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Preface

About This Guide

System Analyzer is a tool suite that provides visibility into the real-time performance and behavior of your 
software. It allows you to analyze the load, execution sequence, and timing of your single-core or 
multicore target applications. System Analyzer included the features in both the Tools > RTOS Analyzer 
and Tools > System Analyzer menus in CCS. Together, they are made up of a number of components. 

This document applies to the RTOS Analyzer and System Analyzer features supported in Code 
Composer Studio (CCS) v6.0. Many of the features described in this document are also provided as part 
of CCS v5.3 and higher.

The key components of RTOS Analyzer and System Analyzer are:

• DVT. Various features of DVT provide the user interface for RTOS Analyzer and System Analyzer 
within CCS. The DVT is automatically installed as part of CCS.

• UIA. The Unified Instrumentation Architecture (UIA) defines APIs and transports that allow 
embedded software to log instrumentation data for use within CCS. In order to use UIA, you will need 
to install TI-RTOS, which is available in the TI App Center within CCS. UIA is the TI-RTOS 
Instrumentation component. TI-RTOS is provided with full source code and requires no up-front or 
runtime license fees.

This document provides information about both the host-side and target-side components of RTOS 
Analyzer and System Analyzer.

Intended Audience

This document is intended for users of RTOS Analyzer and System Analyzer.

This document assumes you have knowledge of inter-process communication concepts and the 
capabilities of the processors available to your application. This document also assumes that you are 
familiar with Code Composer Studio, SYS/BIOS, and XDCtools.

See Section 3.1, Different Types of Analysis for Different Users for more about the categories of users 
for RTOS Analyzer and System Analyzer.

Notational Conventions

This document uses the following conventions:

• When the pound sign (#) is used in filenames or directory paths, you should replace the # sign with 
the version number of the release you are using. A # sign may represent one or more digits of a 
version number.

• Program listings, program examples, and interactive displays are shown in a mono-spaced font. 
Examples use bold for emphasis, and interactive displays use bold to distinguish commands that 
you enter from items that the system displays (such as prompts, command output, error messages, 
etc.).
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• Square brackets ( [ and ] ) identify an optional parameter. If you use an optional parameter, you 
specify the information within the brackets. Unless the square brackets are in a bold typeface, do not 
enter the brackets themselves.

Documentation Feedback

If you have comments about this document, please provide feedback by using the link at the bottom of 
the page. This link is for reporting errors or providing comments about a technical document. Using this 
link to ask technical support questions will delay getting a response to you.

Trademarks

Registered trademarks of Texas Instruments include Stellaris and StellarisWare. Trademarks of Texas 
Instruments include: the Texas Instruments logo, Texas Instruments, TI, TI.COM, C2000, C5000, C6000, 
Code Composer Studio, Concerto, controlSUITE, DaVinci, DSP/BIOS, eXpressDSP, Grace, MSP430, 
OMAP, RTDX, SPOX, TMS320, TMS320C2000, TMS320C5000, and TMS320C6000.

MS-DOS, Windows, and Windows NT are trademarks of Microsoft Corporation.

Linux is a registered trademark of Linus Torvalds.

All other brand, product names, and service names are trademarks or registered trademarks of their 
respective companies or organizations.

March 18, 2014
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Chapter 1

Overview of System Analyzer

This chapter provides an introduction to System Analyzer’s host-side and target-side components.
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1.1 Introduction

Instrumenting software with print statements to provide visibility into the operation of the software at run-
time has long been one of the keys to creating maintainable software that works. As devices become 
increasingly complex, the system-level visibility provided by software instrumentation is an increasingly 
important success factor, as it helps to diagnose problems both in the lab during development and in the 
field.

One of the key advantages of instrumented software is that, unlike debug sessions, the statements used 
are part of the code-base. This can help other developers figure out what is going on as the software 
executes. It can also highlight integration problems and error conditions that would be hard to detect 
otherwise.

As a result, many groups create their own logging APIs. Unfortunately, what often happens is that the 
logging APIs they create are closely tied to particular hardware and operating systems, use incompatible 
logging infrastructures, make assumptions about the acceptable amount of memory or CPU overhead, 
generate logs in a diverse range of formats, may not include timestamps, or may use different time-bases 
(ticks, cycles, wall-clock, etc.). All of these differences make it difficult to port code from one system to 
another, difficult to integrate software from different development groups, difficult or impossible to 
correlate events from different cores on the same device, and costly to create tooling to provide ease-of-
use, analysis and visualization capabilities.

The System Analyzer tool suite provides a consistent and portable way to instrument software. It enables 
software to be re-used with a variety of silicon devices, software applications, and product contexts. It 
includes both host-side tooling and target-side code modules (the UIA software package). These work 
together to provide visibility into the real-time performance and behavior of software running on TI's 
embedded single-core and multicore devices.

1.1.1 What Analysis and Visualization Capabilities are Provided?

System Analyzer included the features in both the Tools > RTOS Analyzer and Tools > System 
Analyzer menus in CCS. These host-side tools use TI's Data Visualization Technology (DVT) to provide 
the following features for target applications that have been instrumented with the UIA target software 
package:

• Advanced analysis features for data analysis and visualization. Features include the ability to 
view the CPU and thread loads, the execution sequence, thread durations, and context profiling.

• Multicore event correlation. Allows software instrumentation events from multiple cores on 
multicore devices to be displayed on the same timeline, allowing users to see the timing relationships 
between events that happened on different CPUs.

• Run-time analysis. For targets that support either the UIA Ethernet transport or real-time JTAG 
transport, events can be uploaded from the target to RTOS Analyzer and System Analyzer while the 
target is running without having to halt the target. This ensures that actual program behavior can be 
observed, without the disruption of program execution that occurs when one or more cores are 
halted.
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• Recording and playback of data. You can record real-time event data and later reload the data to 
further analyze the activity. Both CSV and binary files are supported by RTOS Analyzer and System 
Analyzer.

1.1.2 What the UIA Target Software Package Provides

For the target, the Unified Instrumentation Architecture (UIA) target package, a component of TI-RTOS, 
provides the following:

• Software instrumentation APIs. The xdc.runtime.Log module provides basic instrumentation APIs 
to log errors, warnings, events and generic instrumentation statements. A key advantage of these 
APIs is that they are designed for real-time instrumentation, with the burden of processing and 
decoding format strings handled by the host. Additional APIs are provided by the ti.uia.runtime 
package to support logging blocks of data and dynamic strings (the LogSnapshot module), context 
change events (the LogCtxChg module), and multicore event correlation information (the LogSync 
module).

• Predefined software events and metadata. The ti.uia.events package includes software event 
definitions that have metadata associated with them to enable RTOS Analyzer and System Analyzer 
to provide performance analysis, statistical analysis, graphing, and real-time debugging capabilities.

• Event loggers. A number of event logging modules are provided to allow instrumentation events to 
be captured and uploaded to the host over both JTAG and non-JTAG transports. Examples include 
LoggerStopMode, which logs events to a buffer in memory, and LoggerSM, which logs events to 
shared memory and enables events to be decoded and streamed to a Linux console window.
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• Transports. Both JTAG-based and non-JTAG transports can be used for communication between 
the target and the host. Non-JTAG transports include Ethernet, with UDP used to upload events to 
the host and TCP used for bidirectional communication between the target and the host.

• SYS/BIOS event capture and transport. For example, when UIA is enabled, SYS/BIOS uses UIA 
to transfer data about CPU Load, Task Load, and Task Execution to the host.

• Multicore support. UIA supports routing events and messages across a central master core. It also 
supports logging synchronization information to enable correlation of events from multiple cores so 
that they can be viewed on a common timeline.

• Scalable solutions. UIA allows different solutions to be used for different devices. 

• Examples. UIA includes working examples for the supported boards.

• Source code. UIA modules can be modified and rebuilt to facilitate porting and customization.

1.2 System Analyzer Terminology

You should be familiar with the following terms when using this manual.

• System Analyzer. A suite of host-side tools that use data captured from software instrumentation, 
hardware instrumentation, and CPU trace to provide visibility into the real-time performance and 
behavior of target applications. In this document, the term "System Analyzer" actually includes the 
menu commands in both the Tools > RTOS Analyzer and the Tools > System Analyzer menus.

• UIA. Unified Instrumentation Architecture. A target-side package that provides instrumentation 
services. UIA is the "TI-RTOS Instrumentation" component of the TI-RTOS product. Both names 
refer to the same component. You may see the "TI-RTOS Instrumentation" name in other documents 
and on Texas Instruments websites. This new name does not require any code changes on your part; 
directory and module names are not affected by this change.

• DVT. Data Visualization Technology. Provides a common platform to display real-time SYS/BIOS and 
trace data as lists and graphically. Used in the RTOS Analyzer and System Analyzer features. Also 
used in such CCS features as STM Logic and Statistics Analyzer and Trace Analyzer.

• CCS. Code Composer Studio. The integrated development environment (IDE) for TI's DSPs, 
microcontrollers, and application processors. 

• Analysis Feature. A tool provided by DVT for use in the analysis of instrumentation data. A feature 
typically consists of several related views. For example, "CPU Load" is an Analysis Feature that 
includes summary, detail, and graph views.

• Core. An embedded processor. Also called a CPU.

• Host. The processor that communicates with the target(s) to collect instrumentation data. For 
example, a PC running Code Composer Studio.

• Target. A processor running target code. Generally this is an embedded processor such as a DSP 
or microcontroller.

• UIA Packets. Generic term for either Events or Messages. A UIA packet can hold multiple events or 
a single message.

• Events. Instrumentation data sent from the target to the host For example, Log records.

• Messages. Actions that are sent between the host and target. For example, commands, 
acknowledgements, and results.
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• Service. A component that supplies some type of host/target interaction. There can be multiple 
services in a system. An example is the Rta Service that provides XDC Log information.

• IPC. Inter-Processor Communication. A software product containing modules designed to allow 
communication between processors in a multi-processor environment. IPC is the "TI-RTOS 
Interprocessor Communication" component of the TI-RTOS product. 

• JTAG. Joint Test Action Group. IEEE specification (IEEE 1149.1) for a serial interface used for 
debugging integrated circuits.

• MADU. Minimum Addressable Data Unit. Also called MAU. The minimum sized data that can be 
accessed by a particular CPU. Different architectures have different size MADUs. For the C6000 
architecture, the MADU for both code and data is an 8-bit byte.

• NDK. Network Developer’s Kit. Contains libraries that support the development of networking 
applications. NDK is the "TI-RTOS Networking" component of the TI-RTOS product. 

• SYS/BIOS. A real-time operating system for a number of TI's DSPs, microcontrollers, and application 
processors. SYS/BIOS is the "TI-RTOS Kernel" component of the TI-RTOS product. Previously 
called DSP/BIOS.

• SysLink. Run-time software and an associated porting kit to simplify the development of embedded 
applications in which either General-Purpose microprocessors (GPPs) or DSPs communicate with 
each other.

• RTSC. Real-Time Software Components. A standard for packaging and configuring software 
components. XDCtools is an implementation of the RTSC standard.

• TI-RTOS. A scalable, one-stop embedded tools ecosystem for TI devices. It scales from a real-time 
multitasking kernel to a complete RTOS solution including additional middleware components and 
device drivers. Its components include TI-RTOS Kernel (SYS/BIOS), TI-RTOS Instrumentation (UIA), 
TI-RTOS Networking (NDK), and TI-RTOS Interprocessor Communication (IPC). It also includes 
drivers, board software, and examples.

• UART. Universal Asynchronous Receiver/Transmitter. A UART chip controls the interface to serial 
devices.

• XDCtools. A product that contains tools needed to create, test, deploy, install, and use RTSC 
components. RTSC standardizes the delivery of target content.

• xdc.runtime. A package of low-level target-software modules included with XDCtools that provides 
"core" services appropriate for embedded C/C++ applications, including real-time diagnostics, 
concurrency support, memory management, and system services.

1.3 Using System Analyzer with Your Application Software

System Analyzer provides flexible ways to instrument your application and to configure how logged 
events are uploaded to the host.

1.3.1 Instrumenting Your Application Using UIA

There are a number of different ways to take advantage of the real-time visibility capabilities provided by 
System Analyzer and the UIA target software:

• SYS/BIOS modules provide built-in software instrumentation that can be enabled to provide visibility 
into CPU Load, Task Load, and Task Execution "out of the box". (See Section 3.2 and Section 3.3).
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• The UIA and xdc.runtime.Log APIs can be used in your C or C++ code directly to log software events 
to instrument your application code. You don't have to write RTSC modules; just #include the 
appropriate header files in your software and call the provided APIs. Examples are provided in 
Section 5.4 as well as in the help files that ship with the UIA target content.

• Macros can be used to wrap the UIA and XDC event logging APIs so that they can be called using 
the same API signature as other event logging APIs your software may already be using for software 
instrumentation. More information is provided on the wiki page at 
http://processors.wiki.ti.com/index.php/Multicore_System_Analyzer.

1.3.2 Capturing and Uploading Events Using UIA

UIA allows you to configure the infrastructure used to capture and upload software instrumentation 
events without having to change your application software C code. The LoggingSetup module in the 
ti.uia.sysbios package provides the following loggerType configuration options, which can be configured 
by adding a couple of script statements or settings in XGCONF:

Table 1–1.  Logger Types

For details about the benefits and constraints for each of these modes, see Configuring the UIA Logger, 
page 5-94.

Configuring the UIA Logger

• Specialized Logger. Logger modules can implement a host-to-target connection in various ways. 
For example, the LoggerSM module provided with UIA uses shared memory reads and writes to 
directly communicate with a Linux application. 

• UIA ServiceMgr Framework. UIA provides a full-featured pluggable framework. It supports both 
default SYS/BIOS instrumentation and extensive custom instrumentation. Communication via 
Ethernet, files over JTAG, and other methods can be plugged into this framework. The advantage of 
this technique is its power and flexibility. The disadvantage is that the code and data footprint on the 
target may be too large for memory-constrained targets. More information is provided in Section 1.4.

Note: UIA does not support RTDX (Real-Time Data eXchange). Please use JTAG Run-Mode.

Logger Type Description
LoggingSetup.loggerType 
Setting

JTAG Stop-Mode Events are uploaded over JTAG when the target halts. 
This is the default.

LoggerType_STOPMODE

JTAG Run-Mode Events are streamed from the target to the host via 
JTAG while the target is running (available on C64x+, 
C66x and C28x targets only).

LoggerType_JTAGRUNMODE

Non-JTAG Run-Mode Events are uploaded over a non-JTAG transport such 
as Ethernet.

LoggerType_RUNMODE

Min Events are logged into a small footprint logger and 
uploaded over JTAG when the target halts.

LoggerType_MIN

Idle Events are uploaded in the SYS/BIOS idle loop using an 
application provided transport function.

LoggerType_IDLE
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1.4 Communicating Over Non-JTAG Transports

UIA manages communication between the target(s) and the host by providing a ServiceMgr module that 
is responsible for sending and receiving packets between the services on the target and the host. 

The following is a simplified diagram of the components and connections involved in single-core target 
applications. The numbers correspond to the items in the numbered list after the diagram.

1. Host. The host is typically a PC running Code Composer Studio. Within CCS, the System Analyzer 
features provided by DVT (the "i" icons in the diagram) display and make sense of the UIA packets 
received via the socket connection.

2. Target application. The target runs an application that uses SYS/BIOS and/or XDCtools for 
configuration and APIs. Internally, the SYS/BIOS modules make API calls to log events related to 
threading. You can also add additional configuration and calls to make use of the logging, event-
handling, and diagnostics support in UIA, SYS/BIOS, and XDCtools.

3. Rta service. UIA’s Rta module on the target collects events from the log written to by both the pre-
instrumented SYS/BIOS threads and any custom instrumentation you have added. By default, it 
collects events every 100 milliseconds. Rta then sends the events on to the UIA ServiceMgr module.

4. ServiceMgr module. This module moves data off the target primarily in the background. You 
configure the ServiceMgr module to specify the following:

— Whether you have a single-core or multicore application.

— If you have a multicore application, which core is designated the master core, which 
communicates directly with the host.

— The type of physical connection used for data transport between the master core and the host. 
Options are Ethernet, file (over JTAG), and user-defined (for custom connections).

5. Transport. By default, TCP is used to transport messages and UDP is used to transport events over 
an Ethernet connection. The application is responsible for setting up the Ethernet connection, for 
example by using the NDK on an EVM6472.
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If there are multiple cores, the simplified diagram of the connections looks similar to the following:

In the multicore case, the ServiceMgr module on each core is configured to identify the master core. UIA 
packets from other cores are sent to the master core by the ServiceMgr module via the MessageQ 
module, which is part of both IPC and SYSLink.

The master core sends the UIA packets on to the host via the Ethernet transport in the case of a master 
core that runs a SYS/BIOS application and via standard Linux socket calls in the case of an ARM master 
core.

1.4.1 Communication for EVM6472 Single-Core

If the target application runs on a single-core EVM6472, the ServiceMgr module on the target uses NDK 
as its transport. The NDK communicates with the host via sockets. The NDK transport functions are in 
the ti.uia.sysbios.TransportNdk module provided with UIA. See the <uia_install>\packages\ti\uia\sysbios 
directory.

1.4.2 Communication for EVM6472 Multicore

If the target application is running on multiple cores on an EVM6472, all non-master cores communicate 
to the “master” core via IPC’s MessageQ module.

The ServiceMgr module on the master core communicates with the host by using NDK as its transport. 
The NDK communicates with the host via sockets. The NDK transport functions, which are only used by 
the master core, are in the ti.uia.sysbios.TransportNdk module provided with UIA. See the 
<uia_install>\packages\ti\uia\sysbios directory.
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1.4.3 Communication for EVMTI816x

If the target application is running on the ARM, DSP, and M3 cores of an EVMTI816x, the ServiceMgr 
module is used on all cores. The ARM core is configured to be the master core. The DSP and M3 cores 
communicate with the ARM core via SysLink’s MessageQ module. The ARM core communicates with 
the host via standard Linux socket calls. That is, the ARM core acts as a router for the UIA packets.

1.5 About this User Guide

The remaining chapters in this manual cover the following topics:

• Chapter 2, "Installing System Analyzer", describes how to install UIA.

• Chapter 3, "Tasks and Roadmaps for System Analyzer“, explains how to begin using System 
Analyzer.

• Chapter 4, “Using RTOS Analyzer and System Analyzer“, describes the analysis features provided 
in Code Composer Studio for examining instrumentation data.

• Chapter 5, “UIA Configuration and Coding on the Target“, describes how to configure and code target 
applications using UIA modules.

• Chapter 6, “Advanced Topics for System Analyzer“, provides additional information about using 
System Analyzer components.

Note: Please see the release notes in the installation before starting to use System Analyzer. 
The release notes contain important information about feature support, issues, and 
compatibility information.

1.6 Learning More about System Analyzer

To learn more about System Analyzer and the software products used with it, refer to the following 
documentation:

• UIA online reference help (also called "CDOC"). Open with CCSv6 online help or run 
<uia_install>/docs/cdoc/index.html. Use this help system to get reference information about static 
configuration of UIA modules and C functions provided by UIA. 

• Tutorials. http://processors.wiki.ti.com/index.php/Multicore_System_Analyzer_Tutorials 

• TI Embedded Processors Wiki. http://processors.wiki.ti.com 

— System Analyzer. http://processors.wiki.ti.com/index.php/Multicore_System_Analyzer 

— Code Composer Studio. 
http://processors.wiki.ti.com/index.php/Category:Code_Composer_Studio_v6 

— SYS/BIOS. http://processors.wiki.ti.com/index.php/Category:SYSBIOS 

— TI-RTOS. http://processors.wiki.ti.com/index.php/TI-RTOS 

— NDK. http://processors.wiki.ti.com/index.php/Category:NDK 

— SysLink. http://processors.wiki.ti.com/index.php/Category:SysLink 

— UIA cTools. http://processors.wiki.ti.com/index.php/UIAcTools 

— cUIA. http://processors.wiki.ti.com/index.php/CUIA 
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• RTSC-Pedia Wiki. http://rtsc.eclipse.org/docs-tip for XDCtools documentation.

• TI E2E Community. http://e2e.ti.com/ 

— For CCS and DVT information, see the Code Composer forum at 
http://e2e.ti.com/support/development_tools/code_composer_studio/f/81.aspx 

— For SYS/BIOS, XDCtools, IPC, NDK, and SysLink information, see the TI-RTOS forum at 
http://e2e.ti.com/support/embedded/f/355.aspx 

— Also see the forums for your specific processor(s).

• SYS/BIOS Product Folder. http://focus.ti.com/docs/toolsw/folders/print/dspbios6.html 

• Embedded Software Download Page. http://software-
dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/index.html for downloading individual 
SYS/BIOS, XDCtools, UIA, IPC, and NDK versions. See the CCS App Center to download TI-RTOS.
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Chapter 2

Installing System Analyzer

This chapter covers how to install the System Analyzer components.
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2.1 Installing UIA as Part of TI-RTOS

The System Analyzer host-based tools are automatically installed as part of Code Composer Studio v6 
(CCSv6). However, UIA and SYS/BIOS are required in order to use System Analyzer. These components 
are part of TI-RTOS, which is not installed with CCSv6. To install TI-RTOS, follow these steps:

1. In CCS, choose Help > CCS App Center.

2. Choose the version of TI-RTOS for your device family. If you use devices in multiple families, you can 
install multiple TI-RTOS versions.

3. Follow the prompts in the installation.

System Analyzer updates will be available through the CCS Update Installer. You can check for updates 
by choosing Help > Check for Updates from the menus.

This document applies to System Analyzer features supported in CCS v6.0. Many of the features 
described in this document are also provided as part of CCS v5.3 and higher.

System Analyzer support is available for the targets listed in the release notes and at 
http://processors.wiki.ti.com/index.php/Multicore_System_Analyzer. Specific examples are provided for 
multicore targets such as the evm6472 and the evmTI816x. In addition, pre-built libraries are provided 
for a number of single-core targets.

System Analyzer makes use of the following other software components and tools, which must be 
installed in order to use System Analyzer. See the UIA release notes for compatible version information.

• Code Composer Studio (CCS)

• SYS/BIOS (installed as part of TI-RTOS)

• XDCtools (installed as part of CCStudio)

• IPC (installed as part of TI-RTOS for certain device families)

• NDK (installed as part of TI-RTOS for certain device families)

• Code Generation Tools (version required depends on target)

• PDK and simulator (required for simTCI6616)

• SysLink (for evmTI816x)

2.2 Installing UIA Outside CCS

You can also install the UIA target-side modules on a Linux machine for use outside the CCS 
environment. On a Linux machine, you should unzip the UIA target package in the same root directory 
where XDCtools and SYS/BIOS are installed.

If you want to build applications with UIA modules outside of CCS, add the UIA package path to your 
XDCPATH definition. The UIA package path is the /packages subfolder of the UIA target-side installation. 
For example, the package path may be the C:\Program Files\Texas Instruments\uia_2_#_#_#\packages 
folder.
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Chapter 3

Tasks and Roadmaps for System Analyzer

This chapter explains how to begin using RTOS Analyzer and System Analyzer. It provides roadmaps for 
common tasks related to using RTOS Analyzer and System Analyzer.
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3.1 Different Types of Analysis for Different Users

A variety of users make use of RTOS Analyzer and System Analyzer, but different users perform different 
types of analysis. To find tasks that apply to your needs, choose the use case that matches your needs 
best from the following list:

1. Analyst for a deployed system. You have an existing system for which you need a performance 
analysis. You do not need to know about the actual target code, and are interested in using the GUI 
features of RTOS Analyzer to find answers about CPU utilization. You will want to use the CPU Load 
and possibly the Task Load analysis features.

2. Linux developer. You have a multicore application with Linux on the master core and SYS/BIOS 
applications on other cores. You want data about how the SYS/BIOS applications are running, but 
do not want to modify these applications yourself. You should use the CPU Load, Task Load, and 
Execution Graph analysis features.

3. SYS/BIOS application developer (simple case). You want to analyze default information provided 
by SYS/BIOS, but do not want to add custom instrumentation code. You may be adding support for 
RTOS Analyzer to a deployed application. You should use the CPU Load, Task Load, and Execution 
Graph analysis features.

4. SYS/BIOS application developer (custom instrumentation). You want to get additional 
information about threading and the time required to perform certain threads. In addition to the CPU 
Load, Task Load, and Execution Graph analysis features, you should use the Duration and Context 
Aware Profile features.

5. SYS/BIOS application developer (custom communication). You want to use RTOS Analyzer and 
System Analyzer on a multicore platform with a setup that varies from the defaults. You may want to 
modify the transport or modify the behavior of the ServiceMgr module.

The following table shows tasks that apply to users in the previous list.

Table 3-1.  Task Roadmaps for Various Users

* A few SYS/BIOS configuration settings need to be modified and applications need to be rebuilt. Users 
who are not familiar with SYS/BIOS, should ask a SYS/BIOS application developer to make the 
configuration changes described in Section 5.1.

User 
Type

Load 
Analysis

Execution 
Analysis

Benchmarking 
Analysis

SYS/BIOS & UIA 
Configuration

SYS/BIOS
& UIA API 
Coding

Multicore 
IPC, NDK, or 
SysLink 
setup

1 Yes *

2 Yes Yes * Maybe

3 Yes Yes Yes

4 Yes Yes Yes Yes Yes Maybe

5 Yes Yes Yes Yes Yes Yes
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To learn about the tasks that apply to your needs, see the following sections:

• Load Analysis. This includes using the CPU Load and Task Load analysis features. See Section 3.2 
for a roadmap.

• Execution Analysis. This includes using the Execution Graph, Concurrency, and Task Profiler 
analysis features. See Section 3.3 for a roadmap.

• Benchmarking Analysis. This includes using the Context Aware Profile, Duration, Count Analysis, 
and Printf Logs features. The target code needs to be modified in order to perform this type of 
analysis. See Section 3.5 for a roadmap.

• SYS/BIOS and UIA Configuration. This involves editing the *.cfg configuration file for the target 
application either with a text editor or with XGCONF in CCS. See Section 5.1 for the simple setup 
and Section 5.3 for custom configuration.

• SYS/BIOS and UIA API Coding. You can add C code to your target application to provide data to 
the Context Aware Profile and Duration analysis features. You can also add code for custom 
instrumentation. See Section 5.4 for details.

• Multicore IPC, NDK, or SysLink setup. See Section 5.3.3, Configuring ti.uia.runtime.ServiceMgr, 
Section 5.3.7, Configuring ti.uia.runtime.LogSync, Section 5.3.8, Configuring IPC, and 
documentation for IPC, NDK, SysLink, etc.

3.2 Analyzing System Loading with RTOS Analyzer

You can use RTOS Analyzer to perform CPU and Task load analysis on SYS/BIOS applications.

• CPU Load is calculated on the target by SYS/BIOS and is based on the amount of time spent in the 
Idle thread. That is, the CPU Load percentage is the percent of time not spent running the Idle thread. 

• Task Load is calculated on the target based on the amount of time spent in specific Task threads and 
in the Hwi and Swi thread-type contexts.

If configured to do so, the target application periodically logs load data on the target and transports it to 
the host. This data is collected and processed by RTOS Analyzer, which can provide graph, summary, 
and detailed views of this data.
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Performing Load Analysis

Follow these steps to perform load analysis for your application. Follow the links below to see detailed 
instructions for a particular step. 

Step 1: If you have not already done so, install TI-RTOS from the CCS App Center (choose Help > CCS 
App Center). TI-RTOS contains the UIA component.

— See Section 2.1, Installing UIA as Part of TI-RTOS

Step 2: Configure your target application so that UIA logging is enabled. Using UIA’s LoggingSetup 
module as described in the first link below automatically enables logging of events related to the CPU 
and Task load. You can skip the links to more detailed information that follow if you just want to use the 
default configuration.

— First, see Section 5.1, Quickly Enabling UIA Instrumentation.

— For more details, see Section 5.2.1, Enabling and Disabling Load Logging.

— For even more details, see Section 5.3, Customizing the Configuration of UIA Modules.

Note: If you are analyzing a deployed system or are integrating a system that includes 
SYS/BIOS applications, the step above may have already been performed by the 
application developer. If so, you can skip this step.

Step 3: If the application is not already loaded and running, build, load, and run your application.

Step 4: Start a CCS Debugging session with a target configuration to match your setup.

Step 5: Capture instrumentation data using RTOS Analyzer. Note that when you start a session, you can 
choose to also send the data to a file for later analysis.

— See Section 4.2, Starting an RTOS Analyzer or System Analyzer Session.

Step 6: Analyze data using the CPU Load and/or Task Load Analyzer.

— See Section 4.10, Using the CPU Load View.

— See Section 4.11, Using the Task Load View.

See Also

• Section 4.10.3, How CPU Load Works

• Section 4.11.3, How Task Load Works

• Section 3.8, Special Features of RTOS Analyzer and System Analyzer Data Views

• To troubleshoot data loss: Section 3.6.3, If RTOS Analyzer and System Analyzer Events are Being 
Overwritten
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3.3 Analyzing the Execution Sequence with RTOS Analyzer

You can use RTOS Analyzer to perform execution sequence analysis on SYS/BIOS applications. The 
execution sequence and start/stop benchmarking events are shown in the Execution Graph.

If configured to do so, the target application periodically logs event data on the target and transports it to 
the host. This data is collected and processed by RTOS Analyzer, which can provide a graph view of this 
data.

Performing Execution Sequence Analysis

Follow these steps to perform an execution sequence analysis for your application. Follow the links below 
to see detailed instructions for a particular step. 

Step 1: If you have not already done so, install TI-RTOS from the CCS App Center (choose Help > CCS 
App Center). TI-RTOS contains the UIA component.

— See Section 2.1, Installing UIA as Part of TI-RTOS

Step 2: Configure your target application so that UIA logging is enabled. Using UIA’s LoggingSetup 
module as described in the first link for this step automatically enables logging of execution sequence 
events related to Task threads. You can enable execution sequence events for Swi and Hwi threads 
(which are off by default) as described at the second link. You can skip the links to more detailed 
information if you just want to use the default configuration.

— First, see Section 5.1, Quickly Enabling UIA Instrumentation.

— For more details, see Section 5.2.2, Enabling and Disabling Event Logging.

— For even more details, see Section 5.3, Customizing the Configuration of UIA Modules.

Note: If you are analyzing a deployed system or are integrating a system that includes 
SYS/BIOS applications, the previous step may have already been performed by the 
application developer. If so, you can skip this step.

Step 3: If the application is not already loaded and running, build, load, and run your application.

Step 4: Start a CCS Debugging session with a target configuration to match your setup.

Step 5: Capture instrumentation data using RTOS Analyzer. Note that when you start a session, you can 
choose to also send the data to a file for later analysis.

— See Section 4.2, Starting an RTOS Analyzer or System Analyzer Session.

Step 6: Analyze data using the Execution Graph.

— See Section 4.8, Using the Execution Graph.
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— If you have a multicore application, you may find the Concurrency view useful for analyzing when 
the multiple cores are used efficiently. See Section 4.9, Using the Concurrency Feature.

— If you have multiple Task threads, you may find the Task Profiler useful for determining how much 
time each Task spends in various execution states. See Section 4.13, Using the Task Profiler.

— You may also find the Count columns in the CPU Load and Task Load summary views useful for 
analyzing the execution sequence. See Section 4.10.1, Summary View for CPU Load and 
Section 4.11.1, Summary View for Task Load.

See Also

• Section 4.8.1, How the Execution Graph Works

• Section 3.8, Special Features of RTOS Analyzer and System Analyzer Data Views

• To troubleshoot data loss: Section 3.6.3, If RTOS Analyzer and System Analyzer Events are Being 
Overwritten

3.4 Performing Count Analysis with System Analyzer

You can use System Analyzer to perform count analysis on SYS/BIOS applications. For example, you 
might want to use Count Analysis to analyze how a data value from a peripheral changes over time. Or, 
you might want to find the maximum and minimum values reached by some variable or the number of 
times a variable is changed. The results are shown in the Count Analysis feature.

In order to use this feature, you will need to add code to your target to log data values for one or more 
sources. If you do this the target application transports the data to the host. This data is collected and 
processed by System Analyzer, which can provide graph, summary, and detailed views of this data.
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Performing Count Analysis

Follow these steps to perform a count analysis for your application. Follow the links below to see detailed 
instructions for a particular step. 

Step 1: If you have not already done so, install TI-RTOS from the CCS App Center (choose Help > CCS 
App Center). TI-RTOS contains the UIA component.

— See Section 2.1, Installing UIA as Part of TI-RTOS

Step 2: Configure your target application so that UIA logging is enabled. Using UIA’s LoggingSetup 
module as described in the first link for this step automatically enables logging of execution sequence 
events related to Task threads. You can enable execution sequence events for Swi and Hwi threads 
(which are off by default) as described at the second link. You can skip the links to more detailed 
information if you just want to use the default configuration.

— First, see Section 5.1, Quickly Enabling UIA Instrumentation.

— For more details, see Section 5.2.2, Enabling and Disabling Event Logging.

— For even more details, see Section 5.3, Customizing the Configuration of UIA Modules.

Note: If you are analyzing a deployed system or are integrating a system that includes 
SYS/BIOS applications, the previous step may have already been performed by the 
application developer. If so, you can skip this step.

Step 3: Add code to your target application that logs the UIAEvt_intWithKey event.

— See Section 4.16.3, How Count Analysis Works.

Step 4: Build, load, and run your application.

Step 5: Start a CCS Debugging session with a target configuration to match your setup.

Step 6: Capture instrumentation data using System Analyzer. Note that when you start a session, you 
can choose to also send the data to a file for later analysis.

— Section 4.2, Starting an RTOS Analyzer or System Analyzer Session.

Step 7: Analyze data using the Count Analysis feature.

— Section 4.16, Using the Count Analysis.

— If you want to perform statistical analysis on the primary and auxiliary data values, export records 
from the Count Analysis Detail view to a CSV file that can be opened with a spreadsheet. To do 
this, right-click on the view and choose Data > Export All. 

See Also

• Section 3.8, Special Features of RTOS Analyzer and System Analyzer Data Views

• To troubleshoot data loss: Section 3.6.3, If RTOS Analyzer and System Analyzer Events are Being 
Overwritten
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3.5 Benchmarking with System Analyzer

You can use System Analyzer to perform benchmarking analysis on SYS/BIOS applications. The results 
are shown in the Duration and Context Aware Profile features.

• Duration Benchmarking. Use this type of benchmarking if you want to know the absolute amount 
of time spent between two points in program execution.

• Context Aware Profiling. Use this type of benchmarking if you want to be able to measure time 
spent in a specific thread’s context vs. time spent in threads that preempt or are yielded to by this 
thread.

• Printf Logs. Use this type of debugging if you want to send messages about the execution state to 
CCS.

In order to use these features, you will need to add code to your target to start and stop the benchmarking 
timer. If you do this the target application transports the data to the host. This data is collected and 
processed by System Analyzer, which can provide graph, summary, and detailed views of this data.

Performing Benchmarking Analysis

Follow these steps to perform a benchmarking analysis for your application. Follow the links below to see 
detailed instructions for a particular step. 

Step 1: If you have not already done so, install TI-RTOS from the CCS App Center (choose Help > CCS 
App Center). TI-RTOS contains the UIA component.

— See Section 2.1, Installing UIA as Part of TI-RTOS

Step 2: Configure your target application so that UIA logging is enabled. Using UIA’s LoggingSetup 
module as described in the first link for this step automatically enables logging of execution sequence 
events related to Task threads. You can enable execution sequence events for Swi and Hwi threads 
(which are off by default) as described at the second link. You can skip the links to more detailed 
information if you just want to use the default configuration.

— First, see Section 5.1, Quickly Enabling UIA Instrumentation.

— For more details, see Section 5.2.2, Enabling and Disabling Event Logging.

— For even more details, see Section 5.3, Customizing the Configuration of UIA Modules.
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Note: If you are analyzing a deployed system or are integrating a system that includes 
SYS/BIOS applications, the previous step may have already been performed by the 
application developer. If so, you can skip this step.

Step 3: Add benchmarking code to your target application.

— For duration benchmarking, see Section 4.14.3, How Duration Analysis Works.

— For context aware profiling, see Section 4.15.2, How Context Aware Profiling Works.

— For printf logs, see Section 4.12, Using the Printf Logs.

Step 4: Build, load, and run your application.

Step 5: Start a CCS Debugging session with a target configuration to match your setup.

Step 6: Capture instrumentation data using System Analyzer. Note that when you start a session, you 
can choose to also send the data to a file for later analysis.

— Section 4.2, Starting an RTOS Analyzer or System Analyzer Session.

Step 7: Analyze data using the appropriate features.

— Section 4.14, Using the Duration Feature.

— Section 4.15, Using Context Aware Profile

— Section 4.12, Using the Printf Logs

See Also

• Section 3.8, Special Features of RTOS Analyzer and System Analyzer Data Views

• To troubleshoot data loss: Section 3.6.3, If RTOS Analyzer and System Analyzer Events are Being 
Overwritten

3.6 Troubleshooting RTOS Analyzer and System Analyzer Connections

The following sections describe issues that might occur as you use RTOS Analyzer and System Analyzer 
with UIA.

3.6.1 If You Cannot Connect to the Target with Ethernet Transport

If you are using LoggerRunMode with the Ethernet transport and cannot connect to the target, check the 
following items:

• Verify that the UIA configuration specifies the correct transports.

• Verify that the configuration code for the target application includes the ti.uia.services.Rta module. 
You can use the Tools > RTOS Object View (ROV) menu command in a CCS debugging session 
to confirm this.

• Verify that the correct transport functions were selected. You can do this by looking at the 
ti.uia.sysbios.Adaptor (or IpcMP) transport functions.
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3.6.2 If No Events are Shown in RTOS Analyzer and System Analyzer Features

If you can connect to the target, but no events are shown in the Session or File Log view, check the 
following items:

• Confirm that the target application is using ti.uia.sysbios.LoggingSetup or one of the UIA loggers.

• Confirm that events are being logged. You can check this by using the RTOS Object View (ROV) tool 
to look at the Logger module used by your application. The "serial" field should be non-zero and 
increasing.

• If the application is using LoggerRunMode with the Ethernet transport, confirm that the UIA task is 
not being starved. You can check this by using the ROV tool to look at the ti.uia.runtime.ServiceMgr 
module. The "runCount" in the Proxy tab should be incrementing.

• Confirm that you’ve enabled logging by setting the common$.Diags mask accordingly in your 
configuration file. See Section 5.2.2. Note: If you used ti.uia.sysbios.LoggingSetup in your 
application's configuration, the Diags masks should have been configured automatically.

3.6.3 If RTOS Analyzer and System Analyzer Events are Being Overwritten

If you can connect to the target and events are shown in the Session or File Log view, events may still 
be overwritten. The status bars in RTOS Analyzer and System Analyzer views tell how many records are 
shown and how many gaps occurred.

To prevent events from being overwritten, try one or more of the following:

• Increase the logger buffer size.

• Increase the frequency of Rta by lowering its period. The minimum is 100ms.

• Reduce the number of logged events.

• If this is a multicore application, increase the number of event packets on the non-master processors. 
This allows UIA to move the records off in a faster manner. For example:

    ServiceMgr.numEventPacketBufs = 4;

3.6.4 If RTOS Analyzer and System Analyzer Packets are Being Dropped

If UIA packets are being dropped, examine your configuration of IPC, NDK, or other communications 
software.

3.6.5 If Events Stop Being Shown Near the Beginning

For a multicore system, check the status message at the bottom of the Session or File Log View. If the 
message says "Waiting UIA SyncPoint data", it is possible that the critical SyncPoint events were 
dropped in transport. Try using the Stop and Run commands.

3.6.6 If Data is Not Correlated for Multicore System

The following situations can cause correlation (out-of-sequence) errors:

• The clock setting is not correct. Each core has clock settings (local and global) that are used to 
convert from local to global time. If any setting is incorrect, the global time conversion will be off and 
will affect the system-level correlation. Check the clock settings on the target side.
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• SyncPoint is not logged properly. For a multicore platform, there must be a common global timer 
that each core can reference. If there is no global timer available or it is not configured properly, the 
converted global time in each core may not be correct. Also, since most global timers have a lower 
clock frequency, time precision may be lost with respect to the core’s local timer. Check the SyncPoint 
events reported at the beginning of the log.

• Transport delay. Under certain conditions, some logs may be transported to the host computer with 
a huge delay. In this case, some old data may be received after newer data has been reported. Check 
the transport, especially when using UDP. If the transport is not reliable for a live data stream, specify 
a binary file to contain the live data. After the data has been captured, open the binary file to analyze 
the results.

3.6.7 If the Time Value is Too Large

If the Time value shown in the logs is much larger than you expect, you should power-cycle the target 
board or perform a system reset before testing the application.

3.7 Creating Sample RTOS Analyzer and System Analyzer Projects

System Analyzer provides examples that you can import as CCS project from the TI Resource Explorer. 
These examples have UIA enabled, so that you can use them with RTOS Analyzer.

To import an example, follow these steps:

1. Open CCS. If you do not see the TI 
Resource Explorer area, make sure you are 
in the CCS Edit perspective and choose 
View > TI Resource Explorer.

2. Type part of the name of your device in the 
"enter search keyword" field to hide all the 
examples that don’t apply to your device.

3. Expand the TI-RTOS item until you see the 
Instrumentation Examples for your device. 
For example, if you type "6672" in the search 
field, you can expand the tree to see a list of 
examples similar to the one shown here.

Not all devices have instrumentation (UIA) 
examples. If there is no instrumentation 
example for your device, you can use a 
kernel (SYS/BIOS) example and modify the 
example by enabling UIA’s LoggingSetup 
module as described in Section 5.1, Quickly 
Enabling UIA Instrumentation. 

4. Select the example you want to create. A description of the selected example is shown to the right 
of the example list.
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5. Click the Step 1 link in the right pane of the TI Resource Explorer to Import the example project 
into CCS. This adds a new project to your Project Explorer view. Once you have completed a step 
for a particular example and device, a green checkmark is shown next to that step.

6. For some examples, you see a RTSC Configuration Settings dialog because the board is not defined 
for the example. Click the Platform field. A message says platforms are being loaded. Then, click 
again on the Platform field and select your board from the list as shown in the following figure. If your 
board is not shown, choose the closest option or a generic board. Then click Finish.

7. The project created will have a name with the format <example_name>_<device>. You can expand 
the project to view or change the source code and configuration file.

8. The page shown when you select an example in the TI Resource Explorer provides additional links 
to perform common actions with that example.

9. Use the Step 2 link when you are ready to build the project. If you want to change any build options, 
right click on the project and select Properties from the context menu. For example, you can change 
compiler, linker, and RTSC (XDCtools) options.

10. Use the Step 3 link to change the connection used to communicate with the board. The current 
setting is shown in the TI Resource Explorer page for the selected example.
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11. Use the Step 4 link to launch a debug session for the project and switch to the CCS Debug 
Perspective.

See the sections that follow for any specific notes about settings or changes you need to make to the 
project files before building, loading, and running it.

3.7.1 Notes for EVM6472 MessageQ Project Templates

In the TI Resource Explorer, select the "evm6472: MessageQ" template. This example shows how to use 
IPC's MessageQ module with UIA. The same image must be loaded on all cores.

The RTSC Configuration Settings page automatically has the correct RTSC Target, Platform, and Build-
Profile set.

After creating the project, examine the message.c and message.cfg files. 

In the message.c file, notice the two calls to Log_write2() in tsk0_func(), which runs only on CORE0. The 
calls to Log_write2() pass event types of UIABenchmark_start and UIABenchmark_stop. These are used 
to bracket the code that uses MessageQ to send and receive a message from a remote processor.

In the message.cfg file, notice that the LoggingSetup module is configured to use the 
LoggerType_RUNMODE mode. This mode uses Ethernet as the default transport to move Log records 
to CCS via the UIA ServiceMgr framework. This example configures the ServiceMgr module to use a 
multicore topology. All the cores route their data to the ServiceMgr module running on Linux. The 
configuration also contains a section that configures the NDK, which is used by the Ethernet transport.

UIA ships pre-built EVM6472 Ethernet drivers. The libraries are in the 
<uia_install>\packages\ti\uia\examples\evm6472\ndkdrivers directory. These libraries were copied out of 
the PDK_1_00_00_05 package. This was done to make building the examples easier.

Within the configuration file of EVM6472 example, the following line gets the pre-built Ethernet libraries 
and includes them in the build. If you have an updated PDK, simply remove this statement and add the 
libraries into the project (or follow the instructions with the PDK).

var ndkdrivers = xdc.loadPackage('ti.uia.examples.evm6472.ndkdrivers');

Note that the NDK currently supports only the COFF format.
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You can use the following RTOS Analyzer and System Analyzer analysis features when running this 
example: CPU Load, Task Load, Execution Graph, Duration, and Context Aware Profile.

3.7.2 Notes for Single-Core Stairstep Project Templates

In the TI Resource Explorer, choose a single-core "Stairstep" template for your device. These examples 
use Hwi, Swi, and Task threads run to add to the CPU load of the system. This example periodically 
generates log events. 

Each of the examples uses a different transport mode. These modes are configured by setting the 
LoggingSetup.loggerType parameter.

The following list provides notes that apply to specific versions of this example:

• Stairstep Ethernet. This template is configured for use on the EVM6472 with NDK. Within the 
configuration file, the following line gets the pre-built Ethernet libraries and includes them in the build. 
If you have an updated PDK or are using a different device, simply remove this statement and add 
the libraries into the project (or follow the instructions with the PDK). See Section 3.7.1 for more about 
using the NDK with an application for the EVM6472.

    var ndkdrivers = xdc.loadPackage('ti.uia.examples.evm6472.ndkdrivers');

• Stairstep JTAG RunMode. This mode is only supported on CPUs that support real-time JTAG 
access. This support is provided on the C64x+ and C66x CPUs. When the 
LoggerType_JTAGRUNMODE is used, the UIA ServiceMgr framework and NDK are not used. 

• Stairstep JTAG StopMode. The JTAG StopMode template is not-platform specific. This template 
does not use the UIA ServiceMgr framework or the NDK.

In the Stairstep example, the cpuLoadInit() function gets the CPU frequency and fills arrays with load 
values corresponding to 0, 25, 50, 75, and 95 percent CPU loads. The timerFunc() function is a Hwi 
thread that runs every 100ms to launch a Hwi, Swi, and Task thread. Each thread then performs a 
doLoad() function before relinquishing the CPU. After staying at each load setting for 5 seconds, 
timerFunc() calls the step() function to advance to the next set of Hwi, Swi, and Task load values. The 
cycle repeats after reaching the 95 percent load.

You can use the following RTOS Analyzer analysis features when running these examples: CPU Load, 
Task Load, and Execution Graph.

3.8 Special Features of RTOS Analyzer and System Analyzer Data Views

RTOS Analyzer and System Analyzer provide three types of data views for working with collected data. 
Each type of data view has some power features you can use to navigate, analyze, and find points of 
interest. The sections that follow provide help on using the special features of these data views.

•  Table Views are used to display data in a table. Table views are used for Summary and Detail 
views in RTOS Analyzer and System Analyzer.

•  Line Graphs are used for x/y plotting, mainly for viewing changes of a variable against time. 
RTOS Analyzer and System Analyzer use line graphs for all graphs except the Execution Graph and 
Concurrency Graph.

•  DVT Graphs depict state transitions and events against time. Groups of related states form a 
timeline for a core or thread. Different types of data are assigned different colors. RTOS Analyzer 
uses this graph type for the Execution Graph.
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Special features provided for these view types are as follows:

•  Views drop-down lets you open additional views of this data. For example, you can open the 
Summary or Detail view from a Graph view.

•  Groups and Synchronous Scrolling causes several views to scroll so that data from the same 
time is shown. See Section 3.8.4.

•  Measurement Markers (graphs only) measure distances in a graph. See Section 3.8.2.

•  Bookmarks highlight certain rows and provide ways to quickly jump to marked rows. See Section 
3.8.3.

•  Zoom (graphs only) adjusts the scaling of the graph. See Section 3.8.1.

•  Auto Fit (tables only) adjusts table column widths to display complete values.

•  Find lets you search this view using a field value or expression. See Section 3.8.5.

•  Filter lets you display only data that matches a pattern you specify using the Set Filter 
Expression dialog. See Section 3.8.6.

•  Scroll Lock controls scrolling due to updates. See Section 3.8.8.

•  Column Settings lets you control which columns are displayed and how they are shown. See 
Section 3.8.9.

•  Tree Mode toggles between flat and tree mode on y-axis labels in the Execution Graph. See 
Section 4.8.

• Data > Export (in the right-click menu) sends selected data to a CSV file. See Section 3.8.7.

Also see page 4–51 and page 4–62 for additional descriptions of toolbar icons, including those shown 
only in the Session or File Log view.

3.8.1 Zoom (Graphs Only)

Zooming is only available in graph views. You can zoom in or out on both the x- and y-axis in line graphs. 
For DVT graphs (like the Execution Graph), you can only zoom on the x-axis.

You can zoom using any of these methods:

Using the Mouse

• Hold down the Alt key and drag the mouse to select an area on the graph to expand.

• Drag the mouse to the left or below the graph where the axis units are shown (without holding the Alt 
key) to select a range to expand.

• Click on the x-axis legend area below the graph and use your mouse scroll wheel to zoom in or out.

Using the Keyboard

• Press Ctrl + to zoom in.

• Press Ctrl - to zoom out.
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Using the Toolbar

•  The Zoom In toolbar icon increases the graph resolution to provide more detail. It uses the zoom 
direction and zoom factor set in the drop-down.

•  The Zoom Out toolbar icon decreases the graph resolution to provide more detail. It uses the 
zoom direction and zoom factor set in the drop-down.

•  The Reset Zoom toolbar icons resets the zoom level of the graph to the original zoom factor.

•  The Select Zoom Options drop-down next to the Reset Zoom icon lets you select the zoom 
factor and directions of the zoom for a line graph. By default, zooming affects both the x- and y-axis 
and zooms by a factor of 2. You can choose options in this drop-down to apply zooming to only one 
axis or to zoom by factors of 4, 5, or 10.

Note: When you use the keyboard, scroll-wheel, or toolbar icons for zooming, the cursor 
position is used as the center for zooming. If there is no current cursor position, the 
center of the graph is used. To set a cursor position, click on the point of interest on the 
graph area. This places a red line or cross-hair on the graph, which is used for zooming.

3.8.2 Measurement Markers (Graphs Only)

Use the  Measurement Marker Mode toolbar icon to add a measurement marker line to a view. A 
measurement marker line identifies the data value at a location and allows you to measure the distance 
between multiple locations on a graph.

Click the icon to switch to Measurement mode. Then, you see marker lines as you move the mouse 
around the graph. You can click on the graph to add a marker at that position. You stay in the "add marker" 
mode until you add a marker or click the Measurement Marker icon again.

The legend area above the graph shows the X and Y values of markers. Right-click inside the graph to 
enable or disable the Legend from the shortcut menu.

If you create multiple measurement markers, the legend also shows the distance (or delta) between 
consecutive data points. For example, as:

X2-X1 = 792  Y1-Y2 = 2.4

To add a marker, move the mouse to a graph location, right-click and select Insert Measurement Mark.

To move a marker to a different location on the graph, hold down the Shift key and drag a marker to a 
new location.

To remove a marker from the view, right-click on the graph, select Remove Measurement Mark and click 
on an individual marker. Or, double-click on a measurement marker to remove it. To remove all the 
markers, right-click on the graph and select Remove All Measurement Marks.

The drop-down menu to the right of the Measurement Marker icon allows you to select marker modes:

• Freeform is the default mode, which lets you add a marker line at any point on the view.

• Snap to Data forces you to add markers only at data points. When you move the mouse over the 
graph in this mode, you see circles on the four closest data points and a dot on the closest data point. 
Click on the graph to add a marker at the closest data point.

• X-axis/Y-axis/Both determines whether placing a marker adds lines that intersect the x-axis, the y-
axis, or both axes.
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3.8.3 Bookmarks

Use the  Bookmarks toolbar icon to create a bookmark on any data point of a graph or table. The 
bookmark will be displayed as a vertical red dashed line in a graph or a row with a red background in a 
table. 

You can use the drop-down next to the  icon to jump to a previously created bookmark. Each bookmark 
is automatically assigned an ID string. A bookmarks applies only to the view in which you created it.

Choose Manage the Bookmarks from the drop-down list to open a dialog that lets you rename or delete 
bookmarks.

3.8.4 Groups and Synchronous Scrolling

You can group data views together based on common data such as time values. Grouped views are 
scrolled synchronously to let you easily navigate to interesting points. For example, if you group the CPU 
load graph with the Session or File Log view, then if you click on the CPU Load graph, the Session or File 
Log view displays the closest record to where you clicked in the graph.

To enable grouping, toggle on the  View with Group icon on the toolbar. Then, simply move the 
cursor in a grouped table or on a graph as you normally would.

For graphs, the x-axis is used for the common reference value. For tables you can define the reference 
column. Also, you can use the drop-down to define multiple view groups.

In graphs you can use the  Align Horizontal Center and Align Horizontal Range icons to 
determine whether this view should be grouped according to the center value currently displayed on the 
x-axis or the full range of values displayed on the x-axis.
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3.8.5 Find

Click  to open a dialog that lets you locate a record containing a particular string in one of the fields 
or a record whose fields satisfy a particular expression. Clicking Find repeatedly moves you through the 
data to each instance of the desired value or string.

The Use Field tab is best for simple searches that compare a field value using common operators such 
as ==, <, != etc. Follow these steps in the Use Field tab:

1. Click the  Find icon in the toolbar.

2. Select the Use Field tab.

3. Select a field name from the left drop-down list. This list shows all the data columns used in the detail 
view for this analysis feature.

4. Select an operation from the middle drop-down list. The operators depend on the datatype for the 
field you selected.

5. Type a field value for the comparison in the text box. 

6. [Optional] Check the Use Bits Mask (hex) box and specify a hexadecimal bit mask in the adjacent 
field if you want to exclude a portion of a value from consideration.

7. [Optional] Check the Case Sensitive box if you want a case-sensitive search.

8. [Optional] Check the Wrap Search box if you want to continue searching from the top of the table 
once the end is reached.

9. [Optional] Select a Direction option for the search.

10. Click Find to start the search.
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The Use Expression tab lets you enter a regular expression for pattern matching and lets you combine 
expressions with Boolean operators. Follow these steps in the Use Expression tab:

1. Click the  Find icon in the toolbar.

2. Select the Use Expression tab.

3. Create a regular expression within the Expression text box. Visit the link for info on creating 
expressions used to find data. You can type a regular expression directly or use the Expression 
Helper to assemble the expression. To use the Expression Helper, follow these sub-steps:

— Select a field name from the left drop-down list. This list shows all data columns used in the detail 
view for this analysis feature.

— Select an operation from the middle drop-down list. The operators depend on the datatype for 
the field you selected.

— Type a field value for the comparison in the text box. 

— [Optional] Check the Use Bits Mask (hex) box and specify a hexadecimal bit mask in the 
adjacent field if you want to exclude a portion of a value from consideration.

— [Optional] Check the Case Sensitive box if you want a case-sensitive search.

— Click And or Or to create the regular expression and add it to the existing statement in the 
Expression text box.

4. [Optional] Check the Wrap Search box if you want to continue searching from the top of the table 
once the end is reached.

5. [Optional] Select a Direction option for the search.

6. Click Find to start the search.

To clear the drop-down list of previously searched items in the Expression field, click Clear History.

Information about regular expression syntax is widely available on the web.
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3.8.6 Filter

Click  to open a dialog that filter the view to display only records that contain a particular string in one 
of the fields or records whose fields satisfy a particular expression. 

The Use Field tab is best for simple filters that compare a field value using common operators such as 
==, <, != etc. Follow these steps in the Use Field tab:

1. Click the  Filter icon in the toolbar.

2. Select the Use Field tab.

3. Select a field name from the left drop-down list. This list shows all the data columns used in the detail 
view for this analysis feature.

4. Select an operation from the middle drop-down list. The operators depend on the datatype for the 
field you selected.

5. Type a field value for the comparison in the text box. 

6. [Optional] Check the Use Bits Mask (hex) box and specify a hexadecimal bit mask in the adjacent 
field if you want to exclude a portion of a value from consideration.

7. [Optional] Check the Case Sensitive box if you want a case-sensitive filter.

8. Click Filter to limit the records or data points displayed.
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The Use Expression tab lets you enter a regular expression for pattern matching and lets you combine 
expressions with Boolean operators. Follow these steps in the Use Expression tab:

1. Click the  Filter icon in the toolbar.

2. Select the Use Expression tab.

3. Create a regular expression within the Expression text box. Visit the link for info on creating 
expressions used to filter data. You can type a regular expression directly or use the Expression 
Helper to assemble the expression. To use the Expression Helper, follow these sub-steps:

— Select a field name from the left drop-down list. This list shows all data columns used in the detail 
view for this analysis feature.

— Select an operation from the middle drop-down list. The operators depend on the datatype for 
the field you selected.

— Type a field value for the comparison in the text box. 

— [Optional] Check the Use Bits Mask (hex) box and specify a hexadecimal bit mask in the 
adjacent field if you want to exclude a portion of a value from consideration.

— [Optional] Check the Case Sensitive box if you want a case-sensitive search.

— Click And or Or to create the regular expression and add it to the existing statement in the 
Expression text box.

4. Click Filter to limit the records or data points displayed.

To clear the drop-down list of previously searched items in the Expression field, click Clear History.

Information about regular expression syntax is widely available on the web.
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3.8.7 Export

You can save data in a table or graph view to an external file by using the Data > Export commands. All 
columns contained in the table (not just the displayed columns) and the displayed graph numbers are 
placed into a comma-separated value file format (*.csv filename extension). 

Numeric values are stored in the CSV format using a general format. You can use spreadsheet software 
such as Microsoft Excel to perform additional computations or create annotated charts from the exported 
information.

To export data to an external CSV file:

1. Select a table or a graph view.

2. If you want to export only some rows from a table view, hold down the Shift key and select a range 
of rows or hold down the Ctrl key while selecting multiple rows.

3. Right-click on the table or graph and select Data > Export All or Data > Export Selected from the 
right-click menu.

4. In the Save As dialog, browse for the location where you want to save the file and type a filename. 
Click Save.

5. Open the file you created using a spreadsheet or other software program. Alternately, you can later 
reopen the CSV file in an RTOS Analyzer or System Analyzer session as described in Section 4.6.1.

3.8.8 Cursor and Scroll Lock

Data views scroll to the end whenever new data is received. If you click on a point in a graph or table 
while data is updating, automatic scrolling is stopped, even though data is still being added at to the end.

To continue scrolling to the end automatically, toggle off the  Scroll Lock button on the toolbar.

Note that if you have enabled grouping (the  icon is toggled on), the scroll lock icon does not lock the 
scrolling of grouped views.

Use the  Freeze Update command in the right-click menu to freeze the data updates and automatic 
refreshing completely.

3.8.9 Column Settings and Display Properties

Right-click on an RTOS Analyzer or System Analyzer table view and choose Column Settings. You can 
choose which columns to make visible in the table by checking boxes for those fields. For most views, 
you can choose how each column should be formatted (for example, as binary, decimal, hex, or time), 
how to justify (align) the column, the font for the column, and whether to display a vertical bar 
corresponding to the size of the value. 

Right-click on an RTOS Analyzer or System Analyzer graph view and choose Display Properties. You 
can choose which channels (rows or data sets) to make visible in the table by checking boxes for those 
fields. For most views, you can choose whether each channel is visible and expanded. You can also 
change other aspects of how the graph is displayed. 
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Chapter 4

Using RTOS Analyzer and System Analyzer

This chapter describes the host-side analysis features provided in Code Composer Studio for examining 
instrumentation data sent to the host.
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4.1 Overview of RTOS Analyzer and System Analyzer Features

The Tools > RTOS Analyzer and Tools > System Analyzer menus in CCS provide a number of analysis 
features you can use when debugging your UIA-enabled application. You can view CPU and thread 
loads, the execution sequence, thread durations, context profiling, and more. The features include 
graphs, detailed logs, and summary logs.

You can use these features at run-time and can also record the run-time data for later analysis.

• Run-time analysis. Real-time data analysis can be performed without the need to halt the target 
program. This ensures that actual program behavior can be observed, since halting multiple cores 
can result in threading that differs from real-time behavior.

• Recording and playback of data. You can record real-time data and later reload the data to further 
analyze the activity. RTOS Analyzer and System Analyzer lets you record and playback using both 
CSV and binary files.

This chapter describes how to start data collection and analysis. It also describes how to use specific 
RTOS Analyzer and System Analyzer features.

To gather data, you need an instrumented application running on the target(s). If you have not done so 
already, enable UIA logging by configuring the application as described in Section 5.1, Quickly Enabling 
UIA Instrumentation. Once you have enabled UIA logging, SYS/BIOS applications provide UIA data to 
the RTOS Analyzer and System Analyzer features in CCS.
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4.2 Starting an RTOS Analyzer or System Analyzer Session

To gather live data, you need an instrumented application running on the target(s). If it has not already 
been done, enable UIA logging by configuring the application as described in Section 5.1, Quickly 
Enabling UIA Instrumentation. Once you have enabled UIA logging, SYS/BIOS applications provide UIA 
data to the RTOS Analyzer and System Analyzer features in CCS.

You may want to create a CCS target configuration and make it the default. This enables System 
Analyzer to auto-configure your session. (Alternatively, you can create a UIA configuration and save it to 
a file as described in Section 4.5. If you use a configuration from a file, you do not need to be running a 
CCS debugging session, because System Analyzer data is collected via Ethernet transports rather than 
streaming JTAG.)

To start a live RTOS Analyzer or System Analyzer session, follow these steps:

1. Load your UIA-enabled application in CCS and move to CCS Debug mode.

2. Choose a command from the Tools > RTOS Analyzer or Tools > System Analyzer menu. The 
items in the RTOS Analyzer menu generally do not require any changes to your application beyond 
enabling UIA. The items in the System Analyzer menu do require code changes in order to perform 
the additional logging needed for these types of analysis.

3. You will see the Analysis Configuration dialog. The default Analysis Feature for the command you 
select will be checked. The commands available are as follows:

Table 4–1.  Analyzer Menu Commands and View Names

RTOS Analyzer Menu Command View Name See Section

Execution Analysis Execution Graph Section 4.8

Load Analysis CPU Load and 

Task Load

Section 4.10 and

Section 4.11

Printf and Error Logs Printf Logs Section 4.12

Task Profiler Task Profiler Section 4.13

-- Concurrency Section 4.9

System Analyzer Menu Command View Name See Section

Duration Analysis Duration Section 4.14

Function Profiler Context Aware Profile Section 4.15

Statistical Analysis Count Analysis Section 4.16
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4. The top section of the dialog shows the core and application running in the current debug session. 
By default, this information is automatically discovered using the current CCS target configuration, 
the *.out file that is currently loaded, and auto-detected IP addresses. 

You are prompted for any settings that can’t be determine from the loaded application and target 
configuration. The dialog can get port information faster if you leave the application running when 
starting an analysis feature. If the application is halted at a breakpoint or paused, it may take about 
30 seconds to get the list of ports.

— Cores: The auto-detected target cores or cores defined in the UIA configuration file are listed in 
this column. If this is a multicore device and multiple cores are running in the debugger, there are 
multiple rows.

— Instrumented: If this application has UIA’s LoggingSetup module enabled, this column says 
"yes".

— Application: This column shows the filename for the *.out file being run on this core.

— Timestamp Freq. (MHz): This column shows the frequency of the timer used for generating 
timestamps. In the configuration, UIA uses BIOS.getTimestampFreqMeta() to get this value. 
SYS/BIOS gets the Timestamp frequency from the xdc.runtime.Timestamp delegate.

— Cycles per tick: This column shows the number of CPU cycles per Timestamp timer’s tick.

— Transport: This column shows the transport specified by the application’s *.cfg configuration file. 
The options are listed in Table 1–1.

5. If you want to change any of the detected settings, check the Custom UIA Configuration file box. 
You can click "..." to browse for an existing UIA configuration (a *.usmxml file) or click Create UIA 
Config File to create a new configuration file. See Section 4.5 to learn about creating UIA 
Configuration files.

6. If the transport selected can be configured, you can expand the Transport Settings area to set the 
appropriate value.
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— IP Address: If the Transport is TCPIP, USB, or UDP, the IP address of the target board is 
autodetected and shown here. You can type a different value if the value shown is incorrect.

— Port Name: If the Transport is UART, you can select a port or click Configure Port to specify a 
port name. If you check the Settings box in the Port Name dialog, you can also configure the 
speed, data bits, parity, and stop bits. The value placed in the Port Name field after you configure 
the port contains speed, bit, and parity information. For example: COM10:115200/8N1 is the 
resulting Port Name from the following settings.

7. The Analysis Settings section of the dialog lets you select which views of the data to open and 
analyze. A different analysis feature is selected depending on which menu command you used to 
open this dialog.

— Analysis Feature: Choose features you want to open. See Section 4.3 for a list of features and 
links to details. (You can open additional analysis features from the  Analyze drop-down 
after starting a session.) When you check a box, the Instrumentation Status column shows 
whether the application is instrumented to provide this data.
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— Which Cores: For multicore devices, you can choose whether to display events from ALL cores 
or a single core. The drop-down list shows the core names in your current UIA configuration 
along with core names for any active CCS target configuration for a debugging session. For the 
Context Aware Profile and Task Load features, a specific core name is required (not ALL), and 
you can select or type the name.

— Which Views to Open: Click "..." to choose the view types you want to open. You can later open 
more views, but these checkboxes provide an easy way to open several views.

— Instrumentation Status: Shows "good" if the application contains the correct settings to provide 
this data. If this column shows "inadequate", click the link for hints on modifying the application.

— Tips: Click the link for a brief description of the view.

8. The Data Collection section of the dialog lets you specify how the data will be collected and stored.

— Limit data collection time: Check this box and type the number of seconds to collect data. This 
time is measured on the host unless you check the Transport Data only after collection box. 
Leave this box unchecked if you want to collect data until you pause or stop the data collection 
or halt the application.

— Set max size of binary data to collect: Check this box and type the maximum number of 
megabytes of data to collect before halting the collection.

— Save collected binary data to folder: By default, data is shown in the Session or File Log view  
and is saved to binary files in a folder called systemAnalyzerData in your CCS workspace. Later, 
you can reopen the saved data to analyze it further. You can browse to select a different location. 
If you do not want to save the data, uncheck the box next to this item. If you choose a location 
that contains records from a previous run, the records will be cleared at the start of the run.

— Transport Data only after collection: (Ethernet only) Check this box if you want to get event 
data from the target only after the collection time expires. That is, the target will run for the 
specified time without transferring data; the target restarts the transfer at the end of the time. 
Using this option reduces the intrusiveness of the transport while data is being collected. 
However the amount of data that can be collected is limited to the log buffer size. This option is 
supported only if you use the LoggerType_RUNMODE mode for the LoggingSetup.loggerType 
property and the Ethernet transport and your target supports control messages.

— Clear logger buffers on target before starting collection: (Non-JTAG only) Check this box if 
you want to erase any log records stored in the log buffers on the target when data collection 
starts.

Note: If you let RTOS Analyzer or System Analyzer collect events for a significant amount of 
time (or even for a short period of time if the data rate is very high), your system 
resources will get used up resulting in slow performance.
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Note: Depending on the data rate, multicore event correlation may not work well when 
viewing live data. If events seem out of order, save the data, then open the binary data 
for later processing to improve the event correlation.

Note: Multicore event correlation for events uploaded via JTAG transports is unsupported.

9. A Warnings/Error section is shown if there are problems with your configuration.

10. The buttons at the bottom of the dialog allow you to perform several actions:

11. Click Start to connect to the target and show a Live Session detail view and the other views you 
selected. See Section 4.7 for information about using the Session view.

If you start a new live session when a live session is already running, the current session is closed so the 
new session can be opened. You can run only one live session or binary file session at a time. (You can 
have multiple CSV files open along with a single live session or binary file.)

If you want to save instrumentation data to a CSV file (instead of a binary file), right-click on the Session 
or File Log view and choose Data > Export All. For information about using binary and CSV files that 
store instrumentation data, see Section 4.6, Opening CSV and Binary Files Containing Analyzer Data.

For other ways to open analysis features and views, see Section 4.3.1 through Section 4.3.2.

4.3 RTOS Analyzer and System Analyzer Features and Views

RTOS Analyzer provides the following features:

• Execution Graph. Shows threads on the target(s). See Section 4.8.

• Concurrency. Shows how many cores are active at once and when. See Section 4.9.

• CPU Load. Shows the SYS/BIOS load data collected for all cores in the system. See Section 4.10.

• Task Load. Shows the CPU load data measured within a SYS/BIOS Task thread. See Section 4.11.

• Printf Logs. Shows messages sent via Log_printf() calls. See Section 4.12.

• Task Profiler. Shows percent of time tasks spend in each execution state. See Section 4.13.

Get help
Return to default
dialog settings Save configuration 

to a file
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System Analyzer provides the following features:

• Duration. Calculates the total duration between pairs of execution points. See Section 4.14.

• Context Aware Profile. Calculates duration with awareness of interruptions by other threads and 
functions. See Section 4.15.

• Count Analysis. Tracks values on the target. See Section 4.16.

The Execution Graph, Concurrency, CPU Load, Task Load, and Printf Logs features display information 
automatically provided by SYS/BIOS. The Task Profiler, Duration, Context Aware Profile, and Count 
Analysis features display data only if you have modified target code to instrument the required events.

There are several ways to view most analysis features. For example: a summary table, detail table, and 
a graph. The following table shows the types of views available for each feature:

Table 4–2.  Views Available for Various Analysis Features

Feature Detail View Graph View Summary View

Execution Graph No Yes (default) No

Concurrency No Yes (default) Yes

CPU Load Yes Yes (default) Yes

Task Load Yes Yes (default) Yes

Printf Logs No No Yes (default)

Task Profiler No No Yes (default)

Duration Yes Yes Yes (default)

Context Aware Profile Yes No Yes (default)

Count Analysis Yes Yes Yes (default)

Raw Logs Yes (default) No No
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4.3.1 More Ways to Open Analysis Features

In addition to opening analysis features with the Tools > RTOS Analyzer and Tools > System Analyzer  
menus (Section 4.2), you can also use the following methods: 

• In a Session or File Log view, click the  Analyze drop-down and select an analysis feature to 
open its default view.

• Right-click on the Session or File Log view. From the context menu, choose Analyze and then an 
analysis feature.
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If you open an analysis feature for a multicore target, you are prompted to choose whether to display 
events from ALL cores or a single core. You are not prompted to specify the core if only one of the cores 
is instrumented. You can type the name of a core in this field. The drop-down list shows the core names 
in your currently selected UIA configuration file along with core names for any active CCS target 
configuration for a debugging session.

When you choose to open the Count Analysis feature, you are also asked whether you want to plot the 
graph vs. the time or a sample sequence number. See Section 4.16.

4.3.2 More Ways to Open Views

To open views other that the default view for an analysis feature that you have already started, do any of 
the following:

• In an analyzer view, click the  Views drop-down list and select any view for that analysis 
feature.

• Right-click on an analysis view and choose another view for that analysis feature. For example, in 
the CPU Load graph, you can right-click and choose CPU Load views > Summary.

You can synchronize the scrolling and cursor placement in views for the same session by clicking  
View with Group icon in the toolbars of the views you want to synchronize.
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4.4 Managing an RTOS Analyzer or System Analyzer Session

You can manage RTOS Analyzer and System Analyzer sessions—including live sessions and binary 
files—with commands in the Session or File Log view toolbar and right-click menu. The commands in the 
following lists apply to the current state of the session.

For descriptions of toolbar icons that control the view display rather than the session behavior, see page 
3–32 and page 4–62.

Icons for the following commands are provided in the toolbar of the Session or File Log view:

•  Run connects to the target(s) using the UIA configuration during a live session.  Stop 
disconnects from the target. If you are using a binary file, the Run command reruns the file. Data is 
cleared from the views when you use the Run command. (Live and binary sessions only.)

•  Scroll Lock lets you examine records as data is being collected without having the display jump 
to the end whenever new records are added to the view. See Section 3.8.8.

The right-click menu for the Session or File Log view for a live session or binary file has the following 
commands:

• Run/Stop connects to or disconnects from the target(s) using the UIA configuration during a live 
session. If you are using a binary file, the Run command reruns the file. Data is cleared from the 
RTOS Analyzer and System Analyzer views when you use the Run command.

•  Pause/Resume Data Decoding halts and resumes processing of records received from the target. 
Available only for live sessions.

• Clear Log View erases all records from the Session Log view. Available only for live sessions.

• Pause/Resume Transfer halts and resumes the transfer of records from the target(s) to the host. 
This command is supported only if you are using an Ethernet transport (that is, you have set 
LoggingSetup.loggerType to LoggingSetup.LoggerType_RUNMODE) and if your target supports 
control messages. Available only for live sessions.
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• Skip sync points for correlation causes RTOS Analyzer and System Analyzer not to wait until they 
receive sync-point events that are used for multicore event correlation. You should set this option if 
your application does not log sync-point events or if you are not concerned about event correlation 
across cores. For example, you might use this command if the status line at the bottom of a System 
Analyzer view says "Waiting for UIA SyncPoint." Note that this command applies only to the current 
session.

•  Freeze/Resume Data Update halts and resumes updates to the current view. If you pause data 
updates with this icon, data decoding continues in the background.

Data is processed in the following sequence: data transfer, then data decoding, then data updates. So, 
for example, if you use Pause Transfer, data that has already been transferred to the host will be 
decoded and updated in the display; once all transferred data has been processed, the data decoding 
and updates will need to wait for more data. Similarly, if you Pause Data Decoding, data updates will 
need to wait once all the decoded records have been displayed.

The following commands are available only for CSV files. Right-click in the File Log view and use the 
CSV Viewer sub-menu.

• Stop halts processing of the current file.

• Clear Data clears all data in all open RTOS Analyzer and System Analyzer feature views. 

• Open File lets you select a CSV or binary file to open and process.

If you reload your program or load a different program in CCS, the RTOS Analyzer and System Analyzer 
views you have open are reconfigured to handle data from the new program.

4.4.1 Closing an RTOS Analyzer or System Analyzer Session

RTOS Analyzer and System Analyzer sessions—including live sessions, binary files, and CSV files—
remain open even if you close all the views of the session except the Session or File Log view. You may 
want to close a session, for example, in order to open a different live session or a binary file, since only 
one of these can be open at a time.

To completely close a session, close the tab for the Session or File Log view or choose the Tools > RTOS 
Analyzer > session name > Close Session menu command or the Tools > System Analyzer > 
session name > Close Session menu command from the main CCS menu bar.
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4.5 Configuring Transports and Endpoints

If you want more control over the target configuration used in the analysis or want to save a configuration 
to a file, you can click the Create UIA Config File button in the Analysis Configuration dialog.

A UIA configuration specifies the transports used to send logs and commands between the target and 
host. It also specifies the cores that will be sending data to RTOS Analyzer and System Analyzer. You 
can save a configuration after you create it for later use.

Notice in the figure above that a UIA configuration contains an Event Transport, a Control and Status 
Transport, and endpoints for each core in the application.

To create a UIA configuration, follow these steps:

1. In CCS, choose a Tools > RTOS Analyzer or Tools > System Analyzer command.

2. In the Analysis Configuration dialog, check the Custom UIA Configuration file box. Click Create 
UIA Config File to open the UIA Config dialog, which lets you create a configuration file.

3. Click the  Event Transport icon in the UIA Config dialog. This lets you specify the transport used 
for moving logs from the target to the host. 

4. In the Add an Event Connection dialog, provide details about the transport you want to use. Different 
target connections require different transports.

— The Transport Type options are UDP, TCPIP, JTAG, FILE, and UART. The default is UDP.
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— The Address is the IP address of the target or of the master core in the case of a multicore 
application.

— The Port is the TCP or UDP port number. The default is 1235.

5. Click the  Control & Status Transport icon. This transport is used for sending and receiving 
commands. Different target connections require different transports.

— TCP/IP, UDP, or UART can be used as the transport type. The default transport type is TCP/IP. 
If you are using a JTAG event transport, set the control and status transport type to "NONE".

— The default port is 1234.

6. For each core in your application, click the  Endpoint icon. An "endpoint" is a description of a core 
and the target application it is running. This provides the host with a list of cores to use in interpreting 
System Analyzer log data.
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— Name. Type the name of the target. If a CCS debug session is running and the target 
configuration matches that of your target application, you can select a name from the drop-down 
list. The actual name chosen here is not important, but it is best to use the same names here and 
the CCS Target Configuration.

— EndPoint Address. This is the number of the core starting from 0. For example, use 0 for CPU 
0, 1 for CPU1, and so on. These numbers must correspond to the ServiceMgr module’s Core ID, 
which usually defaults to the index number of the ti.sdo.utils.MultiProc ID from IPC.

— .out file. The filename of the compiled and linked target application. Click the ... button and 
browse to find the file. The file extension may be .out or may contain the platform, for example, 
.x64P. When you click OK, the dialog checks to make sure this file exists.

— .uia.xml file. Name of the generated System Analyzer metadata file. This is an XML file that is 
created if your target application includes any UIA modules. It is typically auto-discovered when 
you select an .out file and click OK. If the file cannot be found automatically, click ... and browse 
to find the file. For example, the file may be stored in the Default\configPkg\package\cfg 
subdirectory of the project when you build the project.

— .rta.xml file. Name of the generated RTA metadata file. This file is created if your target 
application includes the Rta module. It is typically auto-discovered when you select an .out file 
and click OK. If the file cannot be found automatically, click ... and browse to find the file. This file 
is likely to be stored in the same directory as the .uia.xml file.

— Clock freq (MHz). Type the clock speed for this CPU in MHz. If you do not provide the correct 
value here, the durations reported by System Analyzer will not be converted to nanoseconds 
correctly.

— Cycles per tick. Type the number of cycles per clock tick for this CPU here. If you do not provide 
the correct value here, the durations reported by System Analyzer will not be converted to 
nanoseconds correctly.

— Stopmode JTAG monitor. Check this box if you want records to be transferred via JTAG when 
the target is halted. That is, check this box if the target application on this endpoint is configured 
to use any of the following settings for the loggerType parameter of the LoggingSetup module: 
LoggerType_STOPMODE or LoggerType_MIN.

— Is an OS Process. Check this box if this is a cUIA application running on a multi-process 
operating system such as Linux. See the wiki page on cUIA for information about UIA for Linux.

7. Once you have created both transports and the endpoints for each core, save the configuration by 
clicking the Save button. Browse for a directory to contain the file and type a filename. The Save As 
dialog shows that the configuration is saved in a file with an extension of .usmxml. The .usmxml file 
is used if you want to specify a saved configuration to use in a live session (page 4–43) or when 
opening a binary file (page 4–58). Behind the scenes, a file with the same name but an .xml extension 
is also saved, but you can ignore the .xml file.

If you want to edit an item in the configuration, you can double-click on it or right-click and select Edit the 
selected item to open the dialog used to create that item. To delete an item, right-click and select Delete 
the selected item.

To load a UIA configuration, click the  Open icon in the toolbar. Browse for and open a configuration 
file you have saved (with a file extension of .usmxml). 
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4.6 Opening CSV and Binary Files Containing Analyzer Data

The RTOS Analyzer and System Analyzer features can save analysis data in two different file types:

• CSV files include UIA configuration information, so you do not need a UIA configuration in order to 
use a CSV file. See Section 4.6.1 for information about opening data saved to a CSV file.

• Binary files do not include UIA configuration information, so you do need a UIA configuration in order 
to see analysis data saved to a binary file. See Section 4.6.2 for information about opening data 
saved to a binary file.

Sample CSV data files are provided with CCS so that you can try the RTOS Analyzer and System 
Analyzer features immediately. See Section 4.6.1.

See Section 4.2 for information about creating binary files during data collection. See Section 3.8.7 for 
information about creating CSV files.

4.6.1 Opening a CSV File

You can experiment with the host-side RTOS Analyzer and System Analyzer features using the CSV 
(comma-separated values) data files that are provided with the DVT. You do not need to load an 
application (in fact, you do not even need a target device) in order to view the data in a CSV file with 
RTOS Analyzer or System Analyzer.

Code Composer Studio provides the following example CSV files:

• saSampleData.csv is a recording of instrumentation data collected in a run-time session using a 6-
core EVM6472 application. It is located in <ccs_install_dir>\ccsv6\ccs_base\dvt_3.#.#.# 
\AnalysisLibrary\DataProviders\CsvViewer.

• The <ccs_install_dir>\ccsv6\ccs_base\dvt_3.#.#.#\AnalysisLibrary\AnalysisFeatures 
directory contains a number of CSV files in subdirectories named for the analysis feature they are 
designed to demonstrate.

To load a CSV file, follow these steps:

1. In Code Composer Studio, move to CCS Debug mode. You do not need to build or load a project.

2. Choose the Tools > RTOS Analyzer > Open File > Open CSV File menu command or the 
Tools > System Analyzer > Open File > Open CSV File menu command.

3. In the Open CSV File Configuration dialog, click the "…" button to the right of the File Name field.

4. Browse to one of the locations in the previous list of example CSV files.

5. Select the CSV file and click Open.

6. In the Analysis Feature column, choose features you want to use. These features will process 
events that apply to them when you open the CSV file. (You can start additional analysis features 
after you open the file.)

7. In the Which Cores column, choose whether to display events from ALL cores or a single core. The 
drop-down list shows the core names for any active CCS target configuration for a debugging 
session. For the Context Aware Profile and Task Load features, a specific core name is required (not 
ALL), and you can select or type the name.
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8. In the Which Views to Open column, choose the view types you want to open automatically. You 
can later open more views, but this is an easy way to open several of them. For example, you might 
check the following boxes:

9. Click Start. You will see the CSV File Log view, which displays the events stored in the CSV file. See 
Section 4.7 for information about how to use the Log view.

10. You will also see the views you selected in the dialog. 

After learning to use RTOS Analyzer and System Analyzer features, you can analyze data from your own 
applications and record your own sessions as CSV files. See page 4–62 for information about creating 
your own CSV files.
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4.6.2 Opening a Binary File

Opening a binary file that you saved during a run-time session lets you do later analysis of the results. 
See Section 4.2 for information about creating binary files.

You can load a binary file that contains instrumentation data if you have a UIA configuration that matches 
the configuration with which the analysis data was saved or if you have a Debugger session open that 
matches the target configuration for the target used to create the binary file. (In contrast, opening a CSV 
file containing instrumentation data does not require a UIA configuration or a loaded application because 
the data is already decoded.)

To load a binary file containing RTOS Analyzer and System Analyzer event logs, follow these steps:

1. Start Code Composer Studio.

2. Create a CCS target configuration and start a debugging session, This enables RTOS Analyzer and 
System Analyzer to auto-configure your session. (Alternatively, you can create a UIA configuration 
and save it to a file as described in Section 4.5.)

3. Choose the Tools > RTOS Analyzer > Open File > Open Binary File menu command or the 
Tools > System Analyzer > Open File > Open Binary File menu command.

4. In the first section of the Binary File Parameters dialog, browse for the directory that contains the data 
you want to open. The default folder name is dvt\systemAnalyzerData in your workspace directory.

5. The next section of the dialog lets you control the UIA configuration, which controls how RTOS 
Analyzer and System Analyzer interpret the cores referenced in the binary data.

6. If you want to change any of the detected settings, check the Custom UIA Configuration file box. 
You can click "..." to browse for an existing UIA configuration (a *.usmxml file) or click Create UIA 
Config File to create a new configuration file. See Section 4.5 to learn about creating UIA 
Configuration files.
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7. Choose the views you want to open.

— In the Analysis Feature column, choose features you want to use. These features will process 
events that apply to them when you open the CSV file. (You can run additional analysis features 
after you open the file.)

— In the Which Cores column, choose to display events from ALL cores or a single core. The drop-
down list shows core names in the selected UIA configuration and in the current CCS target 
configuration. For the Context Aware Profile and Task Load features, a specific core name is 
required (not ALL); you can select or type a name.

— In the Which Views to Open column, choose views to open automatically. You can later open 
more views, but these checkboxes provide an easy way to open a number of them.

8. Click Start to open the binary file you selected. This opens the Binary File Log view and displays the 
events stored in the binary file. You will also see the views you selected in the dialog. See Section 
4.7 for information about how to use the Log view.
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4.7 Using the Session or File Log View

The Session or File Log view opens automatically when you start a live data collection session or open 
a binary or CSV file containing RTOS Analyzer or System Analyzer data.

Log View Column Descriptions

The Session or File Log view shows the details of all records. The log contains the following columns:

• Row Number. This column indicates only the row number in the current log display. If you filter the 
records displayed, all the row numbers change.

• Type. Displays the event type. For live sessions and binary files, an icon is shown. For CSV files, a 
numeric value is shown. This field lets you quickly locate or filter certain types of events. A message 
can have multiple types, such as Error and Analysis; the type with the lower value is shown. For 
filtering, the type has a value from 0 to 11.

Table 4–3.  Event Types

• Time. The time the event was logged in nanoseconds. The time in this column has been adjusted 
and correlated on the host to provide the global time based on a common timeline. The time is 
converted to nanoseconds using the clock and cycle information provided for each CPU in the UIA 
configuration.

Icon Value Type Comments

0 Unknown

1 Error

2 Warning

3 Information

4 Details

5 Life Cycle

6 Analysis

7 Module 1 Module-specific type

8 Module 2 Module-specific type

9 Module 3 Module-specific type

10 Emergency

11 Critical
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• Error. Displays an icon if an error occurred. Individual views display a message in the bottom status 
line if a data loss is detected.

Table 4–4.  Error Types

• Master. The core on which the event was logged. For example, C64XP_0 and C64XP_1.

• Message. A printf-style message that describes the logged event. Values from the Arg0 through Arg8 
arguments are plugged into the message as appropriate. In general, messages beginning with "LM" 
are brief messages, "LD" indicates a message providing details, "LS" messages contain statistics, 
and "LW" indicates a warning message.

• Event. The type of event that occurred. Supported events include the following:

— Synchronization events (at startup)

— CtxChg (for context change)

— Pend, post, and block events from various modules

— Load, ready, start, and stop events from various modules

— Set priority and sleep events from the Task module

• EventClass. The class of the event that occurred. Supported event classes include:

— CPU (for Load events, for example from the ti.sysbios.utils.Load module)

— TSK (for task threads)

— HWI (for hardware interrupt threads)

— SWI (for software interrupt threads)

— FUNC (for Enter and Exit events for the ti.uia.events.UIAProfile module)

• Data1. The main information returned with an event. For many events, Data1 returns the name of the 
task or the thread type in which the event occurred.

• Data2. Further information returned with an event. For load events, for example, Data2 returns the 
load percentage.

• SeqNo. The sequence number with respect to the source logger on the source core. Each logger 
has its own sequence numbering. This number is used when detecting data loss.

• Logger. The name of the logger to which the event was sent. UIA creates several default loggers, 
and your target code can configure additional loggers.

Icon Value Type Comments

0 Data loss error This error indicates that some SeqNo values are missing on a 
per logger basis.

1 Sequence Error This error is determined by comparing Global Time values. Such 
errors can indicate that either records from a single core or 
between cores are out-of-sequence. 

2 Multiple errors Both a data loss error and a sequence error were detected.
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• Module. The module that defines the type of event that occurred. This may be a UIA module, 
SYS/BIOS module, XDCtools module, or a RTSC module from some other software component. 
CCS adds an underscore before the module name for certain types of events for internal processing 
for other views.

• Domain. The module that logged the event.

• Local Time. The local timestamp on the core where the event was logged. This timestamp typically 
has a higher resolution than the global timestamp. Local timestamps are not correlated and adjusted 
to show timing interactions with events on other cores.

• Arg1 to Arg 8. Raw arguments passed with the event. Although the number of arguments associated 
with an event is not limited, typically events are logged with 0, 1, 2, 4, or 8 arguments. If more than 
8 arguments are logged, only the first 8 are shown here.

Log View Toolbar Icons and Right-Click Menu Commands

The Session or File Log view contains a number of toolbar icons that let you control the view’s behavior. 
The toolbar is slightly different depending on whether you are viewing the log for a live session, binary 
file, or CSV file.

•  Analyze lets you start any of the Analysis Features—such as the CPU Load or Count 
Analysis. The default view for the feature you select is opened.

•  Run and  Stop (live and binary only) connect to or disconnect from the target(s) using the 
UIA configuration during a live session. If you are using a binary file, the Run command reruns the 
file. Data is cleared from the analysis views when you use the Run command.

•  Toggle Enable Grouping on and off (Shift+G). A "group" synchronizes views of instrumentation 
data so that scrolling in one view causes similar movement to happen automatically in another. For 
example, if you group the CPU load graph with the Session or File Log view, then click on the CPU 
Load graph, the Log view displays the closest record to where you clicked in the graph. See Section 
3.8.4.

•  Click to turn on Bookmark Mode. The next record you click in the log will be highlighted in red. 
Jump to a bookmarked event by using the drop-down list next to the Bookmark Mode icon. Choose 
Manage the Bookmarks from the drop-down list to open a dialog that lets you rename or delete 
bookmarks. See Section 3.8.3.

•  Auto Fit Columns sets the column widths in the Log to fit their current contents.

•  Open the Find In dialog to search this log. See Section 3.8.5.

•  Filter the log records to match a pattern by using the Set Filter Expression dialog. See Section 
3.8.6.

•  Scroll Lock lets you examine records as data is being collected without having the display jump 
to the end whenever new records are added to the view. See Section 3.8.8.

•  Column Settings lets you control which columns are displayed and how they are shown. You 
can use the dialog to change the alignment, font, and display format of a column (for example, 
decimal, binary, or hex). See Section 3.8.9.

CSV File

Live Session

Binary File

or
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•  Select Row Count from this drop-down to toggle the column that shows row numbers in the log 
on and off.

Additional icons described in Section 4.4 differ depending on whether you are running a live session or 
a stored file session and let you control data transfer activity.

You can right-click on the Session or File Log view to choose 
from a menu of options. In addition to toolbar commands, you 
can use the following additional commands from the right-click 
menu:

• Copy. Copies the selected row or rows to the clipboard.

•  Freeze/Resume Data Update halts and resumes 
updates to the current view. See Section 4.4.

• Data > Export Selected. Lets you save the selected rows 
to a CSV (comma-separated value) file. See Section 3.8.7.

• Data > Export All. Lets you save all the rows to a CSV file. 
For example, you might do this so that you can perform 
statistical analysis on the data values.

•  Enable Grouping. Lets you define and delete groups 
that contain various types of log messages. See Section 3.8.4.

•  Insert a Bookmark adds a highlight to the selected certain rows and provide ways to quickly jump 
to marked rows. See Section 3.8.3.

• Analyze. Start one of the analysis features. See Section 4.10.

• Live Session or CSV Viewer. Lets you pause, resume, and reset a live or binary file session. Lets 
you stop or reset a CSV file session. See Section 4.4, Managing an RTOS Analyzer or System 
Analyzer Session.
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4.8 Using the Execution Graph

The Execution Graph shows which thread is running at a given time. 

To open this feature, choose Tools > RTOS Analyzer > Execution Analysis. If you already have a 
session running, you can choose Execution Graph from the  Analyze drop-down in the Session 
or File Log view.

Thread categories are listed in the left column. Click on a category to show more details. The details 
depend on the type of thread.

• Semaphores and Events. Pend  and post  events are identified by flag icons. If any data 
loss events were detected, the  icon shows that event.

• Hwi threads. For hardware interrupt threads, brackets [ ] show when the Hwi started and stopped 
running. If any data loss events were detected, the  icon shows that event.

• Swi threads. The  icon shows when a Swi was posted. Brackets [ ] show when a Swi started and 
stopped running. For any data loss events, a separate row in the details shows that event.
64 Using RTOS Analyzer and System Analyzer    SPRUH43E—March 2014
Submit Documentation Feedback  

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH43E
http://www.ti.com


www.ti.com Using the Execution Graph
• OS. When you expand an OS row, you see a list of threads on that core. A colored line for each item 
shows when that context was in control. Activity by Hwi, Swi, and Task threads is shown, along with 
activity by the SYS/BIOS scheduler, unknown activity, and data loss events.

• Other threads. Other functions are listed after the OS item.

Data loss is shown as a dashed line in the expanded OS graph. The Hwi, Swi, Semaphore, and Event 
rows show only the time when the data loss was detected, not the extent of the data loss until further data 
was received.

Click the  Tree Mode icon to display categories in a tree that lets you hide or display each core. The 
# and * signs in the category names are used to control the sort order of the categories.

Use the toolbar buttons to group (synchronize), measure, zoom, search, and filter the graph. You will 
likely need to zoom in a significant amount to see the execution transitions that interest you.

Right-click on the graph and choose Display Properties to customize the graph. For example, you can 
hide categories.

See Also

• Section 3.3, Analyzing the Execution Sequence with RTOS Analyzer

4.8.1 How the Execution Graph Works

The Execution Graph uses the same events as the Duration feature and the Context Aware Profile. The 
Execution Graph displays data about Task, Swi, and Hwi threads provided automatically by internal 
SYS/BIOS calls. SYS/BIOS threads are pre-instrumented to provide such data via a background thread.

Hwi and Swi can be expanded to list their threads separately only if you enable logging of events for the 
Hwi and Swi modules. Such logging is turned off by default for performance reasons. See Section 5.2.2, 
Enabling and Disabling Event Logging for how to turn on and off Hwi and Swi event logging.

If a data loss is detected, it is shown in the appropriate thread categories and at the bottom of the graph. 
Data loss errors are detected if SeqNo values in the logged events are missing. 

If data is returned to the host out of sequence, this graph may have unpredictable behavior for state 
transitions beyond the visible range of the graph.

See Also

To learn how to log additional events for display in the Execution Graph, see these sections:

• Section 4.14.3, How Duration Analysis Works

• Section 4.15.2, How Context Aware Profiling Works

• Section 4.15.3, Profiling Functions Using Enter and Exit Hook Functions
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4.9 Using the Concurrency Feature

The Concurrency view shows when each core is active (not running the Idle thread) and the level of 
concurrency in the system. This view is similar to the Execution Graph, but it correlates data for multiple 
cores. The concurrency level shown is the number of cores active at that time. 

To open this feature, select the Concurrency feature when using another item from the Tools > RTOS 
Analyzer menu. If you already have a session running, you can choose Concurrency from the  
Analyze drop-down in the Session or File Log view.

Graph View for Concurrency

The Graph view opens by default. The rows for each core show when that core was active in green. You 
can expand a core row to separate activity and any data gaps.

Expand the Concurrency row to see how many cores were active as the application ran. For example, 0 
means that no cores were running, 1 means a single core was running, and so on.

To open other views for the Concurrency feature, use the  Views drop-down list in the toolbar of 
any Concurrency view.

• The Summary view presents the percent of time at each concurrency level. See Section 4.9.1.

See Also

• Section 3.3, Analyzing the Execution Sequence with RTOS Analyzer
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4.9.1 Summary View for Concurrency

To open the Summary view for the Concurrency feature, use the  Views drop-down list in the 
toolbar of any Concurrency view.

The Summary view for the Concurrency feature shows the percent of time spent at each concurrency 
level. That is, what percent of the time were 0, 1, or more cores active. The total of the percents shown 
is 100%.

• Concurrency. Number of cores active at once.

• Percent. Percent of time spent at this concurrency level.

4.9.2 How Concurrency Works

The  Concurrency feature uses the same events as the Execution Graph, Duration feature, and the 
Context Aware Profile. It displays data about Task, Swi, and Hwi threads provided automatically by 
internal SYS/BIOS calls. SYS/BIOS threads are pre-instrumented to provide such data via a background 
thread.

If a data loss is detected, it is shown in the appropriate rows and at the bottom of the graph. Data loss 
errors are detected if SeqNo values in the logged events are missing. 

If data is returned to the host out of sequence, this graph may have unpredictable behavior for state 
transitions beyond the visible range of the graph.
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4.10 Using the CPU Load View

The CPU Load feature shows the SYS/BIOS load data collected for all CPUs in the system. The CPU 
load is the percentage of time a CPU spends running anything other than the SYS/BIOS Idle loop.

To open this feature, choose Tools > RTOS Analyzer > CPU Load. If you already have a session 
running, you can choose CPU Load from the  Analyze drop-down in the Session or File Log view.

Graph View for CPU Load

The Graph view opens by default. It shows the change in CPU load (as a percentage) with time for each 
CPU. Clicking on the name of a CPU above the graph highlights the corresponding line in the graph. (If 
you do not see these buttons, right click on the graph and choose Legend.)

Use the toolbar buttons to group (synchronize), measure, zoom, search, and filter the graph. Right-click 
on the graph to adjust the display properties of the graph.

To open Summary or Detail views for this feature, use the  Views drop-down list in the toolbar.

• The Summary view presents the minimum, maximum, and average CPU load. See Section 4.10.1.

• The Detail view presents the raw CPU load data. See Section 4.10.2.

See Also

• Section 3.2, Analyzing System Loading with RTOS Analyzer
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4.10.1 Summary View for CPU Load

To open the Summary view for the CPU Load feature, right-click on a CPU Load view and choose CPU 
Load views > Summary.

The Summary view for the CPU Load feature shows the count, minimum, maximum, and average of the 
reported CPU load measurements for each CPU.

• Master. The name of the CPU.

• Count. The number of CPU load measurements for this CPU.

• Min. The minimum CPU load percentage reported for this CPU.

• Max. The maximum CPU load percentage reported for this CPU.

• Average. The average CPU load percentage for this CPU.

4.10.2 Detail View for CPU Load

To open the Detail view for the CPU Load feature, use the  Views drop-down list in the toolbar of 
another CPU Load view.

The Detail view of the CPU Load feature shows records that report the CPU load. The status bar tells 
how many records are shown and how many gaps occurred.

• Time. The time (correlated with other cores) of this load event.

• Master. The name of the core on which the load was logged.
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• Load. The CPU load percentage reported.

• Source. The source of the load percentage event.

The columns in this view are also displayed in the Session or File Log view (but in a different order). See 
page 4–60 for column descriptions.

4.10.3 How CPU Load Works

The CPU load is the percentage of time a CPU spends running anything other than the SYS/BIOS Idle 
loop, which is run by the TSK_idle low-priority Task thread.

The CPU Load feature displays data provided automatically by internal SYS/BIOS calls to functions from 
the ti.sysbios.utils.Load module. SYS/BIOS threads are pre-instrumented to provide load data using a 
background thread.

See Section 5.2.1, Enabling and Disabling Load Logging for information about how to disable CPU load 
logging.

4.11 Using the Task Load View

The Task Load view shows CPU load data collected on a per-Task and per-thread type basis for the 
specified CPU. Note that the Task Load feature does not allow you to select all cores; you must select a 
single core.

To open this feature, choose Tools > RTOS Analyzer > Task Load. If you already have a session 
running, you can choose Task Load from the  Analyze drop-down in the Session or File Log view.

Graph View for Task Load

The Graph view opens by default; it shows the change in load over time on a per-Task basis as a line 
graph. 
70 Using RTOS Analyzer and System Analyzer    SPRUH43E—March 2014
Submit Documentation Feedback  

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH43E
http://www.ti.com


www.ti.com Using the Task Load View
Click on the names of Tasks above the graph to highlight those lines in the graph. If you don’t see the 
Task names, right-click on the graph and choose Legend from the context menu. If you make the Graph 
view area wider, more Task names will be shown.

To open other views for the Task Load feature, use the  Views drop-down list in the toolbar of any 
Task Load view.

• The Summary view presents the minimum, maximum, and average load on a per-Task basis. See 
Section 4.11.1.

• The Detail view presents the raw Task load data. See Section 4.11.2.

Clicking on the name of a thread above the graph highlights the corresponding line in the graph. (If you 
do not see these buttons, right click on the graph and choose Legend.)

Use the toolbar buttons to group (synchronize), measure, zoom, search, and filter the graph. Right-click 
on the graph to adjust the display properties of the graph.

See Also

• Section 3.2, Analyzing System Loading with RTOS Analyzer

4.11.1 Summary View for Task Load

To open the Summary view for the Task Load feature, use the  Views drop-down list in the toolbar 
of any Task Load view.

The Summary view for the Task Load feature shows the count, minimum, maximum, and average of the 
reported Task load measurements for each Task.
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The CPU load is the percentage of time the CPU spent running anything other than the SYS/BIOS Idle 
loop. The averages for all the sources listed except for the CPU typically add up to approximately 100%. 
However, that total may be somewhat different if events were dropped, particularly when the load was 
high.

• Source. The name of the task or the thread type.

• Count. The number of CPU load measurements reported for this task or thread type.

• Min. The minimum CPU load reported for this task or thread type.

• Max. The maximum CPU load reported for this task or thread type.

• Average. The average CPU load for this task or thread type.

• Overall. The average CPU load for this task or thread type. The Overall average is different from the 
Average in cases where there are multiple instances of the same task running in parallel or when the 
application dynamically creates tasks and exits from them. In such cases, the Overall values will add 
up to a total load of 100%, but the Average values will not.

4.11.2 Detail View for Task Load

To open the Detail view for the Task Load feature, use the  Views drop-down list in the toolbar of 
any Task Load view.

The Detail view of the Task Load feature shows all records that report the load. These may be for 
individual Task threads, the Swi module, the Hwi module, or the overall CPU load.

• Time. The time (correlated with other cores) of this load event.

• Master. The name of the core on which the load was logged. 

• Source. The name of the task or thread type.

• Load. The CPU load percentage reported.

The columns in this view are also displayed in the Session or File Log view (but in a different order). See 
page 4–60 for column descriptions.
72 Using RTOS Analyzer and System Analyzer    SPRUH43E—March 2014
Submit Documentation Feedback  

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH43E
http://www.ti.com


www.ti.com Using the Printf Logs
4.11.3 How Task Load Works

The Task Load feature displays data provided automatically by internal SYS/BIOS calls to functions from 
the ti.sysbios.utils.Load module. SYS/BIOS threads are pre-instrumented to provide load data using a 
background thread.

See Section 5.2.1, Enabling and Disabling Load Logging for information about how to disable various 
types of load logging.

4.12 Using the Printf Logs

The Printf Logs analysis feature shows messages output by the program through calls to the XDCtools 
Log_printf#() APIs.

To open this feature, choose Tools > RTOS Analyzer > Printf Logs. If you already have a session 
running, you can choose Printf Logs from the  Analyze drop-down in the Session or File Log 
view. 

The Summary view is the only view available.

By default, this view shows the Time, Master, Message, and Logger. You can right-click and choose 
Column Settings to enable additional columns. 

• Time. The time (correlated with other cores) of this event.

• Master. The name of the core on which the message was logged.

• Message. A printf-style message that describes the logged event. 

• Logger. The name of the logger to which the event was sent. UIA creates several default loggers, 
and your target code can configure additional loggers.

See page 4–62 for information about using the toolbar icons and right-click menu in the Summary view.

See Also

• Section 4.7, Using the Session or File Log View
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4.13 Using the Task Profiler

The Task Profiler analysis feature shows the percent of time that each Task thread spent in each of its 
possible states.

To open this feature, choose Tools > RTOS Analyzer > Task Profiler. If you already have a session 
running, you can choose Task Profiler from the  Analyze drop-down in the Session or File Log 
view.

The Summary view is the only view available.

By default, this view shows only the percent of time in each state. Total time in each row equals 100%. 
You can right-click and choose Column Settings to display additional columns, including Count, Min, 
Max, Total, and Average values for each state. 

The Task states are as follows:

• Ready. The Task was scheduled for execution subject to processor availability during this time.

• Running. The Task was the one running on the processor during this time.

• Blocked. The Task could not execute during this time because it was waiting for a resource to 
become available (by posting a Semaphore, for example).

• Preempted. The Task could not execute during this time because it was preempted by a higher-
priority thread.

• Yield. The Task was not running during this time because it called Task_yield() to allow other Tasks 
of the same priority to run. The time spent in this state is typically small because once a Task calls 
Task_yield() it is placed in the Ready state. The Yield Count column may be more useful to you than 
the Yield Percent.

• Sleep. The Task was not running during this time because it called Task_sleep() to allow lower-
priority Tasks to run. The time spent in this state is typically small because once a Task calls 
Task_sleep() it is placed in the Blocked state. The Sleep Count column may be more useful to you 
than the Sleep Percent.

• Unknown. The Task was not running during this time. The specific reason is not known. For 
example, this may be the Task state at program startup or after data loss occurred.

See page 4–62 for information about using the toolbar icons and right-click menu in the Summary view.

See Also

• Section 3.3, Analyzing the Execution Sequence with RTOS Analyzer
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4.14 Using the Duration Feature

The Duration analysis feature provides information about the time between two points of execution on 
the target. These points must be instrumented by adding code that passes the UIABenchmark_start and 
UIABenchmark_stop events to calls to the Log_write1() function.

The Duration feature displays data only if you modify your target code to include UIABenchmark events 
as described in Section 4.14.3.

The Duration feature matches start and stop pairs for each "source". A source is identified by combining 
the core name and the arg1 argument passed to the Log_write1() function when the event argument is 
UIABenchmark_start or UIABenchmark_stop. For example, if the target program on CPU_5 makes the 
following calls, the source identifier will be "CPU_5, running".

Log_write1(UIABenchmark_start, (xdc_IArg)"running");

...

Log_write1(UIABenchmark_stop, (xdc_IArg)"running");

To open this feature, choose Tools > System Analyzer > Duration. If you already have a session 
running, you can choose Duration from the  Analyze drop-down in the Session or File Log view.

Summary View for Duration Analysis

By default, the Summary view is shown when you open the Duration feature. This view shows the count, 
minimum, maximum, average, and total time measured between the start and stop times.

This view provides only one record for each unique source. The columns shown are as follows:

• Source. This column shows the identifier that the Duration feature uses to match up Start/Stop pairs.

• Count. The number of start/stop pairs that occurred for this source.

• Min. The minimum time in nanoseconds between start and stop for this source.

• Max. The maximum time in nanoseconds between start and stop for this source.

• Average. The average time in nanoseconds between start and stop for this source.

• Total. The total time in nanoseconds between all start/stop pairs for this source.

• Percent. The percent of the total time for all sources measured that was spent in this source.

See page 4–62 for information about using the toolbar icons and right-click menu in the Summary view.

To open Detail or Graph views for the Duration feature, use the  Views drop-down list in the 
toolbar of any Duration view.

• The Detail view presents the raw start and stop times for each start/stop pair that has occurred. See 
Section 4.14.1.

• The Graph view shows the change in duration over time. See Section 4.14.2.

See Also

• Section 3.5, Benchmarking with System Analyzer
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4.14.1 Detail View for Duration Analysis

To open the Detail view for the Duration feature, use the  Views drop-down list in the toolbar of 
any Duration view.

Each record in the Detail view corresponds to a pair of UIABenchmark_start or UIABenchmark_stop 
events passed to the Log_write1() function.

There are likely to be multiple records in this view for the same source if the start/stop pairs are in threads 
that execute multiple times.

• Source. This column shows the identifier that the Duration feature uses to match up Start/Stop pairs. 
See Section 4.14 for details.

• Start. A timestamp for when the UIABenchmark_start event occurred.

• Stop. A timestamp for when the UIABenchmark_stop event occurred.

• Duration. The Stop - Start time.

See page 4–62 for information about using the toolbar icons and right-click menu in the Detail view.
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4.14.2 Graph View for Duration Analysis

To open the Graph view for the Duration feature, use the  Views drop-down list in the toolbar of 
any Duration view.

The Graph view shows the change in duration with time for each unique source.

Clicking on the name of a measurement above the graph highlights the corresponding line in the graph. 
(If you do not see these buttons, right click on the graph and choose Legend.)

Use the toolbar buttons to group (synchronize), measure, zoom, search, and filter the graph. Right-click 
on the graph to adjust the display properties of the graph.

4.14.3 How Duration Analysis Works

The Duration feature matches pairs of UIABenchmark_start and UIABenchmark_stop events (from the 
ti.uia.events.UIABenchmark module) in target code for a given "source". These events are sent to the 
host via calls to Log_write1().

A source is identified by combining the core name and the arg1 argument passed to the Log_write1() 
function when the event argument is UIABenchmark_start or UIABenchmark_stop. For example, if the 
target program on CPU_5 makes the following calls, the source identifier will be "CPU_5, process 1".

#include <xdc/runtime/Log.h>

#include <ti/uia/events/UIABenchmark.h>

...

Log_write1(UIABenchmark_start, (xdc_IArg)"process 1");

...

Log_write1(UIABenchmark_stop, (xdc_IArg)"process 1");

The Log_write1() function comes from the XDCtools xdc.runtime.Log module.

• The first parameter (UIABenchmark_start or UIABenchmark_stop) is an event of type Log_Event.
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• The second parameter is a source name string cast as an argument. The entire second parameter 
is shown in both the Source field in Duration views and in the Message column of the Session or File 
Log view.

You can also use any of the Log_writeX() functions from Log_write2() to Log_write8() to pass additional 
arguments for use in rendering the format string. For example:

Log_write2(UIABenchmark_start, (IArg)"Process ID: %d", 5);

See Section 5.4.2, Enabling Event Output with the Diagnostics Mask for information about how to enable 
and disable logging of UIABenchmark events.

The Duration feature handles missing Start or Stop events by ignoring events as needed. 

• If a Start event is followed by another Start event for the same source, the second Start event is 
ignored and the first Start event is used.

• If a Stop event is followed by another Stop event for the same source, the second Stop event is 
ignored.

• If a Stop event occurs without a matching Start event for the same source, the Stop event is ignored.

Check the Error column in the Session or File Log view for a value that indicates a data loss occurred. 
See page 4–60 for details.

4.15 Using Context Aware Profile

The Context Aware Profile feature calculates duration while considering context switches, interruptions, 
and execution of other functions.

The Context Aware Profile displays data only if you modify your target code to include UIAProfile events 
as described in Section 4.15.2. Your code needs to explicitly instrument all function entries and exits in 
order for context aware profiling to provide valid data. No emulation logic is used to do this automatically.

You can use this feature to see information about "inclusive time" vs. "exclusive time".

• Inclusive time is the entire time between a given pair of start times and stop times.

• Exclusive time is the inclusive time minus any time spent running any other thread context. Time 
spent in called functions and time spent running threads that preempt are yielded to by the thread 
being measured are not counted in exclusive time.

See Section 4.15.2 for details about how inclusive and exclusive time are calculated.

To open this feature, choose Tools > System Analyzer > Context Aware Profile. If you already have a 
session running, you can choose Context Aware Profile from the  Analyze drop-down in the 
Session or File Log view.
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Summary View for Context Aware Profile

By default, the Summary view opens, which shows the minimum, maximum, average, and total number 
of nanoseconds within each thread for the selected core. These statistics are reported both for inclusive 
and exclusive time.

The summary view shows statistics about each duration context that was measured. The statistics 
summarize multiple measurements made for each context. The columns in this view are as follows:

• Name. The name of the item for this row of statistics. The name has the following format:

    <master>,<task name>,<function name>.<function id logged>

If the Task context or the function running cannot be determined, those portions of the name are listed 
as “Unknown” in the generated Name.

• Count. The number of enter/exit pairs that measured this item’s duration.

• Incl Count Min. The minimum inclusive time measured.

• Incl Count Max. The maximum inclusive time measured.

• Incl Count Average. The average inclusive time measured.

• Incl Count Total. The total inclusive time measured.

• Incl Count Percent. The percent of all the inclusive times reported due to this item.

• Excl Count Min. The minimum exclusive time measured.

• Excl Count Max. The maximum exclusive time that was measured.

• Excl Count Average. The average exclusive time measured.

• Excl Count Total. The total exclusive time measured.

• Excl Count Percent. The percent of all the exclusive times reported due to this item.

To open the Detail view, use the  Views drop-down list in the toolbar of any Context Aware Profile 
view.

• The Detail view presents the raw start and stop times for each enter/exit pair measured. See Section 
4.15.1.

See Also

• Section 3.5, Benchmarking with System Analyzer
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4.15.1 Detail View for Context Aware Profile

To open the Detail view for the Context Aware Profile feature, use the  Views drop-down list in 
the toolbar of any Context Aware Profile view.

The detail view shows a record for each enter/exit pair of durations recorded. 

The columns in this view are as follows:

• Name. The name of the CPU combined with the function or thread that was measured.

• Depth. The number of levels deep for this function context. The top-level function has a depth of 0; 
functions called by the top-level have a depth of 1, and so on.

• Incl Count. The inclusive time for this measurement.

• Excl Count. The exclusive time for this measurement.

• Start Time. The time in nanoseconds when this measurement was started.

• End Time. The time in nanoseconds when this measurement was stopped.

4.15.2 How Context Aware Profiling Works

The Context Aware Profile feature matches pairs of enter and exit events from the ti.uia.events.UIAProfile 
module. These events occur only if you add code to your target application that calls Log_write2() and 
passes the UIAProfile_enterFunctionAdrs or the UIAProfile_exitFunctionAdrs events.

For example, the following code would produce an enter/exit pair that would be used by the Context 
Aware Profile for the myFunc() function:

#include <xdc/runtime/Log.h>

#include <ti/uia/events/UIAProfile.h>

void myFunc(){

    Log_write2( UIAProfile_enterFunctionAdrs, 0, (IArg)&myFunc);

    ...

    Log_write2( UIAProfile_exitFunctionAdrs, 0, (IArg)&myFunc);

    return;

};
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Note: If your existing code uses the UIABenchmark_startInstanceWithAdrs and 
UIABenchmark_stopInstanceWithAdrs events for context-aware profiling, the Context 
Aware Profile and Execution Graph features will still work. New code should use the 
UIAProfile_enterFunctionAdrs and UIAProfile_exitFunctionAdrs events.

To profile the entire time spent in the function, your code would use the UIAProfile_enterFunctionAdrs 
event at the beginning of the function and the UIAProfile_exitFunctionAdrs event just prior to any line the 
could cause the function to return.

In the Session or File Log view the EventClass for these events is shown as "FUNC" because a function 
reference is passed with the event to identify the function that is being profiled.

The Log_write2() function comes from the XDCtools xdc.runtime.Log module. It is possible to use any of 
the Log_writeX() functions from Log_write2() to Log_write8(). If you use a Log_writeX() function with 
additional arguments, all other arguments are ignored by the Context Aware Profile feature. The 
parameters passed to Log_write2() are as follows:

• evt. An event (UIAProfile_enterFunctionAdrs or UIAProfile_exitFunctionAdrs) of type 
Log_Event.

• arg0. Could be used in the future to specify the instance of the function, but the Context Aware Profile 
currently expects a value of 0.

• arg1. A function reference to identify what this enter/exit pair is profiling.

See Section 5.4.2, Enabling Event Output with the Diagnostics Mask for information about how to enable 
and disable logging of UIAProfile events. See Section 5.4.3, Events Provided by UIA for more about 
UIAProfile events.

The Context Aware Profile also uses context switching information about Task, Swi, and Hwi threads to 
calculate the inclusive and exclusive time between an enter/exit. The following table shows whether 
various types of contexts are included in inclusive and exclusive time. Since the Duration views (page 4–
75) are not context-aware, time spent in any context is included in those views.

Table 4–5.  Inclusive vs. Exclusive Time

The Context Aware Profile feature handles missing Enter or Exit events by ignoring events as needed. 

Context or Function Type

Counted for 
Inclusive 
Time

Counted for 
Exclusive 
Time

Counted for 
Duration

Time spent in the specified function’s context. Yes Yes Yes

Time spent in functions called from the 
specified context. For example, you might 
want to benchmark function A(), which calls 
functions B() and C().

Yes No Yes

Time spent in other Task functions as a result 
of preemption, yielding, and pend/post 
actions.

Yes No Yes

Time spent in Hwi or Swi thread contexts. No No Yes
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• If an Enter event is followed by another Enter event for the same source, the second Enter event is 
ignored and the first Enter event is used.

• If an Exit event is followed by another Exit event for the same source, the second Exit event is 
ignored.

• If an Exit event occurs without a matching Enter event for the same source, the Exit event is ignored.

Check the Error column in the Session or File Log view for a value that indicates a data loss occurred. 
See page 4–60 for details.

4.15.3 Profiling Functions Using Enter and Exit Hook Functions

In order to do inclusive and exclusive profiling of functions (using Context Aware Profiling), a UIA log 
event needs to occur at the entry and exit point of functions. You can add entry and exit hook functions 
to every function in the source by doing the following:

1. Use the following compiler options when compiling the source:

    --entry_hook=functionEntryHook

    --entry_parm=address

    --exit_hook=functionExitHook

    --exit_parm=address

2. To use the required UIA APIs, add this #include statement to your code:

    #include <ti/uia/events/UIAProfile.h>

3. Add entry and exit hook functions such as the following to your source code.

    void functionEntryHook( void (*addr)() ){

        Log_write2(UIAProfile_enterFunctionAdrs, (IArg)0, (IArg)addr);

    }

    void functionExitHook( void (*addr)() ){

        Log_write2(UIAProfile_exitFunctionAdrs, (IArg)0, (IArg)addr);

    }

The parameter after the message string is a context parameter that can be used to specify an 
additional level of qualification. For this example, we can just set it to 0.

If Task Aware Profiling is needed, the Task context has to be logged. SYS/BIOS automatically logs events 
for task switches and Swi and Hwi Start and Stop events. See Section 5.2.2, Enabling and Disabling 
Event Logging. Context changes can also be explicitly logged by the application. For more on profiling 
using System Analyzer, see Section 3.5, Benchmarking with System Analyzer.

Note that hook functions are not called from functions in libraries that are linked with your application. As 
a result, the Exclusive counts of functions that make calls to functions in the library will include the 
duration of library functions.
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4.16 Using the Count Analysis

The Count Analysis feature provides statistics and visualization regarding a data value (32-bit signed) 
logged using a specific target-side UIA event (UIAEvt_intWithKey). For example, you might use Count 
Analysis to analyze how a data value from a peripheral changes over time. Or, you might want to find the 
maximum and minimum values reached by some variable or the number of times a variable is changed. 
The analysis is done on groups of log records with matching formatted strings that specify the source.

The Count Analysis feature displays data only if you modify your target code to include 
UIAEvt_intWithKey events as described in Section 4.16.3.

To open this feature, choose Tools > System Analyzer > Count Analysis. If you already have a session 
running, you can choose Count Analysis from the  Analyze drop-down in the Session or File 
Log view.

When you choose to open the Count Analysis feature, in addition to selecting the core to analyze, you 
are also asked whether you want to plot the graph vs. the time or sample sequence numbers.

Summary View for Count Analysis

The Summary view is shown when you open the Count Analysis feature. This view shows the count, 
minimum, maximum, average, and total of the data values reported for each particular source.

This view provides only one record for each unique source. The columns shown are as follows:

• Source. Statistics are performed on groups determined by combining the core name with a formatted 
string passed to the Log_writeX() call that created this record.

• Count. The number of instances of this source.

• Min. The minimum data value for this source.

• Max. The maximum data value for this source.

• Average. The average data value for this source.

• Total. The total data value for this source.

See page 4–62 for information about using the toolbar icons and right-click menu in the Summary view.

To open other views for the Count Analysis feature, use the  Views drop-down list in the toolbar 
of any Count Analysis view.

• The Detail view presents all log records for the UIAEvt_intWithKey event. See Section 4.16.1.

• The Graph view shows the change in the data value over time. See Section 4.16.2.

See Also

• Section 3.4, Performing Count Analysis with System Analyzer
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4.16.1 Detail View for Count Analysis

To open the Detail view for this feature, use the  Views drop-down list in the toolbar of any Count 
Analysis view.

Each record in the Detail view corresponds to a specific UIAEvt_intWithKey event logged on the target.

You can export the records from the Count Analysis Detail view to a CSV file that can be used by a 
spreadsheet. To do this, right-click on the view and choose Data > Export All. You might do this in order 
to perform statistical analysis on the primary and auxiliary data values.

• Time. This column shows the correlated time at which this event occurred.

• Source. This column identifies the group for this event, which was determined by combining the core 
name with the resulting formatted string from the Log_writeX() call that created this record.

• DataValue. The value used for the analysis.

• AuxData1. These fields are used to pass auxiliary data that may need to be observed. This is the 
Arg2 field of the input to the AF.

• AuxData2. This is the Arg3 field of the input to the AF.

See page 4–62 for information about using the toolbar icons and right-click menu in the Detail view.

See Also

• Section 3.4, Performing Count Analysis with System Analyzer
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4.16.2 Graph View for Count Analysis

To open the Graph view for the Count Analysis feature, use the  Views drop-down list in the 
toolbar of any Count Analysis view. The Graph view shows changes in data values for each unique 
source. When you open this view, you can choose the core or master whose data values you want to plot 
(or all cores).

You can also choose whether to plot the data values against time or sample number. By default, data 
values are plotted vs. time.

In some cases, such as when the data values change at irregular intervals, you might want to plot the 
data values against the sample sequence number. For example:

Clicking on the name of a measurement above the graph highlights the corresponding line in the graph. 
(If you do not see these buttons, right click on the graph and choose Legend.)

Use the toolbar buttons to group (synchronize), measure, zoom, search, and filter the graph. Right-click 
on the graph to adjust the display properties of the graph.
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4.16.3 How Count Analysis Works

Count analysis works with log events that use the UIAEvt_intWithKey event. This event is provided by 
the ti.uia.events.UIAEvt module. You must add these events to your target code in order to see data in 
the Count Analysis views.

The following call to Log_write6() logs an event that can be used by the Count Analysis views:

Log_write6( UIAEvt_intWithKey, 0x100, 44, 0, 

    (IArg)"Component %s Instance=%d", (IArg)"CPU", 1);

The parameters for this call are as follows:

1. Use UIAEvt_intWithKey as the first parameter to log an event for Count Analysis.

2. The data value to be listed or plotted for this source. The value will be treated as a 32-bit integer. In 
the previous example, the data value is 0x100.

3. Additional data to be displayed in the AuxData1 column of the detail view. This value is not plotted in 
the graph. The value will be treated as a 32-bit integer. If you do not need to pass any auxiliary data 
here, pass a placeholder value such as 0. In the previous example, the auxData1 value is 44.

4. Additional data to be displayed in the AuxData2 column of the detail view. This value is not plotted in 
the graph. The value will be treated as a 32-bit integer. If you do not need to pass any auxiliary data 
here, pass a placeholder value such as 0. In the previous example, the auxData1 value is 0.

5. A string to be used as the source for this record. Statistics are performed on groups of records with 
matching sources in the Summary view. Groups of records with matching sources are plotted as a 
data series in the Graph view. This can be a formatted data string such as, "Component %s 
Instance=%d". Since the values passed after this string are "CPU" and 1, this record would belong 
to a group of events that shares a formatted data string of "Component CPU Instance=1"

6. Any variables to me used in the formatted data strong for the previous parameter should be added 
from the sixth parameter on.
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Chapter 5

UIA Configuration and Coding on the Target

This chapter describes how to configure and code target applications using UIA modules.
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5.1 Quickly Enabling UIA Instrumentation

You can begin analyzing data provided by UIA by enabling data collection from pre-instrumented 
SYS/BIOS threads. Later, you can add target-side code to collect additional data specific to your 
application.

Once you perform the necessary configuration, you will be able to view UIA data in the Session or File 
Log view, CPU Load, Task Load, and Execution Graph features. Only the Context Aware Profile and 
Duration features display no data unless you modify your target code by adding benchmarking calls as 
described in Section 4.14.3, How Duration Analysis Works and profiling calls as described in Section 
4.15.2, How Context Aware Profiling Works.

In order to enable data collection from pre-instrumented SYS/BIOS threads and have that data 
transferred from the target(s) to the host PC running CCS, you must do the following:

Configuration Steps to Perform on All Targets

1. Remove Legacy Modules. Remove any statements in your application’s configuration file (*.cfg) 
that include and configure the following modules:

— ti.sysbios.rta.Agent

— ti.rtdx.RtdxModule

— ti.rtdx.driver.RtdxDvr

If you have logger instances for the xdc.runtime.LoggerBuf, delete those instances. 

2. Remove xdc.runtime.LoggerBuf from your application's configuration file. Events logged with 
LoggerBuf cannot be viewed in RTOS Analyzer.

3. Use the LoggingSetup Module. Add the following statement to include UIA’s LoggingSetup module 
in your application’s configuration. For example:

var LoggingSetup = 

    xdc.useModule('ti.uia.sysbios.LoggingSetup');

Including the LoggingSetup module creates logger instances needed by UIA and assigns those 
loggers to the modules that need them in order to provide UIA data.

4. If you intend to use a UIA logger other than LoggerStopMode, set the LoggingSetup.loggerType 
parameter as described in “Configuring the UIA Logger” on page 94. This example uses the 
LoggerMin minimal footprint logger:

LoggingSetup.loggerType = LoggingSetup.LoggerType_MIN;
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Configuration Steps to Perform on Multicore Targets Only

If you are using a multicore device, perform these additional steps:

1. Configure physical communication, such as NDK. Configure physical communication between 
the cores. The application is responsible for configuring and starting the physical communication. For 
example, this communication may use the NDK. See the target-specific examples provided with UIA 
(and NDK) for sample code.

2. Configure the Topology. If your multicore application routes data through a single master core, edit 
your application’s configuration file to include UIA’s ServiceMgr module and configure MULTICORE 
as the topology, and identify the master core using the ServiceMgr.masterProcId parameter. For 
example:

var ServiceMgr = 

    xdc.useModule('ti.uia.runtime.ServiceMgr');

ServiceMgr.topology = ServiceMgr.Topology_MULTICORE;

ServiceMgr.masterProcId = 3;

The EVMTI816x routes to the ARM, which runs Linux. The EVM6472 routes to the master core. In 
general, if only one core can access the peripherals, use the MULTICORE topology. 

If each core in your multicore application sends data directly to CCS on the host, configure the 
topology as Topology_SINGLECORE (which is the default).

See Section 5.3.3 for more information about configuring the topology.

3. Configure IPC. You must also configure and initialize IPC and any other components needed to 
enable communication between the cores. For example, you might also need to set up the NDK. See 
the target-specific examples provided with UIA (and IPC) for sample code. UIA may not be the only 
user of these resources, so it is left to the application to configure and initialize them. 

4. Configure GlobalTimestampProxy and CpuTimestampProxy. You must configure the 
GlobalTimestampProxy parameter in the LogSync module as described in Section 5.3.7. If the 
frequency of your local CPU will change at run-time, you must also configure the 
CpuTimestampProxy parameter.

5.1.1 Using XGCONF to Enable UIA Instrumentation

Instead of editing configuration scripts directly, you can use the XGCONF tool within CCS to visually edit 
an application’s configuration. XGCONF shows the RTSC modules—including XDCtools, SYS/BIOS, 
IPC, and UIA—that are available for configuration. 

XGCONF lets you add the use of modules to your application, create instances, and set parameter 
values. It performs error checking as you work, and so can save you time by preventing you from making 
configuration errors that would otherwise not be detected until you built the application.

For example, to add UIA instrumentation to a SYS/BIOS application that uses the legacy 
ti.sysbios.rta.Agent and xdc.runtime.LoggerBuf modules, follow these steps:

1. In CCS, right-click on the project and choose Show Build Settings.

2. In the Properties dialog, choose the General category, then the RTSC tab.

3. In the Products and Repositories area, check the box next to TI-RTOS for your device family. If 
there are multiple versions, select the most recent version. This makes the UIA modules available 
within XGCONF.

4. Click OK.
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5. Open the project’s configuration file (*.cfg) with XGCONF in CCS. Notice that TI-RTOS is now listed 
in the Available Packages list.

6. Look at the Outline list, which is usually 
on the right side of the CCS window.

7. If you see the ti.sysbios.rta.Agent 
module listed in the Outline list, right-
click on it and choose Stop Using 
Agent.

8. If a LoggerBuf logger is listed in the 
Outline pane, right-click on the logger 
instance (for example, "logger0") and 
choose Delete. If you see error 
messages, select the Source tab at the 
bottom of the center pane. Delete all 
statements related to the logger 
instance, and save the file.

9. If the xdc.runtime.LoggerBuf module is 
listed in the Outline pane, right-click on it 
and choose Stop Using LoggerBuf.

10. If there are any RTDX modules or 
drivers, remove those from the Outline.

11. Expand the Available Products tree to see the 
modules in TI-RTOS > Products > UIA.

12.  Drag the LoggingSetup module to the Outline pane.

13. Select the LoggingSetup module in the Outline. Notice 
that the properties for this module are then shown in 
the center pane. If you see the configuration script 
instead, click the LoggingSetup tab at the bottom of 
this area.

14. Set a property. For example, in the Built-in Software 
Instrumentation properties, you can enable event 
logging for individual Swi threads by checking the Swi 
Context box below the RTOS Execution Analysis 
item.

15. Set properties and add other modules as needed.

16. Press Ctrl+S to save your configuration file.

5.2 Configuring SYS/BIOS Logging

You can configure the types of SYS/BIOS events that are logged and sent to RTOS Analyzer. 

• Load logging is enabled by default for CPU, Task, Swi, and Hwi threads. As a result, information 
about loads for those items is available in the CPU Load and Task Load features.

• Event logging used to display the Execution Graph is enabled by default only for Task threads. You 
can enable it for Swi and Hwi threads by configuring the LoggingSetup module.

See Section 5.4.2 for information about configuring other types of logging messages.

Remove
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5.2.1 Enabling and Disabling Load Logging

By default, all types of SYS/BIOS load logging are enabled as a result of adding the LoggingSetup 
module to the configuration.

If you want to disable CPU Load logging, you would include the following statement in your target 
application’s configuration file. However, note that disabling CPU load logging also disables all other load 
logging.

LoggingSetup.loadLogging = false;

To disable Task, Swi, or Hwi load logging, you can use the corresponding statement from the following 
list:

var Load = xdc.useModule('ti.sysbios.utils.Load');

Load.taskEnabled = false;

Load.swiEnabled = false;

Load.hwiEnabled = false;

Another way to disable load logging is to modify the setting of the Load.common$.diags_USER4 mask, 
which controls whether load logging is output. For example, the following statements disable all load 
logging:

var Load = xdc.useModule('ti.sysbios.utils.Load');

var Diags = xdc.useModule('xdc.runtime.Diags');

Load.common$.diags_USER4 = Diags.ALWAYS_OFF;

The Load.common$.diags_USER4 mask is set to Diags.RUNTIME_ON by the LoggingSetup module 
unless you have explicitly set it to some other value.

5.2.2 Enabling and Disabling Event Logging

By default, the event logging used to display the Execution Graph is enabled by default only for 
SYS/BIOS Task threads. As a result, the Execution Graph can be expanded to show individual Task 
threads, but shows all Swi thread execution as one row, and all Hwi thread execution in another row 
without showing Swi and Hwi thread names.

Enabling Logging

You can enable event logging for SYS/BIOS Swi and Hwi threads by configuring the LoggingSetup 
module as follows:

LoggingSetup.sysbiosSwiLogging = true;

LoggingSetup.sysbiosHwiLogging = true;

Enabling event logging for Swi and Hwi allows you to see the execution status of individual Swi and Hwi 
threads. Application performance may be impacted if you enable such logging for applications with Swi 
or Hwi functions that run frequently. In addition, logging many frequent events increases the chance of 
the oldest data in the logger buffer being overwritten, if the buffer fills up before being read by the host.

For Task threads, the events logged are ready, block, switch, yield, sleep, set priority, and exit events. For 
Swi threads, the events logged are post, begin, and end events. For Hwi threads, the events logged are 
begin and end events.
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The following configuration statements enable logging of all function entry and exit events by your 
application. This is because your main() function and other user-defined functions (that is, for example, 
all non-XDCtools, non-SYS/BIOS, non-IPC, and non-UIA modules) inherit their default Diags 
configuration from the Main module’s Diags configuration.

Main.common$.diags_ENTRY = Diags.ALWAYS_ON;

Main.common$.diags_EXIT = Diags.ALWAYS_ON;

Disabling Logging

To disable Task, Swi, Hwi, or Main event logging, you can use the appropriate statement from the 
following list:

LoggingSetup.sysbiosTaskLogging = false;

LoggingSetup.sysbiosSwiLogging = false;

LoggingSetup.sysbiosHwiLogging = false;

LoggingSetup.mainLogging = false;

Another way to disable event logging is to modify the setting of the common$.diags_USER1 and 
common$.diags_USER2 masks for the appropriate module. This controls whether event logging is 
output. For example, the following statements disable all event logging:

var Task = xdc.useModule('ti.sysbios.knl.Task');

Task.common$.diags_USER1 = Diags.ALWAYS_OFF;

Task.common$.diags_USER2 = Diags.ALWAYS_OFF;

var Swi = xdc.useModule('ti.sysbios.knl.Swi');

Swi.common$.diags_USER1 = Diags.ALWAYS_OFF;

Swi.common$.diags_USER2 = Diags.ALWAYS_OFF;

var Hwi = xdc.useModule('ti.sysbios.hal.Hwi');

Hwi.common$.diags_USER1 = Diags.ALWAYS_OFF;

Hwi.common$.diags_USER2 = Diags.ALWAYS_OFF;

Main.common$.diags_USER1 = Diags.ALWAYS_OFF;

Main.common$.diags_USER2 = Diags.ALWAYS_OFF;

5.2.3 More About Diags Masks

Since logging is not always desired because of the potential impact on the system performance, you can 
use the xdc.runtime.Diags module to enable/disable logging both statically and dynamically on a global 
or per module basis.

By default the ti.uia.sysbios.LoggingSetup module sets the following diagnostics masks to 
Diags.RUNTIME_ON:

• diags_USER1 and diags_USER2: Main, Task, Semaphore, and Event modules. These masks 
control event logging.

• diags_USER4: Main and Load modules. This mask controls load logging.

• diags_USER3, diags_USER5, and diags_USER6: Main module.

• diags_STATUS: Main module. This mask controls the output of some events provided in the 
ti.uia.events package.

• diags_ANALYSIS: Main module. This mask controls the output of some events provided in the 
ti.uia.events package.
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• diags_INFO: Main module. This mask controls the output of some events provided in the 
ti.uia.events package.

For Swi and Hwi event logging, the diags_USER1 and diags_USER2 masks are set to 
Diags.RUNTIME_ON only if you have set LoggingSetup.sysbiosSwiLogging or 
LoggingSetup.sysbiosHwiLogging to true. By default, these are off.

This leaves other masks that are rarely or never used by UIA—diags_ENTRY, diags_EXIT, 
diags_LIFECYCLE, diags_INTERNAL, diags_ASSERT, diags_USER7, and diags_USER8—at their 
default values.

The XDCscript portion of the CDOC online reference contains details about which diagnostics masks 
must be enabled for particular events to be logged. 

Note: You should be careful about setting any Defaults.common$ parameters. Such 
parameter settings are inherited by all modules for which the parameter is not explicitly 
set. This includes all XDCtools, SYS/BIOS, IPC, and UIA modules.

5.2.4 Setting Diags Masks at Run-time

Run-time checking is performed when a diagnostics mask is set to RUNTIME_ON. To improve 
performance by removing run-time checking, you may want to change the configuration to use 
Diags.ALWAYS_ON or Diags.ALWAYS_OFF.

If you configure a diagnostics mask to be set to Diags.RUNTIME_ON or Diags.RUNTIME_OFF, your C 
code can change the setting at run-time by calling the Diags_setMask() function. For example:

// turn on USER1 & USER2 events in the Swi module

Diags_setMask("ti.sysbios.knl.Swi+1");

Diags_setMask("ti.sysbios.knl.Swi+2");

...

// turn off USER4 (load) events in the Swi module 

Diags_setMask("ti.sysbios.knl.Swi-4");

For information about the tradeoffs between Diags.ALWAYS_ON and Diags.RUNTIME_ON, see Section 
7.5.2 and its subsections in the SYS/BIOS User’s Guide (SPRUEX3). Ignore any mention of the 
ti.sysbios.rta.Agent module and RTDX; these are replaced by the modules provided with UIA.

See Section 5.4.2 for more about run-time diagnostics configuration.

5.3 Customizing the Configuration of UIA Modules

You can further customize the behavior of UIA modules as described in the subsections that follow:

• Section 5.3.1, Configuring ti.uia.sysbios.LoggingSetup

• Section 5.3.2, Configuring ti.uia.services.Rta

• Section 5.3.3, Configuring ti.uia.runtime.ServiceMgr

• Section 5.3.4, Configuring ti.uia.loggers.LoggerStopMode

• Section 5.3.5, Configuring ti.uia.runtime.LoggerSM

• Section 5.3.6, Configuring ti.uia.sysbios.LoggerIdle
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• Section 5.3.7, Configuring ti.uia.runtime.LogSync

You can further control UIA behavior through the following:

• Section 5.3.8, Configuring IPC

5.3.1 Configuring ti.uia.sysbios.LoggingSetup

In order to enable UIA instrumentation, your application’s configuration file should include the 
ti.uia.sysbios.LoggingSetup module as follows:

var LoggingSetup = 

    xdc.useModule('ti.uia.sysbios.LoggingSetup');

See Section 5.2 for how to configure the types of events that are logged and sent to RTOS Analyzer and 
System Analyzer.

Besides using the LoggingSetup module to configure event logging, you can also configure the loggers 
that are created as a result of including this module.

Configuring the UIA Logger

By default, events are logged using LoggerStopMode, and are uploaded over JTAG when the target halts. 
This mode requires that JTAG connections are supported by the target. 

If you want to upload data while the target is running (only available for some targets), you will need to 
use a different logger, such as LoggerRunMode or LoggerIdle. You can do this by configuring the 
LoggingSetup.loggerType parameter. For example, to upload over JTAG while the target is running 
(available on C6x only):

LoggingSetup.loggerType = LoggingSetup.LoggerType_JTAGRUNMODE;

The available logger types are as follows:

Table 5–1.  LoggingSetup.loggerType Values

The various loggers have different pros and cons. The following table compares them. Comments below 
the table explain the columns in more detail.

Value Description

LoggerType_STOPMODE Events are uploaded over JTAG when the target halts. This mode is not supported 
on CPUs running multi-process operating systems such as Linux. (This is the 
default mode.)

LoggerType_MIN Events are written to a minimal footprint logger, LoggerMin, and uploaded over 
JTAG when the target halts. This is useful for memory-constrained applications.

LoggerType_JTAGRUNMODE Events are uploaded directly from the buffers via JTAG while the target is running. 
Note that while events can be uploaded via JTAG, commands cannot be sent to the 
target via JTAG. This mode is currently supported only on C6x devices.

LoggerType_RUNMODE Events are uploaded over the non-JTAG transport specified by the 
ServiceMgr.transportType parameter. For example, by Ethernet or File. See Section 
5.3.3.

LoggerType_IDLE Events are uploaded during the Idle loop by a user-implemented transport function.
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Table 5–2.  Comparison of UIA Loggers

If you are using a simulator, you should use LoggerType_STOPMODE.

The only loggers that do not require a JTAG connection are LoggerRunMode (when configured to use 
Ethernet transport) and LoggerIdle.

If you select LoggerRunMode with Ethernet transport, you will also need to configure and use 
ServiceMgr. (See Section 5.3.3.1, Configuring the topology) This will increase the memory footprint and 
have a small impact on the performance of the application, because Log records are retrieved from a low-
priority Task thread.

The memory footprint is smaller for modes that do not use the ServiceMgr framework.

Non-JTAG modes have a small performance impact on the application because Log records are 
retrieved from a low-priority Task thread by the ServiceMgr framework or during Idle processing for 
LoggerIdle.

The Loggers listed as being easy to use are easy because there are very few decisions to be made. The 
LoggerRunMode logger, when configured to use Ethernet, allows you to customize the behavior of the 
ServiceMgr framework, so there are more choices available to you. LoggerIdle is less complicated than 
ServiceMgr, but it still requires the user to set up and implement the transport that will be used.

See the ti.uia.sysbios.LoggingSetup topic in the online help API Reference (CDOC) for more information 
about this module.

Default Logger Instances

The LoggingSetup module creates logger instances for the following purposes:

• SYSBIOS System Logger. Receives events related to SYS/BIOS context-switching. For example, 
pend and post events for the Semaphore and Event modules go to this log. The default size of this 
logger is 1024 MADUs.

Logger Event Upload Mode Features and Limitations Ease-of-Use

LoggerStopMode Events uploaded over JTAG when 
the target halts.

Supports multiple logger instances, 
Snapshot events, and filtering of events by 
level. Larger memory footprint.

Easy

LoggerMin Events uploaded over JTAG when 
the target halts.

Single buffer for all Log events. No 
Snapshot events or filtering. Minimal 
footprint.

Easy

LoggerRunMode 
(JTAG)

Events uploaded over real-time 
JTAG. Available on C64+ and C66x 
targets only.

Supports multiple instances, Snapshot 
events, and event filtering. Similar memory 
footprint to LoggerStopMode.

Easy

LoggerRunMode 
(Ethernet)

Events uploaded through ServiceMgr 
user-pluggable transport function.

Supports multiple instances, Snapshot 
events, and event filtering. Larger memory 
footprint for ServiceMgr and transport.

Complex

LoggerIdle Events uploaded over UART, USB, or 
Ethernet in the SYS/BIOS Idle Task. 
User must provide the transport 
function for uploading the events.

A single buffer for all Log events. Snapshot 
events and filtering are not supported to 
provide a smaller memory footprint.

Moderate
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• Load Logger. Receives load information for the CPU, thread types (Hwi and Swi), and Task 
functions. The default size of this logger is 512 MADUs.

• Main Logger. Receives benchmarking information from pre-instrumented objects and any events 
you add to the target code. The default size of this logger is 1024 MADUs.

All loggers use circular buffers. If the buffer fills up before the host gathers data from the buffer, the logger 
overwrites the oldest data in the buffer. If you encounter this problem, you can increase the buffer size.

For LoggerMin and LoggerIdle, there is only one buffer for the logs. The default size of the LoggerMin 
buffer is 512 MADUs. The default size of the LoggerIdle buffer is 256 32-bit words. See the API Reference 
(CDOC) for any changes to the default sizes.

Loggers are responsible for handling events sent via APIs in the xdc.runtime.Log module and the Log 
extension modules provided by UIA (for example, LogSnapshot and LogSync).

If you want more control over the way a logger is configured—for example, to specify which section of 
memory contains the logger’s event buffer—you can create your own instance of a logger, configure its 
parameters, and assign this logger to the LoggingSetup module via the loadLogger, sysbiosLogger, and 
mainLogger configuration parameters.

Configuring Loggers

To configure a Logger module, add the module that corresponds to your LoggingSetup.loggerType from 
the list in Table 5–3. You can add a module in XGCONF or by adding a statement similar to the following 
to your *.cfg file:

var LoggerStopMode = xdc.useModule('ti.uia.loggers.LoggerStopMode');

Table 5–3.  LoggerType and Loggers

LoggingSetup Configuration Logger

LoggingSetup.loggerType = LoggingSetup.LoggerType_MIN; ti.uia.loggers.LoggerMin

LoggingSetup.loggerType = LoggingSetup.LoggerType_STOPMODE; ti.uia.loggers.LoggerStopMode

LoggingSetup.loggerType = LoggingSetup.LoggerType_JTAGRUNMODE;

/*
 *  The default transport type of LoggerRunMode is JTAG,
 *  so the following line is not really necessary.
 */
LoggerRunMode.transportType =
    LoggerRunMode.TransportType_JTAG;

ti.uia.loggers.LoggerRunMode

LoggingSetup.loggerType = LoggingSetup.LoggerType_RUNMODE;

/*
 *  To use LoggerRunMode with a non-JTAG transport, (currently
 *  Ethernet is the only other option, and this is available
 *  only on some targets) you must configure the transport
 *  type. You must also configure ti.uia.runtime.ServiceMgr
 *  (see examples).
 */
LoggerRunMode.transportType =
    LoggerRunMode.TransportType_ETHERNET;

ti.uia.loggers.LoggerRunMode
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Configuring Logger Buffer Sizes: Log events may be overwritten if the logger’s circular buffer fills up 
before the events are uploaded. For this reason, you may want to increase the size of the buffer, 
depending on the number of events logged and the frequency they are uploaded. Events generally range 
in size from 8 bytes to 48 bytes. You can change the default sizes of the three loggers created by 
LoggingSetup as follows:

LoggingSetup.loadLoggerSize = 2048;

LoggingSetup.mainLoggerSize = 16384;

LoggingSetup.sysbiosLoggerSize = 16384;

If you are using LoggerMin or LoggerIdle, LoggingSetup will choose the largest of any of these three sizes 
you have set, since these loggers have only one buffer for all Log events.

See Section 5.3.4, Configuring ti.uia.loggers.LoggerStopMode, for an example that configures a logger 
by customizing the logger size and memory section use.

Note: Use of xdc.runtime.LoggerBuf is not supported by UIA. This module is provided for use 
by legacy applications that were written prior to the introduction of UIA and does not 
use data structures that are supported by RTOS Analyzer and System Analyzer.

5.3.2 Configuring ti.uia.services.Rta

For LoggerRunMode using the Ethernet transport (LoggingSetup.loggerType = 
LoggingSetup.LoggerType_RUNMODE), UIA uses the ti.uia.services.Rta module to provide a real-time 
analysis service. The Rta module enables a service that collects events from logger instances and sends 
them to the host.

Your application’s configuration file does not need to include the ti.uia.services.Rta module, because it is 
automatically included when you set the LoggingSetup.loggerType parameter to 
LoggerType_RUNMODE.

Note: You should not include the ti.uia.services.Rta module in your configuration file or set 
any of its parameters if you are using any logger other than LoggerRunMode with 
Ethernet transport.

By default, the Rta module collects events every 100 milliseconds. You can configure a different interval 
as in the following example:

Rta.periodInMs = 500;

You should shorten the period if you are using a simulator. For example:

Rta.periodInMs = 5;

LoggingSetup.loggerType = LoggingSetup.LoggerType_IDLE;

/* If you use LoggerIdle, configure the transport fxn */
LoggerIdle.transportType = LoggerIdle.TransportType_UART;
LoggerIdle.transportFxn = '&mySend';

ti.uia.sysbios.LoggerIdle

LoggingSetup Configuration Logger
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Setting the periodInMs parameter does not guarantee that the collection will run at this rate. Even if the 
period has expired, the collection will not occur until the current running Task has yielded and there are 
no other higher priority Tasks ready.

Setting the period to 0 disables all collection of events.

When you include the Rta module, Rta automatically includes the ti.uia.runtime.ServiceMgr module—the 
module that actually communicates with the instrumentation host. The ServiceMgr module is described 
in Section 5.3.3.

A periodInMs parameter is also provided by the ServiceMgr module. When setting the Rta.periodInMs 
parameter, you should consider the interactions between the settings you use for the SYS/BIOS clock 
interval (in the ti.sysbios.knl.Clock module), the ServiceMgr.periodInMs parameter, and the 
Rta.periodInMs parameter.

• The SYS/BIOS clock interval should be the shortest interval of the three. By default it is 1 millisecond.

• The ServiceMgr.periodInMs parameter should be larger than the SYS/BIOS clock interval, and it 
should be a whole-number multiple of the SYS/BIOS clock interval. By default it is 100 milliseconds.

• The Rta.periodInMs parameter should be equal to or greater than the ServiceMgr.periodInMs 
parameter, and it should also be a whole-number multiple of ServiceMgr.periodInMs. By default it is 
100 milliseconds.

In summary:

SYS/BIOS clock interval < ServiceMgr.periodInMs <= Rta.periodInMs

If periodInMs for ServiceMgr and Rta are too small, your system performance may suffer because of all 
the context switches. If periodInMs is too large, logger buffers, which are circular, may fill up before the 
period elapses and you may lose data.

See the ti.uia.services.Rta topic in the online help API Reference (CDOC) for more information.

5.3.3 Configuring ti.uia.runtime.ServiceMgr

(This section applies only to LoggerRunMode with the Ethernet transport).

The ti.uia.runtime.ServiceMgr module is responsible for sending and receiving packets between the 
services on the target and the instrumentation host.

When the LoggingSetup module includes the Rta module (because the LoggingSetup.loggerType is 
LoggerType_RUNMODE and LoggerRunMode.transportType is Ethernet), Rta automatically includes the 
ti.uia.runtime.ServiceMgr module. If you have a single-core application, you can use the default 
configuration of the ServiceMgr module.

The ServiceMgr module provides three key configuration parameters in setting up UIA for your device 
based on your architecture:

• topology. Specifies whether you are using a single-core or multicore target. See Section 5.3.3.1.

• transportType. Specifies transport to use. See Section 5.3.3.2.

• masterProcId. If this is a multicore application, specifies which core is routing events to the 
instrumentation host. See Section 5.3.3.3.
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5.3.3.1 Configuring the topology

The default for the ServiceMgr.topology configuration parameter is Topology_SINGLECORE, which 
means that each core on the device communicates directly with the host.

If you have a multicore application and the routing of events to CCS is done via a single master core 
(which then sends the data to CCS), you must include the ServiceMgr module explicitly and configure 
MULTICORE as the topology. For example:

var ServiceMgr = 

    xdc.useModule('ti.uia.runtime.ServiceMgr');

ServiceMgr.topology = ServiceMgr.Topology_MULTICORE;

The EVMTI816x routes to the ARM, which runs Linux. The EVM6472 routes to the master core. In 
general, if only one core can access the peripherals, use the MULTICORE topology. 

Communication with other cores is routed via the master core, which is specified by the 
ServiceMgr.masterProcId parameter. 

Routing between cores is done via Ipc's MessageQ module. ServiceMgr uses IPC to discover the core 
configuration and to communicate between the cores. The cores use MessageQ to talk to each other. 
The masterProcId communicates to CCS. For ’C6472, the master core uses NDK to send and receive 
TCP/UDP packets to and from CCS.

Note: ServiceMgr expects the application to configure and initialize IPC.

If each core in your multicore application sends data directly to CCS on the host, configure the topology 
as Topology_SINGLECORE and do not specify a value for the masterProcId parameter.

5.3.3.2 Configuring the transportType

The ServiceMgr.transportType configuration parameter is used to specify in the type of physical 
connection to use. For example:

ServiceMgr.transportType = ServiceMgr.TransportType_FILE;

The following transport options are available:

• TransportType_ETHERNET. Events and control messages are sent between the host and targets 
via Ethernet. By default, the NDK is used. The application is responsible for configuring and starting 
networking stack. 

• TransportType_FILE. Events are sent between the host and targets via File over JTAG. (Note that 
control messages cannot be sent via this transport.)

• TransportType_USER. You plan write your own transport functions or use transport functions from 
some other source and specify them using the ServiceMgr.transportFxns parameter. See Section 
5.4.8, Custom Transport Functions for Use with ServiceMgr if you plan to use this option.

Not all transport options are supported on all devices.

If you do not specify a transportType, UIA picks an appropriate transport implementation to use based on 
your device. The defaults are found using the ti.uia.family.Settings module. If the device is unknown to 
ServiceMgr, TransportType_ETHERNET is used.
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5.3.3.3 Configuring the masterProcId

If this is a multicore application, you need to set the ServiceMgr.masterProcId parameter to indicate 
which core you want to act as the master core for UIA. All packets will be routed through the master core 
to the instrumentation host.

The core ID numbers correspond the IPC’s MultiProc ID values. The ServiceMgr module uses IPC to 
discover the core configuration and to communicate between cores.

Note: The core chosen as the master must be started first.

For example to have core 3 be the masterProcId on a multicore device:

var ServiceMgr = 

    xdc.useModule('ti.uia.runtime.ServiceMgr');

ServiceMgr.topology = ServiceMgr.Topology_MULTICORE;

ServiceMgr.masterProcId = 3;

5.3.3.4 Configuring Other ServiceMgr Parameters

You can configure how often the ServiceMgr gathers events from logs and transfers them to the host. For 
example:

ServiceMgr.periodInMs = 200;

See Section 5.3.2, Configuring ti.uia.services.Rta for details on the interactions between the 
ServiceMgr.periodInMs parameter, the Rta.periodInMs parameter, and the SYS/BIOS clock interval.

UIA makes a distinction between event and message (control) packets. 

• Event packets are large in order to hold several event records. For example, if you are using an 
Ethernet transport, the maximum event packet size is 1472 bytes, which includes the packet header. 
UIA chooses the size and number of event packets based on the transport and device. In a multicore 
architecture, you may want to increase the value of the numEventPacketBufs parameter beyond the 
default of 2 if a lot of logging is done on the non-master cores. This will help reduce the number of 
events lost. 

• Message (control) packets are small and hold only a control message sent from the instrumentation 
host. The default message packet size is 128 bytes. Note that control messages are only supported 
via the Ethernet transport. The ServiceMgr.supportControl parameter specifies whether control 
messages are enabled; it is set automatically as a result of the transport that is used. Control packets 
occur much less frequently than event packets, so it is rarely necessary to increase the number of 
control packet buffers. For those rare cases, you can use the numIncomingCtrlPacketBufs and 
numOutgoingCtrlPacketBufs parameters to configure the number of message packets.

The ServiceMgr module uses one or two Task threads depending on whether control message handling 
is enabled. By default, these Tasks have a priority of 1, the lowest level. The receive Task receives control 
messages from the instrumentation host and forwards them to the transfer agent Task. The transfer agent 
Task handles all other activities, including period management, event collection, communicating with 
remote cores, and sending UIA packets to the instrumentation host. The ServiceMgr module provides the 
following parameters for configuring the priority, stack sizes, and placement of these tasks: rxTaskPriority, 
rxTaskStackSize, rxTaskStackSection, transferAgentPriority, transferAgentStackSize, and 
transferAgentStackSection. 

See the ti.uia.runtime.ServiceMgr topic in the online help API Reference (CDOC) for more information 
about this module.
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5.3.4 Configuring ti.uia.loggers.LoggerStopMode

As described in Section 5.3.1, Configuring ti.uia.sysbios.LoggingSetup, UIA creates and uses several 
loggers to contain events. 

Loggers are implementations of an interface, ILogger, which is defined by XDCtools. By default, the 
loggers created by LoggingSetup use the ti.uia.loggers.LoggerStopMode implementation provided with 
UIA.

Note: You can only use loggers from ti.uia.loggers and ti.uia.sysbios with UIA. You cannot use 
xdc.runtime.LoggerBuf with UIA.

LoggerStopMode maintains variable-length logger instances that store events in a compressed, non-
decoded format in memory.

For multicore devices, each core must have its own logger instances. Instances cannot be shared among 
multiple cores due to the overhead that would be required for multicore synchronization.

You can use the LoggerStopMode module to configure your own loggers for UIA (instead of using 
ti.uia.sysbios.LoggingSetup’s defaults). This allows you to configure parameters for the loggers, such as 
the section that contains the buffer. 

For example, the following statements configure a Load logger to be used by LoggingSetup. The size is 
larger than the default and the logger is stored in a non-default memory section:

var loggerParams = new LoggerStopMode.Params();

loggerParams.bufSize = 2048;

/* must also place memory section via Program.sectMap */

loggerParams.bufSection = ".myLoggerSection";

var logger = LoggerStopMode.create(loggerParams);

logger.instance.name = "Load Logger";

var LoggingSetup = xdc.useModule('ti.uia.sysbios.LoggingSetup');

LoggingSetup.loadLogger = logger;

You can also create extra LoggerStopMode instances to handle events from certain modules. It is 
advantageous to put critical events in a dedicated logger instance, where they will not be overwritten. For 
example, the following code creates a logger just for the Swi module.

var LoggerStopMode = xdc.useModule('ti.uia.loggers.LoggerStopMode');

var Swi = xdc.useModule('ti.sysbios.knl.Swi');

/* Give the Swi module its own logger. */

var loggerParams = new LoggerStopMode.Params();

loggerParams.bufSize = 65536;

var swiLog = LoggerStopMode.create(loggerParams);

swiLog.instance.name = "Swi Logger";

Swi.common$.logger = swiLog;

/* Enable the Swi module to log events */

Swi.common$.diags_USER1 = Diags.RUNTIME_ON;

Swi.common$.diags_USER2 = Diags.RUNTIME_ON;
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Events generally range in size from 8 bytes (Log_write0 with no timestamp) to 48 bytes (Log_write8 with 
timestamp). Note that snapshot and memory dump events can be even larger.

See the ti.uia.loggers.LoggerStopMode topic in the online help API Reference (CDOC) for more 
information about this module.

5.3.4.1 Configuring a Shared LoggerStopMode when Multiple Cores Run the Same Image

If you have a single target image that is loaded onto multiple cores, and the LoggerStopMode loggers are 
stored in shared memory (for example, external memory), you should set the loggerParams.numCores 
parameter to specify the number of cores running the same image.

The numCores parameter provides a solution to the problem that occurs if the logger's buffer is in shared 
memory (for example, DDR). Since the image is the same for all the cores, each core attempts to write 
to the same buffer in the shared memory.

The following example shows how to set the numCores parameter for a logger that is stored in shared 
memory.

var loggerParams = new LoggerStopMode.Params();

loggerParams.bufSize = 1024;

loggerParams.numCores = 4;

/* must also place memory section via Program.sectMap */

loggerParams.bufSection = ".sharedMemSection"; 

var logger = LoggerStopMode.create(loggerParams);

logger.instance.name = "Load Logger";

var LoggingSetup = 

    xdc.useModule('ti.uia.sysbios.LoggingSetup');

LoggingSetup.loadLogger = logger;

Setting numCores to a value greater than 1 causes LoggerStopMode to statically allocate additional 
memory to allow each core to have bufSize amount of memory. The amount of memory allocated is the 
logger’s bufSize * numCores.

Note: You should set the numCores parameter to a value greater than one only if a single 
image is used on multiple cores of a multicore device and the logger instance's buffer 
is stored in shared memory. Increasing numCores in other cases will still allow the 
application to function, but will waste memory.

The default value for numCores is 1, which does not reserve any additional memory for the logger.

5.3.5 Configuring ti.uia.runtime.LoggerSM

The LoggerSM logger implementation stores log records into shared memory. It is intended to be used 
with a SoC system (such as EVMTI816x) where Linux is running on the host core (such as CortexA8) 
and SYS/BIOS is running on the targets (for example, M3 and DSP).
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When a Log call is made on the target, the record is written into the shared memory. On the Linux host, 
the records can be read from the shared memory and either displayed to the console or written to a file 
to be processed by RTOS Analyzer and System Analyzer at a later time.

Each target is assigned its own partition of the shared memory, and writes its log events to that partition 
only. 

For use on Linux, UIA ships a LoggerSM module that can be used to process the records and a 
command-line application that can make use of the LoggerSM module.

The example that uses LoggerSM on EVMTI816x is located in 
<uia_install_dir>\packages\ti\uia\examples\evmti816x. The tools for use on Linux when the targets are 
using LoggerSM are located in <uia_install_dir>/packages/ti/uia/linux.

Constraints

• The shared memory must be in a non-cacheable region. LoggerSM does not perform any cache 
coherency calls. You can place memory in non-cached memory via different mechanisms on different 
target types. For example, use ti.sysbios.hal.ammu.AMMU for the M3 cores and the 
ti.sysbios.family.c64p.Cache module for the DSP on the EVMTI816x. See the EVMTI816x examples 
provided with UIA for details.

• The shared memory must be aligned on a 4096 boundary.

• The shared memory must be in a NOLOAD section if multiple cores are using the memory.

• All cores, including the targets and Linux ARM core, must have the same size memory units, also 
called Minimum Addressable Data Unit (MADU).

• Currently the targets and host must all have the same endianness. Removing this restriction is a 
future enhancement. For example, the EVMTI816x's CortexA8, DSP, and M3 all are little endian.
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Configuring the Targets

The following example configuration script causes a target to use the LoggerSM module to place UIA 
events in shared memory:

var LoggerSM = xdc.useModule('ti.uia.runtime.LoggerSM');

var LoggingSetup = 

    xdc.useModule('ti.uia.sysbios.LoggingSetup');

var MultiProc = xdc.useModule('ti.sdo.utils.MultiProc');

LoggerSM.sharedMemorySize = 0x20000;

LoggerSM.numPartitions = 3;

LoggerSM.partitionId = MultiProc.id;

LoggerSM.bufSection = ".loggerSM";

var logger = LoggerSM.create();

LoggingSetup.loadLogger = logger;

LoggingSetup.mainLogger = logger; 

LoggingSetup.sysbiosLogger = logger; 

Alternately, since only one LoggerSM instance is used for all logging, you can create the logger instance 
and use it in all cases where logging occurs as follows:

Defaults.common$.logger = LoggerSM.create();

The parameters you can set include:

• sharedMemorySize specifies the total size of the shared memory for all targets. You must set this 
parameter to the same value on all targets. The default size is 0x20000 MADUs. For example, on the 
EVMTI816x, if the sharedMemorySize is 0x3000, each target—DSP, videoM3 and vpssM3—would 
get 0x1000 MADUs of shared memory for log records.

• numPartitions specifies the number of cores that can use the shared memory. The memory will be 
divided into this number of equal partitions. You must set this parameter to the same value on all 
targets. The default is 3 partitions. If the sharedMemorySize is not evenly divisible by 3, the extra 
memory is unused at the end of the shared memory.

• partitionID determines which partition this target uses. This value must be different on all targets. 
For example, in the EVMTI816x examples, the DSP gets partition 0, videoM3 gets 1, and vpssM3 
gets 2. This corresponds with the IPC Multicore IDs. You can set this parameter at run-time using the 
LoggerSM_setPartitionId() API, which must be called before module startup occurs. For example, 
you could call this function using the xdc.runtime.Startup.firstFxns array.

• decode specifies whether the target decodes the record before writing it to shared memory. The 
default is true, which means the target decodes the record into an ASCII string and writes the string 
into the shared memory. The Linux tool extracts the string and prints it to the Linux console. This 
approach is expensive from a performance standpoint. The benefit is that it is easy to manage and 
view on the host.

If you set decode to false, encoded records are written to the shared memory. The Linux tool writes 
the encoded records to a single binary file (see page 5–106) that can be decoded by RTOS Analyzer 
and System Analyzer. This approach makes Log module calls much faster on the target. Note that 
different cores can have different decode values.
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• overwrite determines what happens if the shared memory partition fills up. By default, any new 
records are discarded. This mode allows you to read the records while the target is running. If you 
set this parameter to true, old records are overwritten by new records. In this mode, records can only 
be read on Linux when the targets are halted (or crashed), because both the target and host must 
update a read pointer.

• bufSection specifies the section in which to place the logger’s buffer. See the next section for details.

Placing the Shared Memory

The bufSection parameter tells LoggerSM where to place the buffer it creates. Each core’s bufSection 
must be placed at the same address. For example, the EVMTI816x examples all place the ".loggerSM" 
section at 0x8f000000 with the following configuration statements:

LoggerSM.bufSection = ".loggerSM";

...

Program.sectMap[".loggerSM"] = new Program.SectionSpec();

Program.sectMap[".loggerSM"].loadAddress = 0x8f000000;

  // or loadSegment = "LOGGERSM";

Program.sectMap[".loggerSM"].type = "NOLOAD";

Note that the "NOLOAD" configuration is required. Without this, as each core is loaded, it would wipe out 
the previous core’s initialization of its partition of the shared memory.

The LoggerSM module requires that all targets sharing the memory have the same base address. To 
confirm all targets have the same address, look at the address of the 
ti_uia_runtime_LoggerSM_sharedBuffer__A symbol in all the targets’ mapfiles. The address must be the 
same on all targets. This physical address must also be used in the Linux LoggerSM and loggerSMDump 
tools.

There are several ways to place the shared memory for the .loggerSM section. Here are two ways. 

• The EVMTI816x LoggerSM examples use a custom platform file (in ti/uia/examples/platforms) where 
an explicit memory segment is created as follows:

    ["DDR_SR0", {name: "DDR_SR0", base: 0x8E000000, 

       len: 0x01000000, space: "code/data",access: "RWX"}],

    ["DDR_VPSS", {name: "DDR_VPSS", base: 0x8F800000, 

       len: 0x00800000, space: "code/data",access: "RWX"}],

    ["LOGGERSM", {name: "LOGGERSM", base: 0x8F000000, 

       len: 0x00020000, space: "data",access: "RWX"}],

• You can create a custom memory map in the config.bld file as follows:

    /* For UIA logging to linux terminal */

    memory[24] = ["LOGGERSM", {name: "LOGGERSM", 

        base: 0x8F000000, len: 0x00020000, space: "data"}];

Using the Linux LoggerSM Module

The non-XDC LoggerSM module knows how to read the shared memory contents and process them. If 
the records are decoded, it displays them to the Linux console. If the records are encoded, they are 
written (along with the UIA events headers) into a binary file. This module is provided in 
<uia_install_dir>/packages/ti/uia/linux.

The two main APIs in this module are LoggerSM_run() and LoggerSM_setName().
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• LoggerSM_run() processes logs in all the partitions. The syntax is as follows:

    int LoggerSM_run(  unsigned int physBaseAddr, 

                       size_t sharedMemorySize,

                       unsigned int numPartitions, 

                       unsigned int partitionMask, 

                       char *filename)

— physBaseAddr specifies the physical address of the shared memory. The address used here 
must match the address configured on all the targets.

— sharedMemorySize specifies the total size of the shared memory. This size must match the 
targets’ sharedMemorySize parameter.

— numPartitions specifies the number of partitions in the shared memory. This must match the 
targets’ numPartitions parameter.

— partitionMask is a bitmask to determine which partitions to process. For example, if 
numPartitions is 3, but you only want to process partitions 1 and 2, set the partitionMask to 0x6 
(110b).

— filename specifies a filename to use if encoded records are found. If this is NULL, the default 
name is loggerSM.bin. Encoded records from all targets that send encoded records are placed 
in the same file. Since a UIA Packet header is also included, RTOS Analyzer and System 
Analyzer can determine which records go with which core.

This function returns LoggerSM_ERROR if any parameters are invalid; otherwise, this function never 
returns.

• LoggerSM_setName() associates a name to a partition ID. Calling this function for each target 
before you call LoggerSM_run() allows the decoded output to include the name instead of just the 
partition ID. The syntax is as follow:

    int LoggerSM_setName(  unsigned int partitionId, 

                           char *name);

This function returns LoggerSM_SUCCESS if it is successful or LoggerSM_ERROR if any 
parameters are invalid.

See the source code in LoggerSM.c and LoggerSM.h for more APIs.

Using the Linux loggerSMDump Tool

UIA also provides the loggerSMDump.c file, which shows how to use the Linux LoggerSM module with 
the EVMTI816x board to send decoded records to the console and encoded records to a binary file. This 
example is provided in the <uia_install_dir>/packages/ti/uia/examples/evmti816x directory. The directory 
also includes a makefile to build the tool. the loggerSMDump.c file calls both LoggerSM_setName() and 
LoggerSM_run().

The command-line syntax is:

loggerSMDump.out <addr> <core_name> [<filename>]

To terminate the tool, press Ctrl+C.

• addr. The physical address of the shared memory in Hex. The shared memory physical address 
must be 4 KB aligned.

• core_name. The name of the cores that are processed. Valid names are: "dsp", "video", "vpss", "m3" 
or "all". "m3" processes both video and vpss. "all" processes all three targets.
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• filename. If target sends encoded records, specify the name of the file to store the encoded records. 
They can be decoded by RTOS Analyzer and System Analyzer. This parameter is optional. If no 
filename is specified and encoded events are found, the default file name is loggerSM.bin.

Here are some command-line examples:

./loggerSMDump.out 0x8f000000 video myBinaryFile

./loggerSMDump.out 0x8f000000 m3 myBinaryFile

./loggerSMDump.out 0x8f000000 all

This example shows output from loggerSMDump. In this case, the video M3’s records were encoded, so 
they went into the binary file instead.

N:VPSS  P:2 #:00113 T:00000000|21f447cd S:Start:

N:VPSS  P:2 #:00114 T:00000000|21f637d3 S:Stop:

N:VPSS  P:2 #:00115 T:00000000|21f69b15 S:count = 35

N:DSP   P:0 #:00249 T:00000000|3ce48c2f S:Stop:

N:DSP   P:0 #:00250 T:00000000|3ce5f28d S:count = 80

N:DSP   P:0 #:00251 T:00000000|3d8689eb S:Start:

N:DSP   P:0 #:00252 T:00000000|3da59483 S:Stop:

N:DSP   P:0 #:00253 T:00000000|3da6facf S:count = 81

N:VPSS  P:2 #:00116 T:00000000|22d92a23 S:Start:

N:VPSS  P:2 #:00117 T:00000000|22db1689 S:Stop:

N:VPSS  P:2 #:00118 T:00000000|22db7797 S:count = 36

Use the following legend to parse the output:

• N: name of the partition owner

• P: partition Id

• T: timestamp [high 32 bits | low 32 bits]

• S: decoded string
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5.3.6 Configuring ti.uia.sysbios.LoggerIdle

When using LoggerType_IDLE as described in Section 5.3.1, Configuring ti.uia.sysbios.LoggingSetup, 
UIA will use the LoggerIdle module for all logging.

LoggerIdle is a single-instance logger. This means that there is only one buffer and one data stream for 
all log events. CCS currently supports upload via UART, USB, and Ethernet.

Selecting LoggerIdle in the LoggingSetup configuration enables you to add LoggerIdle to your project in 
XGCONF by checking the box to Add the LoggerIdle module to your configuration.

However, selecting this mode does not configure all the logger-specific settings for you. Buffer size 
configuration changes made in LoggingSetup are transferred to LoggerIdle, even though changes are 
not shown in the LoggerIdle configuration page. However, when the configuration step of the build is run, 
the LoggerIdle buffer size will be set to the value configured in LoggingSetup. Also, if you look at the 
generated cfg script, you will see that LoggingSetup.loadLoggerSize has been set to the value that you 
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configured for the buffer size. This value will still be transferred to the LoggerIdle buffer size, even if you 
do not use Load. To configure LoggerIdle, click the link below the LoggerType field in the LoggingSetup 
configuration page.

The size of the buffer used by LoggerIdle is measured in 32-bit words (MAUs). LoggerIdle only has a 
single buffer instance, and this buffer should be sized appropriately. A general rule is to use the sum of 
the buffer sizes you would use for the SYS/BIOS, Load, and Application Logging buffers in LoggingSetup.

LoggerIdle also requires you to implement and set a transport function and type. The transport function 
uses the following prototype:

Int transportFxn(UChar *ptr, Int length)

The ptr is a pointer to a buffer of unsigned characters with a size sufficient to hold the length to be 
written. The function should return the number of unsigned characters sent by the transport. The 
transport must send a multiple of four unsigned characters to avoid dropping any data. Host processing 
of Log events may or may not handle dropping partial Log events. The implementation of LoggerIdle will 
never send partial Log events as long as the transport sends a multiple of four unsigned characters.

Set the Transport Type field to tell the host how to handle the implemented transport function. Currently 
TransportType_UART, TransportType_USB, and TransportType_ETHERNET are supported by CCS. If 
you are using some other transport, you can use TransportType_CUSTOM and provide the transport 
name in the Custom Transport field.

LoggerIdle provides an option to log a timestamp with every Log event by setting the Optimization 
parameter to true. Timestamps are 8 bytes long and should be considered when calculating the buffer 
size and transfer rate.
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The following statements configure LoggingSetup and LoggerIdle in the .cfg source file.

var LoggingSetup = xdc.useModule('ti.uia.sysbios.LoggingSetup');

LoggingSetup.loggerType = LoggingSetup.LoggerType_IDLE;

var LoggerIdle = xdc.useModule('ti.uia.sysbios.LoggerIdle');

LoggerIdle.bufferSize = 1024;

LoggerIdle.transportFxn = "&transportFxn";

LoggerIdle.transportType = LoggerIdle.TransportType_USB;

LoggerIdle.isTimestampEnabled = true;

5.3.7 Configuring ti.uia.runtime.LogSync

Events that are logged by different CPUs are typically timestamped using a timer that is local to that CPU 
in order to avoid the overhead of going off-chip to read a shared timer. 

In order to correlate one CPU’s events with those logged by another CPU, it is necessary to log "sync 
point events" that have, as parameters, both the local CPU’s timestamp value and a "global timestamp" 
that was read from a global shared timer. Any CPUs that log sync point events with global timestamps 
read from the same global shared timer can be correlated with each other and displayed against a 
common timeline for analysis and comparison.

The ti.uia.runtime.LogSync module is provided in order to support this type of event correlation. It 
provides sync events that are used to correlate timestamp values. If you are using LoggerRunMode with 
Ethernet transport, then the Rta module handles all of the sync point event logging that is required in 
order to support the event correlation.

In general, you will need to configure the LogSync module, and you will need to call the module’s APIs 
from your application. For information about LogSync module APIs, see Section 5.4.5.

Note: Multicore event correlation of events uploaded via JTAG transports is not fully 
supported.

Setting the Global Timestamp Module Proxy

If you have a multicore application, your application must configure the GlobalTimestampProxy 
parameter on a target-specific basis to provide a timestamp server.

This parameter defaults correctly for the C6472 and TCI6616 platforms. However, for EVMTI816x, it 
defaults to null, which prevents any multicore event correlation from being performed. In general, you can 
use a timestamp module that implements the IUIATimestampProvider interface for your target. You 
should configure the GlobalTimestampProxy as follows:

var LogSync = xdc.useModule('ti.uia.runtime.LogSync'); 

var GlobalTimestampTimer = 

xdc.useModule('ti.uia.family.c64p.TimestampC6472Timer');

LogSync.GlobalTimestampProxy = GlobalTimestampTimer;

• C6472. Use the ti.uia.family.c64p.TimestampC6472Timer module as the proxy. When you use this 
proxy, the default value for the maxCpuClockFreq is 700 MHz. 

• TCI6616 (simulator). The ti.uia.family.c66.TimestampC66XGlobal module should be the proxy. 

• EVMTI816x. The ti.uia.family.dm.TimestampDM816XTimer module should be the proxy. This setting 
is not auto-configured. 
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• Other. If no module that implements the IUIATimestampProvider interface for your target is available, 
you can use, for example, a timer provided by SYS/BIOS as the global timer source for event 
correlation "sync point" timestamps. The following statements configure such as proxy:

var LogSync = xdc.useModule('ti.uia.runtime.LogSync'); 

var BiosTimer = 

 xdc.useModule('ti.sysbios.family.c64p.TimestampProvider');

LogSync.GlobalTimestampProxy = BiosTimer;

If you are using a global timer that does not implement the IUIATimestampProvider interface, you 
must also configure the maxGlobalClockFreq parameter. If the maxGlobalClockFreq parameter is 
not configured, you see a warning message at build time that says UIA Event correlation is disabled. 
You must configure both the maxGlobalClockFreq.lo and maxGlobalClockFreq.hi parameters, which 
set the lower and upper 32 bits of the frequency, respectively.

LogSync.maxGlobalClockFreq.lo = 700000000; //low 32b

LogSync.maxGlobalClockFreq.hi = 0;         //upper 32b

If the CPU timestamp clock frequency is not 700 MHz, you must also configure the lo and hi 
parameters. For example:

LogSync.maxCpuClockFreq.lo = 1000000000;   //low 32b

LogSync.maxCpuClockFreq.hi = 0;            //upper 32b

Setting the Local Timestamp Module Proxy

If the frequency of the local CPU may change at run-time, you also need to configure the 
CpuTimestampProxy parameter of the LogSync module. The timestamp proxies provided for this 
purpose are:

• ti.uia.family.c64p.TimestampC64XLocal 

• ti.uia.family.c66.TimestampC66XLocal 

Configuring the CpuTimestampProxy with a local timestamp module allows applications that change the 
CPU frequency to report this information to RTOS Analyzer and System Analyzer so that event 
timestamps can be adjusted to accommodate the change in frequency. 

The following configuration script shows how to configure the C66x Local Timestamp module for use as 
the CpuTimestampProxy:

var TimestampC66Local = 

    xdc.useModule('ti.uia.family.c66.TimestampC66Local');

TimestampC66Local.maxTimerClockFreq = {lo:1200000000,hi:0};

var LogSync = xdc.useModule('ti.uia.runtime.LogSync');

LogSync.CpuTimestampProxy = TimestampC66Local;

Injecting Sync Points into Hardware Trace Streams

Correlation with hardware trace (for example, the C64x+ CPU Trace) can be enabled by injecting 
references to the sync point events into the hardware trace stream. The LogSync.injectIntoTraceFxn 
parameter allows you to inject sync point information into hardware trace streams. You can specify a 
pointer to a function that handles the ISA-specific details of injecting information into the trace stream.

For C64x+ Full-GEM (Generalized Embedded Megamodule) devices, which support CPU trace and 
Advance Event Triggering (AET), use the address of the GemTraceSync_injectIntoTrace() function 
provided by the ti.uia.family.c64p.GemTraceSync module. For information about GEM, see the 
TMS320C64x+ DSP Megamodule Reference Guide (SPRU871).
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This example for the TMS320C6472 platform shows configuration statements with multicore event 
correlation for the CPUs enabled. More examples are provided in the CDOC for the LogSync module.

// Including Rta causes Log records to be collected and sent

// to the instrumentation host. The Rta module logs sync

// point events when it receives the start or stop

// command, and prior to sending up a new event packet if

// LogSync_isSyncPointEventRequired() returns true.

var Rta = xdc.useModule('ti.uia.services.Rta');

// By default, sync point events are logged to a dedicated

// LoggerRunMode buffer named 'SyncLog' assigned to the

// LogSync module. A dedicated event logger buffer helps

// ensure that sufficient timing information is captured to

// enable accurate multicore event correlation. Configure

// LogSync.defaultSyncLoggerSize to set a buffer size.

var LogSync = xdc.useModule('ti.uia.runtime.LogSync');

// For C64x+ and C66x devices that provide CPU trace hardware

// capabilities, the following line enables injection of

// correlation information into the GEM CPU trace, enabling

// correlation of software events with the CPU trace events.

var GemTraceSync = 

   xdc.useModule('ti.uia.family.c64p.GemTraceSync');

// Configure a shared timer to act as a global time reference

// to enable multicore correlation. The TimestampC6472Timer

// module implements the IUIATimestampProvider interface, so

// assigning this timer to LogSync.GlobalTimestampProxy 

// configures LogSync's global clock params automatically.

var TimestampC6472Timer = 

   xdc.useModule('ti.uia.family.c64p.TimestampC6472Timer');

LogSync.GlobalTimestampProxy = TimestampC6472Timer;

Setting CPU-Related Parameters

LogSync provides a number of CPU-related parameters—for example, CpuTimestampProxy, 
cpuTimestampCyclesPerTick, maxCpuClockFreq, and canCpuCyclesPerTickBeChanged. These 
parameters generally default to the correct values unless you are porting to a non-standard target. For 
example, the CpuTimestampProxy defaults to the same proxy used by the xdc.runtime.Timestamp 
module provided with XDCtools.

Setting the globalTimestampCpuCyclesPerTick parameter is optional. It is used to convert global 
timestamp tick counts into CPU cycle counts for devices where there is a fixed relationship between the 
global timer frequency and the CPU clock. For example:

LogSync.globalTimestampCpuCyclesPerTick = 6;
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5.3.8 Configuring IPC

When ServiceMgr.topology is ServiceMgr.Topology_MULTICORE, the underlying UIA code uses IPC (or 
more specifically its MessageQ and SharedRegion modules) to move data between cores. See the IPC 
documentation for details on how to configure communication between cores for your multicore 
application.

The following IPC resources are used by UIA:

• Uses up to 4 message queues on each processor.

• Uses the SharedRegion heap when allocating messages during initialization. Which SharedRegion 
heap is determined by the IpcMP.sharedRegionId parameter. The default is SharedRegion 0.

• Determines the SharedRegion allocation size by the size and number of packets. This is calculated 
using ServiceMgr parameters as follows:

maxCtrlPacketSize * 

(numIncomingCtrlPacketBufs + numOutgoingCtrlPacketBufs)

+ maxEventPacketSize * numEventPacketBufs

See Section 6.1, IPC and SysLink Usage for further information.

Note that, depending on the cache settings, these sizes might be rounded up to a cache boundary.

5.4 Target-Side Coding with UIA APIs

By default, SYS/BIOS provides instrumentation data to be sent to CCS on the host PC if you have 
configured UIA. It is not necessary to do any additional target-side coding once UIA is enabled.

If you want to add additional instrumentation, you can do by adding C code to your target application as 
described in the sections that follow. 

In general, UIA provides a number of new events that can be using with the existing Log module provided 
as part of XDCtools. Section 5.4.1 describes how to log events, Section 5.4.2 describes how to enable 
event logging, and Section 5.4.3 provides an overview of the events provided by UIA.

Section 5.4.4 describes the LogSnapshot module APIs, which allow you to log memory values, register 
values, and stack contents.

Section 5.4.5 describes ways to configure and customize the synchronization between timestamps on 
multiple targets.

Section 5.4.6 describes the APIs provided by the LogCtxChg module, which allows you to log context 
change events.

Section 5.4.7 describes how to use the Rta module APIs to control the behavior of loggers at run-time.

Section 5.4.8 explains how to create and integrate a custom transport.
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5.4.1 Logging Events with Log_write() Functions

The Log_writeX() functions—Log_write0() through Log_write8()—provided by the xdc.runtime.Log 
module expect an event as the first argument. This argument is of type Log_Event.

The ti.uia.events package contains a number of modules that define additional events that can be passed 
to the Log_writeX() functions. For example, this code uses events defined by the UIABenchmark module 
to determine the time between two calls:

#include <ti/uia/events/UIABenchmark.h>

...

Log_write1(UIABenchmark_start, (xdc_IArg)"start A");

...

Log_write1(UIABenchmark_stop, (xdc_IArg)"stop A");

In order to use such events with Log_writeX() functions, you must enable the correct bit in the appropriate 
module’s diagnostics mask as shown in Section 5.4.2 and choose an event to use as described in Section 
5.4.3.

5.4.2 Enabling Event Output with the Diagnostics Mask

For an overview of how to enable SYS/BIOS load and event logging, see Section 5.2. This section 
discusses how to enable logging of events provided by the ti.uia.events module.

Whether events are sent to the host or not is determined by the particular bit in the diagnostics mask of 
the module in whose context the Log_writeX() call executes. For example, UIABenchmark events are 
controlled by the ANALYSIS bit in the diagnostics mask.

For example, suppose you placed calls that pass UIABenchmark events to Log_write1() in a Swi function 
to surround some activity you want to benchmark. 

Log_write1(UIABenchmark_start, (xdc_IArg)"start A");

...

Log_write1(UIABenchmark_stop, (xdc_IArg)"stop A");

If the ANALYSIS bit in the diagnostics mask were off for the Swi module, no messages would be 
generated by these Log_write1() calls.

By default, the LoggingSetup module sets the ANALYSIS bit to on only for the Main module, which affects 
logging calls that occur during your main() function and other functions that run outside the context of a 
SYS/BIOS thread. However, LoggingSetup does not set the ANALYSIS bit for the Swi module.

To cause these benchmark events to be output, your configuration file should contain statements like the 
following to turn the ANALYSIS bit for the Swi module on in all cases:

var Swi = xdc.useModule('ti.sysbios.knl.Swi'); 

var Diags = xdc.useModule('xdc.runtime.Diags'); 

var UIABenchmark = 

    xdc.useModule('ti.uia.events.UIABenchmark');

Swi.common$.diags_ANALYSIS = Diags.ALWAYS_ON; 
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Alternately, you could enable output of UIABenchmark events within the Swi context by setting the 
ANALYSIS bit to RUNTIME_OFF and then turning the bit on and off in your run-time code. For example, 
your configuration file might contain the following statements:

var Swi = xdc.useModule('ti.sysbios.knl.Swi'); 

var Diags = xdc.useModule('xdc.runtime.Diags'); 

var UIABenchmark = 

    xdc.useModule('ti.uia.events.UIABenchmark');

Swi.common$.diags_ANALYSIS = Diags.RUNTIME_OFF; 

Then, your C code could contain the following to turn ANALYSIS logging on and off. (See the online 
documentation for the Diags_setMask()Diags_setMask() function for details about its control string 
argument.)

// turn on logging of ANALYSIS events in the Swi module

Diags_setMask("ti.sysbios.knl.Swi+Z");

...

// turn off logging of ANALYSIS events in the Swi module 

Diags_setMask("ti.sysbios.knl.Swi-Z");

5.4.3 Events Provided by UIA

The ti.uia.events package contains a number of modules that define additional events that can be passed 
to the Log_writeX() functions. Section 5.4.2 uses the UIABenchmark_start and UIABenchmark_stop 
events from the ti.uia.events.UIABenchmark module as an example.

To use an event described in this section, you must do the following:

• Include the appropriate UIA module in your .cfg configuration file. For example: 

var UIABenchmark = 

    xdc.useModule('ti.uia.events.UIABenchmark');

or

var UIAProfile = 

    xdc.useModule('ti.uia.events.UIAProfile');

• Include the appropriate header files in your C source file. For example:

#include <xdc/runtime/Log.h>

#include <ti/uia/events/UIABenchmark.h>

or

#include <xdc/runtime/Log.h>

#include <ti/uia/events/UIAProfile.h>

• Use the event in your C source file. For example:

Log_write2(UIABenchmark_start, (xdc_IArg)"Msg %d", msgId);

or

Log_write2( UIAProfile_enterFunctionAdrs, 0, (IArg)&myFunc);

The following UIA modules provide events you can use with the Log_writeX() functions:
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Table 5–4.  Log_Event Types Defined by UIA Modules

See the online reference documentation (CDOC) for the modules in the ti.uia.events package for more 
details and examples that use these events.

The online reference documentation for the event modules in the ti.uia.events package contains default 
message formats for each event in the XDCscript configuration (red) section of each topic. A number of 
the message formats for these events contain the special formatting specifiers %$S and %$F.

• %$S — Handles a string argument passed to the event that can, in turn, contain additional formatting 
specifiers to be interpreted recursively. Note that you cannot use the $S formatting specifier in strings 
passed as a parameter. For example, the message format for the UIAErr_fatalWithStr event includes 
the 0x%x format specifier for an integer error code and the %$S format specifier for a string that may 
in turn contain format specifiers. This example uses that event:

Module Events
Diagnostics 
Control Bit Comments

UIABenchmark Start and stop events. diags_ANALYSIS UIABenchmark reports time elapsed exclusive 
of time spent in other threads that preempt or 
otherwise take control from the thread being 
benchmarked. This module’s events are used 
by the Duration feature described in Section 
4.14.

UIAErr Numerous error events used 
to identify common errors in 
a consistent way.

diags_STATUS 
(ALWAYS_ON by 
default)

These events have an EventLevel of 
EMERGENCY, CRITICAL, or ERROR. Special 
formatting specifiers let you send the file and 
line at which an error occurred.

UIAEvt Events with detail, info, and 
warning priority levels.

diags_STATUS or 
diags_INFO 
depending on level

An event code or string can be used with each 
event type.

UIAMessage Events for msgReceived, 
msgSent, replyReceived, 
and replySent.

diags_INFO Uses UIA and other tools and services to report 
the number of messages sent and received 
between tasks and CPUs.

UIAProfile Start and stop events. 
Functions can be identified 
by name or address. These 
events are designed to be 
used in hook functions 
identified by the compiler’s 
--entry_hook and --exit_hook 
command-line options.

diags_ENTRY and 
diags_EXIT

UIAProfile reports time elapsed exclusive of 
time spent in other threads that preempt or 
otherwise take control from the thread being 
profiled. This module’s events are used by the 
Context Aware Profile feature described in 
Section 4.15.

UIAStatistic Reports bytes processed, 
CPU load, words processed, 
and free bytes.

diags_ANALYSIS Special formatting specifiers let you send the 
file and line at which the statistic was recorded.
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#include <xdc/runtime/Log.h> 

#include <ti/uia/events/UIAErr.h> 

... 

Int myFatalErrorCode = 0xDEADC0DE; 

String myFatalErrorStr = "Fatal error when i=%d";

Int i;

... 

Log_write3(UIAErr_fatalWithStr, myFatalErrorCode,

          (IArg)myFatalErrorStr, i); 

• %$F — Places the file name and line number at which the event occurred in the message. The call 
to Log_writeX() for an event that includes the %$F specifier in its formatting string should pass the 
filename (using the __FILE__ constant string) and the line number (using __LINE__). For example:

#include <xdc/runtime/Log.h> 

#include <ti/uia/events/UIAErr.h> 

... 

Log_write2(UIAErr_divisionByZero, (IArg)__FILE__,

    __LINE__); 

The resulting message might be:

"ERROR: Division by zero at demo.c line 1234." 

The ti.uia.services.Rta module defines Log_Events that are use internally when that module sends 
events to the host. You should not use these events in application code.

5.4.4 LogSnapshot APIs for Logging State Information

You can use snapshot events to log dynamic target state information. This lets you capture the execution 
context of the application at a particular moment in time. 

You call functions from the ti.uia.runtime.LogSnapshot module in order to use a snapshot event. The 
diags_ANALYSIS bit in the module’s diagnostics mask must be on in order for snapshot events to be 
logged. (This bit is on by default.)

The LogSnapshot module provides the following functions:

• LogSnapshot_getSnapshotId() Returns a unique ID used to group a set of snapshot events 
together.

• LogSnapshot_writeMemoryBlock() Generates a LogSnapshot event for a block of memory. The 
output is the contents of the memory block along with information about the memory block. See 
Example 1 that follows.

• LogSnapshot_writeNameOfReference() This function lets you associate a string name with the 
handle for a dynamically-created instance. A common use would be to log a name for a dynamically-
created Task thread. The host-side UIA features can then use this name when displaying data about 
the Task’s execution. You might want to call this API in the create hook function for SYS/BIOS Tasks. 
See Example 2 that follows.

• LogSnapshot_writeString() Generates a LogSnapshot event for a string on the heap. Normally, 
when you log a string using one of the Log APIs, what is actually logged is the address of a constant 
string that was generated at compile time. You can use this API to log a string that is created at run-
time. This API logs the value of the memory location that contains the contents of the string, not just 
the address of the string. See Example 3 that follows.
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Example 1: Logging a Snapshot to Display the Contents of Some Memory

For example, the following C code logs a snapshot event to capture a block of memory:

#include <ti/uia/runtime/LogSnapshot.h> 

... 

UInt32* pIntArray = (UInt32 *)malloc(sizeof(UInt32) * 200);    

...   

LogSnapshot_writeMemoryBlock(0, "pIntArray",

      (UInt32)pIntArray, 200); 

...

The following will be displayed for this event in the Message column of the Session or File Log view, 
where pIntArray is the full, unformatted contents of the array. Note that depending on the length of the 
memory block you specify, the output may be quite long.

Memory Snapshot at demo.c line 1234 [ID=0,adrs=0x80002000,len=200 MAUs] pIntArray 

Example 2: Logging a Name for a Dynamically-Created Task

The following C code logs a Task name:

#include <ti/uia/runtime/LogSnapshot.h> 

#include <ti/sysbios/BIOS.h> 

#include <ti/sysbios/knl/Task.h> 

... 

// Task create hook function that logs the task name. 

// Note: Task name is not required when creating a BIOS task. 

// However, providing a name makes using the host-side 

// analysis features easier to use.

Void tskCreateHook(Task_Handle hTask, Error_Block *eb) {

    String name; 

    name = Task_Handle_name(hTask); 

    LogSnapshot_writeNameOfReference(hTask, 

        "Task_create: name=%s", name, strlen(name)+1); 

}

The following text would be displayed for this event in the Message column of the Session or File Log 
view if a handle to the "10msThread" were passed to this tskCreateHook function.

nameOfReference at demo.c line 1234 [refID=0x80002000]

     Task_create: name=10msThread.

Example 3: Logging the Contents of a Dynamically-Created String

The following C code logs the contents of the string stored in name.

#include <ti/uia/runtime/LogSnapshot.h> 

... 

Void myFunc(String name){

    ... 

    LogSnapshot_writeString(0, name, (UInt32)name,

        strlen(name));

}
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The following text will be displayed for this event, where ValueOfParm is the value of the string rather 
than the address:

String Snapshot at demo.c line 1234 [snapshotID=0]

    Processing name=ValueOfParm

5.4.5 LogSync APIs for Multicore Timestamps

You can use sync events from the LogSync module to correlate timestamp values in a multicore 
application. The host uses the difference between the timestamp on the target and the global timestamp 
to correlate the sequence of events across multiple targets.

The ti.uia.services.Rta module automatically uses the LogSync module to send sync point events if the 
target has been suspended or halted since the last time an event packet was sent to the host. It also 
sends sync point events when you start or reset the Session or File Log view on the host.

Since the Rta module handles synchronization automatically, in most cases you would only call functions 
from this module in your application if you are using your own NDK stack and/or are writing a custom 
service to take the place of the Rta module.

For information about configuring the LogSync module, see Section 5.3.7.

5.4.6 LogCtxChg APIs for Logging Context Switches

The ti.uia.runtime.LogCtxChg module provides a number of functions that log context-switching events. 
In most cases, you would only use the LogCtxChg APIs if you are instrumenting an OS other than 
SYS/BIOS.

SYS/BIOS automatically logs events for Task switches and Swi and Hwi start and stop events. You only 
need to make sure the correct diagnostics settings are enabled to see these events in the UIA analysis 
features.

In addition to functions that log Task, Swi, and Hwi events (which is done automatically by SYS/BIOS), 
the LogCtxChg module also provides functions to log changes in application, channel, frame, and user-
defined contexts. You might use these APIs in a SYS/BIOS application if you need to keep track of 
contexts other than the normal threading contexts. For example, the following C code logs a context 
change event that identifies a newly loaded application ID:

#include <ti/uia/runtime/LogCtxChg.h> 

... 

Void loadApplication(Int newAppId){

    ... 

    LogCtxChg_app("New AppID=0x%x",newAppId); 

}

This event prints the Log call site (%$F) and a format string (%$S) that is formatted with any additional 
arguments. The following text is an example of what could be displayed for the event:

"AppID Ctx Change at Line 123 in appLoader.c 

    [Prev. AppID = 0x1234] New AppID=0x1235" 
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5.4.7 Rta Module APIs for Controlling Loggers

The ti.uia.services.Rta module provides a number of APIs you can use to control loggers and the 
transmission of data by Rta. When you use these Rta APIs, you should be aware that the RTOS Analyzer 
and System Analyzer features on the host may also be sending similar requests to the target in response 
to user activity within CCS.

Note: The Rta module is available only if you have set LoggingSetup.loggerType to 
LoggerType_RUNMODE, and you have configured LoggerRunMode.transportType to 
TransportType_ETHERNET.

Rta provides several run-time APIs that let you control whether loggers are enabled. These APIs are:

• Rta_disableAllLogs() disables all loggers serviced by Rta. All Log records are discarded by a logger 
when it is disabled. 

• Rta_enableAllLogs() enables all loggers that are currently disabled.

• Rta_resetAllLogs() empties the contents of all loggers serviced by Rta. This function does not 
change the state of the loggers. 

Rta provides run-time APIs to control the transmission of data. These APIs are: 

• Rta_startTx() tells Rta to begin reading the logs and sending the records to the host.

• Rta_stopTx() tells Rta to stop reading the logs and sending them to the host.

• Rta_snapshotAllLogs() allows the application to delay reading the logs for the specified waitPeriod. 
The reset parameter tells Rta whether it should reset all the logs.

Note some transports might require the host to send a "connect" request. For example the TransportNdk 
needs to obtain the IP address of the host before it can send events.

See the ti.uia.services.Rta topic in the online help for more information about these APIs.

5.4.8 Custom Transport Functions for Use with ServiceMgr

The ti.uia.runtime.Transport module defines function prototypes for the transport functions that can be 
plugged into the ServiceMgr. UIA ships several implementations of this interface in the 
<uia_install_dir>\packages\ti\uia\sysbios directory.

The transport implementations do not have to be XDC modules. They are simply files containing a set of 
standard C functions. For an example, see <uia_install_dir>\packages\ti\uia\sysbios\TransportNdk.c. 
Only one transport set can be used on a target. The functions need to be configured at build time via the 
ti.uia.runtime.ServiceMgr.transportFxns parameter. The ServiceMgr module plugs the transportFxns 
automatically if the ti.uia.runtime.ServiceMgr.transportType is set to TransportType_USER.

For example, if you or someone else creates a transport called RapidIO, that transport can be plugged 
in by setting the transportType parameter to ti.uia.runtime.ServiceMgr.TransportType_USER and then 
plugging the transportFxns manually. It must also set up the following parameters as directed by the 
developer of the new transport:

• ServiceMgr.supportControl. Set to true if the transport supports receiving messages from the host. 
For example TransportFile does not.

• ServiceMgr.maxEventPacketSize. Specify the maximum size of an outgoing event packet. For 
example TransportNdk uses 1472, which is the EMAC size minus the headers. 
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• ServiceMgr.maxCtrlPacketSize. Specify the maximum size of the control message packets. This 
can be zero if supportControl is false.

These three parameters are undefined by default, so they must be set if you are using 
TransportType_USER.

The following example shows a configuration script that plugs a transport called "TransportXYZ" into the 
ServiceMgr module:

var ServiceMgr = 

    xdc.useModule('ti.uia.runtime.ServiceMgr');

ServiceMgr.transportType = ServiceMgr.TransportType_USER;

var xyzTransport = {

    initFxn:  '&TransportXYZ_init',

    startFxn: '&TransportXYZ_start',

    recvFxn:  '&TransportXYZ_recv',

    sendFxn:  '&TransportXYZ_send',

    stopFxn:  '&TransportXYZ_stop',

    exitFxn:  '&TransportXYZ_exit',

};

ServiceMgr.transportFxns = xyzTransport;

ServiceMgr.supportControl     = true;

ServiceMgr.maxEventPacketSize = 1024

ServiceMgr.maxCtrlPacketSize  = 1024;

The following list describes the transport functions. Note that all of these functions are called by the 
ServiceMgr module. An application should not call these functions directly. The function call syntax is 
shown in case you are writing your own transport functions.

• initFxn() is called during module startup, which occurs before main() runs. Minimal actions can take 
place at this point, since interrupts are not yet enabled and the state of the application is just starting 
up. Generally only internal initialization is performed by this function. This function must have the 
following call syntax:

    Void (*initFxn)(); 

• startFxn() is called once or twice (depending on whether control messages are supported) after the 
SYS/BIOS Task threads have started to run.

— This function is called with the UIAPacket_HdrType_EventPkt argument before any events are 
sent. This allows the transport to initialize anything needed for event transmission. The function 
returns a handle to a transport-specific structure (or NULL if this is not needed). This handle is 
passed to the sendFxn() and stopFxn(). 

— If the transport supports control messages from a host, startFxn() is also called with the 
UIAPacket_HdrType_Msg argument. This allows the transport to initialize anything needed for 
message transmission (both sending and receiving). Again, the transport can return a transport-
specific structure. This structure can be different from the one that was returned when the 
UIAPacket_HdrType_EventPkt argument was passed to startFxn(). 

This function must have the following call syntax:

    Ptr (*startFxn)(UIAPacket_HdrType); 

• recvFxn() is called to receive incoming messages from the host. The handle returned by the 
startFxn() is passed to the recvFxn(). Also passed in is a buffer and its size. The buffer is passed in 
as a double pointer. This allows the transport to double-buffer. For example, the recvFxn() can return 
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a different buffer than the one it was passed. This potentially reduces extra copies of the data. The 
recvFxn() can be a blocking call. The recvFxn() returns the actual number of bytes that are placed 
into the buffer. If the transport does not support control messages, this function can simply return 
zero. This function must have the following call syntax:

    SizeT (*recvFxn)(Ptr, UIAPacket_Hdr**, SizeT); 

• sendFxn() is called to send either events or messages. If sendFxn() is called to transmit an event, 
the first parameter is the handle returned from the startFxn(UIAPacket_HdrType_EventPkt) call. 
Similarly, if a message is being sent, the first parameter is the handle returned from the 
startFxn(UIAPacket_HdrType_Msg) call. The size of the packet is maintained in the UIAPacket_Hdr. 
The sendFxn() can be a blocking call. This function returns true or false to indicate whether the send 
was successful or not. Again, a double pointer is used to allow the transport to return a different buffer 
to allow double-buffering. This function must have the following call syntax:

    Bool (*sendFxn)(Ptr, UIAPacket_Hdr**); 

• stopFxn() is the counterpart to the startFxn() function. The stopFxn() is called the same number of 
times as the startFxn(). The calls will pass the handles returned by the startFxn(). This function must 
have the following call syntax:

    Void (*stopFxn)(Ptr); 

• exitFxn() is the counterpart to the initFxn() function. This function must have the following call syntax:

    Void (*exitFxn)(Void); 

Transports are allowed to have additional functions that can be directly called by the application. For 
example in the provided TransportFile transport, there is a TransportFile_setFile() function. The 
downside to adding extended functions is that subsequent ports to a different transport will require 
changes to the application code.
122 UIA Configuration and Coding on the Target    SPRUH43E—March 2014
Submit Documentation Feedback  

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH43E
http://www.ti.com


Chapter 6

Advanced Topics for System Analyzer

This chapter provides additional information about using System Analyzer components.
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6.1 IPC and SysLink Usage

This section lists the IPC and SysLink modules used on various types of cores by UIA. It describes how 
they are used.

DSP/Video/VPSS

On a DSP, Video, or VPSS core, the ti.uia.runtime.ServiceMgr module uses the following IPC modules.

• MessageQ. The ServiceMgr proxy creates four message queues. Two are used to maintaining "free" 
messages. These are using instead of allocating messages from a heap.

• SharedRegion. The ServiceMgr proxy allocates memory from the SharedRegion at startup time. It 
places these buffers onto the "free" message queues. Which SharedRegion to use is configurable.

• MultiProc. The ServiceMgr proxy uses this module to identify the cores.

• Ipc. The ServiceMgr proxy uses the userFxn hook to make sure Ipc is started before UIA tries to use 
it.

See Section 5.3.8, Configuring IPC for more information.

Note: The examples provided with UIA do not use IPC explicitly. They were designed this way 
to make porting easier.

Linux ServiceMgr Module

In a core running Linux, the Linux ServiceMgr module uses IPC modules as follows:

• MessageQ. ServiceMgr creates two message queues. One is used to maintain "free" messages. 
These message queues are used instead of allocating messages from a heap.

• SharedRegion. ServiceMgr allocates memory from SharedRegion at startup time. It places these 
buffers onto the "free" message queue. Which SharedRegion to use is configurable.

• MultiProc. ServiceMgr uses this module to identify the cores.

Linux Application

A Linux application running on a Linux master core uses the following SysLink modules:

• SysLink. Used for setup and destroy calls.

• ProcMgrApp. Used to load the other cores.
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6.2 Linux Support for UIA Packet Routing

UIA currently supports the routing of UIA packets on Linux. By default, events are sent out from the Linux 
core over Ethernet. They are not written to a file by default.

Support for logging on Linux is currently available if you are using the LoggerSM shared memory logger 
implementation on the EVMTI816x platform. See Section 5.3.5, Configuring ti.uia.runtime.LoggerSM.

To use this routing capability, the ti\uia\linux\bin\servicemgr.a library must be linked into your Linux 
application. The Linux application must call the ServiceMgr_start() API after Ipc has been initialized. If 
must also call the ServiceMgr_stop() API before Ipc is shutdown. For example code, see the 
<uia_install_dir>packages\ti\uia\examples\evmti816x\uiaDemo.c file.

Since the ServiceMgr on Linux is not an XDC module, you configure it using the ServiceMgr_setConfig() 
API. There is also a corresponding ServiceMgr_getConfig() API. Both functions are passed the following 
configuration structure, which is specified in the ServiceMgr.h file:

typedef struct ServiceMgr_Config {

    Int maxCtrlPacketSize;

    Int numIncomingCtrlPacketBufs;

    Int sharedRegionId;

    Char fileName[128];

} ServiceMgr_Config;

Refer to the ServiceMgr.h file for details about the parameters. 

If you do not call ServiceMgr_setconfig(), no usable defaults are supplied.

The uiaDemo.c Linux application example basically performs the following steps:

main()

{

    SysLink_setup()

    ProcMgrApp_startup() //on all cores specified on cmdline

   

    ServiceMgr_start()

    Osal_printf("\nOpen DVT and start getting events." \

                "[Press Enter to shutdown the demo.]\n");

    ch = getchar();

    ServiceMgr_stop()

    ProcMgrApp_shutdown() //on all cores specified on cmdline

    SysLink_destroy()

}
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6.3 Rebuilding Target-Side UIA Modules 

Rebuilding UIA itself from the provided source files is straightforward, whether you are using the TI 
compiler toolchain or the GNU GCC toolchain. UIA ships with a uia.mak file in the top-level installation 
directory. This makefile enables you to easily (re)build UIA using your choice of compilers and desired 
"targets". A target incorporates a particular ISA and a runtime model; for example, cortex-M3 and the 
GCC compiler with specific options. 

The instructions in this section can be used to build UIA applications on Windows or Linux. If you are 
using a Windows machine, you can use the regular DOS command shell provided with Windows. 
However, you may want to install a Unix-like shell, such as Cygwin.

For Windows users, the XDCtools top-level installation directory contains gmake.exe, which is used in 
the commands that follow to run the Makefile. The gmake utility is a Windows version of the standard 
GNU "make" utility provided with Linux.

If you are using Linux, change the "gmake" command to "make" in the commands that follow.

For these instructions, suppose you have the following directories:

• $BASE/uia_2_##_##_## — The location where you installed UIA.

• $BASE/copy-uia_2_##_##_## — The location of a copy of the UIA installation.

• $BASE/xdctools_3_##_##_## — The location where you installed XDCtools.

• $TOOLS/gcc/bin/arm-none-eabi-gcc — The location of a compiler. This is a GCC compiler for M3.

The following steps refer to the top-level directory of the XDCtools installation as <xdc_install_dir>. 
They refer to the top-level directory of the copy of the UIA installation as <uiacopy_install_dir>.

Follow these steps to rebuild UIA:

1. If you have not already done so, install XDCtools, SYS/BIOS, and UIA.

2. Make a copy of the UIA installation you will use when rebuilding. This leaves you with an unmodified 
installation as a backup. For example, use commands similar to the following on Windows:

Or, use the a command similar to the following on Linux:

3. Make sure you have access to compilers for any targets for which you want to be able be able to 
build applications using the rebuilt UIA. Note the path to the directory containing the executable for 
each compiler. These compilers can include Texas Instruments compilers, GCC compilers, and any 
other command-line compilers for any targets supported by UIA.

4. If you are using Windows and the gmake utility provided in the top-level directory of the XDCtools 
installation, you should add the <xdc_install_dir> to your PATH environment variable so that the 
gmake executable can be found.

5. You may remove the top-level doc directory located in <uiacopy_install_dir>/docs if you need 
to save disk space.

6. At this point, you may want to add the remaining files in the UIA installation tree to your Software 
Configuration Management (SCM) system.

mkdir c:\ti\copy-uia_2_##_#_##

copy  c:\ti\uia_2_##_##_##  c:\ti\copy-uia_2_##_##_##

cp -r $BASE/uia_2_##_##_##/*  $BASE/copy-uia_2_##_##_##
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7. Open the <uiacopy_install_dir>/uia.mak file with a text editor, and make the following changes 
for any options you want to hardcode in the file. (You can also set these options on the command 
line if you want to override the settings in the uia.mak file.)

— Ignore the following lines near the beginning of the file. These definitions are used internally, but 
few users will have a need to change them.

— Specify the locations of XDCtools, SYS/BIOS, IPC, and the NDK. IPC and NDK are not 
necessary for the build. If these packages are not found, the uia libraries will be built without ndk 
support. For example:

— Specify the location of the compiler executable for all targets you want to be able to build for with 
UIA. Use only the directory path; do not include the name of the executable file. Any targets for 
which you do not specify a compiler location will be skipped during the build. For example, on 
Linux you might specify the following:

Similarly, on Windows you might specify the following compiler locations:

— If you need to add any repositories to your XDCPATH (for example, to reference the packages 
directory of another component), you should edit the XDCPATH definition.

— You can uncomment the line that sets XDCOPTIONS to “v” if you want more information output 
during the build.

8. Clean the UIA installation with the following commands. (If you are running the build on Linux, change 
all "gmake" commands to "make".)

9. Run the uia.mak file to build UIA as follows. (Remember, if you are running the build on Linux, 
change all "gmake" commands to "make".)

10. If you want to specify options on the command line to override the settings in uia.mak, use a 
command similar to the following.

# Where to install/stage the packages

# Typically this would point to the devkit location

#

DESTDIR ?= <UNDEFINED>

packagesdir ?= /packages

libdir ?= /lib

includedir ?= /include

XDC_INSTALL_DIR ?= $(BASE)/xdctools_3_##_##_##

BIOS_INSTALL_DIR ?= $(BASE)/bios_6_##_##_##

IPC_INSTALL_DIR ?= $(BASE)/ipc_3_##_##_##

NDK_INSTALL_DIR ?= $(BASE)/ndk_2_##_##_##

ti.targets.C28_float ?= /opt/ti/ccsv6/tools/compiler/c2000

ti.targets.arm.elf.M3 ?= /opt/ti/ccsv6/tools/compiler/tms470

ti.targets.C28_float ?= c:/ti/ccsv6/tools/compiler/c2000

ti.targets.arm.elf.M3 ?= c:/ti/ccsv6/tools/compiler/tms470

cd <uiacopy_install_dir>

gmake -f uia.mak clean

gmake -f uia.mak 

gmake -f uia.mak XDC_INSTALL_DIR=<xdc_install_dir> ti.targets.C28_float=<compiler_path>
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Revision History

Table A–1 lists significant changes made since the previous version of this document.

Table A–1.  Revision History

Chapter Location Additions/Modifications/Deletions

Preface This document applies to CCS software version 6.0.

Overview 
and UIA

Section 1.3.2 and 
Section 5.3.1

LoggerMin, has been added. This logger does not have all the features of Logger-
StopMode, but it is much smaller. All Log events go to one buffer.

Overview 
and UIA

Section 1.3.2 and 
Section 5.3.1

The LoggerProbePoint logger has been removed.

Overview 
and UIA

Section 1.3.2 and 
Section 5.3.1 and 
Section 5.3.4

The ti.uia.runtime.LoggerStopMode and ti.uia.runtime.LoggerCircBuf loggers have 
been replaced by the ti.uia.loggers.LoggerStopMode and ti.uia.loggers.Logger-
RunMode loggers. These replacements are smaller and faster.

Installing Section 2.1 UIA is not provided as part of the CCS installation. Instead, TI-RTOS should be 
installed from the CCS App Center. UIA and SYS/BIOS are components of TI-RTOS.

Tasks Section 3.7 System Analyzer examples are provided in TI Resource Explorer and should be 
imported from there.

Using Tools Section 4.2 Analysis features are now listed in the Tools > RTOS Analyzer and Tools > System 
Analyzer menus. Choosing any of these items opens an Analysis Configuration 
window that has that analysis feature selected. These choices replace the Tools > 
System Analyzer > Live menu command.

Using Tools Section 4.3.1 and 
Section 4.3.2

Icons have replaced the Analyze and Views drop-downs in analysis views.

Using Tools Section 4.5 The Tools > System Analyzer > UIA Config menu command has been removed. 
Instead, to create a UIA configuration, click the Create UIA Config File button in the 
Analysis Configuration dialog

Using Tools Section 4.6.1 The Tools > System Analyzer > Open CSV File menu command has been moved to 
the Tools > RTOS Analyzer > Open File > Open CSV File menu command.

Using Tools Section 4.6.2 The Tools > System Analyzer > Open Binary File menu command has been moved 
to the Tools > RTOS Analyzer > Open File > Open Binary File menu command.

UIA Section 5.1.1 UIA modules are integrated into TI-RTOS in the list of Available Products in XGCONF.

UIA Section 5.3.1 and 
Section 5.3.6

The LoggingSetup module has been revised so that you now specify the Logger you 
want to use instead of the eventUploadMode. You can now control Task, Swi, and Hwi 
load logging through the LoggingSetup module, instead of through 
ti.sysbios.utils.Load.

Section 5.3.1 The default logger sizes have changed.
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D
data collection 46
Data Export command 63
data loss 28

Context Aware Profile 81
Duration 78

Data1 column 61
Data2 column 61
DataValue column 84, 86
decode parameter 104
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deployed system 20
Detail view

Context Aware Profile 80
Count Analysis 84
CPU Load 69
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Task Load 72

diagnostics mask 92, 114
diags_ENTRY 92
diags_EXIT 92
diags_USER1 92
diags_USER2 92
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load logging 91
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Diags module 91
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load logging 91
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Doxygen 15
dropped
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Duration Analysis 75

Detail view 76
Graph view 77
how it works 77
roadmap 26
Summary view 75

DVT
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graph views 32

E
Enable Grouping command 62, 63
enabling event logging 91
endianness, shared memory 103
endpoint 53, 54
EndPoint Address field 55
ENTRY bit in diagnostics mask 93
Error column 61
errors

events 116
Ethernet 99

libraries 31
logger 95
packet size 100

transport type 96
Event column 61
event correlation 110
event logging 91

disabling 92
enabling 91

event packets 100
Event Transport 53
EventClass column 61
EventLevel setting 116
events 115
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logging 113
not shown 28
overwritten 28

EVM6472
communication 14
examples 31
GlobalTimestampProxy parameter 110
routing 89

EVMTI816x
communication 15
GlobalTimestampProxy parameter 110
routing 89
shared memory logger 102

examples
CSV file 56

exclusive time 78, 79, 80, 81
Execution Graph 64

Graph view 64
how it works 65
roadmap 23

EXIT bit in diagnostics mask 93
Export Data command 40, 63

F
file

.uia.xml file 55
creating binary on Linux 105
executable .out file 55
opening binary file 58
opening CSV file 56

File over JTAG 99
FILE transport 53
Filter command 38, 62
Find In command 36, 62
folder

save data to 46
frequency of clocks 111

G
GEM (Generalized Embedded Megamodule) 111
GemTraceSync module 111
GlobalClockFreq parameters 111
GlobalTimestampProxy parameter 89, 110
glossary 10
gmake utility 126
Graph view

Concurrency 66
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Count Analysis 85
CPU Load 68
Duration Analysis 77
Execution Graph 64
Task Load 70

Groups command 35

H
hardware trace 111
help 15
host

communication 13
definition 10

Hwi module
disabling event logging 92
disabling load logging 91
enabling event logging 91

I
inclusive time 78, 79, 80, 81
INFO bit in diagnostics mask 93, 116
injectIntoTraceFxn parameter 111
instrumentation

background 8
methods 11

INTERNAL bit in diagnostics mask 93
IP address 54
IPC

configuring 89, 113
definition 11
resources used by UIA 113, 124
version 18

Ipc module 124

J
JTAG 99

definition 11
logger 95
logger type 12
transport 53
transport type 96

L
LIFECYCLE bit in diagnostics mask 93
line graph views 129
Linux 102

LoggerSM module 103
packet routing 125

Linux developer 20
Live command, System Analyzer menu 43
live session 43
Load logger 96
load logging 91
Load module 91

loadLoggerSize parameter 97
Local Time column 62
Log module 114
Log view 60
Log_writeX() functions 114
LogCtxChg module 119
Logger column 61
logger instances 95
LoggerIdle 95
LoggerMin 95
LoggerRunMode 95
loggers

LoggerSM 102
loggerSM memory section 105
LoggerSM module

for Linux 103, 105
for non-Linux 102

LoggerSM_run() function 106
LoggerSM_setName() function 106
loggerSMDump tool 106
LoggerStopMode 95
LoggerStopMode logger 101
LoggerType_IDLE 12, 94, 97
LoggerType_JTAGRUNMODE 12, 32, 94
LoggerType_MIN 12, 55, 88, 94
LoggerType_RUNMODE 12, 31, 46, 51, 94
LoggerType_STOPMODE 12, 55, 94
LoggingSetup module 88, 90, 94

diagnostics settings 114
disabling load logging 91

LogSnapshot module 117
LogSnapshot_getSnapshotId() function 117
LogSnapshot_writeMemoryBlock() function 117, 118
LogSnapshot_writeNameOfReference() function 117, 118
LogSnapshot_writeString() function 117, 118
LogSync module 110, 119

M
macros 12
MADU

definition 11
shared memory 103

Main logger 96
mainLoggerSize parameter 97
make utility 126
Manage the Bookmarks command 62
Master column 61
master core 99
masterProcId parameter 99, 100
measurement markers 34
memory map 105
memory section 105
Message column 61
message events 116
message packets 100
MessageQ module 15, 99, 113, 124
messages, definition 10
metadata files 55
missing date 78
Module column 62
multicore applications 89
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MultiProc module 124

N
NDK 18, 89, 99

definition 11
transport 14

numCores parameter 102
numEventPacketBufs parameter 100
numIncomingCtrlPacketBufs parameter 100
numOutgoingCtrlPacketBufs parameter 100
numPartitions parameter 104

O
online documentation 15
Open CSV File Configuration dialog 56
overwrite parameter 105
overwritten

events 28

P
packets 100

dropped 28
size for IPC 113

partitionID parameter 104
Pause/Resume command 51
PDK 18

Ethernet libraries 31
Percent column 75
periodInMs parameter 97
physical communication 89
platform file 105
port name 45
Port Number field 54
print statements 8
Printf Logs 73
ProcMgrApp module 124

R
regular expression 37
Reset command 52
resetting logs 120
Resume command 51
roadmaps

benchmarking 26
Context Aware Profile 26
Count Analysis 24
Duration 26
Execution Graph 23
system loading 21

routing of packets 99, 125
Row Count command 63
Rta module 97

APIs 120
communication 13

Rta_disableAllLogs() function 120
Rta_enableAllLogs() function 120
Rta_resetAllLogs() function 120
Rta_snapshotAllLogs() function 120
Rta_startTx() function 120
Rta_stopTx() function 120
.rta.xml file 55
RTDX

not supported 12
removing 88

RtdxDvr module 88
RtdxModule module, removing 88
RTOS Analyzer menu 43
RTSC, definition 11
RTSC-Pedia 16
Run command 51
RUNTIME_ON/OFF diagnostics setting 115

S
saSampleData.csv file 56
scaling graph 33
Scroll Lock command 51, 62
scrolling 40

synchronously 35
sections in memory 105
SeqNo column 61
service, definition 11
ServiceMgr framework 12
ServiceMgr module 98

communication 13
Linux 124, 125
transportType parameter 120

ServiceMgr_setConfig() function 125
session

managing 51
removing 52
starting live 43

Session or File Log view 60
shared memory 102

non-cacheable 103
sharedMemorySize parameter 104
SharedRegion module 113, 124
snapshot logging 117
spreadsheet, further analysis 25, 40, 84
statistical analysis 25, 63, 84
statistics logging 116
STATUS bit in diagnostics mask 92, 116
Stop command 51
Stopmode JTAG monitor field 55
Summary view

Concurrency 67
Context Aware Profile 79
Count Analysis 83
CPU Load 69
Duration Analysis 75
Task Load 71
Task Profiler 73, 74

supportControl parameter 100, 120
Swi module

disabling event logging 92
disabling load logging 91
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definition 11

SysLink module 124, 125
System Analyzer

benefits 8
definition 10
features 42

System Analyzer configuration
saving 55

System Analyzer menu
Live command 43

system requirements 18
systemAnalyzerData folder 46

T
table views 32
target

communication 13
definition 10
supported 18

Task Load 70
Detail view 72
Graph view 70
how it works 73
roadmap 21
Summary view 71

Task module
disabling event logging 92
disabling load logging 91
enabling event logging 91
priority 100

Task Profiler 74
Summary view 73, 74

Task threads 100
TCI6616

GlobalTimestampProxy parameter 110
TCP port 54
TCPIP transport 53
terminology 10
TI E2E Community 16
TI Embedded Processors Wiki 15
ticks 98
time 98
Time column 60, 69, 84
timer

global proxy 110
local proxy 111

TimestampC6472Timer module 110
TimestampC64XLocal module 111
TimestampC66XLocal module 111
TimestampDM816XTimer module 110
TimestampProvider module 111

timestamps 110, 119
TI-RTOS

definition 11
toolbar icons 62
topology parameter 89, 99
Transport module 120
Transport Type 53
transports

communication 13
custom 120
functions 121

transportType parameter 99
TransportType_ETHERNET 96
TransportType_JTAG 96
TransportType_UART 97
troubleshooting 27
Type column 60

U
UART

definition 11
transport 45, 53
transport type 97

UDP port 54
UDP transport 53
UIA 10

benefits 9
further information about 15
outside CCS 18

UIA configuration
loading 55
using 44, 58

UIA packets, definition 10
UIA Statistic module 116
uia.mak file 126
.uia.xml file 55
UIABenchmark module 116
UIABenchmark_start event 77, 114
UIABenchmark_stop event 77, 114
uiaDemo.c example for Linux 125
UIAErr module 116
UIAEvt module 116
UIAEvt_intWithKey event 86
UIAMessage module 116
UIAProfile_enterFunctionAdrs 80
UIAProfile_exitFunctionAdrs 80
use cases 20
USER bits in diagnostics mask 92
user types 20

V
views, types 32

W
wiki links 15
wrapper functions 12
SPRUH43E—March 2014 Index 133
Submit Documentation Feedback 

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH43E
http://www.ti.com


www.ti.com
X
XDCtools

definition 11
version 18

XGCONF tool 89

Z
zooming 33
134    SPRUH43E—March 2014
Submit Documentation Feedback  

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH43E
http://www.ti.com


IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements 
and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service 
per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such 
information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s 
terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty 
in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent 
TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each 
component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products 
and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should 
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask 
work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services 
are used. Information published by TI regarding third-party products or services does not constitute a license to use such products 
or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the 
patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without 
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for 
such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or 
service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive 
business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related require-
ments concerning its products, and any use of TI components in its applications, notwithstanding any applications-related infor-
mation or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and 
implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen 
the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its 
representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s 
goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety 
standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of 
the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended 
for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use 
of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for 
compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. In any 
case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303 Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive 

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications 

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video & Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com 

Wireless Connectivity www.ti.com/wirelessconnectivity

http://amplifier.ti.com
http://e2e.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http:/power.ti.com
http://microcontroller.ti.com

	System Analyzer User's Guide
	Preface
	About This Guide
	Intended Audience
	Notational Conventions
	Documentation Feedback
	Trademarks

	Contents
	Overview of System Analyzer
	1.1 Introduction
	1.1.1 What Analysis and Visualization Capabilities are Provided?
	1.1.2 What the UIA Target Software Package Provides

	1.2 System Analyzer Terminology
	1.3 Using System Analyzer with Your Application Software
	1.3.1 Instrumenting Your Application Using UIA
	1.3.2 Capturing and Uploading Events Using UIA

	1.4 Communicating Over Non-JTAG Transports
	1.4.1 Communication for EVM6472 Single-Core
	1.4.2 Communication for EVM6472 Multicore
	1.4.3 Communication for EVMTI816x

	1.5 About this User Guide
	1.6 Learning More about System Analyzer

	Installing System Analyzer
	2.1 Installing UIA as Part of TI-RTOS
	2.2 Installing UIA Outside CCS

	Tasks and Roadmaps for System Analyzer
	3.1 Different Types of Analysis for Different Users
	3.2 Analyzing System Loading with RTOS Analyzer
	3.3 Analyzing the Execution Sequence with RTOS Analyzer
	3.4 Performing Count Analysis with System Analyzer
	3.5 Benchmarking with System Analyzer
	3.6 Troubleshooting RTOS Analyzer and System Analyzer Connections
	3.6.1 If You Cannot Connect to the Target with Ethernet Transport
	3.6.2 If No Events are Shown in RTOS Analyzer and System Analyzer Features
	3.6.3 If RTOS Analyzer and System Analyzer Events are Being Overwritten
	3.6.4 If RTOS Analyzer and System Analyzer Packets are Being Dropped
	3.6.5 If Events Stop Being Shown Near the Beginning
	3.6.6 If Data is Not Correlated for Multicore System
	3.6.7 If the Time Value is Too Large

	3.7 Creating Sample RTOS Analyzer and System Analyzer Projects
	3.7.1 Notes for EVM6472 MessageQ Project Templates
	3.7.2 Notes for Single-Core Stairstep Project Templates

	3.8 Special Features of RTOS Analyzer and System Analyzer Data Views
	3.8.1 Zoom (Graphs Only)
	3.8.2 Measurement Markers (Graphs Only)
	3.8.3 Bookmarks
	3.8.4 Groups and Synchronous Scrolling
	3.8.5 Find
	3.8.6 Filter
	3.8.7 Export
	3.8.8 Cursor and Scroll Lock
	3.8.9 Column Settings and Display Properties


	Using RTOS Analyzer and System Analyzer
	4.1 Overview of RTOS Analyzer and System Analyzer Features
	4.2 Starting an RTOS Analyzer or System Analyzer Session
	4.3 RTOS Analyzer and System Analyzer Features and Views
	4.3.1 More Ways to Open Analysis Features
	4.3.2 More Ways to Open Views

	4.4 Managing an RTOS Analyzer or System Analyzer Session
	4.4.1 Closing an RTOS Analyzer or System Analyzer Session

	4.5 Configuring Transports and Endpoints
	4.6 Opening CSV and Binary Files Containing Analyzer Data
	4.6.1 Opening a CSV File
	4.6.2 Opening a Binary File

	4.7 Using the Session or File Log View
	4.8 Using the Execution Graph
	4.8.1 How the Execution Graph Works

	4.9 Using the Concurrency Feature
	4.9.1 Summary View for Concurrency
	4.9.2 How Concurrency Works

	4.10 Using the CPU Load View
	4.10.1 Summary View for CPU Load
	4.10.2 Detail View for CPU Load
	4.10.3 How CPU Load Works

	4.11 Using the Task Load View
	4.11.1 Summary View for Task Load
	4.11.2 Detail View for Task Load
	4.11.3 How Task Load Works

	4.12 Using the Printf Logs
	4.13 Using the Task Profiler
	4.14 Using the Duration Feature
	4.14.1 Detail View for Duration Analysis
	4.14.2 Graph View for Duration Analysis
	4.14.3 How Duration Analysis Works

	4.15 Using Context Aware Profile
	4.15.1 Detail View for Context Aware Profile
	4.15.2 How Context Aware Profiling Works
	4.15.3 Profiling Functions Using Enter and Exit Hook Functions

	4.16 Using the Count Analysis
	4.16.1 Detail View for Count Analysis
	4.16.2 Graph View for Count Analysis
	4.16.3 How Count Analysis Works


	UIA Configuration and Coding on the Target
	5.1 Quickly Enabling UIA Instrumentation
	5.1.1 Using XGCONF to Enable UIA Instrumentation

	5.2 Configuring SYS/BIOS Logging
	5.2.1 Enabling and Disabling Load Logging
	5.2.2 Enabling and Disabling Event Logging
	5.2.3 More About Diags Masks
	5.2.4 Setting Diags Masks at Run-time

	5.3 Customizing the Configuration of UIA Modules
	5.3.1 Configuring ti.uia.sysbios.LoggingSetup
	5.3.2 Configuring ti.uia.services.Rta
	5.3.3 Configuring ti.uia.runtime.ServiceMgr
	5.3.3.1 Configuring the topology
	5.3.3.2 Configuring the transportType
	5.3.3.3 Configuring the masterProcId
	5.3.3.4 Configuring Other ServiceMgr Parameters

	5.3.4 Configuring ti.uia.loggers.LoggerStopMode
	5.3.4.1 Configuring a Shared LoggerStopMode when Multiple Cores Run the Same Image

	5.3.5 Configuring ti.uia.runtime.LoggerSM
	5.3.6 Configuring ti.uia.sysbios.LoggerIdle
	5.3.7 Configuring ti.uia.runtime.LogSync
	5.3.8 Configuring IPC

	5.4 Target-Side Coding with UIA APIs
	5.4.1 Logging Events with Log_write() Functions
	5.4.2 Enabling Event Output with the Diagnostics Mask
	5.4.3 Events Provided by UIA
	5.4.4 LogSnapshot APIs for Logging State Information
	5.4.5 LogSync APIs for Multicore Timestamps
	5.4.6 LogCtxChg APIs for Logging Context Switches
	5.4.7 Rta Module APIs for Controlling Loggers
	5.4.8 Custom Transport Functions for Use with ServiceMgr


	Advanced Topics for System Analyzer
	6.1 IPC and SysLink Usage
	6.2 Linux Support for UIA Packet Routing
	6.3 Rebuilding Target-Side UIA Modules

	Revision History
	Index


