descriptor onto the
transmit completion queue. When the GbE switch receives the packet, it sends it to the appropriate
GbE switch port, in this case, it is the port for SGMII0.

8. SGMII0 receives the packet from the GbE switch.
9. SGMII0 sends the packet out over the wire.

62 Data Flow Examples SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

PA L2

Engine

L2 Q647

PA L3

Engine 0
PA L3

Engine 1

RX

DMA
L3

FDQ

5

6 Q642 L3
TX

DMA
11

FDQ

12 PA L4

Engine

RX

DMA
L4

FDQ

14

13 DSTQ

GbE Switch

Subsystem

SGMII0

SGMII1

G
b

E

S
w

itch

2

1

3 4 15

SA

FDQFDQ

IPsec ESP

DEC/AUTH

RX

DMA

TX

DMA

8 9

7 10

www.ti.com IPsec ESP Examples

3.4.2 IPsec ESP Decryption Example
In this example (Figure 3-6), an IPsec ESP packet arrives from the SGMII. From the SGMII, the packet is
classified by the PA, then routed to the SA2 for decryption and authentication. Then the packet is returned
to the PA where the packet is finished being classified and is routed to a destination queue.

Figure 3-6. IPsec ESP Decryption Example

3.4.2.1 IPsec ESP Decryption Example Overview
This is a step-by-step description of the example shown in Figure 3-6.
1. SGMII0 receives a packet from the wire.
2. The packet is routed into port 1 of the GbE switch.
3. The packet is routed out of port 0 of the GbE switch and transferred to the PA L2 engine. The PA L2

classify engine classifies the packet based on the entries in the L2 classify engine lookup table.
4. The packet is routed to the PA L3 classify 0 engine, and the L3 classify engine 0 classifies the packet

based on the entries in the L3 classify engine 0 lookup table.
5. The NETCP receive packet DMA uses the configured receive flow to pop a descriptor from the free

descriptor queue and fills the linked data buffer with packet data.
6. After the data transfer completes, the NETCP receive packet DMA pushes the descriptor onto the

destination queue. In this case, the destination queue is the input queue for the SA2.
7. The NETCP transmit packet DMA pops the descriptor from the SA2 transmit queue and transfers the

packet data to the SA2.
8. After the transfer completes, the NETCP transmit packet DMA pushes the transmit descriptor onto the

transmit completion queue. The SA2 performs the IPsec ESP decryption and authentication operations
on the IPsec ESP packet.

9. The NETCP receive packet DMA uses the configured receive flow to pop a descriptor from the free
descriptor queue and fills the linked data buffer with packet data.

10. After the data transfer completes, the NETCP receive packet DMA pushes the descriptor onto the
destination queue. In this case, the destination queue is the input queue for the PA L3 classify
engine 1.

11. The NETCP transmit packet DMA pops the descriptor from the PA L3 classify engine 1 transmit
queue, and transfers the packet data to the PA L3 classify engine 1.

12. After the transfer completes, the NETCP transmit packet DMA pushes the transmit descriptor onto the
transmit completion queue. When the PA L3 classify engine 1 receives the packet, it classifies the
packet based on the entries in the L3 classify engine 1 lookup table.

13. The packet is routed to the PA L4 classify engine, and it is classified based on the entries stored in the
L4 classify engine lookup table.

14. The NETCP receive packet DMA uses the configured receive flow to pop a descriptor from the free
descriptor queue and fills the linked data buffer with packet data.

15. After the data transfer completes, the NETCP receive packet DMA pushes the descriptor onto the
destination queue.

63SPRUHZ1–August 2014 Data Flow Examples
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

GbE Switch

Subsystem

Q648

SGMII0

SGMII1

PA Modify

Engine

FDQFDQ

7 8

RX

DMA

TX

DMA

L4

CHK
Q647

Host Processor

Packet Generation
Q6441 6 9

G
b

E

S
w

itch

10

12

13

FDQ

TX

DMA

11

SA

FDQFDQ

SRTP

ENC/AUTH

RX

DMA

TX

DMA

3 4

52

SRTP Examples www.ti.com

3.5 SRTP Examples
This section shows two examples using the SRTP protocol. The first example shows how to encrypt an
SRTP packet and generate an authentication tag. The second example shows how to decrypt an SRTP
packet and verify the authentication tag. The example is shown from a system-level perspective, and
shows interactions between the packet DMA, the SA2, the PA, the GbE switch, and the queue manager.
These examples assume that the SRTP packet will have L2/L3/L4/L5 headers (e.g., MAC/IP/UDP/RTP).
In these examples, FDQ stands free descriptor queue, and DSTQ stands for destination queue.

In KeyStone II devices, the SA2 has provided two (instead of one as in KeyStone I) engines for SRTP and
IPSEC. However, the example still applies to the concepts in both KeyStone I and KeyStone II devices.

3.5.1 SRTP Encryption Example
In this example (Figure 3-7), the host generates an RTP packet and sends it to the SA2 for encryption and
authentication tag generation and insertion. The SA2 then routes the packet to the PA modify/multiroute
engine, where an L4 checksum is generated and inserted in the packet. From the PA the packet is routed
to the GbE switch subsystem to send the packet out over the network.

Figure 3-7. SRTP Encryption Example

3.5.1.1 SRTP Encryption Example Overview
This is a step-by-step description of the example shown in Figure 3-7.
1. Host processor generates a packet and pushes it into the queue for the SA2.
2. The NETCP transmit packet DMA pops the descriptor from the SA2 transmit queue and transfers the

packet data to the SA2.
3. After the transfer completes, the NETCP transmit packet DMA pushes the transmit descriptor onto the

transmit completion queue. The SA2 performs the SRTP encryption and authentication operations on
the SRTP packet.

4. The NETCP receive packet DMA uses the configured receive flow to pop a descriptor from the free
descriptor queue and fills the linked data buffer with packet data.

5. After the data transfer completes, the NETCP receive packet DMA pushes the descriptor onto the
destination queue. In this case, the destination queue is the input queue for the PA modify engine.

6. The NETCP transmit packet DMA pops the descriptor from the PA modify engine transmit queue, and
transfers the packet data to the modify engine.

7. After the transfer completes, the NETCP transmit packet DMA pushes the transmit descriptor onto the
transmit completion queue. When the PA modify engine receives the packet, it calculates an L4
checksum and inserts it into the packet.

8. After the PA modify engine completes its operation, the NETCP receive packet DMA uses the
configured receive flow to pop a descriptor from the free descriptor queue and fills the linked data
buffer with packet data.

9. After the data transfer completes, the NETCP receive packet DMA pushes the descriptor onto the
destination queue. In this case, the destination queue is the input queue for the GbE switch.

64 Data Flow Examples SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

SA
PA L3

Engine 0

PA L2

Engine

L2 L34 Q647 DSTQ

PA L4

Engine

RX

DMA
L4

FDQ

6

75

GbE Switch

Subsystem

SGMII0

SGMII1

G
b

E

S
w

itch

2

1

3

FDQFDQ

SRTP

DEC/AUTH

RX

DMA

TX

DMA

9 10

8 11

www.ti.com SRTP Examples

10. The NETCP transmit packet DMA pops the descriptor from the PA modify engine transmit queue, and
transfers the packet data to GbE switch.

11. After the transfer completes, the NETCP transmit packet DMA pushes the transmit descriptor onto the
transmit completion queue. When the GbE switch receives the packet, it sends it to the appropriate
GbE switch port, in this case, it is the port for SGMII0.

12. SGMII0 receives the packet from the GbE switch.
13. SGMII0 sends the packet out over the wire.

3.5.2 SRTP Decryption Example
In this example (Figure 3-8), the SRTP packet arrives from the SGMII. From the SGMII, the packet is
classified by the PA, then routed to the SA2 for decryption and authentication. From the SA2, the packet is
routed to a destination queue.

Figure 3-8. SRTP Decryption Example

3.5.2.1 SRTP Decryption Example Overview
This is a step-by-step description of the example shown in Figure 3-8.
1. SGMII0 receives a packet from the wire.
2. The packet is routed into port 1 of the GbE switch.
3. The packet is routed out of port 0 of the GbE switch and transferred to the PA L2 engine. The PA L2

classify engine classifies the packet based on the entries in the L2 classify engine lookup table.
4. The packet is routed to the PA L3 classify 0 engine, and the L3 classify engine 0 classifies the packet

based on the entries in the L3 classify engine 0 lookup table.
5. The packet is routed to the PA L4 classify engine, and the L4 classify engine classifies the packet

based on the entries in the L4 classify engine lookup table.
6. The NETCP receive packet DMA uses the configured receive flow to pop a descriptor from the free

descriptor queue and fills the linked data buffer with packet data.
7. After the data transfer completes, the NETCP receive packet DMA pushes the descriptor onto the

destination queue. In this case, the destination queue is the input queue for the SA2.
8. The NETCP transmit packet DMA pops the descriptor from the SA2 transmit queue and transfers the

packet data to the SA2.
9. After the transfer completes, the NETCP transmit packet DMA pushes the transmit descriptor onto the

transmit completion queue. The SA2 performs the SRTP decryption and authentication operations on
the SRTP packet.

10. The NETCP receive packet DMA uses the configured receive flow to pop a descriptor from the free
descriptor queue and fills the linked data buffer with packet data.

11. After the data transfer completes, the NETCP receive packet DMA pushes the descriptor onto the
destination queue.

65SPRUHZ1–August 2014 Data Flow Examples
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Chapter 4
SPRUHZ1–August 2014

Registers

This chapter describes the registers available in the Security Accelerator (SA2) and its submodules. For
clarity, the registers for each submodule are described separately. Provided for each register is a bit field
description and a memory offset address. The offset address values provided are relative to the
associated base address of the SA2 module.

See the KeyStone II Architecture Network Coprocessor (NETCP) for K2E and K2L Devices User Guide
(SPRUHZ0) for the base address of the Security Accelerator module relative to the NETCP.

Topic ... Page

4.1 Security Accelerator System Register Region.. 67
4.2 Context Cache Register Region ... 76
4.3 PHP PDSP Control and Status Registers... 81
4.4 Public Key Accelerator Register Region.. 90
4.5 True Random Number Generator Register Region.. 101

66 Registers SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRUHZ0
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Security Accelerator System Register Region

Table 4-1. Security Accelerator Register Regions (1)

Offset Module Register Region Section
00000h Security Accelerator System Register Region Section 4.1
00100h Context Cache Register Region Section 4.2
01000h PHP1 PDSP Control and Status Register Region Section 4.3
01100h PHP2 PDSP Control and Status Register Region Section 4.3
01200h PHP3 PDSP Control and Status Register Region Section 4.3
01300-1FFFCh Reserved Reserved
20000h Public Key Accelerator Register Region Section 4.4
2002C-23FFCh Reserved Reserved
24000h True Random Number Generator Register Region Section 4.5
25000-3FFFCh Reserved Reserved

(1) These register address offsets are relative to the base address of the SA2 module. See the NETCP user guide to determine the
base address of the SA2 module relative to the NETCP.

4.1 Security Accelerator System Register Region
This section describes the system-level registers for the SA2. The system-level registers control the
configuration of the SA2 as a whole, and are not related to one specific module. Included in the SA2
system registers is the ability to enable and disable SA2 modules and check the status of the modules.
For more information on each of the specific registers, see the respective register definition. The SA2
system registers are shown in Table 4-2. To determine the base address of the security accelerator
system register region relative to the SA2 memory map, see Table 4-1.

Table 4-2. Security Accelerator System Register Region

Offset Acronym Register Name Section
000h PID Peripheral and Version Identification Register Section 4.1.1
004h Reserved Reserved Reserved
008h CMD_STATUS Command Status Register Section 4.1.2
0Ch Reserved Reserved Reserved
010h SA1_FLOW_ID SA1 Port Default PKTDMA RX Flow ID Register Section 4.1.3
014h SA0_FLOW_ID SA0 Port Default PKTDMA RX Flow ID Register Section 4.1.4
018h SA1_ENG_ID SA1 Port Default Next Engine ID Register Section 4.1.5
01Ch SA0_ENG_ID SA0 Port Default Next Engine ID Register Section 4.1.6
20-0FCh Reserved Reserved Reserved

67SPRUHZ1–August 2014 Registers
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Security Accelerator System Register Region www.ti.com

4.1.1 Peripheral and Version Identification Register (PID)
The peripheral and version identification register contains the version information of the peripheral. The
peripheral and version identification register is shown in Figure 4-1 and described in Table 4-3.

Figure 4-1. Peripheral and Version Identification Register
31 30 29 28 27 16

SCHEME BU FUNC
R=1 R=0 R=E20h

15 11 10 8 7 6 5 0
RTL MAJOR CUSTOM MINOR
R=2 R=1 R=0 R=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-3. Peripheral and Version Identification Register Field Descriptions

Bits Field Description
31-30 SCHEME PID register format scheme.
29-28 BU Business unit.
27-16 FUNC Functional code of the peripheral.
15-11 RTL RTL version number.
10-8 MAJOR Major revision code.
7-6 CUSTOM Custom code.
5-0 MINOR Minor revision code.

68 Registers SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Security Accelerator System Register Region

4.1.2 Command Status Register (CMD_STATUS)
The command status register contains the status of all the hardware modules in the SA2. This register
tells whether a module is enabled or disabled, and whether the module is busy or ready for use. The
command status register is shown in Figure 4-2 and described in Table 4-4.

Figure 4-2. Command Status Register
31 30 29 28 27 26 25 24

Reserved PHP3SS AUTHSS1 ENCC1_BUSY SA0_OUT SA1_OUT SA0_IN_BUSY SA1_IN_BUSY
_BUSY _BUSY _BUSY _BUSY

R=0 R=0 R=0 R=0 R=0 R=0 R=0 R=0
23 22 21 20 19 18 17 16

CTXCACH PHP2SS PHP1SS PKA_BUSY TRNG_BUSY AIRSS_BUSY AUTHSS ENCSS_BUSY
_BUSY _BUSY _BUSY _BUSY

R=0 R=0 R=0 R=0 R=0 R=0 R=0 R=0
15 14 13 12 11 10 9 8

Reserved PHP3SS_EN AUTHSS1_EN ENCC1_EN SA0_OUT_EN SA1_OUT_EN SA0_IN_EN SA1_IN_EN
R=0 RW = 0 RW=0 RW=0 RW=0 RW=0 RW=0 RW=0

7 6 5 4 3 2 1 0
CTXCACH_EN PHP2SS_EN PHP1SS_EN PKA_EN TRNG_EN AIRSS_EN AUTHSS_EN ENCSS_EN

RW=0 RW=0 RW=0 RW=0 RW=0 RW=0 RW=0 RW=0
Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-4. Command Status Register Field Descriptions

Bits Field Description
31 Reserved Reserved
30 PHPSS3_BUSY Packet header processor 3 module enable bit.

• 0 = module is disabled
• 1 = module is enabled

29 AUTHSS1_BUSY Second Authentication module status bit.
• 0 = module is ready
• 1 = module is busy

28 ENCSS1_BUSY Second Encryption module status bit.
• 0 = module is ready
1 = module is busy

27 SA0_OUT_BUSY SA0 egress port status bit. The SA0 egress port is used for packets originating from queue 647.
• 0 = port is ready
• 1 = port is busy

26 SA1_OUT_BUSY SA1 egress port status bit. The SA1 egress port is used for packets originating from queue 646.
• 0 = port is ready
• 1 = port is busy

25 SA0_IN_BUSY SA0 ingress port status bit. The SA0 ingress port is used for packets originating from queue 647.
• 0 = port is ready
• 1 = port is busy

24 SA1_IN_BUSY SA1 ingress port status bit. The SA1 input port is used for packets originating from queue 646.
• 0 = port is ready
• 1 = port is busy

23 CTXCACH_BUSY Security context cache module status bit.
• 0 = module is ready
• 1 = module is busy

22 PHP2SS_BUSY Packet header processor 2 module status bit.
• 0 = module is ready
• 1 = module is busy

69SPRUHZ1–August 2014 Registers
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Security Accelerator System Register Region www.ti.com

Table 4-4. Command Status Register Field Descriptions (continued)
Bits Field Description
21 PHP1SS_BUSY Packet header processor 1 module status bit.

• 0 = module is ready
• 1 = module is busy

20 PKA_BUSY Public key accelerator module status bit.
• 0 = module is ready
• 1 = module is busy

19 TRNG_BUSY True random number generator module status bit.
• 0 = module is ready
• 1 = module is busy

18 AIRSS_BUSY Air cipher module status bit.
• 0 = module is ready
• 1 = module is busy

17 AUTHSS_BUSY Authentication module status bit.
• 0 = module is ready
• 1 = module is busy

16 ENCSS_BUSY Encryption module status bit.
• 0 = module is ready
• 1 = module is busy

15 Reserved Reserved
14 PHPSS3_EN Packet header processor 3module enable bit.

• 0 = module is disabled
• 1 = module is enabled

13 AUTHSS1_EN 2nd Authentication module enable bit.
• 0 = module is disabled
• 1 = module is enabled

12 ENCSS1_EN Encryption module enable bit.
• 0 = module is disabled
• 1 = module is enabled

11 SA0_OUT_EN SA0 egress port enable bit. The SA0 egress port is used for packets originating from queue 647.
• 0 = port is disabled
• 1 = port is enabled

10 SA1_OUT_EN SA1 egress port enable bit. The SA1 egress port is used for packets originating from queue 646.
• 0 = port is disabled
• 1 = port is enabled

9 SA0_IN_EN SA0 ingress port enable bit. The SA0 ingress port is used for packets originating from queue 647.
• 0 = port is disabled
• 1 = port is enabled

8 SA1_IN_EN SA1 ingress port enable bit. The SA1 ingress port is used for packets originating from queue 646.
• 0 = port is disabled
• 1 = port is enabled

7 CTXCACH_EN Security context cache module enable bit.
• 0 = module is disabled
• 1 = module is enabled

6 PHP2SS_EN Packet header processor 2 module enable bit.
• 0 = module is disabled
• 1 = module is enabled

5 PHP1SS_EN Packet header processor 1 module enable bit.
• 0 = module is disabled
• 1 = module is enabled

70 Registers SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Security Accelerator System Register Region

Table 4-4. Command Status Register Field Descriptions (continued)
Bits Field Description
4 PKA_EN Public key accelerator module enable bit.

• 0 = module is disabled
• 1 = module is enabled

3 TRNG_EN True random number generator module enable bit.
• 0 = module is disabled
• 1 = module is enabled

2 AIRSS_EN Air cipher module enable bit.
• 0 = module is disabled
• 1 = module is enabled

1 AUTHSS_EN Authentication module enable bit.
• 0 = module is disabled
• 1 = module is enabled

0 ENCSS_EN Encryption module enable bit.
• 0 = module is disabled
• 1 = module is enabled

71SPRUHZ1–August 2014 Registers
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Security Accelerator System Register Region www.ti.com

4.1.3 SA1 Port Flow Identification Register (SA1_FLOWID)
The SA1 port flow identification register defines the default packet DMA RX flow number for packets that
entered the SA2 from the SA1 ingress port. The SA1 port is used for packets originating from queue 646.
The SA1 port flow identification register is shown in Figure 4-3 and described in Table 4-5.

Figure 4-3. SA1 Port Flow Identification Register
31 8 7 0

Reserved SA1_FLOWID
RW=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-5. SA1 Port Flow Identification Register Field Descriptions

Bits Field Description
31-8 Reserved Reserved
7-0 SA1_FLOWID SA1 port default flow ID. This register holds the default packet DMA RX flow number to be used for packets that

entered the SA2 from the SA1 ingress port.

72 Registers SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Security Accelerator System Register Region

4.1.4 SA0 Port Flow Identification Register (SA0_FLOWID)
The SA0 port (queue 647) flow identification register defines the default packet DMA RX flow number for
packets coming from the SA0 ingress port. The SA0 port is used for packets originating from queue 647.
The SA0 port flow identification register is shown in Figure 4-4 and described in Table 4-6.

Figure 4-4. SA0 Port Flow Identification Register
31 8 7 0

Reserved SA0_FLOWID
RW=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-6. SA0 Port Flow Identification Register Field Descriptions

Bits Field Description
31-8 Reserved Reserved
7-0 SA0_FLOWID SA0 port default flow ID. This register holds the default packet DMA RX flow number to be used for packets that

entered the SA2 from the SA0 ingress port.

73SPRUHZ1–August 2014 Registers
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Security Accelerator System Register Region www.ti.com

4.1.5 SA1 Next Engine Identification Register (SA1_ENG_ID)
This register is used to select first processing engine within SA2 if the ‘Default Engine ID’ select code is
set in the descriptor software info word 0. The SA1 port is used for packets originating from queue 646.
The SA1 next engine identification register is shown in Figure 4-5 and described in Table 4-7.

Figure 4-5. SA1 Next Engine Identification Register
31 5 4 0

Reserved SA1_ENG_ID
R=0 RW=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-7. SA1 Next Engine Identification Register Field Descriptions

Bits Field Description
31-5 Reserved Reserved
4-0 SA1_ENG_ID SA1 Default Engine ID. This is used to select the first processing engine within SA2 if the ‘Default Engine ID’

select code is set in the descriptor software info word 0. This register must be programmed with one of the values
in Table A-3.

74 Registers SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Security Accelerator System Register Region

4.1.6 SA0 Next Engine Identification Register (SA0_ENG_ID)
This register is used to select first processing engine within SA2 if the ‘Default Engine ID’ select code is
set in the descriptor software info word 0. The SA0 port is used for packets originating from queue 647.
The SA0 next engine identification register is shown in Figure 4-6 and described in Table 4-8.

Figure 4-6. SA0 Next Engine Identification Register
31 5 4 0

Reserved SA0_ENG_ID
R=0 RW=8

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-8. SA0 Next Engine Identification Register Field Descriptions

Bits Field Description
31-5 Reserved Reserved
4-0 SA0_ENG_ID SA0 Default Engine ID. This is used to select first processing engine within SA2 if the ‘Default Engine ID’ select code

is set in the descriptor software info word 0. This register must be programmed with one of the values in Table A-3.

75SPRUHZ1–August 2014 Registers
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Context Cache Register Region www.ti.com

4.2 Context Cache Register Region
This section describes the registers for the SA2 context cache module. These registers control the basic
function of the context cache module, including the ability to add or evict entries from the context cache,
as well as the ability to tear down the context cache altogether. These registers also provide status
information about the context cache, and the number of cache misses. The context cache registers are
shown in Table 4-9. To determine the base address of the context cache register region relative to the
SA2 memory map, see Table 4-1.

Table 4-9. Context Cache Register Region

Offset Acronym Register Name Section
000h CTXCACH_CTRL Context Cache Control Register Section 4.2.1
004h CTXCACH_SC_PTR Context Cache Security Context Pointer Register Section 4.2.2
008h CTXCACH_SC_ID Context Cache Security Context ID Register Section 4.2.3
00Ch CTXCACH_MISSCNT Context Cache Miss Count Register Section 4.2.4
010-FFCh Reserved Reserved Reserved

76 Registers SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Context Cache Register Region

4.2.1 Context Cache Control Register (CTXCACH_CTRL)
The context cache control register controls the basic operation of the context cache module. The context
cache control register is shown in Figure 4-7 and described in Table 4-10.

Figure 4-7. Context Cache Control Register
31 30 24 23 16

BUSY CTX_CNT Reserved
R=0 R=0 R=0

15 5 4 3 2 1 0
Reserved CLR_STATS SA0_PORT_EN SA1_PORT_EN CLR_CACHE_TABLE AUTO_FETCH_EN

R=0 RW=0 RW=1 RW=1 RW=0 RW=1
Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-10. Context Cache Control Register Field Descriptions

Bits Field Description
31 BUSY Context cache busy. This bit indicates whether or not the context cache is busy doing an operation.

• 0 = Not busy
• 1 = Busy

31-24 CTX_CNT Context cache count. This field maintains a count of the number of security context s that are currently
stored in the context cache.

23-5 Reserved Reserved
4 CLR_STATS Clear context cache statistics. Setting this bit to 1 will clear the context cache statistics. This bit will

automatically clear to 0 when the operation completes.
3 SA0_PORT_EN SA0 port context cache enable. This bit indicates whether or not the context cache is enabled for the

SA0 port. If disabled, then no lookup or auto-fetch will happen for the security contexts of packets
arriving on this port. The SA0 port is used for packets originating from queue 647.
• 0 = SA0 port context cache is disabled
• 1 = SA0 port context cache is enabled

2 SA1_PORT_EN SA1 port context cache enable. This bit indicates whether or not the context cache is enabled for the
SA1 port. If disabled, then no lookup or auto-fetch will happen for the security contexts of packets
arriving on this port. The SA1 port is used for packets originating from queue 646.
• 0 = SA1 port context cache is disabled
• 1 = SA1 port context cache is enabled

1 CLR_CACHE_TABLE Clear context cache table. Setting this bit to 1 will clear all information stored in the context cache table.
This bit will automatically clear to 0 after the operation has been completed.

0 AUTO_FETCH_EN Security context auto-fetch enable. This bit controls whether or not security contexts will be
automatically fetched from host memory.
• 0 = Do not automatically fetch security contexts
• 1 = Automatically fetch security contexts

77SPRUHZ1–August 2014 Registers
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Context Cache Register Region www.ti.com

4.2.2 Context Cache Security Context Pointer Register (CTXCACH_SC_PTR)
The context cache security context pointer register is used in conjunction with the context cache security
context identification register to manually add, tear down, or evict security contexts from the context cache
through register reads and writes. The context cache security context pointer register contains the pointer
to the security context in host memory that is desired to be added to the context cache. The context cache
security context pointer register is shown in Figure 4-8 and described in Table 4-11.

Figure 4-8. Context Cache Security Context Pointer Register
31 0

CTXCACH_SC_PTR
RW=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-11. Context Cache Security Context Pointer Register Field Descriptions

Bits Field Description
31-0 CTXCACH_SC_PTR Context cache security context pointer. The value in this field should be a pointer to host memory, where

the security context that is desired to be fetched and loaded into the context cache is stored. The value in
this field must be a global address.

78 Registers SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Context Cache Register Region

4.2.3 Context Cache Security Context Identification Register (CTXCACH_SC_ID)
The context cache security context identification register is used in conjunction with the context cache
security context pointer register to manually add, tear down, or evict security contexts from the context
cache through register reads and writes. Writes to the context cache security context identification register
causes a security context to be fetched and stored in the context cache. Reading the context cache
security context identification register gives the status of a security context fetch operation. The context
cache security context identification register is shown in Figure 4-9 and described in Table 4-12.

Figure 4-9. Context Cache Security Context Identification Register
31 30 28 27 20 19 18 17 16

DONE SC_ERRORCODE SC_RAMIDX GO Reserved SC_TEAR SC_FETCH_EVICT
RW=0 RW=0 RW=0 RW=0 RW=0 RW=0 RW=0

15 0
SC_ID
RW=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-12. Context Cache Security Context Identification Register Field Descriptions

Bits Field Description
31 DONE Security context fetch done. This field is automatically set when the security context fetch has completed.

• 0 = Security context fetch operation ongoing
• 1 = Security context fetch operation completed

30-28 SC_ERRORCODE Security context fetch error code. This field is set when there is an error fetching the security context. A
return code of 0 means that the security context fetch completed successfully.
• 0 = Security context fetch completed successfully.
• 1 = Cache lookup failed for non-SOP lookup request. This is possible if SOP chuck was marked as bad.

In normal operation, the non-SOP lookup can never fail as the hardware ensures that the security
context is not evicted till all outstanding chunks are processed.

• 2 = Cache lookup failed for no-payload lookup request. This condition can occur if software issues an
evict request for security context identification value that is not cached.

• 3 = Cache lookup failed for no-payload lookup request. This condition can occur if software issues a
tear-down request for security context identification value that is not cached.

• 4 = Owner bit set to Host while fetching security context. Host must ensure that owner bit is set to SA2
before queuing any packets.

• 5 = Host must ensure that security context identification value is properly recycled and there are no
outstanding packets for recycled context ID. This error is generated if a packet lookup request appears
after the security context has been marked as “to teardown” and the SA2 has not yet completed the
teardown operation.

• 6 = If module is operating with auto-fetch disabled, then the host must ensure that security context is
cached before packets arrive for that particular context. This error is generated if auto-fetch is disabled
and no locally cached security context is found.

• 7 = Reserved
27-20 SC_RAMIDX Security context return RAM index.
19 GO Go. Setting this bit to 1 will execute the selected action. This bit will automatically clear to 0 when the

operation has been completed.
18 Reserved Reserved
17 SC_TEAR Security context tear-down. If this bit is set to 1, then writing the GO bit will cause a tear-down of the

security context ID in the SC_ID field.
16 SC_FETCH_EVICT Security context evict. If this bit is set to 1, then writing the GO bit will cause the security context with the

identification value stored in the SC_ID field to be evicted from the context cache.
15-0 SC_ID Security context identification value. This register contains the security context identification value to be

used for the register operation.

79SPRUHZ1–August 2014 Registers
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Context Cache Register Region www.ti.com

4.2.4 Context Cache Miss Count Register (CTXCACH_MISSCNT)
The context cache miss count register stores the number of cache misses in the context cache. The
context cache miss count register is shown in Figure 4-10 and described in Table 4-13.

Figure 4-10. Context Cache Security Context Identification Register
31 0

CTX_MISSCNT
R=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-13. Register Field Descriptions

Bits Field Description
31-0 CTX_MISSCNT Context cache miss count. This field stores the number of cache misses in the context cache.

80 Registers SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com PHP PDSP Control and Status Registers

4.3 PHP PDSP Control and Status Registers
This section describes the PDSP Control and Status Registers available in the Security Accelerator (SA2).
There are two PDSPs in the SA2, each with its own set of identical control and status registers. The
register address offsets listed in Table 4-14 are relative to the PDSP Control and Status memory region.
To determine the base address of the PDSP Control/Status memory region for each PDSP relative to the
SA2 memory map, see Table 4-1.

Table 4-14. PDSP Control/Status Register Region

Address Offset Registers Section
00h PDSP Control Register Section 4.3.1
04h PDSP Status Register Section 4.3.2
08h PDSP Wakeup Enable Register Section 4.3.3
0Ch PDSP Cycle Count Section 4.3.3
10h PDSP Stall Count Section 4.3.4
20h PDSP Constant Table Block Index Register 0 Section 4.3.5
24h PDSP Constant Table Block Index Register 1 Section 4.3.6
28h PDSP Constant Table Programmable Pointer Register 0 Section 4.3.7
2Ch PDSP Constant Table Programmable Pointer Register 1 Section 4.3.8
30h-FFh Reserved Reserved

81SPRUHZ1–August 2014 Registers
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

PHP PDSP Control and Status Registers www.ti.com

4.3.1 PDSP Control Register (PDSP_CONTROL)
The PDSP Control Register controls the operation of the PDSP. This register should be used primarily for
enabling and disabling the PDSP before downloading the PDSP firmware into the PDSP program
memory. If the PDSP has already been initialized and is running, writing to this register could result in
undefined behavior. The PDSP Control Register is shown in Figure 4-11 and described in Table 4-15.

Figure 4-11. PDSP Control Register
31 16

PCOUNTER_RST_VAL
RW=0

15 14 4 3 2 1 0
PDSP_STATE Reserved CTR_EN PDSP_SLEEP PDSP_EN SOFT_RST_N

R=0 R=0 RW=0 RW=0 RW=0 RW=0
Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-15. PDSP Control Register Field Descriptions

Bits Field Description
31-16 PCOUNTER_RST_VAL Program Counter Reset Value. This field controls the address from which the PDSP will start executing

code after it is taken out of reset.
15 PDSP_STATE Run State. This bit indicates whether the PDSP is currently executing an instruction or is halted.

• 0 = PDSP is halted and host has access to the instruction RAM and debug registers regions.
• 1 = PDSP is currently running and the host is locked out of the instruction RAM and debug registers

regions.
This bit is used by an external debug agent to know when the PDSP has actually halted when waiting
for a HALT instruction to execute, a single step to finish, or any other time when the PDSP_ENABLE
has been cleared.

14-4 Reserved Reserved
3 CTR_EN PDSP Cycle Counter Enable. Enables PDSP cycle counters.

• 0 = Counters not enabled
• 1 = Counters enabled

2 PDSP_SLEEP PDSP Sleep Indicator. This bit indicates whether or not the PDSP is currently asleep.
• 0 = PDSP is not asleep
• 1 = PDSP is asleep
If this bit is written to a 0, the PDSP will be forced to power up from sleep mode.

1 PDSP_EN Processor Enable. This bit controls whether or not the PDSP is allowed to fetch new instructions.
• 0 = PDSP is disabled
• 1 = PDSP is enabled
If this bit is de-asserted while the PDSP is currently running and has completed the initial cycle of a
multi-cycle instruction, the current instruction is allowed to complete before the PDSP pauses execution.
Otherwise, the PDSP halts immediately.
Because of the unpredictability/timing sensitivity of the instruction execution loop, this bit is not a reliable
indication of whether or not the PDSP is currently running. The PDSP_STATE bit should be consulted
for an absolute indication of the run state of the core.
When the PDSP is halted, its internal state remains coherent; therefore, this bit can be reasserted
without issuing a software reset and the PDSP will resume processing exactly where it left off in the
instruction stream.

0 SOFT_RST_N Soft Reset. When this bit is cleared to 0, the PDSP is reset. This bit is set back to 1 on the next cycle
after it has been cleared.

82 Registers SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com PHP PDSP Control and Status Registers

4.3.2 PDSP Status Register
The PDSP Status Register stores the PDSP program counter delayed by one cycle. The PDSP Status
Register is shown in Figure 4-12 and described in Table 4-16.

Figure 4-12. PDSP Status Register
31 16 15 0

Reserved PCOUNTER
R=0 R=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-16. PDSP Status Register Field Descriptions

Bits Field Description
31-16 Reserved Reserved
15-0 PCOUNTER Program Counter. This field is a registered (1 cycle delayed) reflection of the PDSP program counter (1)

(1) The PC is an instruction address where each instruction is a 32-bit word. This is not a byte address and to compute the byte address just
multiply the PC by 4 (PC of 2 = byte address of 8h, or PC of 8 = byte address of 20h).

83SPRUHZ1–August 2014 Registers
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

PHP PDSP Control and Status Registers www.ti.com

4.3.3 PDSP Cycle Count Register (PDSP_CYCLECOUNT)
The PDSP cycle count register counts the number of cycles for which the PDSP has been enabled. This
register is shown in Figure 4-13 and described in Table 4-17.

Figure 4-13. PDSP Cycle Count Register
31 0

CYCLECOUNT
R=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-17. PDSP Cycle Count Register Field Descriptions

Bits Field Description
31-0 CYCLECOUNT This value is incremented by 1 for every cycle during which the PDSP is enabled and the counter is enabled

(both bits PDSP_ENABLE and COUNTER_ENABLE set in the PDSP control register).
Counting halts while the PDSP is disabled or counter is disabled, and resumes when re-eneabled.
Counter clears the “counter enable” bit in the PDSP control register when the count reaches FFFFFFFFh. (Count
does not wrap).
The register can be read at any time.
The register can be cleared when the counter or PDSP is disabled.
Clearing this register also clears the PDSP Stall Count Register.

84 Registers SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com PHP PDSP Control and Status Registers

4.3.4 PDSP Stall Count Register (PDSP_STALLCOUNT)
This register counts the number of cycles for which the PDSP has been enabled, but unable to fetch a
new instruction. It is linked to the cycle count register such that this register reflects the stall cycles
measured over the same cycles as counted by the cycle count register. Thus the value of this register is
always less than or equal to cycle count. This register is shown in Figure 4-14 and described in Table 4-
18.

Figure 4-14. PDSP Stall Count Register
31 0

STALLCOUNT
R=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-18. PDSP Stall Count Register Field Descriptions

Bits Field Description
31-0 STALLCOUNT This value is incremented by 1 for every cycle during which the PDSP is enabled and the counter is enabled (both

bits PDSP_ENABLE and COUNTER_ENABLE set in the PDSP control register), and the PDSP was unable to
fetch a new instruction for any reason.
Counting halts while the PDSP is disabled or the counter is disabled, and resumes when re-eneabled.
The register can be read at any time.
The register is cleared when PDSP Cycle Count Register is cleared.

85SPRUHZ1–August 2014 Registers
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

PHP PDSP Control and Status Registers www.ti.com

4.3.5 PDSP Constant Table Block Index 0 Register (PDSP_BLK_IDX0)
This register is used to set the block indices for entries 24 and 25 for use by the PDSP firmware.
Programming this register with values other than the values shown in the SA2 LLD will result in undefined
behavior. This register is show in Figure 4-15 and described in Table 4-19.

Figure 4-15. PDSP Constant Table Block Index 0 Register
31 20 19 16 15 4 3 0

C25_BLK C24_BLKReserved Reserved_INDEX _INDEX
R=0 RW=0 R=0 RW=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-19. PDSP Constant Table Block Index 0 Register Field Descriptions

Bits Field Description
31-20 Reserved Reserved
19-16 C25_BLK_INDEX PDSP Constant Entry 25 Block Index.
15-4 Reserved Reserved
3-0 C24_BLK_INDEX PDSP Constant Entry 24 Block Index.

86 Registers SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com PHP PDSP Control and Status Registers

4.3.6 PDSP Constant Table Block Index 1 Register (PDSP_BLK_IDX1)
This register is used to set the block indices for entries 26 and 27 for use by the PDSP firmware.
Programming this register with values other than the values shown in the SA2 LLD will result in undefined
behavior. This register is show in Figure 4-16 and described in Table 4-20.

Figure 4-16. PDSP Constant Table Block Index 1 Register
31 20 19 16 15 4 3 0

C27_BLK C26_BLKReserved Reserved_INDEX _INDEX
R=0 RW=0 R=0 RW=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-20. PDSP Constant Table Block Index Register 1 Field Descriptions

Bits Field Description
31-20 Reserved Reserved
19-16 C27_BLK_INDEX PDSP Constant Entry 27 Block Index.
15-4 Reserved Reserved
3-0 C26_BLK_INDEX PDSP Constant Entry 26 Block Index.

87SPRUHZ1–August 2014 Registers
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

PHP PDSP Control and Status Registers www.ti.com

4.3.7 PDSP Constant Table Programmable Pointer Register 0 (PDSP_POINTER0)
This register allows the PDSP to set up pointers to constants 28 and 29 for use by the PDSP firmware.
Programming this register with values other than the values shown in the SA2 LLD will result in undefined
behavior. This register is show in Figure 4-17 and described in Table 4-21.

Figure 4-17. PDSP Constant Table Programmable Pointer 0 Register
31 16 15 0

C29_POINTER C28_POINTER
RW=0 RW=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-21. PDSP Constant Table Programmable Pointer Register 0 Field Descriptions

Bits Field Description
31-16 C29_POINTER PDSP Constant Entry 29 Pointer.
15-0 C28_POINTER PDSP Constant Entry 28 Pointer.

88 Registers SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com PHP PDSP Control and Status Registers

4.3.8 PDSP Constant Table Programmable Pointer Register 1 (PDSP_POINTER1)
This register allows the PDSP to set up pointers to constants 30 and 31 for use by the PDSP firmware.
Programming this register with values other than the values shown in the SA2 LLD will result in undefined
behavior. This register is show in Figure 4-18 and described in Table 4-22.

Figure 4-18. PDSP Constant Table Programmable Pointer 1 Register
31 16 15 0

C31_POINTER C30_POINTER
RW=0 RW=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-22. PDSP Constant Table Programmable Pointer Register 1 Field Descriptions

Bits Field Description
31-16 C31_POINTER PDSP Constant Entry 31 Pointer.
15-0 C30_POINTER PDSP Constant Entry 30 Pointer.

89SPRUHZ1–August 2014 Registers
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Public Key Accelerator Register Region www.ti.com

4.4 Public Key Accelerator Register Region
This section describes the registers for the SA2 Public Key Accelerator (PKA) module. The PKA module
provides a high-performance public key module to accelerate the large vector math processing that is
required for public key computations. The PKA registers are shown in Table 4-23. To determine the base
address of the PKA register region relative to the SA2 memory map, see Table 4-1.

Table 4-23. Public Key Accelerator Register Region

Offset Acronym Register Name Section
0000h PKA_APTR Operand A Pointer Register Section 4.4.1
0004h PKA_BPTR Operand B Pointer Register Section 4.4.2
0008h PKA_CPTR Operand C Pointer Register Section 4.4.3
000Ch PKA_DPTR Operand D Pointer Register Section 4.4.4
0010h PKA_ALENGTH Operand A Length Register Section 4.4.5
0014h PKA_BLENGTH Operand B Length Register Section 4.4.6
0018h PKA_SHIFT Shift Operation Register Section 4.4.7
001Ch PKA_FUNCTION Function Select Register Section 4.4.8
0020h PKA_COMPARE Compare Results Register Section 4.4.9
0024h PKA_MSW Result Most Significant Word Address Register Section 4.4.10
0028h PKA_DIVMSW Division Remainder Most Significant Word Address Register Section 4.4.11
002C-1FFCh Reserved Reserved Reserved

4.4.1 Operand A Pointer Register (PKA_APTR)
The operand A pointer register specifies the location of the operand A input vector within the vector RAM.
Vectors are identified through the location of their least-significant double word. This register is shown in
Figure 4-19 and described in Table 4-24.

Figure 4-19. Operand A Pointer Register
31 10 9 0

Reserved APTR
R=0 RW=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-24. Operand A Pointer Register Field Descriptions

Bits Field Description
31-10 Reserved Reserved
9-0 APTR Operand A Pointer. This field specifies the location of the operand A input vector within the vector RAM. Vectors are

identified through the location of their least-significant 32-bit word.

90 Registers SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Public Key Accelerator Register Region

4.4.2 Operand B Pointer Register (PKA_BPTR)
The operand B pointer register specifies the location of the operand B input vector within the vector RAM.
Vectors are identified through the location of their least-significant double word. This register is shown in
Figure 4-20 and described in Table 4-25.

Figure 4-20. Operand B Pointer Register
31 10 9 0

Reserved BPTR
R=0 RW=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-25. Operand B Pointer Register Field Descriptions

Bits Field Description
31-10 Reserved Reserved
9-0 BPTR Operand B Pointer. This field specifies the location of the operand B input vector within the vector RAM. Vectors

are identified through the location of their least-significant 32-bit word.

91SPRUHZ1–August 2014 Registers
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Public Key Accelerator Register Region www.ti.com

4.4.3 Operand C Pointer Register (PKA_CPTR)
The operand C pointer register specifies the location of the operand C vector within the vector RAM.
Vectors are identified through the location of their least-significant double word. This register is shown in
Figure 4-21 and described in Table 4-26.

Figure 4-21. Operand C Pointer Register
31 10 9 0

Reserved CPTR
R=0 RW=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-26. Operand C Pointer Register Field Descriptions

Bits Field Description
31-10 Reserved Reserved
9-0 CPTR Operand C Pointer. This field specifies the location of the operand C vector within the vector RAM. Typically, operand

C is an output/result vector; however, when used with the exponentiation operation, the operand C vector is used as
an input. Vectors are identified through the location of their least-significant 32-bit word.

92 Registers SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Public Key Accelerator Register Region

4.4.4 Operand D Pointer Register (PKA_DPTR)
The operand D pointer register specifies the location of the operand D vector within the vector RAM.
Vectors are identified through the location of their least-significant double word. This register is shown in
Figure 4-22 and described in Table 4-27.

Figure 4-22. Operand D Pointer Register
31 10 9 0

Reserved DPTR
R=0 RW=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-27. Operand D Pointer Register Field Descriptions

Bits Field Description
31-10 Reserved Reserved
9-0 DPTR Operand D Pointer. This filed specifies the location of the operand D vector within the vector RAM. Typically,

operand D is used to define the “working” space; however, the D operand can also be used to store the result of an
exponentiation operation, or the quotient of a division operation. Vectors are identified through the location of their
least-significant 32-bit word.

93SPRUHZ1–August 2014 Registers
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Public Key Accelerator Register Region www.ti.com

4.4.5 Operand A Length Register (PKA_ALENGTH)
The operand A length register specifies the length in 32-bit words of the operand A input vector in the
vector RAM. This register is shown in Figure 4-23 and described in Table 4-28.

Figure 4-23. Operand A Length Register
31 8 7 0

Reserved ALENGTH
R=0 RW=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-28. Operand D Pointer Register Field Descriptions

Bits Field Description
31-8 Reserved Reserved
7-0 ALENGTH Operand A Length. This field specifies the length of the operand A vector in 32-bit words.

94 Registers SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Public Key Accelerator Register Region

4.4.6 Operand B Length Register (PKA_BLENGTH)
The operand B length register specifies the length in 32-bit words of the operand B input vector in the
vector RAM. This register is shown in Figure 4-24 and described in Table 4-29.

Figure 4-24. Operand B Length Register
31 8 7 0

Reserved BLENGTH
R=0 RW=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-29. Operand D Pointer Register Field Descriptions

Bits Field Description
31-8 Reserved Reserved
7-0 BLENGTH Operand B Length. This field specifies the length of the operand B vector in 32-bit words. When using the

exponentiation operation, this field serves a dual role, and provides the length of the both the operand B vector and
the operand C vector.

95SPRUHZ1–August 2014 Registers
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Public Key Accelerator Register Region www.ti.com

4.4.7 Shift Operation Register (PKA_SHIFT)
The shift operation register specifies the number of bits to shift the input vector during a RIGHTSHIFT or a
LEFTSHIFT operation. This register is shown in Figure 4-25 and described in Table 4-30.

Figure 4-25. Shift Operation Register
31 5 4 0

Reserved SHIFT
R=0 RW=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-30. Shift Operation Register Field Descriptions

Bits Field Description
31-5 Reserved Reserved
4-0 SHIFT Shift Operation. This field specifies the number of bits to shift the input vector during a RIGHTSHIFT or LEFTSHIFT

operation.

96 Registers SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Public Key Accelerator Register Region

4.4.8 Function Select Register (PKA_FUNCTION)
The function select register specifies the operation that the PKA will execute. Only one operation can be
selected at a time. This register is shown in Figure 4-26 and described in Table 4-31.

Figure 4-26. Function Select Register
31 16

Reserved
R=0

15 14 13 12 11 10 9 8 7 6 5 4 3 1 0
RUN EXP2 EXP4 Reserved COPY CMP Reserved DIVIDE LSHIFT RSHIFT SUB ADD Reserved MULT

RW=0 RW=0 RW=0 R=0 RW=0 RW=0 R=0 R-1 RW=0 RW=0 RW=0 RW=0 R=0 RW=0
Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-31. Function Select Register Field Descriptions

Bits Field Description
31-16 Reserved Reserved
15 RUN Start Running Operation. Writing a '1' to this field will start the operation. When PKA has finished, PKA drives

this bit to '0'. This bit should be polled by software to check for completion.
14 EXP2 Perform exponentiation with 2-bit ACT table.
13 EXP4 Perform exponentiation with 4-bit ACT table.
12 Reserved Reserved
11 COPY Perform copy operation.
10 CMP Perform compare operation.
9 Reserved Reserved
8 DIVIDE Perform divide operation.
7 LSHIFT Perform left shift operation.
6 RSHIFT Perform right shift operation.
5 SUB Perform subtract operation.
4 ADD Perform add operation.
3-1 Reserved Reserved
0 MULT Perform multiply operation.

97SPRUHZ1–August 2014 Registers
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Public Key Accelerator Register Region www.ti.com

4.4.9 Compare Results Register (PKA_COMPARE)
The compare results register specifies the result of the compare operation. This register is shown in
Figure 4-27 and described in Table 4-32.

Figure 4-27. Compare Results Register
31 3 2 0

Reserved CMP_RESULT
R=0 R=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-32. Compare Results Register Field Descriptions

Bits Field Description
31-3 Reserved Reserved
2-0 CMP_RESULT Compare Result. This field stores the result of the compare operation.

• 100 - A is greater than B
• 010 - A is less than B
• 001 - A is equal to B
All other bit values are reserved.

98 Registers SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Public Key Accelerator Register Region

4.4.10 Result Most Significant Word Address Register (PKA_MSW)
The result most significant word address register contains the address of the most significant word of the
result vector. This register is shown in Figure 4-28 and described in Table 4-33.

Figure 4-28. Result Most Significant Word Address Register
31 16 15 14 10 9 0

Reserved RES_ZERO Reserved MSW_ADDRESS
R=0 R=1 R=0 R=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-33. Result Most Significant Word Address Register Field Descriptions

Bits Field Description
31-16 Reserved Reserved
15 RES_ZERO Zero Result.

• 0 - The MSW address field should be used
• 1 - The MSW address field should be ignored

14-10 Reserved Reserved
9-0 MSW_ADDRESS Most Significant Word Address. This field contains the address of the most significant word of the

result vector. For the divide operation, this register contains the address of the quotient vector. For
modular exponentiation, this register contains the address of the most significant word.

99SPRUHZ1–August 2014 Registers
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Public Key Accelerator Register Region www.ti.com

4.4.11 Division Remainder Most Significant Word Address Register (PKA_MSWDIV)
The division remainder most significant word address register contains the address of the most significant
word of the divide remainder vector. This register is shown in Figure 4-29 and described in Table 4-34.

Figure 4-29. Division Remainder Most Significant Word Address Register
31 16 15 14 10 9 0

Reserved RES_ZERO Reserved MSW_ADDRESS
R=0 R=1 R=0 R=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-34. Division Remainder Most Significant Word Address Register Field Descriptions

Bits Field Description
31-16 Reserved Reserved
15 RES_ZERO Zero Result.

• 0 - The MSW address field should be used
• 1 - The MSW address field should be ignored

14-10 Reserved Reserved
9-0 MSW_ADDRESS Most Significant Word Address. This field contains the address of the most significant word of the result

vector. For the divide operation, this register contains the address of the remainder vector. For modular
exponentiation, this register is not used and should be ignored.

100 Registers SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com True Random Number Generator Register Region

4.5 True Random Number Generator Register Region
This section describes the registers for the SA2 true random number generator (TRNG) module. The
TRNG module provides a true, non-deterministic noise source for the purpose of generating keys,
Initialization Vectors (IVs), and other random number requirements. The TRNG registers are shown in
Table 4-35. To determine the base address of the TRNG register region relative to the SA2 memory map,
see Table 4-1.

Table 4-35. Public Key Accelerator Register Region

Offset Acronym Register Name Section
000h TRNG_OUTPUT_L Data Output LSW Register Section 4.5.1
004h TRNG_OUTPUT_H Data Output MSW Register Section 4.5.2
008h TRNG_STATUS Status Register Section 4.5.3
00Ch Reserved Reserved Reserved
010h TRNG_INTACK Interrupt Acknowledge Register Section 4.5.4
014h TRNG_CONTROL Control Register Section 4.5.5
018h TRNG_CONFIG Configuration Register Section 4.5.6
020h-0FFh Reserved Reserved Reserved

4.5.1 Data Output Least Significant Word Register (TRNG_OUTPUT_L)
The data output least significant word register contains the least significant word (lower 32 bits) of the 64-
bit random number output by the random number generator. This register is shown in Figure 4-30 and
described in Table 4-36.

Figure 4-30. Data Output Least Significant Word Register
31 0

TRNG_OUT_L
R=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-36. Data Output Least Significant Word Register Field Descriptions

Bits Field Description
31-0 TRNG_OUTPUT_L Data Output Least Significant Word. This field contains the least significant word (lower 32 bits) of the 64-bit

random number that is output by the random number generator.

101SPRUHZ1–August 2014 Registers
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

True Random Number Generator Register Region www.ti.com

4.5.2 Data Output MSW Register (TRNG_OUTPUT_H)
The data output most significant word register contains the most significant word (higher 32-bits) of the 64-
bit random number output by the random number generator. This register is shown in Figure 4-31 and
described in Table 4-37.

Figure 4-31. Data Output Most Significant Word Register
31 0

TRNG_OUT_H
R=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-37. Data Output Most Significant Word Register Field Descriptions

Bits Field Description
31-0 TRNG_OUTPUT_H Data Output Most Significant Word. This field contains the most significant word (higher 32-bits) of the 64-bit

random number that is output by the random number generator.

102 Registers SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com True Random Number Generator Register Region

4.5.3 Status Register (TRNG_STATUS)
The status register contains the status of the true random number generator. This register is shown in
Figure 4-32 and described in Table 4-38.

Figure 4-32. Status Register
31 1 0

Reserved READY
R=0 R=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-38. Status Register Field Descriptions

Bits Field Description
31-1 Reserved Reserved
0 READY Data Output Ready. The 64-bit random number output is available for reading in the TRNG_OUTPUT H/L registers.

Writing a ‘1’ to the READY bit of the TRNG_INTACK register will clear this field to ‘0’. If a new number is already
available in the in the internal register of the TRNG, the new number will be directly clocked into the
TRNG_OUTPUT_H/L registers. In this case, this field will be asserted again after one clock cycle.

103SPRUHZ1–August 2014 Registers
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

True Random Number Generator Register Region www.ti.com

4.5.4 Interrupt Acknowledge Register (TRNG_INTACK)
The interrupt acknowledge register is shown in Figure 4-33 and described in Table 4-39.

Figure 4-33. Interrupt Acknowledge Register
31 1 0

Reserved READY
R=0 R=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-39. Interrupt Acknowledge Register Field Descriptions

Bits Field Description
31-1 Reserved Reserved
0 READY Write a ‘1’ to this field to clear the READY bit in the TRNG_STATUS register.

104 Registers SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com True Random Number Generator Register Region

4.5.5 Control Register (TRNG_CONTROL)
The control register must be written to start accumulating entropy before random numbers can be
generated. Before writing to this register, the TRNG_CONFIG register should be configured. The control
register is shown in Figure 4-34 and described in Table 4-40.

Figure 4-34. Control Register
31 16 15 11 10 9 0

STARTUP_CYCLES Reserved TRNG_EN Reserved
R=0 R=0 RW=0 R=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-40. Control Register Field Descriptions

Bits Field Description
31-16 STARTUP_CYCLES Startup Cycles. This field determines the number of samples (between 28 and 224) taken to gather entropy

from the FROs during startup. If the written value of this field is 0, then the number of samples is 224.
Otherwise, the number of samples equals the written value time 28.
This field can only be written when the ENABLE_TRNG field was 0 before the write.

15-11 Reserved Reserved
10 TRNG_EN TRNG Enable. Setting this bit to ‘1’ starts the TRNG, gathering entropy from the FROs for the number of

samples determined by the value in the STARTUP_CYCLES field. Resetting this bit to ‘0’ forces all TRNG
logic back into the idle stat immediately.

9-0 Reserved Reserved

105SPRUHZ1–August 2014 Registers
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

True Random Number Generator Register Region www.ti.com

4.5.6 Configuration Register (TRNG_CONFIG)
The configuration register is used with the control register to determine the amount of sample to be taken
to generate the first random value and subsequent random values. This configuration register is shown in
Figure 4-35 and described in Table 4-41.

Figure 4-35. Configuration Register
31 16 15 12 11 8 7 0

MAX_REFILL_CYCLES Reserved SAMPLE_DIV MIN_REFILL_CYCLES
RW=0 R=0 RW=0 RW=0

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 4-41. Configuration Register Field Descriptions

Bits Field Description
31-16 MAX_REFILL_CYCLES This field determines the maximum number of samples (between 28 and 224) taken to re-generate

entropy from the FROs after reading out a 64-bit random number. If the written value of this field is
zero, then the number of samples is 224, otherwise, the number of samples equals the written values
times 28.
This field can only be modified while the TRNG_EN field in the TRNG_CONTROL register is ‘0’.

15-12 Reserved Reserved
11-8 SAMPLE_DIV This field directly control the number of input cycles between samples taken from the FROs. Default

value 0 indicates that samples are taken every cycles. The maximum value of 15 takes one sample
every 16 cycles.
This field must be set to a value such that the slowest FRO (even under worst-case conditions) has a
cycle time less than twice the sample period.
This field can only be modified while the TRNG_EN field in the TRNG_CONTROL register is ‘0’.

7-0 MIN_REFILL_CYCLES This field determines the minimum number of samples (between 28 and 224) taken to re-generate
entropy from the FROs after reading out a 64-bit random number. If the written value of this field is
zero, then the number of samples is fixed to the value in the MAX_REFILL_CYCLES field. Otherwise,
the minimum number of samples equals the written value times 64 (which can be up to 214). The
number of samples defined in this field cannot be higher than the number defined by the
MAX_REFILL_CYCLES field.
This field can only be modified while the TRNG_EN field in the TRNG_CONTROL register is ‘0’.

106 Registers SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Appendix A
SPRUHZ1–August 2014

Additional Security Accelerator Details

This appendix describes additional details about the Security Accelerator that the user is not required to
know, but may be useful in certain situations such as when debugging.

Topic ... Page

A.1 Descriptor Software Information Word Configuration.. 108
A.2 Security Context Structure in Host Memory ... 114
A.3 Security Context Control Flags .. 118

107SPRUHZ1–August 2014 Additional Security Accelerator Details
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Descriptor Software Information Word Configuration www.ti.com

A.1 Descriptor Software Information Word Configuration
This section describes the structure of software words that must be formed and written to the packet
descriptor before pushing it onto a transmit queue for the SA2. The software info 0 and software info 1
fields in the descriptor are used to hold information that is used by the SA2 to associate the current packet
to security context. Software info 0 and software info 1 fields are mandatory, and must be configured for
every packet destined for the SA2. The software info 2 field in the descriptor is optional, and is used to
specify a destination queue and receive flow.

All packet descriptors destined for the SA2 must configure at least software info 0 and software info 1.

108 Additional Security Accelerator Details SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Descriptor Software Information Word Configuration

A.1.1 Descriptor Software Information Word 0
The software info word 0 contains miscellaneous configuration information that the SA2 needs to know
when processing a packet. The descriptor software info 0 must be programmed for every packet that is
sent to the SA2; however, depending on the usage of the SA2, some fields may not need to be
programmed. The software info 0 configuration is shown in Figure A-1 and described in Table A-1.

Figure A-1. Descriptor Software Info 0
31 30 29 25 24 23 20 19

Reserved DEST_INFO_PRESENT ENGINE_ID CMD_LABEL CMD_LABEL_OFFSET Reserved
_PRESENT

18 17 16 15 0
NO_PAYLOAD_FLAG TEAR_FLAG EVICT_FLAG SC_ID

Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table A-1. Descriptor Software Info 0 Field Descriptions

Bits Field Description
31 Reserved Reserved
30 DEST_INFO_PRESENT Destination Info Present. This field is used to indicate whether the software info 2 field in the

descriptor is holding destination queue information, thereby detailing the flow index and destination
queue number to be used by the PKTDMA controller when sending the packet out of the SA2 after
processing has completed.
• 0 = Destination info is not present
• 1 = Destination info is present

29-25 ENGINE_ID SA2 Engine Identification. The engine ID field is used to select the first processing engine to use
within the SA2. Typically, this will be either PHP1 or PHP2, but can also be used without the PHPs to
send a packet directly to one of the other engines inside the SA2. For more information on the list of
engine identification numbers, see Table A-3.

24 CMD_LABEL_PRESENT Command Label Present. This field is used to specify whether or not the command label has been
formed by the Host and is present in the protocol-specific info section of the descriptor. For more
information on command labels, see Section 2.5.
This field is automatically set by the SA2 LLD and will only be set when the operating in data-mode,
where the SA2 PHPs will not be used during packet processing. For more information on data-mode,
see Section 2.4.2.
• 0 = The command label is not present in the descriptor.
• 1 = The command label is present in the descriptor. This is used when the SA2 is being used

without the PHPs.
23-20 CMD_LABEL_OFFSET Command Label Offset. This field is used to specify the offset from start of the protocol-specific info

section to the start of the command label. The offset is specified in units of 8 bytes, and must specify
an address that is 8-byte aligned.
This field should only be programmed if CMD_LABEL_PRESENT is set to ‘1’.

19 Reserved Reserved
18 NO_PAYLOAD_FLAG No payload flag. The no payload flag is set when there is no data buffer attached to the descriptor,

also known as a null packet. The no payload flag is set automatically by the SA2 LLD, so it does not
need to be set manually. This field is typically used in conjunction with the TEAR_FLAG, or the
EVICT_FLAG.

17 TEAR_FLAG Teardown Flag. The tear-down flag should be set to evict the specified security context from the SA2
security context module, and will also return the ownership of the security context to the Host by
clearing the OWNER bit in the security context SCCTL field.
A tear-down operation should be performed if a channel is no longer being used, and is typically done
when the SA2 LLD channel is closed. When closing the channel, the SA2 LLD will automatically
configure the descriptor software words to set the TEAR_FLAG bit, along with the other fields in the
descriptor software words that are required for selecting the appropriate SA2 LLD channel.

109SPRUHZ1–August 2014 Additional Security Accelerator Details
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Descriptor Software Information Word Configuration www.ti.com

Table A-1. Descriptor Software Info 0 Field Descriptions (continued)
Bits Field Description
16 EVICT_FLAG Evict Flag.

The evict flag should be set to manually evict the specified security context from the SA2 security
context cache module. The evict operation will not begin until after all packets within the SA2 that are
using this security context have been processed. The evict operation will free the currently occupied
context cache location. After the eviction has completed, the SA2 will clear the EVICT_DONE bits in
the SCCTL field of the security context in Host memory. The Host can poll the EVICT_DONE bits to
determine when the evict operation has completed.
This operation is not required during normal operation, as the security context cache module will
automatically evict entries from the security context cache module as needed.
This process will not modify the OWNER bit, and ownership of the security context still belongs to the
SA2.

15-0 SC_ID Security Context Identification. This field contains the 16-bit ID for the security context that the SA2
should use to process this packet. The most significant bit of this field is the “first-tier bit,” and if this
bit is set, it indicates that this is a first-tier connection. For more information on the security context ID
and setting up first tier connections, see Section 2.8.

Table A-2. KeyStone I Engine ID Mapping

Engine
ID Engine Name Description
0 Default Ingress Engine ID When this value is selected, the SA2 will use the engine ID in the SAx_ENG_ID

register that is defined for that ingress interface.
1 Reserved Reserved
2 Encryption and Decryption Route packets to the encryption and decryption engine.

Engine
3 Reserved Reserved.
4 Authentication Engine Route packets to the authentication engine.
5-7 Reserved Reserved
8 PHP1 Route packets to PHP1.
9-13 Reserved Reserved
14 Air Cipher Engine Route packets to the air cipher engine.
15 Reserved Reserved
16 PHP2 Route packets to PHP2.
17-31 Reserved Reserved

110 Additional Security Accelerator Details SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Descriptor Software Information Word Configuration

Table A-3. KeyStone II Engine ID Mapping

Engine
ID Engine Name Description
0 Default Ingress Engine ID When this value is selected, the SA2 uses the engine ID in the SAx_ENG_ID

register that is defined for that ingress interface.
1 Reserved Reserved
2 Encryption/Decryption Engine0 Pass 1 Route packets to the encryption and decryption engine.
3 Encryption/Decryption Engine0 Pass2 Route packets to the second encryption and decryption engine.
4 Authentication Engine0 Pass 1 Route packets to the authentication engine 1.
5 Authentication Engine0 Pass 2 For a second pass at authentication. Currently there is no known scenario

where the payload is routed again to this module.
6 Encryption/Decryption Engine1 Pass 1 Second Engine to carry out encryption/decryption. This engine has AES, DES

core along with mode control engine.
7 Encryption/Decryption Engine1 Pass 2 Pass 2 for second encryption/decryption engine. This is mainly used in CCM

mode where the two levels of encryption processing are required.
8 IPSEC Header Processor Pass 1 Engine to carry out IPSEC header packet processing. Pass 1 is where the

packet header is parsed and inspected.
9 IPSEC Header Processor Pass 2 Engine to carry out IPSEC header packet processing. Pass 2 is used to

update and acknowledge the result from payload processing module.
10 Authentication Engine1 Pass 1 Route packets to the second authentication engine 1. This engine has SHA1,

MD5,SHA2 core.
11 Authentication Engine1 Pass 2 For a second pass at second authentication. Currently there is no known

scenario where the payload is routed again to this module.
12 Output Port 1 Egress module 1, used to send data out of SA2.
13 Reserved Reserved
14 Air Cipher Engine Pass 1 Route packets to the air cipher engine.
15 Air Cipher Engine Pass 2 Route packets to the air cipher engine.
16 SRTP/Air Cipher Header Processor SRTP/Air Cipher packet header processing.

Pass 1
17 SRTP/Air Cipher Header Processor SRTP/Air Cipher packet header processing. Used to update and acknowledge

Pass 2 result from payload processing.
18-19 Reserved Reserved
20 Output Port 2 Egress module 2
21-31 Reserved Reserved

111SPRUHZ1–August 2014 Additional Security Accelerator Details
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Descriptor Software Information Word Configuration www.ti.com

A.1.2 Descriptor Software Information Word 1
This section describes the descriptor software info 1 configuration. The software info 1 word contains a
32-bit pointer to the SA2 security context that will be used to process the packet. The descriptor software
1 word must be programmed for every packet that is sent to the SA2. The software info 1 configuration is
shown in Figure A-2 and described in Table A-4.

Figure A-2. Descriptor Software Info 1
31 0

SC_PTR
Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table A-4. Descriptor Software Info 1 Field Descriptions

Bits Field Description
31-0 SC_PTR Security Context Pointer. This field is used to specify the location in Host memory where the SA2 security context is

located. If the security context is not cached inside the SA2, then the security context cache module will use the
security context pointer provided in the software info1 field to fetch the security context.

112 Additional Security Accelerator Details SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Descriptor Software Information Word Configuration

A.1.3 Descriptor Software Information Word 2
This section describes the descriptor software info 2 configuration. The software info 2 word contains
information for the NETCP PKTDMA and the queue manager. The descriptor software 2 word is optional,
and only needs to be programmed for packets where the PHPs are not used. One case where the
descriptor software info word 2 will be used is with the data-mode protocol. The software info 2
configuration is shown in Figure A-3 and described in Table A-5.

Figure A-3. Descriptor Software Info 2
31 24 23 16 15 0

EGRESS_PKTDMA_STATUS EGRESS_RX_FLOW_NUM EGRESS_DEST_QUEUE_NUM_LEN
Legend: R = Read only; W = Write only; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table A-5. Descriptor Software Info 2 Field Descriptions

Bits Field Description
31-24 EGRESS_PKTDMA_STATUS_LEN Egress Packet DMA Status Length.

This field specifies how many bytes of status data reside in the protocol-specific section of
the descriptor. The length supplied is in units of bytes, and must be 4-byte aligned. The
maximum value of this field is 32 bytes.
This field only needs to be supplied when operating in data-mode, where the SA2 PHPs will
not be used during packet processing. For more information on data-mode, see
Section 2.4.2.

23-16 EGRESS_RX_FLOW_NUM Egress Receive Flow Number.
This field selects the PKTDMA receive flow number to be used after the SA2 finishes
processing the packet.
This field only needs to be supplied when operating in data-mode, where the SA2 PHPs will
not be used during packet processing. For more information on data-mode, see
Section 2.4.2.

15-0 EGRESS_DEST_QUEUE_NUM Egress Destination Queue Number.
This field selects the destination queue in the queue manager to be used after the SA2
finishes processing the packet.
This field only needs to be supplied when operating in data-mode, where the SA2 PHPs will
not be used during packet processing. For more information on data-mode, see
Section 2.4.2.

113SPRUHZ1–August 2014 Additional Security Accelerator Details
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Software-Only Section

0 Bytes

PHP Section

64-128 Bytes

Data Processing Engine Section1

0-128 Bytes

Data Processing Engine Section2

0-128 Bytes

Security Context Pointer

Host Pointer

Security Context Control

(SCCTL) Section
8 Bytes

Security Context Structure in Host Memory www.ti.com

A.2 Security Context Structure in Host Memory
The information provided in this section is provided for informational purposes only. Security context
memory should only be written by the SA2 and the SA2 LLD.

This section describes the security context structure in Host memory. The location of the security context
is up to the user, and could be stored in L2, MSMC, or DDR3. The security contexts will be fetched by the
security context cache module as the security contexts are needed to process packets. The data structure
has been designed keeping in view the external memory interface (EMIF) architecture for DDR3 to have
maximum EMIF efficiency while fetching and updating security contexts.

The security context has the following three parts, which are shown in Figure A-4:
• Software only section
• PHP section

– Security context control (SCCTL) header
• Data processing engine section

Figure A-4. Security Context Structure

To maximize the EMIF efficiency each section must start at a 64-byte aligned address. The hardware
control structure has been aligned to 64 bytes to allow cascading of multiple control structure.

The first fetchable section of security context has security context control word (SCCTL) that details the
size, ownership and control information pertaining to security context. This information is populated by the
Host.

A.2.1 Security Context Software-Only
The software-only section is provided to hold information that is used by the SA2 LLD. The SA2 LLD can
use this section for managing the security context and for storing connection specific data. This
information can only be used by the SA2 LLD and is not fetched or used by the SA2. At this time, the
software-only section is not used, and should not need to be allocated in the security context.

114 Additional Security Accelerator Details SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Security Context Structure in Host Memory

A.2.2 Security Context PHP
This section of the security context holds control information for the PHP, and is used by the PHPs inside
the SA2 to maintain the current state of the connection, along with the data required to process packets.
This section is automatically fetched and updated by the SA2 as and when required. Due to dependencies
between the PHP firmware and the SA2 LLD, only the SA2 LLD should generate the security context PHP
section. The SA2 LLD will generate the PHP section of the security context through the Sa_chanControl
API.

115SPRUHZ1–August 2014 Additional Security Accelerator Details
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Security Context Structure in Host Memory www.ti.com

A.2.2.1 KeyStone II Security Context Control Structure

Figure A-5. Security Context Control Structure Word 0
31 30 24 23 22 21 20 19 18 17 16

OWNE EVICT_DONE PHP_FETCH DPE1_FETCH DPE2_FETCH PHP_EVICT
R _SIZE _SIZE _SIZE _SIZE
15 0

SC_ID (filled by SA2)

Figure A-6. Security Context Control Structure Word 1
31 0

SCPTR (filled by SA2)

Table A-6. Keystone II Security Context Control (SCCTL) Structure

Bits Field Description
31 OWNER Security Context Owner.

This bit is used to specify the owner of the security context.
• 0 = Host
• 1 = SA2
Before sending packets to the SA2 for processing, the Host must give the ownership of the security context
to the SA2 by writing a 1 to this bit. The security context cache module always examines this bit before
fetching a security context. If the security context cache finds that this bit is set to 0, it will be marked as an
error packet.
When this security context undergoes a tear-down operation, the SA2 will clear this bit to a 0 to relinquish
ownership of the security context back to the Host.
Only the SA2 should clear this bit--it should never be cleared by the Host.

30-24 EVICT_DONE Evict Done. These bits are used to determine the status of a security context evict operation.
• 0 = Evict complete
• 1-127 = Evict not complete
The Host can poll these bits to determine if the eviction has completed. In normal operation, the Host will
not need to poll these bits as the security context cache module will automatically evict and fetch security
contexts as needed.

23-22 PHP_FETCH_SIZE PHP Section Fetch Size.
This field tells the SA2 how many bytes to fetch for the PHP section of the security context.
• 00 = Reserved
• 01 = 64 bytes
• 10 = 96 bytes
• 11 = 128 bytes
This value should be set only by the SA2 LLD.

21-20 DPE1_FETCH_SIZE Data Processing Engine Section 1 Fetch Size.
This field tells the SA2 how many bytes to fetch for the data processing engine section 1 of the security
context.
• 00 = 0 bytes
• 01 = 64 bytes
• 10 = 96 bytes
• 11 = 128 bytes
This value should be set only by the SA2 LLD.

19-18 DPE2_FETCH_SIZE Data Processing Engine Section 2 Fetch Size.
This field tells the SA2 how many bytes to fetch for the data processing engine section 1 of the security
context.
• 00 = 0 bytes
• 01 = 64 bytes
• 10 = 96 bytes
• 11 = 128 bytes
This value should be set only by the SA2 LLD.

116 Additional Security Accelerator Details SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Security Context Structure in Host Memory

Table A-6. Keystone II Security Context Control (SCCTL) Structure (continued)
Bits Field Description
17-16 PHP_EVICT_SIZE PHP Section Evict Size.

This value tells the SA2 how many bytes need to be evicted for the PHP section.
• 00 = 0 bytes
• 01 = 64 bytes
• 10 = 96 bytes
• 11 = 128 bytes
This value should be set only by the SA2 LLD.

15-0 SCID Security Context ID. This field stores the security context ID associated with the security context. This field
should only be filled in by the SA2.

31-0 SCPTR Security Context Pointer. This field stores the pointer to the security context. This field should only be filled
in by the SA2.

117SPRUHZ1–August 2014 Additional Security Accelerator Details
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

Security Context Structure in Host Memory www.ti.com

A.2.3 Security Context Data Processing Engine
This section describes the data processing engine section of the security context. This section holds
control and state information for the encryption and decryption engine, the authentication engine, and the
air cipher engine. This section is optionally fetched by the SA2 as and when required. The SA2 never
updates the data processing engine section. The Host should only access this section through the SA2
LLD. The SA2 LLD will generate this section of the security context using the Sa_chanControl API. If two
data processing engines are used, there can be two data processing sections in the security context.

A.3 Security Context Control Flags
This section describes the control flags accepted by the security context cache module. The security
context module recognizes three control flags that can be used to override the default behavior. These
flags must be set in the Section A.1.1. In normal operation, these flags do not need to be set, because the
SA2 LLD automatically sets them when appropriate.

A.3.1 Evict Flag
This section describes how to use the evict control flag with the security context cache module. The evict
flag can be used to evict an entry from the security context cache module, thereby freeing the memory for
that location in the cache.

An evict operation can be initiated by setting the EVICT_FLAG bit in the Section A.1.1 in a packet that is
headed for the SA2. The eviction operation will begin when all packets within the SA2 that are using this
security context have been processed. After the operation has completed, the SA2 clears the bits in the
EVICT_DONE field in the SCCTL header in Host memory. The Host can poll the EVICT_DONE bits to
determine when the process has completed.

This process will not modify the OWNER bit, and ownership of the security context still belongs to the
SA2.

NOTE: This manual eviction process does not need to be used in normal operation, because the
security context cache module automatically evicts entries from the cache as needed using
the Section 2.8.5.

A.3.2 Tear-Down Flag
This section describes how to use the tear-down control flag with the security context cache module. The
tear-down flag can be used to evict an entry from the security context cache module, and return ownership
of the security context back to the Host. This operation is typically used when the security channel will no
longer be used.

A tear-down operation can be initiated by setting the TEAR_FLAG bit in the Section A.1.1 in a packet that
is headed for the SA2. The tear-down operation begins when all packets within the SA2 that are using this
security context have been processed. After the operation has completed, the SA2 clears the bits in the
EVICT_DONE field and the OWNER field in the SCCTL header in Host memory. Clearing of the OWNER
bit by the SA2 is an indication to the Host that the tear-down operation has been completed, and that the
security context has been relinquished to the Host. The Host can poll the EVICT_DONE and OWNER bits
to determine when the process has completed.

During the tear-down operation, the security context cache is evicted regardless of whether or not the
EVICT_FLAG is set. Therefore, when setting the TEAR_FLAG, it makes no difference whether or not the
EVICT_FLAG is set.

NOTE: The TEAR_FLAG bit does not need to be set manually during normal operation, because the
SA2 LLD automatically sets this bit when needed, such as when it is closing a channel.

118 Additional Security Accelerator Details SPRUHZ1–August 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

www.ti.com Security Context Control Flags

A.3.3 No Payload Flag
This section describes how to use the no payload flag with the security context cache module. The no
payload flag is used to specify that the packet that was sent to the SA2 does not contain a buffer that
requires parsing. When used, this flag should be set in the Section A.1.1. This flag is typically used in
conjunction with other control flags. For example, the NO_PAYLOAD flag can be used with the
TEAR_FLAG to send a packet with no buffer to the SA2 to evict a security context.

NOTE: The NO_PAYLOAD bit does not need to be set manually during normal operation, because
the SA2 LLD automatically sets this bit when it is needed.

119SPRUHZ1–August 2014 Additional Security Accelerator Details
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHZ1

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Table of Contents
	Preface
	1  Introduction
	1.1 Purpose of the Peripheral
	1.2 Terminology Used in This Document
	1.3 Features
	1.3.1 Features Not Supported

	1.4 Functional Block Diagram
	1.5 Industry Standard(s) Compliance Statement

	2 Architecture
	2.1 Clock Control
	2.2 Memory Map
	2.3 Security Accelerator Programming with the Low-Level Driver
	2.3.1 SA2 LLD Common Interface APIs
	2.3.2 SA2 LLD Channel Interface APIs

	2.4 Protocol Descriptions
	2.4.1 3GPP Air Cipher
	2.4.1.1 SA2 Hardware Engine Utilization
	2.4.1.2 Supported Cipher Modes
	2.4.1.3 Supported Authentication Modes
	2.4.1.4 Protocol-Specific SA2 LLD Channel APIs
	2.4.1.5 Descriptor Protocol-Specific Information Section
	2.4.1.5.1 Transmit Packet Descriptor Protocol-Specific Information
	2.4.1.5.2 Receive Packet Descriptor Protocol-Specific Information

	2.4.2 Data-Mode
	2.4.2.1 SA2 Data Processing Engine Utilization
	2.4.2.2 Supported Cipher Modes
	2.4.2.3 Supported Authentication Modes
	2.4.2.4 Protocol-Specific SA2 LLD Channel APIs
	2.4.2.5 Descriptor Protocol-Specific Information Section
	2.4.2.5.1 Transmit/Receive Packet Descriptor Protocol-Specific Information
	2.4.2.5.2 Authentication Tag Insertion

	2.4.3 IPsec AH
	2.4.3.1 SA2 Hardware Engine Utilization
	2.4.3.2 Supported Cipher Modes
	2.4.3.3 Supported Authentication Modes
	2.4.3.4 Protocol-Specific SA2 LLD Channel APIs
	2.4.3.5 Descriptor Protocol-Specific Information Section
	2.4.3.5.1 Transmit Packet Descriptor Protocol-Specific Information
	2.4.3.5.2 Receive Packet Descriptor Protocol-Specific Information

	2.4.4 IPsec ESP
	2.4.4.1 SA2 Hardware Engine Utilization
	2.4.4.2 Supported Cipher Modes
	2.4.4.3 Supported Authentication Modes
	2.4.4.4 Protocol-Specific SA2 LLD Channel APIs
	2.4.4.5 Descriptor Protocol-Specific Information Section
	2.4.4.5.1 Transmit Packet Descriptor Protocol-Specific Information
	2.4.4.5.2 Receive Packet Descriptor Protocol-Specific Information

	2.4.5 SRTCP
	2.4.5.1 SA2 Hardware Engine Utilization
	2.4.5.2 Supported Cipher Modes
	2.4.5.3 Supported Authentication Modes
	2.4.5.4 Protocol-Specific SA2 LLD Channel APIs

	2.4.6 SRTP
	2.4.6.1 SA2 Hardware Engine Utilization
	2.4.6.2 Supported Cipher Modes
	2.4.6.3 Supported Authentication Modes
	2.4.6.4 Protocol-Specific SA2 LLD Channel APIs
	2.4.6.5 Descriptor Protocol-Specific Information Section
	2.4.6.5.1 Transmit Packet Descriptor Protocol-Specific Information
	2.4.6.5.2 Receive Packet Descriptor Protocol-Specific Information

	2.5 Command Labels
	2.6 Descriptor Software Information Words
	2.7 Security Contexts
	2.7.1 Generating Security Contexts
	2.7.2 Security Context Memory Allocation

	2.8 Security Context Cache
	2.8.1 Security Context Fetch
	2.8.2 Security Context Tiers
	2.8.3 Security Context Identification and Security Context Pointers
	2.8.4 Security Context Cache Control Flags
	2.8.5 Context Cache Algorithm

	2.9 Packet Header Processor Modules
	2.9.1 Command Label Generation
	2.9.2 Authentication Tag Verification
	2.9.3 Authentication Tag Insertion
	2.9.4 Packet Replay Protection
	2.9.5 PHP1
	2.9.5.1 Processing IPsec AH packets with PHP1
	2.9.5.1.1 Command Label Generation
	2.9.5.1.2 Authentication Tag Insertion
	2.9.5.1.3 Authentication Tag Verification
	2.9.5.1.4 Replay Protection

	2.9.5.2 Processing IPsec ESP Packets with PHP1
	2.9.5.2.1 Command Label Generation
	2.9.5.2.2 Authentication Tag Insertion
	2.9.5.2.3 Authentication Tag Verification
	2.9.5.2.4 Replay Protection

	2.9.6 PHP 3
	2.9.7 PHP2
	2.9.7.1 Processing SRTP Packets with PHP2
	2.9.7.1.1 Command Label Generation
	2.9.7.1.2 Authentication Tag Insertion
	2.9.7.1.3 Authentication Tag Verification
	2.9.7.1.4 Replay Protection

	2.9.7.2 Processing Air Cipher packets with PHP2
	2.9.7.2.1 Command Label Generation
	2.9.7.2.2 Authentication Tag Insertion
	2.9.7.2.3 Authentication Tag Verification
	2.9.7.2.4 Replay Protection

	2.9.8 Procedure for Downloading Firmware onto the PHP PDSPs
	2.9.8.1 Procedure for Downloading Firmware on the PHP PDSPs

	2.10 Encryption and Decryption Engine
	2.11 Authentication Engine
	2.12 Air Cipher Engine
	2.13 Public Key Accelerator
	2.13.1 Programming Considerations
	2.13.2 Functional Description PKA Components
	2.13.3 Configuration and Status Registers
	2.13.3.1 PKA_APTR, PKA_BPTR, PKA_CPTR, PKA_DPTR Registers
	2.13.3.2 PKA_ALENGTH and PKA_BLENGTH Registers
	2.13.3.3 PKA_SHIFT Register
	2.13.3.4 PKA_FUNCTION Register.
	2.13.3.5 PKA_COMPARE Register
	2.13.3.6 PKA_MSW Register
	2.13.3.7 PKA_DIVMSW Register

	2.13.4 Vector RAM
	2.13.4.1 RAM Size Requirements

	2.13.5 PKA Input Requirements
	2.13.6 Result Vector RAM Allocation

	2.14 True Random Number Generator
	2.14.1 Programming Considerations
	2.14.2 Initial Latency after Reset
	2.14.3 Random Number Generation
	2.14.4 Read Random Number
	2.14.5 TRNG Example Configuration
	2.14.5.1 TRNG Example Configuration

	2.15 Initializing the SA2 Using the SA2 LLD
	2.15.1 SA2 Initialization with the SA2 LLD

	2.16 SA2 LLD Channel Initialization and Configuration
	2.16.1 SA2 LLD Channel Initialization and Configuration

	2.17 Sending Packets to the SA2 for Processing
	2.17.1 Sending Packets to the SA2 for Processing

	2.18 SA2 Transmit Queues
	2.19 Interrupt Support
	2.20 DMA Event Support
	2.21 Power Management

	3 Data Flow Examples
	3.1 Overview
	3.2 3GPP Air Cipher Examples
	3.2.1 3GPP Air Cipher Encryption Example
	3.2.1.1 3GPP Air Cipher Encryption Example Overview

	3.2.2 3GPP Air Cipher Decryption Example
	3.2.2.1 3GPP Air Cipher Decryption Example Overview

	3.3 IPsec AH Examples
	3.3.1 IPsec AH Authentication Tag Generation Example
	3.3.1.1 IPsec AH Authentication Verification Example Overview

	3.3.2 IPsec AH Authentication Tag Verification Example
	3.3.2.1 IPsec AH Encryption Example Overview

	3.4 IPsec ESP Examples
	3.4.1 IPsec ESP Encryption Example
	3.4.1.1 IPsec ESP Encryption Example Overview

	3.4.2 IPsec ESP Decryption Example
	3.4.2.1 IPsec ESP Decryption Example Overview

	3.5 SRTP Examples
	3.5.1 SRTP Encryption Example
	3.5.1.1 SRTP Encryption Example Overview

	3.5.2 SRTP Decryption Example
	3.5.2.1 SRTP Decryption Example Overview

	4 Registers
	4.1 Security Accelerator System Register Region
	4.1.1 Peripheral and Version Identification Register (PID)
	4.1.2 Command Status Register (CMD_STATUS)
	4.1.3 SA1 Port Flow Identification Register (SA1_FLOWID)
	4.1.4 SA0 Port Flow Identification Register (SA0_FLOWID)
	4.1.5 SA1 Next Engine Identification Register (SA1_ENG_ID)
	4.1.6 SA0 Next Engine Identification Register (SA0_ENG_ID)

	4.2 Context Cache Register Region
	4.2.1 Context Cache Control Register (CTXCACH_CTRL)
	4.2.2 Context Cache Security Context Pointer Register (CTXCACH_SC_PTR)
	4.2.3 Context Cache Security Context Identification Register (CTXCACH_SC_ID)
	4.2.4 Context Cache Miss Count Register (CTXCACH_MISSCNT)

	4.3 PHP PDSP Control and Status Registers
	4.3.1 PDSP Control Register (PDSP_CONTROL)
	4.3.2 PDSP Status Register
	4.3.3 PDSP Cycle Count Register (PDSP_CYCLECOUNT)
	4.3.4 PDSP Stall Count Register (PDSP_STALLCOUNT)
	4.3.5 PDSP Constant Table Block Index 0 Register (PDSP_BLK_IDX0)
	4.3.6 PDSP Constant Table Block Index 1 Register (PDSP_BLK_IDX1)
	4.3.7 PDSP Constant Table Programmable Pointer Register 0 (PDSP_POINTER0)
	4.3.8 PDSP Constant Table Programmable Pointer Register 1 (PDSP_POINTER1)

	4.4 Public Key Accelerator Register Region
	4.4.1 Operand A Pointer Register (PKA_APTR)
	4.4.2 Operand B Pointer Register (PKA_BPTR)
	4.4.3 Operand C Pointer Register (PKA_CPTR)
	4.4.4 Operand D Pointer Register (PKA_DPTR)
	4.4.5 Operand A Length Register (PKA_ALENGTH)
	4.4.6 Operand B Length Register (PKA_BLENGTH)
	4.4.7 Shift Operation Register (PKA_SHIFT)
	4.4.8 Function Select Register (PKA_FUNCTION)
	4.4.9 Compare Results Register (PKA_COMPARE)
	4.4.10 Result Most Significant Word Address Register (PKA_MSW)
	4.4.11 Division Remainder Most Significant Word Address Register (PKA_MSWDIV)

	4.5 True Random Number Generator Register Region
	4.5.1 Data Output Least Significant Word Register (TRNG_OUTPUT_L)
	4.5.2 Data Output MSW Register (TRNG_OUTPUT_H)
	4.5.3 Status Register (TRNG_STATUS)
	4.5.4 Interrupt Acknowledge Register (TRNG_INTACK)
	4.5.5 Control Register (TRNG_CONTROL)
	4.5.6 Configuration Register (TRNG_CONFIG)

	A Additional Security Accelerator Details
	A.1 Descriptor Software Information Word Configuration
	A.1.1 Descriptor Software Information Word 0
	A.1.2 Descriptor Software Information Word 1
	A.1.3 Descriptor Software Information Word 2

	A.2 Security Context Structure in Host Memory
	A.2.1 Security Context Software-Only
	A.2.2 Security Context PHP
	A.2.2.1 KeyStone II Security Context Control Structure

	A.2.3 Security Context Data Processing Engine

	A.3 Security Context Control Flags
	A.3.1 Evict Flag
	A.3.2 Tear-Down Flag
	A.3.3 No Payload Flag

	Important Notice

