
KeyStone II Architecture

Literature Number: SPRUHJ3
July 2013

ARM Bootloader

User Guide



ø-ii KeyStone II Architecture ARM Bootloader User Guide SPRUHJ3—July 2013

www.ti.com

Submit Documentation Feedback 

Release History

Release Date Description

SPRUGHJ3 July 2013 Initial Release

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
www.ti.com


Contents

SPRUHJ3—July 2013 KeyStone II Architecture ARM Bootloader User Guide ø-iii
Submit Documentation Feedback 

www.ti.com

Contents

Preface ø-vii
About This Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ø-vii
Notational Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ø-vii
Related Documentation from Texas Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ø-viii
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ø-viii

Chapter 1

Introduction 1-1
1.1 Bootloader Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
1.2 Terms and Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4

Chapter 2

Reset Types and Boot Configurations 2-1
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
2.2 Bootloader Initialization After Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
2.3 Bootloader Initialization Process After Hard or Soft Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
2.4 Bootloader Initialization after Hibernation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
2.5 Bootloader Operation on Secondary Cores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
2.6 Multi-Stage Boot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
2.7 Boot Image Formats  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8

2.7.1 GP Header Boot Image Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
2.7.2 Blob Boot Image Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9

Chapter 3

Boot Modes 3-1
3.1 Sleep Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
3.2 I2C Slave Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
3.3 I2C Master Boot  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
3.4 SPI Boot  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
3.5 EMIF Boot  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
3.6 NAND Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
3.7 SRIO Boot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-10
3.8 Ethernet Boot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-11
3.9 PCI Express (PCIe) Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-13
3.10 HyperLink Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-14
3.11 UART Boot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-15

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
www.ti.com


List of Tables

ø-iv KeyStone II Architecture ARM Bootloader User Guide SPRUHJ3—July 2013
Submit Documentation Feedback 

www.ti.com

List of Tables

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
www.ti.com


List of Figures

SPRUHJ3—July 2013 KeyStone II Architecture ARM Bootloader User Guide ø-v
Submit Documentation Feedback 

www.ti.com

List of Figures

Figure 2-1 Boot High Level Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Figure 2-2 GP Header Boot Image Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Figure 3-1 NAND Geometry Determination Process  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
Figure 3-2 NAND ECC Layout in Spare Bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
www.ti.com


List of Figures

ø-vi KeyStone II Architecture ARM Bootloader User Guide SPRUHJ3—July 2013
Submit Documentation Feedback 

www.ti.com

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
www.ti.com


SPRUHJ3—July 2013 KeyStone II Architecture ARM Bootloader User Guide ø-vii
Submit Documentation Feedback 

Preface

About This Manual
This document describes the features of the on-chip bootloader provided with the ARM 
Cortex-A15 processor.

IMPORTANT NOTE—This document should be used in conjunction with the 
device-specific data manuals, KeyStone Architecture Bootloader user guide and user 
guides for peripherals used during the boot. This document supports only non-secure 
boot mode.

Notational Conventions
This document uses the following conventions:

• Commands and keywords are in boldface font.
• Arguments for which you supply values are in italic font.
• Terminal sessions and information the system displays are in screen font.
• Information you must enter is in boldface screen font.
• Elements in square brackets ([ ]) are optional.

Notes use the following conventions:

Note—Means reader take note. Notes contain helpful suggestions or references 
to material not covered in the publication.

The information in a caution or a warning is provided for your protection. Please read 
each caution and warning carefully.

CAUTION—Indicates the possibility of service interruption if precautions are 
not taken.

WARNING—Indicates the possibility of damage to equipment if precautions are 
not taken.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


ø-viii KeyStone II Architecture ARM Bootloader User Guide SPRUHJ3—July 2013
Submit Documentation Feedback 

Preface www.ti.com

Related Documentation from Texas Instruments

Trademarks
C6000 is a trademark of Texas Instruments Incorporated.

All other brand names and trademarks mentioned in this document are the property of Texas Instruments 
Incorporated or their respective owners, as applicable.

C66x CorePac User Guide SPRUGW0

DDR3 Memory Controller for KeyStone Devices User Guide SPRUGV8

External Memory Interface (EMIF16) for KeyStone Devices User Guide SPRUGZ3

Gigabit Ethernet (GbE) Switch Subsystem (1GB) for KeyStone Devices User Guide SPRUGV9

HyperLink for KeyStone Devices User Guide SPRUGW8

Inter Integrated Circuit (I2C) for KeyStone Devices User Guide SPRUGV3

Multicore Shared Memory Controller (MSMC) for KeyStone Devices User Guide SPRUGW7

Peripheral Component Interconnect Express (PCIe) for KeyStone Devices User Guide SPRUGS6

Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide SPRUGV2

Power Sleep Controller (PSC) for KeyStone Devices User Guide SPRUGV4

Serial Peripheral Interface (SPI) for KeyStone Devices User Guide SPRUGP2

Serial RapidIO (SRIO) for KeyStone Devices User Guide SPRUGW1

KeyStone Architecture Bootloader User Guide SPRUGY5B

Universal Asynchronous Receiver/Transmitter (UART) for KeyStone Devices User Guide SPRUGP1

http://www.ti.com/lit/sprugv9
http://www.ti.com/lit/sprugw0
http://www.ti.com/lit/sprugp1
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.ti.com/lit/sprugv8
http://www.ti.com/lit/sprugz3
http://www.ti.com/lit/sprugw8
http://www.ti.com/lit/sprugv3
http://www.ti.com/lit/sprugw7
http://www.ti.com/lit/sprugs6
http://www.ti.com/lit/sprugv2
http://www.ti.com/lit/sprugv4
http://www.ti.com/lit/sprugp2
http://www.ti.com/lit/sprugw1
http://www.ti.com/lit/sprugw1


SPRUHJ3—July 2013 KeyStone II Architecture ARM Bootloader User Guide 1-1
Submit Documentation Feedback 

Chapter 1

Introduction

IMPORTANT NOTE—The information in this document should be used in conjunction 
with information in the device-specific KeyStone II Architecture data manual that 
applies to the part number of your device.

This document describes the features of the on-chip ROM Boot Loader (RBL) provided with 
KeyStone II devices with ARM cortex support.

This document should be used in conjunction with the device-specific data manuals 
and user guides for peripherals used during the boot. This document applies for all 
ARM master boot modes on non-secure devices only.

 1.1 "Bootloader Features" on page 1-2
 1.2 "Terms and Abbreviations" on page 1-4

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


1.1 Bootloader Features

1-2 KeyStone II Architecture ARM Bootloader User Guide SPRUHJ3—July 2013
Submit Documentation Feedback 

Chapter 1—Introduction www.ti.com

1.1 Bootloader Features
The ARM ROM Boot Loader (RBL) is software that resides in on-chip read-only 
memory (ROM) that assists the customer in transferring and executing their 
application code. The start address of the RBL is 0x00000000. In order to accommodate 
various system scenarios, the RBL supports several boot modes. These boot modes can 
be broadly classified as host or memory boot modes.

During a host boot, the device is configured to receive code from a host via the selected 
interface. Either the host writes the application code directly into internal memory or 
the RBL receives the application code on the selected interface and stores it in internal 
memory. 

During a memory boot, the device transfers code from non-volatile memory to internal 
memory for execution. Because different KeyStone II devices support different sets of 
boot modes, see the device-specific data manual to obtain the list of boot modes 
supported in that device.

The boot operation can be divided into two sections: initialization and boot process. 
During initialization, the RBL configures the device resources as needed to support the 
boot process. The resources used depend on the boot mode requirements. During 
the boot process the boot image is loaded into device memory and executed. The 
actions performed during the initialization and boot processes depend on the following 
factors:

• The trigger that initiated the boot operation
• The boot mode and location of the boot image (host or memory) as defined by 

the configuration specified on the boot mode pins of the device

This document discusses the different triggers that can initiate the boot operation, the 
initialization process, and the boot process for the various boot modes. 

The ARM in various KeyStone II devices supports the following boot modes: 
• Sleep boot: Basic initialization is performed but no user application is loaded or 

executed
• I2C Master boot: Basic initialization is performed and the user application is read 

from an I2C slave nonvolatile memory
• SPI boot: Basic initialization is performed and the user application is read from 

an SPI slave nonvolatile memory
• EMIF boot: Basic initialization is performed and the user application is copied 

from NOR flash connected to the EMIF hardware block of the device
• NAND boot: Basic initialization is performed and the user application is read 

from an external NAND flash connected to the EMIF hardware block of the 
device

• SRIO boot: Basic initialization is performed and the user application is received 
via the SRIO interface

• Ethernet boot: Basic initialization is performed and the user application is 
received with the TFTP protocol over the Ethernet interface

• PCIe boot: Basic initialization is performed and the RBL then waits while an 
external host writes the user application directly into internal memory via the 
PCIe interface

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


1.1 Bootloader Features

SPRUHJ3—July 2013 KeyStone II Architecture ARM Bootloader User Guide 1-3
Submit Documentation Feedback 

Chapter 1—Introductionwww.ti.com

• HyperLink boot: Basic initialization is performed and the RBL then waits while 
an external host writes the user application directly into internal memory via 
HyperLink

• UART boot: Basic initialization is performed and the RBL then waits to receive 
data from an external host via the UART serial connection

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


1.2 Terms and Abbreviations

1-4 KeyStone II Architecture ARM Bootloader User Guide SPRUHJ3—July 2013
Submit Documentation Feedback 

Chapter 1—Introduction www.ti.com

1.2 Terms and Abbreviations

Term Definition

I2C Inter-Integrated Circuit

MSMC Multicore Shared Memory Controller

PCIe Peripheral Component Interconnect Express

POR Power on Reset

RBL ROM Boot Loader

SPI Serial Peripheral Interface

SRIO Serial Rapid Input/Output

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


SPRUHJ3—July 2013 KeyStone II Architecture ARM Bootloader User Guide 2-1
Submit Documentation Feedback 

Chapter 2

Reset Types and Boot Configurations

 2.1 "Introduction" on page 2-2
 2.2 "Bootloader Initialization After Power-On Reset" on page 2-4
 2.3 "Bootloader Initialization Process After Hard or Soft Reset" on page 2-5
 2.4 "Bootloader Initialization after Hibernation" on page 2-6
 2.6 "Multi-Stage Boot" on page 2-7
 2.7 "Boot Image Formats" on page 2-8

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


2.1 Introduction

2-2 KeyStone II Architecture ARM Bootloader User Guide SPRUHJ3—July 2013
Submit Documentation Feedback 

Chapter 2—Reset Types and Boot Configurations www.ti.com

2.1 Introduction
The actions performed by the RBL vary based on the what triggers boot and the selected 
boot mode. Resets are used to trigger boot in KeyStone II devices. There are four types 
of reset supported in the KeyStone II architecture:

• Power-On reset (POR)
• Hard reset
• Soft reset
• Local reset

POR, hard, and soft resets are global resets that affect the entire device. A local reset is 
used to reset only a single processor. The ARM may perform local reset of the DSPs, but 
the ARM cannot be reset by a local reset. It is in reset when the full device is in reset. 
For further details on the reset types, see the device-specific data manual. 

External pins on the device are used at device power-up to allow customers to select the 
desired boot mode. There are also pins that specify some of the configuration 
parameters used during that boot mode. Some boot modes also include a minimum 
boot pin select pin that can be used to select configurable parameters instead of selecting 
them with the boot configuration pins. The value of these pins is latched into the device 
status register during POR. The number of pins used to select the boot mode and the 
parameter varies depending on the device. See the device-specific data manual. for 
more information.

The RBL also handles hibernation recovery and provides a multi-stage boot 
mechanism.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


2.1 Introduction

SPRUHJ3—July 2013 KeyStone II Architecture ARM Bootloader User Guide 2-3
Submit Documentation Feedback 

Chapter 2—Reset Types and Boot Configurationswww.ti.com

Figure 2-1shows a high level overview of the EBL functionality.
Figure 2-1 Boot High Level Overview

Latch boot mode pins 
to DEVSTAT register, 

disable hibernation

Global Reset

POR/RESTFULL 
asserted?

Hibernation 
enabled?

Branch to boot mode specific process, 
based on boot parameter table, for 

code download

Sleep Boot

Branch to boot 
recovery address in 

PWRSTATECTL

Successful 
download?

Branch to execute 
downloaded image

No

Yes

Yes

No

No

Perform hardware initialization

Initialize boot parameter table with 
defaults, modify with boot parameters 

specified in DEVSTAT

Boot Re-entry

Boot parameters 
require PLL 
initialization ?

PLLs in bypass Initialize PLLs
No

Yes

Yes

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


2.2 Bootloader Initialization After Power-On Reset

2-4 KeyStone II Architecture ARM Bootloader User Guide SPRUHJ3—July 2013
Submit Documentation Feedback 

Chapter 2—Reset Types and Boot Configurations www.ti.com

2.2 Bootloader Initialization After Power-On Reset
Power-on reset (POR) resets the entire device. Everything on the device is reset to its 
default state. POR is initiated by either the POR or RESETFULL external pins. The POR 
pin is asserted during power up of the device while the RESETFULL pin can be asserted 
by a host to reset the device after it is already powered up. POR causes all peripherals 
to be initialized to their default states and boot processing to be started. The state of the 
boot configuration pins are latched into the device status register (DEVSTAT) at POR. 
The RBL uses the values in DEVSTAT to select how boot is performed. All initialization 
and boot processing is performed by ARM core 0.

The RBL uses the boot configuration information from the DEVSTAT register to 
determine what initialization to perform. Initialization executed by the RBL includes:

• The RBL enables reset isolation in all peripherals that support it. The power state 
of these peripherals is not changed. The device-specific data manual lists the 
peripherals that support reset isolation.

• The RBL enables the power and clock domains for any peripherals required 
during boot.

• Various PLLs may be configured depending on values specified in DEVSTAT. 
DEVSTAT will contain information indicating the PLL, the input clock 
frequency, and when that PLL should be configured.
– When the ARM PLL CONFIG value is specified in DEVSTAT, the ARM PLL 

is programmed so that the output of the ARM PLL is the frequency indicated 
by the ARMSPEED field in the DEVSPEED register.

– When the SYS PLL CONFIG value is specified in DEVSTAT, the system PLL 
is programmed so that the output of the system PLL is the frequency 
indicated by the DEVSPEED field in the DEVSPEED register.

– When information concerning the PA PLL clock input is specified, the PA 
PLL is programmed so that the output of the PA PLL is the frequency 
indicated in the data manual for the device.

• All interrupts are disabled except for IPC interrupts and the host interrupts that 
are used for an external host boot modes (PCIe, SRIO, and HyperLink).

• All secondary ARM cores are held in reset during the boot process. All DSP cores 
execute an IDLE command.

• All cache is disabled.
• The RBL uses the boot configuration information in DEVSTAT to setup and 

initialize a boot parameter table that is used to control the boot process. This table 
is stored in MSMC SRAM. Some information in the table is initialized based on 
the configuration parameters in DEVSTAT while the remaining information is 
default values based only on the boot mode. The format of the table varies 
depending on the boot mode. All start with a few entries that are common to all 
boot modes. Information about the boot parameter table can be found in the 
device-specific data manual.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


2.3 Bootloader Initialization Process After Hard or Soft Reset

SPRUHJ3—July 2013 KeyStone II Architecture ARM Bootloader User Guide 2-5
Submit Documentation Feedback 

Chapter 2—Reset Types and Boot Configurationswww.ti.com

2.3 Bootloader Initialization Process After Hard or Soft Reset
A warm reset of the non-isolated portions of the device can be initiated by the external 
RESET pin, the watchdog timer, or by software writing to a PLL Controller register. 
The reset can be configured as a hard reset or a soft reset. By default, it will be 
configured as a hard reset. When a hard reset is performed, all modules except the test 
logic, emulation logic, and reset-isolated modules will be reset. When a soft reset is 
performed, some of the MMRs and memory are preserved in addition to the modules 
that are not reset during a hard reset. See the data manual for the specific device for 
more details about hard and soft reset.

After the hardware portion of the reset is performed, the RBL will determine if 
hibernation was enabled. If hibernation was not enabled, the initialization listed in 
section Section 2.2 will be performed. This means the main difference between POR 
and hard/soft reset is that for hard/soft reset the boot configuration pins are not latched 
into DEVSTAT and any modules set for reset isolation are not reset.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


2.4 Bootloader Initialization after Hibernation

2-6 KeyStone II Architecture ARM Bootloader User Guide SPRUHJ3—July 2013
Submit Documentation Feedback 

Chapter 2—Reset Types and Boot Configurations www.ti.com

2.4 Bootloader Initialization after Hibernation
Hibernation can be used to reduce power consumption when processing is not needed 
while allowing for a fast recovery. The RBL may be used to put the device into 
hibernation. Or, the device can be put into the hibernation state directly by the user 
application code. The RBL will be involved with exiting the hibernation state. 

Before shutting down the cores, the user application must set the hibernation mode, 
hibernation enable bits, and the recovery address into the PWRSTATECTL Register. 
The contents of PWRSTATECTL are maintained through hard and soft reset. After 
hard or soft reset, the RBL samples the PWRSTATECTL register to determine if 
hibernation recovery should be performed. If hibernation is enabled, the RBL resets 
some peripherals (based on hibernation mode), and branches to the hibernation 
recovery address specified in PWRSTATECTL. 

There are two hibernation modes.

Hibernation 1 mode should be used when critical user application code and data are 
stored in MSMC SRAM. The RBL provides a callable function to enter this hibernation 
mode. When making the call, the user application code must provide the desired 
hibernation mode and recovery address to the function. The recovery address must be 
10-bit aligned. It may be in the MSMC or DDR. The function will set DDR3 for 
self-refresh and configure the Chip Miscellaneous Control register 
(CHIP_MISC_CTL0) to block the reset of the parity SRAM when hibernation recovery 
is performed. It will then shut down all module and power domains of the device except 
for MSMC to enter Hibernation 1 state. In this hibernation mode the contents of the 
MSMC SRAM are preserved, but the MSMC MMRs are not preserved. This means the 
contents of these MMRs should be saved in MSMC SRAM before entering hibernation. 
The values will then be available to restore to the MMRs by the recovery code. When 
Hibernation 1 recovery is performed, the RBL will disable DDR self-refresh, clear the 
hibernation enable bit in PWRSTATECTL, and branch to the hibernation recovery 
address.

Hibernation 2 mode is the same as Hibernation 1 except that it will also shut down the 
MSMC module and power domains on entry to the hibernation state. This hibernation 
mode is intended for use when critical user application code and data are stored in 
external DDR. The recovery address must be in external DDR.

After hibernation, all secondary ARM cores and all DSPs function as they do on initial 
power up.

Before entering hibernation mode, the user can enable or disable reset isolation for the 
SRIO. When the SRIO has reset-isolation enabled before entering hibernation, the user 
should also make the LPSC for SRIO active because packet forwarding requires the 
VBUS clock to function. When SRIO has reset-isolation disabled before entering 
hibernation, the SRIO block must be disabled by the user. This includes stopping the 
VBUS clock and disabling the PHY layer. Stopping the VBUS clock without disabling 
the PHY layer can cause system congestion and system hang.

When the PCIe is used in EP mode, the user must put the PCIe in the L1 powerdown 
mode before it enters the hibernation mode. The PCIe power domain should be kept 
on during hibernation mode. When the device exits hibernation mode, the RC device 
can issue a reset request to all the EP points to bring the PCIe endpoint alive.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


2.5 Bootloader Operation on Secondary Cores

SPRUHJ3—July 2013 KeyStone II Architecture ARM Bootloader User Guide 2-7
Submit Documentation Feedback 

Chapter 2—Reset Types and Boot Configurationswww.ti.com

To avoid resetting the DDR during hard reset, reset isolation is provided for the DDR. 
The boot code enables the DDR reset isolation by default and the user has the option to 
turn off the reset isolation feature if it is not needed (See the Power Sleep Controller 
(PSC) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas 
Instruments’’ on page ø-viii for disabling the reset isolation for DDR3.) Because the 
DDR contents are preserved, the PLL for DDR3 EMIF must stay locked and DDR PHY 
must be active to preserve the DDR3 content. This avoids full calibration when 
resuming the normal operation; full calibration can corrupt the DDR3 content. In 
summary, the DDR is alive during both hibernation modes and the DDR3 can be put 
into self-refresh mode to save power.

2.5 Bootloader Operation on Secondary Cores
On device power up with ARM as the boot master, all secondary ARM cores are held 
in reset. When a secondary ARM core is needed, any active core may load code for the 
secondary core to the execution address, write the execution address to the boot magic 
register, generate an IPC interrupt to the core, and take the core out of reset. The 
secondary core will then come out of reset and begin executing the code provided to it.

On device power up with ARM as the boot master, all DSP cores perform basic 
initialization and then enter the idle state. When a DSP is needed, any active core may 
load code from the DSP core to the execution address, write the execution address to 
the boot magic address, and generate an IPC interrupt to the core. The DSP will then 
come out of the idle stat and begin executing the code provided to it.

2.6 Multi-Stage Boot
The RBL also provides a multi-stage boot mechanism. This feature can be used when a 
single stage boot does not provide the desired flexibility. The typical use case for a 
multi-stage boot is to perform a basic boot using the boot mode and parameter settings 
available in DEVSTAT, let the downloaded code modify the boot parameter table to 
select new boot parameters or a new boot mode, and then branch to the boot re-entry 
point to perform a second boot. The initial boot parameter table is built by the RBL as 
described in Section 2.2. The boot parameter table is not modified by the by the RBL 
when the re-entry point is used.

An example of why a multi-stage boot may be desired is for SPI boot. When a default 
SPI boot is performed it does not program any of the device PLLs; they are left in bypass 
mode. When the ARM PLL is in bypass, the ARM will be clocked by the input clock 
instead of the fast output of the PLL. This means that code download across the SPI 
interface will be slower than if the ARM was running at full speed. Using a multi-stage 
boot, a very small program can be downloaded using the default SPI boot. When 
executed, this small program can modify the boot parameter table so that it directs the 
RBL to program the ARM PLL. After modifying the boot parameter table, the program 
simply branches to the boot re-entry location to perform a secondary SPI boot with the 
device now running at full speed.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


2.7 Boot Image Formats

2-8 KeyStone II Architecture ARM Bootloader User Guide SPRUHJ3—July 2013
Submit Documentation Feedback 

Chapter 2—Reset Types and Boot Configurations www.ti.com

2.7 Boot Image Formats
Two boot image formats are used for ARM master boot modes. Each boot mode 
expects the image it downloads to be in one of these formats. The following sections 
describe the two formats. See the specific boot mode description to determine the boot 
image format used for each boot mode.

2.7.1 GP Header Boot Image Format
The GP (General Purpose) header image format is blocks of data, each preceded with 
an 8-byte header. The 8-byte header consists of a 4-byte length and a 4-byte base 
address. A block of data follows each header. The data block must contain the number 
of bytes specified in the block length field. Each GP header image must contain at least 
one data block, but may contain more. Additional blocks are appended to the previous 
blocks. The image ends with a a trailing 4-byte length field containing 0. This image 
format is usually used for boot modes in which the image is read from non-volatile 
memory. The general format of a GP header image is shown in Figure 2-2.

Figure 2-2 GP Header Boot Image Format

Block 0 Length (number of data bytes)

Block 0 Base (load) Address

Block 0 Data
(size = block 0 length)

Block 1 Length (number of data bytes)

Block 1 Base (load) Address

Block 1 Data
(size = block 1 length)

Block n Length (number of data bytes)

Block n Base (load) Address

Block n Data
(size = block n length)

Terminating 0 (zero length indicator)

...

031

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


2.7 Boot Image Formats

SPRUHJ3—July 2013 KeyStone II Architecture ARM Bootloader User Guide 2-9
Submit Documentation Feedback 

Chapter 2—Reset Types and Boot Configurationswww.ti.com

The data in a GP header formatted image is processed as it is read from the boot source. 
The length field in each header tells the boot data processor how many bytes to expect 
in that block and the base address tells it where to store the data. Data processing 
continues until a terminating length of 0 is encountered. After all blocks have been 
read, the RBL branches to the last base address specified in the image to begin execution 
of the image.

A tool that can take a standard binary image and convert it to GP header boot image 
format is provided in the MCSDK.

2.7.2 Blob Boot Image Format
The blob image format is simply a binary load image with the entry point being the first 
byte of the image. This image format is generally used for boot modes where the image 
is received from a host.

In boot modes in which the host does not have direct access to device memory, the 
image will be stored at a pre-determined address, typically the base address of MSMC 
SRAM. In these cases, the image must be linked to execute from that address. After the 
complete image has been received and stored, the RBL branches to the image storage 
address for execution.

In boot modes in which the host has direct access to device memory, the host may store 
the image anywhere in device memory. After writing the image into device memory, 
the host must write the load address at the boot magic address location. When the RBL 
sees a non-zero value as the boot magic address data, it branches to the address written.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


2.7 Boot Image Formats

2-10 KeyStone II Architecture ARM Bootloader User Guide SPRUHJ3—July 2013
Submit Documentation Feedback 

Chapter 2—Reset Types and Boot Configurations www.ti.com

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


SPRUHJ3—July 2013 KeyStone II Architecture ARM Bootloader User Guide 3-1
Submit Documentation Feedback 

Chapter 3

Boot Modes

 3.1 "Sleep Boot" on page 3-2
 3.2 "I2C Slave Boot" on page 3-3
 3.3 "I2C Master Boot" on page 3-4
 3.4 "SPI Boot" on page 3-5
 3.5 "EMIF Boot" on page 3-6
 3.6 "NAND Boot" on page 3-7
 3.7 "SRIO Boot" on page 3-10
 3.8 "Ethernet Boot" on page 3-11
 3.9 "PCI Express (PCIe) Boot" on page 3-13

 3.10 "HyperLink Boot" on page 3-14
 3.11 "UART Boot" on page 3-15

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


3.1 Sleep Boot

3-2 KeyStone II Architecture ARM Bootloader User Guide SPRUHJ3—July 2013
Submit Documentation Feedback 

Chapter 3—Boot Modes www.ti.com

3.1 Sleep Boot
The sleep boot mode does not result in any image being loaded for execution. In the 
ARM master sleep boot mode, the ARM simply performs ARM and system PLL 
initialization as specified by the boot mode pins and then executes a polling loop of its 
magic address. This mode is typically used in debug and development environments in 
which code images are loaded using an emulator.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


3.2 I2C Slave Boot

SPRUHJ3—July 2013 KeyStone II Architecture ARM Bootloader User Guide 3-3
Submit Documentation Feedback 

Chapter 3—Boot Modeswww.ti.com

3.2 I2C Slave Boot
The I2C slave boot mode is used to receive the boot image from an I2C master 
connected to one of the device I2C ports. In this boot mode, the device acts as the I2C 
slave. The image received in this boot mode must be in GP Header format.

The boot pins provide a way to specify:
• KeyStone I2C slave bus address
• I2C port number

See the device-specific data manual for the specific boot mode pins and definitions.

The RBL will initialize the I2C hardware and then start polling the specified I2C port for 
data. As data is read from the I2C port, it will be stored at the address specified in the 
GP header. The RBL will continue polling for and reading data until a complete image 
has been read. Data will be read and processed in 2-Kbyte chunks. The I2C master 
should pad the image with zeroes to be a multiple of this size. When the complete image 
has been read, the RBL will branch to the base address of the last GP data block in the 
image.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


3.3 I2C Master Boot

3-4 KeyStone II Architecture ARM Bootloader User Guide SPRUHJ3—July 2013
Submit Documentation Feedback 

Chapter 3—Boot Modes www.ti.com

3.3 I2C Master Boot
The I2C master boot mode is used to read the boot image from a EEPROM connected 
to one of the device I2C ports. In this boot mode the device acts as the I2C master. The 
image read in this boot mode must be in GP Header format.

The boot pins provide a way to specify:
• EEPROM I2C slave bus address
• I2C port number
• Base address offset to use when accessing the EEPROM

The base address offset value can be used to specify an offset to the chip select base 
address of where to start reading on the EEPROM device. See the device-specific data 
manual for the specific boot mode pins and definitions for your device.

The RBL will start reading from the I2C EEPROM slave at the specified I2C bus address 
on the specified I2C port. This read will be done beginning at the specified base address 
offset. Data will be read in 2-Kbyte chunks. The data will be stored at the address 
specified in the GP header. It will continue reading GP header formatted data from the 
EEPROM and storing it as directed by the headers until a complete image has been 
read. When the complete image has been read, the RBL will branch to the base address 
of the last GP data block in the image.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


3.4 SPI Boot

SPRUHJ3—July 2013 KeyStone II Architecture ARM Bootloader User Guide 3-5
Submit Documentation Feedback 

Chapter 3—Boot Modeswww.ti.com

3.4 SPI Boot
The SPI boot mode is used to read the boot image from NOR memory connected to the 
device through the SPI interface. The image read from the NOR memory must be in GP 
Header format.

The boot pins provide a way to specify:
• SPI port to be used
• Address width for accessing the NOR memory (16-bit or 24-bit)
• Clock phase and polarity for data latching
• Number of pins to drive (3 when no CS is needed, or 4)
• Chip select to use (when used)
• Base address offset to use when accessing the NOR memory

The base address offset value can be used to specify an offset to the chip select base 
address of where to start reading on the NOR memory. See the device-specific data 
manual for the specific boot mode pins and definitions for your device. 

The RBL will start reading from the NOR memory at the chip select base address plus 
the base address offset specified by the boot mode pins. The data will be stored at the 
address specified in the GP Header. It will continue reading GP Header formatted data 
from the NOR memory and storing it as directed by the headers until a complete image 
has been read. When the complete image has been read, the RBL will branch to the base 
address of the last GP data block in the image.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


3.5 EMIF Boot

3-6 KeyStone II Architecture ARM Bootloader User Guide SPRUHJ3—July 2013
Submit Documentation Feedback 

Chapter 3—Boot Modes www.ti.com

3.5 EMIF Boot
The EMIF boot mode is used to read the boot image from NOR memory connected to 
the EMIF interface. When the ARM is the boot master, the NOR memory must be 
connected to the device using EMIF CS2 (CE0). The image read from the NAND must 
be in GP Header format.

The boot pins provide a way to specify:
• NOR memory width (8-bit or 16-bit)
• Extended wait mode (enable or disable)
• Base address offset to use when accessing the NOR memory

The base address offset value can be used to specify an offset to the chip select base 
address of where to start reading on the NOR memory. See the device-specific data 
manual for the specific boot mode pins and definitions for your device.

The RBL will start reading from the NOR memory at the chip select base address plus 
the base address offset specified by the boot mode pins. The data will be stored at the 
address specified in the GP header. It will continue reading GP Header formatted data 
from the NOR memory and storing it as directed by the headers until a complete image 
has been read. When the complete image has been read, the RBL will branch to the base 
address of the last GP data block in the image.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


3.6 NAND Boot

SPRUHJ3—July 2013 KeyStone II Architecture ARM Bootloader User Guide 3-7
Submit Documentation Feedback 

Chapter 3—Boot Modeswww.ti.com

3.6 NAND Boot
The NAND boot mode is used to read the boot image from NAND memory connected 
to the device through the EMIF interface. When the ARM is the boot master, the 
NAND memory must be connected to the device using EMIF CS2 (CE0). The image 
read from the NAND memory must be in GP Header format.

To read from a NAND memory device, the ARM must know some information about 
the geometry of the device. The required information includes:

• Data transfer size: 8-bit or 16-bit
• Page size
• Block size (pages per block)
• Number of blocks
• Number of spare bytes per page (used for ECC data)
• Number of address cycles

Once the geometry is known, the RBL can decide if the NAND memory is compatible 
with the NAND read algorithms embedded in the RBL. If not, boot halts. 

If the NAND is compatible, the boot image will be read from the NAND memory and 
the data blocks stored in the location(s) specified in the headers ending with the RBL 
branching to the base address of the last block to begin execution of the image.

The RBL uses has several methods of determining the NAND device geometry. The 
first method is to ask the device if it is ONFI-compliant. To determine if the device is 
ONFI compliant, a standard read ID command is issued to device address 0x20 and 
four bytes read. If the four bytes contain 0x49464E4F (ASCII for ONFI), the RBL knows 
the device is ONFI-compliant. It will then read the ONFI parameter table from the 
device that contains the geometry information.

The manufacturer and device ID will always be read from the device by issuing a read 
ID command to device address 0x00 and four bytes read. The first byte is the 
manufacturer ID. The second byte is the device ID. The third and fourth bytes imply 
information about the device geometry.

If the device was found to not be ONFI-compliant, the RBL will compare the 
manufacturer and device ID to a table of known devices stored in the RBL. This table 
includes geometry information for each device listed in the table. Please note that given 
how fast the NAND devices evolve, it is impossible for the table to have information 
about all devices on the market. The stored geometry information was current when 
the RBL was created. If manufacturers reuse device IDs, the information in the RBL 
table may not match the actual device.

If the NAND device is not ONFI-compliant and information about it was not found in 
the RBL table, the RBL will make a best guess of the geometry based on the 
manufacturer ID and the fourth ID byte read from the device. For NAND 
devices manufactured by any company except Samsung, the fourth ID byte can be use 
to determine page size, block size, number of spare bytes per page, and the data transfer 
size. For Samsung manufactured NANDs, the fourth ID byte can be used to determine 
only page size, block size, and number of spare bytes per page. An 8-bit data transfer 
size will be assumed for Samsung NAND devices.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


3.6 NAND Boot

3-8 KeyStone II Architecture ARM Bootloader User Guide SPRUHJ3—July 2013
Submit Documentation Feedback 

Chapter 3—Boot Modes www.ti.com

The process the RBL uses to determine the device geometry is shown in Figure 3-1.
Figure 3-1 NAND Geometry Determination Process

Once the NAND geometry is known, the GP Header formatted image can be read from 
the device. The RBL reads the first page of the NAND block indicated in the boot 
parameter table. Bad blocks are detected by reading the spare bytes of pages 0, 1, and 
the last page of a block. If the first six bytes of all three spare areas contain 0xFF, the 

Get NAND Boot 
Geometry

NAND device ONFI Compliant?
Yes

NAND manufacturer and device 
ID in boot ROM table?

Read ONFI indicator, 
Read device ID bytes

Read ONFI parameter table to 
get NAND geometry

Fetch NAND geometry from 
boot ROM NAND table

Yes

No

No

Use NAND geometry to read 
boot image from NAND

Is it a Samsung NAND device?

No

Use 4th ID byte to determine 
page size, block size , and 

number spare bytes. Assume 
8-bit data transfer.

Yes

Use 4th ID byte to determine 
page size, block size , number 
spare bytes, and data transfer.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


3.6 NAND Boot

SPRUHJ3—July 2013 KeyStone II Architecture ARM Bootloader User Guide 3-9
Submit Documentation Feedback 

Chapter 3—Boot Modeswww.ti.com

block is assumed to be good. If any of those bytes contains a value other than 
0xFF, the block is assumed to be bad. If a bad block is encountered, the RBL discards 
any partial boot image already read and goes to the next NAND block to start reading 
a new boot image.

Data read from the NAND is error-corrected using ECC data stored in the spare bytes 
for the page. Each page must have at least 16 spare bytes for each 512 data bytes on the 
page. The RBL uses the 4-bit hardware ECC build into the EMIF interface of the device 
for ECC calculation. The ECC data for the page is stored in the spare bytes of the page 
as shown in Figure 3-2. When a 512-byte data segment of a page is read from the device 
it is error corrected using the ECC data for that segment. If the data cannot be 
corrected, the RBL discards any partial boot image already read and goes to the next 
NAND block to start reading a new boot image.

Figure 3-2 NAND ECC Layout in Spare Bytes

The RBL will continue reading GP Header formatted data from the NAND and storing 
it as directed by the headers until a complete image has been read. When the complete 
image has been read, the RBL will branch to the base address of the last GP data block 
in the image.

Bytes 0 through 5

...
Bad block marking (no ECC)

Bytes 6 through 15 ECC for data segment 0 of page

Bytes 16 through 21 Unused 

Bytes 22 through 31 ECC data for segment 1 of page

Bytes n*16 through (n*16)+5 Unused

Bytes 32 through 37 Unused 

Bytes 38 through 47 ECC data for segment 3 of page

Bytes (n*16)+6 through (n*16)+15 ECC data for segment n of page

Bytes (n*16)+16 through end Possible unused spare bytes

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


3.7 SRIO Boot

3-10 KeyStone II Architecture ARM Bootloader User Guide SPRUHJ3—July 2013
Submit Documentation Feedback 

Chapter 3—Boot Modes www.ti.com

3.7 SRIO Boot
The SRIO boot mode transfers a boot image into internal memory via the Serial Rapid 
I/O interface. The RBL sets up the QMSS and queries the boot configuration parameter 
pins for additional interface set up. Rapid I/O, by default, is set up with mailbox mode 
and messaging mode enabled, but Direct I/O mode is available for writing an image 
directly into memory.

After peripheral configuration, the bootloader continuously polls the host boot data 
address. The next step depends on the mode of transfer the host uses.

If the host uses Direct I/O mode, it should write the image directly into the MSMC. It 
is the host’s responsibility to update the host boot data address with the execution 
address of the image after transfer is complete. Once the bootloader polls a non-zero 
value in the host boot data address, it will exit the boot function and begin execution at 
the provided address. The image must be in Blob Format when this mode is used.

If the host uses Messaging mode, the boot image must be in GP Format. The host is 
responsible for segmenting the boot image into SRIO packets. Each packet must begin 
with the SRIO message mode boot header that includes: two bytes packet size 
(including the header) followed by a two-byte checksum for verifying accuracy of 
transferred data. When the complete image has been transferred, the RBL will branch 
to the base address of the last GP data block in the image.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


3.8 Ethernet Boot

SPRUHJ3—July 2013 KeyStone II Architecture ARM Bootloader User Guide 3-11
Submit Documentation Feedback 

Chapter 3—Boot Modeswww.ti.com

3.8 Ethernet Boot
Ethernet booting is performed by transferring an image by bootp/TFTP protocol 
over the Ethernet interface and executing it. The boot loader configures the SerDes, 
SGMII and the switch plus the PASS and Multicore Navigator (Packet DMA and 
QMSS). At power-on reset, the boot parameter pins are queried to configure the 
Ethernet for transfer. Configuration options are outlined in detail in the device-specific 
data manual. With ARM as the boot master, the image must be in Blob Format

After device configuration, the bootloader performs a standard bootp/TFTP boot. The 
device sends a bootp request with its MAC address to a host TFTP server to be assigned 
an IP from a pool of addresses. After this connection is established, the device is able to 
receive image data encapsulated in Ethernet packets. Data received is stripped of its 
network headers and the boot data is stored in the MSMC. After transfer is complete, 
the bootloader will begin executing the image at the base of MSMC. File size is limited 
to 5M bytes and has a max transfer time of 60 seconds. The device will broadcast for 
one minute at times 0, 4, 12, 28, and 60 seconds.

Ethernet packets are accepted only in DIX (Ethernet II) frames with IPv4 and UDP 
headers. The only UDP port accepted is hard coded to 1234, but any source port is 
accepted. Frames not matching this criteria are discarded and subsequent frames are 
processed.

The DIX frame contains:
• Destination MAC address = Default broadcast address (FF:FF:FF:FF:FF:FF)
• Source MAC address = Device MAC address from OTP
• Type = IPv4 (0x800)

The IPv4 header contains:
• Version = 4
• Header length = 0
• TOS = 0
• Len = Computed during operation
• ID = 0x001
• Flags + Fragment offset = 0
• TTL = 0x10
• Protocol = UDP (17)
• Header checksum = Computed during operation
• SRC IP = 0.0.0.0
• DEST IP = 255.255.255.255 

The UDP header contains:
• Source port = BOOTP client (68)
• Destination port = BOOTP server (67)
• Length = Computed during operation
• Checksum = Computed during operation

The BOOTP payload contains:
• Opcode = Request (1)
• HW Type = Ethernet (1)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


3.8 Ethernet Boot

3-12 KeyStone II Architecture ARM Bootloader User Guide SPRUHJ3—July 2013
Submit Documentation Feedback 

Chapter 3—Boot Modes www.ti.com

• HW Address Length = 6
• Hop Count = 0
• Transaction ID = 1
• Number of seconds = 0
• Client IP = 0.0.0.0
• Your IP = 0.0.0.0
• Server IP = 0.0.0.0
• Gateway IP = 0.0.0.0
• Client HW Address = Device MAC address, from OTP
• Server Hostname = NULL
• Filename = NULL
• Option 60, vendor ID string, from boot parameter table
• Option 61, client ID string, from boot parameter table

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


3.9 PCI Express (PCIe) Boot

SPRUHJ3—July 2013 KeyStone II Architecture ARM Bootloader User Guide 3-13
Submit Documentation Feedback 

Chapter 3—Boot Modeswww.ti.com

3.9 PCI Express (PCIe) Boot 
The PCIe boot mode transfers a boot image via the PCIe interface into MSMC for 
execution. This image must be in Blob Format. The bootloader queries the device boot 
configuration pins for set up of the BARs, windows, and their sizes as desired to provide 
memory access to the host. Additional information about these configurations and 
other registers can be found in the device-specific data manual.

After configuration of the peripheral, the ARM core executes a WFI instruction that 
causes the ARM to suspend execution waiting for an interrupt. While the ARM is 
suspended, the PCIe host can write the boot image into MSMC. After the image is 
written, the PCIe host must write the execution starting address of the image to the host 
boot data address register.

MSI interrupts are enabled and routed to break out of the suspended state. Information 
on MSI interrupts can be found in the Peripheral Component Interconnect Express 
(PCIe) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas 
Instruments’’ on page ø-viii. Each time an interrupt is triggered, the ARM core will poll 
the host boot data address register to check if the boot image is ready. If the host boot 
data address register indicates the boot image is ready, the bootloader will begin 
executing the boot image at the address specified in the register.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


3.10 HyperLink Boot

3-14 KeyStone II Architecture ARM Bootloader User Guide SPRUHJ3—July 2013
Submit Documentation Feedback 

Chapter 3—Boot Modes www.ti.com

3.10 HyperLink Boot
The HyperLink boot mode transfers a boot image via HyperLink interface into MSMC 
for execution. This image must be in Blob Format. The bootloader queries the device 
boot configuration pins for set up of the data rate and port as desired to provide 
memory access to the host. Additional information about these configurations and 
other registers can be found in the device-specific data manual.

After configuration of the peripheral, the ARM core executes a WFI instruction that 
causes the ARM to suspend execution waiting for an interrupt. While the ARM is 
suspended, the HyperLink host can write the boot image into the MSMC. After the 
image is written, the HyperLink host must write the execution starting address of 
the image to the host boot data address register.

The HyperLink host must interrupt the ARM to break out of the suspended state. Each 
time an interrupt is triggered, the ARM core will poll the host boot data address register 
to check if the boot image is ready. If the host boot data address register indicates the 
boot image is ready, the bootloader will begin executing the boot image at the address 
specified in the register.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


3.11 UART Boot

SPRUHJ3—July 2013 KeyStone II Architecture ARM Bootloader User Guide 3-15
Submit Documentation Feedback 

Chapter 3—Boot Modeswww.ti.com

3.11 UART Boot
The UART boot mode transfers a boot image from an external host over a UART 
interface. The host must be capable of sending data via the X-modem protocol. While 
the ARM is the boot master, the image must be in Blob Format. The host must 
match the default boot serial configurations, which include: 

• No parity
• One stop bit
• 115,200 baud rate
• 8-bit data length
• No flow control

If multiple device UART ports are available, the boot configuration pins for the desired 
port number must be set; this setting can be found in the device-specific data manual. 
After initialization is complete, the device sends pings to the host to indicate it is ready 
to receive the boot image. The pings consist of an ASCII capital C character. The host 
must begin an X-modem file transfer. The bootloader is available to receive data for 30 
seconds after initialization. If 30 seconds elapse with no transfer, the boot will be 
considered failed and the next step will be taken in the boot process flow.

The bootloader stores data at the base of MSMC. Once the complete boot image is 
transferred and stored in the MSMC, the bootloader will begin execution from the base 
of MSMC.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


3.11 UART Boot

3-16 KeyStone II Architecture ARM Bootloader User Guide SPRUHJ3—July 2013
Submit Documentation Feedback 

Chapter 3—Boot Modes www.ti.com

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Release History
	Contents
	List of Tables
	List of Figures

	Preface
	About This Manual
	Notational Conventions
	Related Documentation from Texas Instruments
	Trademarks

	Introduction
	1.1 Bootloader Features
	1.2 Terms and Abbreviations

	Reset Types and Boot Configurations
	2.1 Introduction
	2.2 Bootloader Initialization After Power-On Reset
	2.3 Bootloader Initialization Process After Hard or Soft Reset
	2.4 Bootloader Initialization after Hibernation
	2.5 Bootloader Operation on Secondary Cores
	2.6 Multi-Stage Boot
	2.7 Boot Image Formats
	2.7.1 GP Header Boot Image Format
	2.7.2 Blob Boot Image Format


	Boot Modes
	3.1 Sleep Boot
	3.2 I2C Slave Boot
	3.3 I2C Master Boot
	3.4 SPI Boot
	3.5 EMIF Boot
	3.6 NAND Boot
	3.7 SRIO Boot
	3.8 Ethernet Boot
	3.9 PCI Express (PCIe) Boot
	3.10 HyperLink Boot
	3.11 UART Boot


