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Preface

About This Manual
This user guide describes how the cache-based memory system of the C66x DSP can be 
efficiently used in DSP applications. The internal memory architecture of these devices 
is organized in a two-level hierarchy consisting of a dedicated program memory (L1P) 
and a dedicated data memory (L1D) on the first level. Accesses by the core to the these 
first level memories can complete without core pipeline stalls.

Notational Conventions
This document uses the following conventions:

• Commands and keywords are in boldface font.
• Arguments for which you supply values are in italic font.
• Terminal sessions and information the system displays are in screen font.
• Information you must enter is in boldface screen font.
• Elements in square brackets ([ ]) are optional.

Notes use the following conventions:

Note—Means reader take note. Notes contain helpful suggestions or references 
to material not covered in the publication.

The information in a caution or a warning is provided for your protection. Please read 
each caution and warning carefully.

CAUTION—Indicates the possibility of service interruption if precautions are 
not taken.

WARNING—Indicates the possibility of damage to equipment if precautions are 
not taken.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


ø-x TMS320C66x DSP Cache User Guide SPRUGY8—November 2010
Submit Documentation Feedback 

Preface www.ti.com

Related Documentation from Texas Instruments

Trademarks
Code Composer Studio, TMS320C66x, and C66x are trademarks of Texas Instruments Incorporated.

All other brand names and trademarks mentioned in this document are the property of Texas Instruments 
Incorporated or their respective owners, as applicable.
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Chapter 1

Introduction 

This chapter describes the basic operation of memory caches and the operation of the 
TMS320C66x digital signal processor (DSP) two-level cache architecture.

 1.1 "Purpose of this User Guide" on page 1-2
 1.2 "Chip Support Library (CSL) " on page 1-3
 1.3 "Cache Terms and Definitions " on page 1-4
 1.4 "Cache Differences Between C64x and C66x DSP" on page 1-8
 1.5 "Why Use Cache?" on page 1-10
 1.6 "Principle of Locality " on page 1-11
 1.7 "Cache Memory Architecture Overview" on page 1-13
 1.8 "Cache Basics " on page 1-14
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1.1 Purpose of this User Guide
This user guide describes how the cache-based memory system of the C66x DSP can be 
efficiently used in DSP applications. The internal memory architecture of these devices 
is organized in a two-level hierarchy consisting of a dedicated program memory (L1P) 
and a dedicated data memory (L1D) on the first level. Accesses by the core to the these 
first level memories can complete without core pipeline stalls. Both L1P and L1D can 
be configured into SRAM and cache. If the data requested by the core is not contained 
in cache, it is fetched from the next lower memory level, L2 or external memory. A 
detailed technical description of the C66x memory architecture is given in 
TMS320C66x CorePac User Guide in ‘‘Related Documentation from Texas 
Instruments’’ on page ø-x.

The following topics are covered in this user guide: 
• The necessity of caches in high-performance DSPs (Chapter 1) 
• General introduction into cache-based architectures (Chapter 1) 
• Configuring and using the cache on C66x devices (Chapter 2) 
• Maintaining cache coherence between different requestors (Chapter 2 and 

Appendix B) 
• Linking code and data for increased cache efficiency (Chapter 3) 
• Code-optimization techniques for increased cache efficiency (Chapter 3) 
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1.2 Chip Support Library (CSL) 
This user guide makes references to the Chip Support Library (CSL). The CSL provides 
APIs for easy control of cache, DMA, and peripheral functions of a device. The CSL for 
your device either comes with the Code Composer Studio integrated development 
environment (IDE) or may be downloaded from www.ti.com. Note that cache APIs are 
also available through BIOS (version 5.21 or higher). 

www.ti.com
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1.3 Cache Terms and Definitions 
Table 1-1 lists the terms used throughout this document that relate to the operation of 
the C66x DSP two-level cache. 

Table 1-1 Cache Terms and Definitions (Part 1 of 4)

Term Definition 

Allocation The process of finding a location in the cache to store newly cached data. This process can include evicting 
data that is presently in the cache to make room for the new data. 

Associativity The number of line frames in each set. This is specified as the number of ways in the cache. 

Capacity miss A cache miss that occurs because the cache does not have sufficient room to hold the entire working set for a 
program. Compare with compulsory miss and conflict miss. 

Clean A cache line that is valid and that has not been written to by upper levels of memory or the core. The 
opposite state for a clean cache line is dirty. 

Coherence Informally, a memory system is coherent if any read of a data item returns the most recently written value of 
that data item. This includes accesses by the core and the DMA. 

Compulsory miss Sometimes referred to as a first-reference miss. A compulsory miss is a cache miss that must occur because 
the data has had no prior opportunity to be allocated in the cache. Typically, compulsory misses for 
particular pieces of data occur on the first access of that data. However, some cases can be considered 
compulsory even if they are not the first reference to the data. Such cases include repeated write misses on 
the same location in a cache that does not write allocate, and cache misses to noncacheable locations. 
Compare with capacity miss and conflict miss. 

Conflict miss A cache miss that occurs due to the limited associativity of a cache, rather than due to capacity constraints. A 
fully-associative cache is able to allocate a newly cached line of data anywhere in the cache. Most caches have 
much more limited associativity (see set-associative cache), and so are restricted in where they may place 
data. This results in additional cache misses that a more flexible cache would not experience. 

Direct-mapped cache A direct-mapped cache maps each address in the lower-level memory to a single location in the cache. 
Multiple locations may map to the same location in the cache. This is in contrast to a multi-way 
set-associative cache, which selects a place for the data from a set of locations in the cache. A direct-mapped 
cache can be considered a single-way set-associative cache. 

Dirty In a writeback cache, writes that reach a given level in the memory hierarchy may update that level, but not 
the levels below it. Therefore, when a cache line is valid and contains updates that have not been sent to the 
next lower level, that line is said to be dirty. The opposite state for a dirty cache line is clean. 

DMA Direct Memory Access. Typically, a DMA operation copies a block of memory from one range of addresses to 
another, or transfers data between a peripheral and memory. From a cache coherence standpoint, DMA 
accesses can be considered accesses by a parallel processor. 

Eviction The process of removing a line from the cache to make room for newly cached data. Eviction can also occur 
under user control by requesting a writeback-invalidate for an address or range of addresses from the cache. 
The evicted line is referred to as the victim. When a victim line is dirty (that is, it contains updated data), the 
data must be written out to the next level memory to maintain coherency. 

Execute packet A block of instructions that begin execution in parallel in a single cycle. An execute packet may contain 
between 1 and 8 instructions. 

Fetch packet A block of 8 instructions that are fetched in a single cycle. One fetch packet may contain multiple execute 
packets, and thus may be consumed over multiple cycles. 

First-reference miss A cache miss that occurs on the first reference to a piece of data. First-reference misses are a form of 
compulsory miss. 

Fully-associative cache A cache that allows any memory address to be stored at any location within the cache. Such caches are very 
flexible, but usually not practical to build in hardware. They contrast sharply with direct-mapped caches and 
set-associative caches, both of which have much more restrictive allocation policies. Conceptually, 
fully-associative caches are useful for distinguishing between conflict misses and capacity misses when 
analyzing the performance of a direct-mapped or set-associative cache. In terms of set-associative caches, a 
fully-associative cache is equivalent to a set-associative cache that has as many ways as it does line frames, 
and that has only one set. 

Higher-level memory In a hierarchical memory system, higher-level memories are memories that are closer to the core. The 
highest level in the memory hierarchy is usually the Level 1 caches. The memories at this level exist directly 
next to the core. Higher-level memories typically act as caches for data from lower-level memory. 

Hit A cache hit occurs when the data for a requested memory location is present in the cache. The opposite of a 
hit is a miss. A cache hit minimizes stalling, since the data can be fetched from the cache much faster than 
from the source memory. The determination of hit versus miss is made on each level of the memory 
hierarchy separately-a miss in one level may hit in a lower level. 
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Invalidate The process of marking valid cache lines as invalid in a particular cache. Alone, this action discards the 
contents of the affected cache lines, and does not write back any updated data. When combined with a 
writeback, this effectively updates the next lower level of memory that holds the data, while completely 
removing the cached data from the given level of memory. Invalidates combined with writebacks are 
referred to as writeback-invalidates, and are commonly used for retaining coherence between caches. 

Least Recently Used (LRU) allocation For set-associative and fully-associative caches, least-recently used allocation refers to the method used to 
choose among line frames in a set when allocating space in the cache. When all of the line frames in the set 
that the address maps to contain valid data, the line frame in the set that was read or written the least 
recently (furthest back in time) is selected to hold the newly cached data. The selected line frame is then 
evicted to make room for the new data. 

Line A cache line is the smallest block of data that the cache operates on. The cache line is typically much larger 
than the size of data accesses from the core or the next higher level of memory. For instance, although the 
core may request single bytes from memory, on a read miss the cache reads an entire line's worth of data to 
satisfy the request. 

Line frame A location in a cache that holds cached data (one line), an associated tag address, and status information for 
the line. The status information can include whether the line is valid, dirty, and the current state of that line's 
LRU. 

Line size The size of a single cache line, in bytes. 

Load through When a core request misses both the first-level and second-level caches, the data is fetched from the 
external memory and stored to both the first-level and second-level cache simultaneously. A cache that 
stores data and sends that data to the upper-level cache at the same time is a load-through cache. Using a 
load-through cache reduces the stall time compared to a cache that first stores the data in a lower level and 
then sends it to the higher-level cache as a second step. 

Long-distance access Accesses made by the core to a noncacheable memory. Long-distance accesses are used when accessing 
external memory that is not marked as cacheable. 

Lower-level memory In a hierarchical memory system, lower-level memories are memories that are further from the core. In a 
C66x DSP system, the lowest level in the hierarchy includes the system memory below L2 and any 
memory-mapped peripherals. 

LRU Least Recently Used. See least recently used allocation for a description of the LRU replacement policy. When 
used alone, LRU usually refers to the status information that the cache maintains for identifying the 
least-recently used line in a set. For example, consider the phrase “accessing a cache line updates the LRU for 
that line.” 

Memory ordering Defines what order the effects of memory operations are made visible in memory. (This is sometimes 
referred to as consistency.) Strong memory ordering at a given level in the memory hierarchy indicates it is 
not possible to observe the effects of memory accesses in that level of memory in an order different than 
program order. Relaxed memory ordering allows the memory hierarchy to make the effects of memory 
operations visible in a different order. Note that strong ordering does not require that the memory system 
execute memory operations in program order, only that it makes their effects visible to other requestors in 
an order consistent with program order. 

Miss A cache miss occurs when the data for a requested memory location is not in the cache. A miss may stall the 
requestor while the line frame is allocated and data is fetched from the next lower level of memory. In some 
cases, such as a core write miss from L1D, it is not strictly necessary to stall the core. Cache misses are often 
divided into three categories: compulsory misses, conflict misses, and capacity misses. 

Miss pipelining The process of servicing a single cache miss is pipelined over several cycles. By pipelining the miss, it is 
possible to overlap the processing of several misses, should many occur back-to-back. The net result is that 
much of the overhead for the subsequent misses is hidden, and the incremental stall penalty for the 
additional misses is much smaller than that for a single miss taken in isolation. 

Read allocate A read-allocate cache only allocates space in the cache on a read miss. A write miss does not cause an 
allocation to occur unless the cache is also a write-allocate cache. For caches that do not write allocate, the 
write data would be passed on to the next lower-level cache. 

Set A collection of line frames in a cache that a single address can potentially reside. A direct-mapped cache 
contains one line frame per set, and an N-way set-associative cache contains N line frames per set. A 
fully-associative cache has only one set that contains all of the line frames in the cache. 

Set-associative cache A set-associative cache contains multiple line frames that each lower-level memory location can be held in. 
When allocating room for a new line of data, the selection is made based on the allocation policy for the 
cache. The C66x devices employ a least recently used allocation policy for its set-associative caches. 

Snoop A method by which a lower-level memory queries a higher-level memory to determine if the higher-level 
memory contains data for a given address. The primary purpose of snoops is to retain coherency. 

Table 1-1 Cache Terms and Definitions (Part 2 of 4)

Term Definition 
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Tag A storage element containing the most-significant bits of the address stored in a particular line. Tag 
addresses are stored in special tag memories that are not directly visible to the core. The cache queries the 
tag memories on each access to determine if the access is a hit or a miss. 

Thrash An algorithm is said to thrash the cache when its access pattern causes the performance of the cache to 
suffer dramatically. Thrashing can occur for multiple reasons. One possible situation is that the algorithm is 
accessing too much data or program code in a short time frame with little or no reuse. That is, its working set 
is too large, and thus the algorithm is causing a significant number of capacity misses. Another situation is 
that the algorithm is repeatedly accessing a small group of different addresses that all map to the same set in 
the cache, thus causing an artificially high number of conflict misses. 

Touch A memory operation on a given address is said to touch that address. Touch can also refer to reading array 
elements or other ranges of memory addresses for the sole purpose of allocating them in a particular level of 
the cache. A core-centric loop used for touching a range of memory in order to allocate it into the cache is 
often referred to as a touch loop. Touching an array is a form of software-controlled prefetch for data. 

Valid When a cache line holds data that has been fetched from the next level memory, that line frame is valid. The 
invalid state occurs when the line frame holds no data, either because nothing has been cached yet, or 
because previously cached data has been invalidated for whatever reason (coherence protocol, program 
request, etc.). The valid state makes no implications as to whether the data has been modified since it was 
fetched from the lower-level memory; rather, this is indicated by the dirty or clean state of the line. 

Victim When space is allocated in a set for a new line, and all of the line frames in the set that the address maps to 
contain valid data, the cache controller must select one of the valid lines to evict in order to make room for 
the new data. Typically, the least-recently used (LRU) line is selected. The line that is evicted is known as the 
victim line. If the victim line is dirty, its contents are written to the next lower level of memory using a victim 
writeback. 

Victim Buffer A special buffer that holds victims until they are written back. Victim lines are moved to the victim buffer to 
make room in the cache for incoming data. 

Victim Writeback When a dirty line is evicted (that is, a line with updated data is evicted), the updated data is written to the 
lower levels of memory. This process is referred to as a victim writeback. 

Way In a set-associative cache, each set in the cache contains multiple line frames. The number of line frames in 
each set is referred to as the number of ways in the cache. The collection of corresponding line frames across 
all sets in the cache is called a way in the cache. For instance, a 4-way set-associative cache has 4 ways, and 
each set in the cache has 4 line frames associated with it, one associated with each of the 4 ways. As a result, 
any given cacheable address in the memory map has 4 possible locations it can map to in a 4-way 
set-associative cache. 

Working set The working set for a program or algorithm is the total set of data and program code that is referenced 
within a particular period of time. It is often useful to consider the working set on an algorithm-by-algorithm 
basis when analyzing upper levels of memory, and on a whole-program basis when analyzing lower levels of 
memory. 

Write allocate A write-allocate cache allocates space in the cache when a write miss occurs. Space is allocated according to 
the cache's allocation policy (LRU, for example), and the data for the line is read into the cache from the next 
lower level of memory. Once the data is present in the cache, the write is processed. For a writeback cache, 
only the current level of memory is updated-the write data is not immediately passed to the next level of 
memory. 

Writeback The process of writing updated data from a valid but dirty cache line to a lower-level memory. After the 
writeback occurs, the cache line is considered clean. Unless paired with an invalidate (as in 
writeback-invalidate), the line remains valid after a writeback. 

Writeback cache A writeback cache will only modify its own data on a write hit. It will not immediately send the update to the 
next lower-level of memory. The data will be written back at some future point, such as when the cache line 
is evicted, or when the lower-level memory snoops the address from the higher-level memory. It is also 
possible to directly initiate a writeback for a range of addresses using cache control registers. A write hit to a 
writeback cache causes the corresponding line to be marked as dirty-that is, the line contains updates that 
have yet to be sent to the lower levels of memory. 

Table 1-1 Cache Terms and Definitions (Part 3 of 4)

Term Definition 
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Writeback-invalidate A writeback operation followed by an invalidation. See writeback and invalidate. On the C66x devices, a 
writeback-invalidate on a group of cache lines only writes out data for dirty cache lines, but invalidates the 
contents of all of the affected cache lines. 

Write merging Write merging combines multiple independent writes into a single, larger write. This improves the 
performance of the memory system by reducing the number of individual memory accesses it needs to 
process. For instance, on the C66x device, the L1D write buffer can merge multiple writes under some 
circumstances if they are to the same double-word address. In this example, the result is a larger effective 
write-buffer capacity and a lower bandwidth impact on L2. 

Write-through cache A write-through cache passes all writes to the lower-level memory. It never contains updated data that it has 
not passed on to the lower-level memory. As a result, cache lines can never be dirty in a write-through cache. 

Table 1-1 Cache Terms and Definitions (Part 4 of 4)

Term Definition 

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


1.4 Cache Differences Between C64x and C66x DSP

1-8 TMS320C66x DSP Cache User Guide SPRUGY8—November 2010
Submit Documentation Feedback 

Chapter 1—Introduction www.ti.com

1.4 Cache Differences Between C64x and C66x DSP
Readers who are familiar with the TMS320C64x DSP cache architecture may want to 
take note of features that are new or have changed for C66x DSPs. The features 
described in this chapter are listed below. For a complete list of new and changed 
features, see Appendix A on page A-1. 

Memory sizes and types:
• On C66x devices, each L1D and L1P implement SRAM additionally to cache. The 

size of cache is user-configurable and can be set to 4K, 8K, 16K, or 32K bytes. The 
amount of available SRAM is device dependent and specified in the 
device-specific data manual. On C64x devices, only cache with a fixed size of 16K 
bytes is implemented. 

• On C66x devices, the maximum possible size of L2 is increased. See the data 
manual for the actual amount of available L2 memory. L2 cache size 
configurations are the same as on C64x devices. 

Write buffer:
• The width of the write buffer on C66x devices is increased to 128 bits; on C64x 

devices, the width is 64 bits. 

Cacheability:
• The cacheability settings of external memory addresses (through the MAR bits) 

only affect L1D and L2 caches on C66x devices; that is, program fetches to 
external memory addresses are always cached in L1P, regardless of the 
cacheability setting. This is not the case on C64x devices, where the settings 
affects all caches, L1P, L1D, and L2. 

• The cacheability control of external memory addresses covers the entire external 
address space on C66x devices. In contrast, on C64x devices, only a subset of the 
address space is covered. 

Snooping protocol:
• The snooping cache coherence protocol on C66x devices directly forwards data 

to L1D cache and the DMA. C64x devices invalid and writeback cache lines to 
maintain coherence. The C66x snooping mechanism is more efficient since it 
eliminates cache miss overhead caused by invalidates. 

• The snoop coherence protocol on C66x devices does not maintain coherence 
between L1P cache and L2 SRAM, as is the case on C64x devices. This is the 
responsibility of the programmer.

Cache coherence operations:
• On C66x devices, the L2 cache coherence operations always operate on L1P and 

L1D even if L2 cache is disabled. This is not the case on C64x devices, which 
requires the explicit use of L1 coherence operations. 

• C66x devices support a complete set of range and global L1D cache coherence 
operations. In contrast, C64x devices support only L1D range invalidate and 
writeback–invalidate. 

• On cache size changes, C66x devices automatically writeback–invalidate cache 
before initializing it with the new size. In contrast, C64x devices required an 
explicit writeback–invalidate to be issued by the programmer (however, this is 
handled as part of the CSL function). 
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• On C66x devices, L2 cache is non inclusive of L1D and L1P. This means that a line 
eviction from L2 does not cause the corresponding lines in L1P and L1D to be 
evicted. However, this is the case on C64x devices. The advantage of 
noninclusivity is that line allocations in L2 due to program fetches do not evict 
data from L1D cache, and line allocations in L2 due to data accesses do not evict 
program code from L1P. This helps reduce the number of cache misses. 
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1.5 Why Use Cache?
From a DSP application perspective, a large amount of fast on-chip memory would be 
ideal. However, over the past years the performance of processors has improved at a 
much faster pace than that of memory. As a result, there is now a performance gap 
between core and memory speed. High-speed memory is available but consumes much 
more size and is more expensive compared with slower memory. 

Consider the flat memory architecture shown on the left in Figure 1-1. Both core and 
internal memory are clocked at 300 MHz such that no memory stalls occur. However 
for accesses to the slower external memory, there will be core stalls. If the core clock was 
now increased to 600 MHz, the internal memory could only service core accesses every 
two core cycles and the core would stall for one cycle on every memory access. The 
penalty would be particularly large for highly optimized inner loops that may access 
memory on every cycle. In this case, the effective core processing speed would approach 
the slower memory speed. Unfortunately, today’s available memory technology is not 
able to keep up with increasing processor speeds, and a same size internal memory 
running at the same core speed would be far too expensive. 

The solution is to use a memory hierarchy, as shown on the right in Figure 1-1. A fast 
but small memory is placed close to the core that can be accessed without stalls. The 
next lower memory levels are increasingly larger but also slower the further away they 
are from the core. Addresses are mapped from a larger memory to a smaller but faster 
memory higher in the hierarchy. Typically, the higher–level memories are cache 
memories that are automatically managed by a cache controller. Through this type of 
architecture, the average memory access time will be closer to the access time of the 
fastest memory rather than to the access time of the slowest memory.

Figure 1-1 Flat Versus Hierarchical Memory Architecture

Core 
600MHz

Core 
300MHz
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1.6 Principle of Locality 
Caches reduce the average memory access time by exploiting the locality of memory 
accesses. The principle of locality assumes that if a memory location was referenced it 
is very likely that the same or a neighboring location will be referenced soon again. 
Referencing memory locations within some period of time is referred to as temporal 
locality. Referencing neighboring memory locations is referred to as spatial locality. A 
program typically reuses data from the same or adjacent memory locations within a 
small period of time. If the data is fetched from a slow memory into a fast cache 
memory and is accessed as often as possible before it is being replaced with another set 
of data, the benefits become apparent. 

The following example illustrates the concept of spatial and temporal locality. Consider 
the memory access pattern of a 6-tap FIR filter. The required computations for the first 
two outputs y[0] and y[1] are: y[0] = h[0] × x[0] + h[1] × x[1] + ... + h[5] × x[5] y[1] = 
h[0] × x[1] + h[1] × x[2] + ... + h[5] × x[6] 

Consequently, to compute one output we have to read six data samples from an input 
data buffer x[ ]. Figure 1-2 shows the memory layout of this buffer and how its elements 
are accessed. When the first access is made to memory location 0, the cache controller 
fetches the data for the address accessed and also the data for a certain number of the 
following addresses into cache. This range of addresses is called a cache line. The 
motivation for this behavior is that accesses are assumed to be spatially local. This is 
true for the FIR filter, since the next five samples are required as well. Then all accesses 
will go to the fast cache instead of the slow lower-level memory. 

Consider now the calculation of the next output, y[1]. The access pattern again is 
shown in Figure 1-2. Five of the samples are being reused from the previous 
computation and only one sample is new; but all of them are already held in cache and 
no core stalls occur. This access pattern exhibits high spatial and temporal locality: the 
same data that was used in the previous step is being used again for processing. 

Cache builds on the fact that data accesses are spatially and temporally local. The 
number of accesses to a slower, lower-level memory are greatly reduced, and the 
majority of accesses can be serviced at core speed from the high-level cache memory.
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Figure 1-2 Access Pattern of a Six-Tap FIR Filter
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1.7 Cache Memory Architecture Overview
The C66x DSP memory architecture consists of a two-level internal cache-based 
memory architecture plus external memory. Level 1 memory is split into program 
(L1P) and data (L1D). Both L1P and L1D can be configured into SRAM and cache with 
up to 32K bytes of cache. All caches and data paths shown in Figure 1-3 are 
automatically managed by the cache controller. Level 1 memory is accessed by the core 
without stalls. Level 2 memory is also configurable and can be split into L2 SRAM and 
cache with up to 256K bytes of cache. External memory can be several Megabytes large. 
The access time depends on the interface and the memory technology used. 
Figure 1-3 C66x Cache Memory Architecture

CPUFetch 
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Data 
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1.8 Cache Basics 
This section explains the different types of cache architectures and how they work. 
Generally, one can distinguish between direct-mapped caches and set-associative 
caches. The types of caches described use the C66x L1P (direct-mapped) and L1D 
(set-associative) as examples; however, the concept is similar for all cache-based 
computer architectures. This section focuses on the behavior of the cache system. Any 
performance considerations, including various stall conditions and associated stall 
cycles are described in Section 3.2 ‘‘Cache Performance Characteristics ’’ on page 3-3. 

1.8.1 Direct-Mapped Caches
The C66x program cache (L1P) will be used as an example to explain how a 
direct-mapped cache functions. Whenever the core accesses instructions in L2 SRAM 
or external memory, the instructions are brought into L1P cache. The characteristics of 
the C66x and the C64x L1P caches are summarized and compared in Table 1-2. The 
L1P miss stall characteristics are provided in Table 1-3 

Figure 1-4 shows the architecture of the C64+x L1P cache that consists of the cache 
memory and the cache control logic. Additionally, addressable memory (L2 SRAM or 
external memory) is shown. The cache memory size is 16K bytes in the example and 
consists of 512 32-byte lines. Each line frame always maps to the same fixed addresses 
in memory. For instance, as shown in Figure 1-4, addresses 0000h to 0019h are always 
cached in line frame 0 and addresses 3FE0h to 3FFFh are always cached in line frame 
511. Since the capacity of the cache has been exhausted, addresses 4000h to 4019h map 
to line frame 0, and so forth. Note that one line contains exactly one instruction fetch 
packet.

Table 1-2 L1P Cache Characteristics

Characteristic C66x DSP C64x DSP 

Organization Direct-mapped Direct-mapped 

Protocol Read Allocate Read Allocate 

core access time 1 cycle 1 cycle 

Capacity 4K, 8K, 16K, or 32K bytes 16K bytes 

Line size 32 bytes 32 bytes 

External Memory Cacheability Always cached Configurable 

Table 1-3 L1P Miss Stall Characteristics 

L2 Type 

0 Wait-State, 2 × 128-bit Banks 1 Wait-State, 4 × 128-bit Banks 

Instructions per Execute Packet L2 SRAM L2 Cache L2 SRAM L2 Cache 

1 0.000 0.000 0.000 0.000 

2 0.001 0.497 0.167 0.499 

3 0.501 1.247 0.751 1.249 

4 0.997 1.997 1.329 1.999 

5 1.499 2.747 1.915 2.749 

6 2.001 3.497 2.501 3.499 

7 2.497 4.247 3.079 4.249 

8 2.999 4.997 3.665 4.999 
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Figure 1-4 C66x L1P Cache Architecture (16K Bytes)

1.8.1.1 Read Misses
Consider a core program fetch access to address location 0020h. Assume that cache is 
completely invalidated, meaning that no line frame contains cached data. The valid 
state of a line frame is indicated by the valid (V) bit. A valid bit of 0 means that the 
corresponding cache line frame is invalid, that is, does not contain cached data. When 
the core makes a request to read address 0020h, the cache controller splits up the 
address into three portions as shown in Figure 1-5. 

Figure 1-5 Memory Address from Cache Controller (For 16K Byte Cache Size) 
31 1413 540 

The set portion (bits 13-5) indicates to which set the address maps to (in case of direct 
caches, a set is equivalent to a line frame). For the address 0020h, the set portion is 1. 
The controller then checks the tag (bits 31–14) and the valid bit. Since we assumed that 
the valid bit is 0, the controller registers a miss, that is the requested address is not 
contained in cache. 

A miss also means that a line frame will be allocated for the line containing the 
requested address. Then the controller fetches the line (0020h-0039h) from memory 
and stores the data in line frame 1. The tag portion of the address is stored in the tag 
RAM and the valid bit is changed to 1 to indicate that the set now contains valid data. 
The fetched data is also forwarded to the core, and the access is complete. Why a tag 
portion of the address has to be stored becomes clear when address 0020h is accessed 
again. This is explained next. 

1.8.1.2 Read Hits 
The cache controller splits up the address into the three portions, as shown in 
Figure 1-5. The set portion determines the set, and the stored tag portion is now 
compared against the tag portion of the address requested. This comparison is 
necessary since multiple lines in memory are mapped to the same set. If we had 
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accessed address 4020h that also maps to the same set, the tag portions would be 
different and the access would have been a miss. If address 0020h is accessed, the tag 
comparison is true and the valid bit is 1; thus, the controller registers a hit and forwards 
the data in the cache line to the core. The access is complete. 

1.8.2 Types of Cache Misses 
Before set-associative caches are discussed, it is beneficial to acquire a better 
understanding of the properties of different types of cache misses. The ultimate 
purpose of a cache is to reduce the average memory access time. For each miss, there is 
a penalty for fetching a line of data from memory into cache. Therefore, the more often 
a cache line is reused the lower the impact of the initial penalty and the shorter the 
average memory access time becomes. The key is to reuse this line as much as possible 
before it is replaced with another line. 

Replacing a line involves eviction of the line from cache and using the same line frame 
to store another line. If later the evicted line is accessed again, the access misses and the 
line has to be fetched again from slower memory. Therefore, it is important to avoid 
eviction of a line as long as it is still used. 

1.8.2.1 Conflict and Capacity Misses 
Evictions are caused by conflicts, that is, a memory location is accessed that maps to the 
same set as a memory location that was cached earlier. This type of miss is referred to 
as a conflict miss, a miss that occurred because the line was evicted due to a conflict 
before it was reused. It is further distinguished whether the conflict occurred because 
the capacity of the cache was exhausted or not. If the capacity was exhausted, all line 
frames in the cache were allocated when the miss occurred, then the miss is referred to 
as a capacity miss. Capacity misses occur if a data set that exceeds the cache capacity is 
reused. When the capacity is exhausted, new lines accessed start replacing lines from 
the beginning of the array. 

Identifying the cause of a miss may help to choose the appropriate measure for avoiding 
the miss. Conflict misses mean that the data accessed fits into cache but lines get evicted 
due to conflicts. In this case, we may want to change the memory layout so that the data 
accessed is located at addresses in memory that do not conflict (map to the same set) in 
cache. Alternatively, from a hardware design, we can create sets that can hold two or 
more lines. Thus, two lines from memory that map to the same set can both be kept in 
cache without evicting one another. This is the idea of set-associative caches, described 
in Section 1.8.3. 

In case of capacity misses, one may want to reduce the amount of data that is operated 
on at a time. Alternatively, from a hardware design, the capacity of the cache can be 
increased. 

1.8.2.2 Compulsory Misses 
A third category of misses are compulsory misses or first reference misses. They occur 
when the data is brought in cache for the first time. Unlike the other two misses, they 
cannot be avoided, hence, they are compulsory. 
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1.8.3 Set-Associative Caches 
Set-associative caches have multiple cache ways to reduce the probability of conflict 
misses. The C66x L1D cache is a 2-way set-associative cache with 4K, 8K, 16K, or 32K 
bytes capacity and 64-byte lines. The characteristics of the L1D cache are summarized 
in Table 1-4. The L1D miss stall characteristics are provided in Table 1-5. 

Compared to a direct-mapped cache, each set of a 2-way set-associative cache consists 
of two line frames, one line frame in way 0 and another line frame in way 1. A line in 
memory still maps to one set, but now can be stored in either of the two line frames. In 
this sense, a direct-mapped cache can also be viewed as a 1-way cache. 

The set-associative cache architecture is explained by examining how misses and hits 
are handled for the C66x L1D cache, shown in Figure 1-6. Hits and misses are 
determined similar as in a direct-mapped cache, except that two tag comparisons, one 
for each way, are necessary to determine which way the requested data is kept.

Table 1-4 L1D Cache Characteristics

Characteristic C66x DSP C64x DSP 

Organization 2-way set-associative 2-way set-associative 

Protocol Read Allocate, Write–back Read Allocate, Write–back 

core access time 1 cycle 1 cycle 

Capacity 4K, 8K, 16K, or 32K bytes 16K bytes 

Line size 64 bytes 64 bytes 

Replacement strategy Least recently used (LRU) Least recently used (LRU) 

Write Buffer 4 x 128-bit entries 4 x 64-bit entries 

External Memory Cacheability Configurable Configurable 

Table 1-5 L1D Miss Stall Characteristics

Parameter 

L2 Type 

0 Wait-State, 2 × 128-bit Banks 1 Wait-State, 4 × 128-bit Banks 

L2 SRAM L2 Cache L2 SRAM L2 Cache 

Single Read Miss 10.5 12.5 12.5 14.5 

2 Parallel Read Misses (pipelined) 10.5 + 4 12.5 + 8 12.5 + 4 14.5 + 8 

M Consecutive Read Misses 10.5 + 3 × (M -1) 12.5 + 7 × (M -1) 12.5 + 3 × (M -1) 14.5 + 7 × (M -1) 

(pipelined) 

M Consecutive Parallel Read 10.5 + 4 × (M/2 -1) + 12.5 + 8 × (M/2 -1) + 12.5 + 4 × (M -1) 14.5 + 8 × (M/2 -1) + 

Misses (pipelined) 3 × M/2 7 × M/2 7 × M/2 

Victim Buffer Flush on Read Miss disrupts miss disrupts miss disrupts miss disrupts miss 

pipelining plus pipelining plus pipelining plus pipelining plus 

maximum 11 stalls maximum 11 stalls maximum 10 stalls maximum 10 stalls 

Write Buffer Drain Rate 2 cycles/entry 6 cycles/entry 2 cycles/entry 6 cycles/entry 
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Figure 1-6 C66x LiD Cache Architecture (16K Bytes)

1.8.3.1 Read Misses
If both ways miss, the data first needs to be fetched from memory. The LRU bit 
determines in which cache way the line frame is allocated. An LRU bit exists for each 
set and can be thought of as a switch. If the LRU bit is 0, the line frame in way 0 is 
allocated; if the LRU bit is 1, the line frame in way 1 is allocated. The state of the LRU 
bit changes whenever an access is made to the line frame. When a way is accessed, the 
LRU bit always switches to the opposite way, as to protect the most-recently-used line 
frame from being evicted. Conversely, on a miss, the least-recently-used (LRU) line 
frame in a set is allocated to the new line evicting the current line. The reason behind 
this line replacement scheme is based on the principle of locality: if a memory location 
was accessed, then the same or a neighboring location will be accessed soon again. Note 
that the LRU bit is only consulted on a miss, but its status is updated every time a line 
frame is accessed regardless whether it was a hit or a miss, a read or a write. 

1.8.3.2 Write Misses
L1D is a read–allocate cache, meaning that a line is allocated on a read miss only. On a 
write miss, the data is written to the lower-level memory through a write buffer, 
bypassing L1D cache (see Figure 1-3). The write buffer consists of 4 entries. On C66x 
devices, each entry is 128-bits wide. 

1.8.3.3 Read Hits
If there is a read hit in way 0, the data of the line frame in way 0 is accessed; if there is a 
hit in way 1, the data of the line frame in way 1 is accessed.
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1.8.3.4 Write Hits 
On a write hit, the data is written to the cache, but is not immediately passed on to the 
lower level memory. This type of cache is referred to as write–back cache, since data that 
was modified by a core write access is written back to memory at a later time. To write 
back modified data, it must be known which line was written by the core. For this 
purpose, every cache line has a dirty bit (D) associated with it. Initially, the dirty bit is 
zero. As soon as the core writes to a cached line, the corresponding dirty bit is set. When 
the dirty line needs to be evicted due to a conflicting read miss, it will be written back 
to memory. If the line was not modified (clean line), its contents are discarded. For 
instance, assume the line in set 0, way 0 was written to by the core, and the LRU bit 
indicates that way 0 is to be replaced on the next miss. If the core now makes a read 
access to a memory location that maps to set 0, the current dirty line is first written back 
to memory, then the new data is stored in the line frame. A write–back may also be 
initiated by the program, by sending a writeback command to the cache controller. 
Scenarios where this is required include boot loading and self-modifying code. 

1.8.4 Level 2 (L2) Cache 
Until now, it was assumed that there is one level of cache memory between the core and 
the addressable main memory. If there is a larger difference in memory size and access 
time between the cache and main memory, a second level of cache is typically 
introduced to further reduce the number of accesses to memory. A level 2 (L2) cache 
basically operates in the same manner as a level 1 cache; however, level 2 cache are 
typically larger in capacity. Level 1 and level 2 caches interact as follows: an address 
misses in L1 and is passed on to L2 for handling; L2 employs the same valid bit and tag 
comparisons to determine if the requested address is present in L2 cache or not. L1 hits 
are directly serviced from the L1 caches and do not require involvement of L2 caches. 

As L1P and L1D, the L2 memory space can also be split into an addressable internal 
memory (L2 SRAM) and a cache (L2 Cache) portion. Unlike L1 caches that are 
read–allocate only, L2 cache is a read and write allocate cache. L2 cache is used to cache 
external memory addresses only; whereas, L1P and L1D are used to cache both L2 
SRAM and external memory addresses. L2 cache characteristics are summarized in 
Table 1-6. 

1.8.4.1 Read Misses and Hits
Consider a core read request to a cacheable external memory address that misses in L1 
cache (may be L1P or L1D). If the address also misses L2 cache, the corresponding line 
will be brought into L2 cache. The LRU bits determine the way in which the line frame 
is allocated. If the line frame contains dirty data, it will be first written back to external 
memory before the new line is fetched. (If data of this line is also contained in L1D, it 
will be first written back to L2 before the L2 line is sent to external memory. This is 

Table 1-6 L2 Cache Characteristics

Characteristic C66x DSP C64x DSP 

Organization 4-way set-associative 4-way set-associative 

Protocol Read and write allocate Read and write allocate 

Writeback Writeback 

Capacity 32K, 64K, 128K, or 256K bytes 32K, 64K, 128K, or 256K bytes 

Line size 128 bytes 128 bytes 

Replacement strategy Least recently used (LRU) Least recently used (LRU) 

External Memory Cacheability Configurable Configurable 
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required to maintain cache coherence, which is further explained in Section 2.4). The 
portion of the newly allocated line forming an L1 line and containing the requested 
address is then forwarded to L1. L1 stores the line in its cache memory and finally 
forwards the requested data to the core. Again, if the new line replaces a dirty line in L1, 
its contents are first written back to L2. 

If the address was an L2 hit, the corresponding line is directly forwarded from L2 to L1 
cache. 

1.8.4.2 Write Misses and Hits 
If a core write request to an external memory address misses L1D, it is passed on to L2 
through the write buffer. If L2 detects a miss for this address, the corresponding L2 
cache line is fetched from external memory, modified with the core write, and stored in 
the allocated line frame. The LRU bits determine the way in which the line frame is 
allocated. If the line frame contains dirty data, it will be first written back to external 
memory before the new line is fetched. Note that the line is not stored in L1D, since it 
is a read–allocate cache only. 

If the address was an L2 hit, the corresponding L2 cache line frame is directly updated 
with the core write data.

1.8.5 Cacheability of External Memory Addresses 
L2 SRAM address are always cached in L1P and L1D. However, external memory 
addresses by default are configured as noncacheable in L1D and L2 caches. 
Cacheability must first be explicitly enabled by the user. Note that L1P cache is not 
affected by this configuration and always caches external memory addresses. If an 
address is noncacheable, any memory access (data access or program fetch) is made 
without allocating the line in either L1D or L2 cache (see Section 2.1 and Section 2.2 for 
more information). 
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Using Cache 

This chapter describes how to enable and configure caches for C66x devices. It also 
describes the cache coherence protocol used by the cache controller and gives examples 
of common application scenarios. 

Because multiple copies of the same memory location can exist simultaneously in a 
cache-based memory system, a protocol must be followed to ensure that requestors do 
not access an out-of-date copy of a memory location. This protocol is referred to as a 
cache coherence protocol. 

CAUTION—In the following cases, it is the user’s responsibility to maintain 
cache coherence. Failing to do so can cause the application to function 
incorrectly. 

DMA or other external entity writes data or code to external memory that is then read 
by the CORE.

The CORE writes data to external memory that is then read by DMA or another 
external entity 

DMA writes code to L2 SRAM that is then executed by the CORE (this case is 
supported by the hardware protocol on C621x/C671x and C64x DSPs, but is not 
supported on C66x DSPs).

CORE writes code to L2 SRAM or external memory that is then executed by the CORE. 

 2.1 "Configuring L1 Caches" on page 2-2
 2.2 "Configuring L2 Cache " on page 2-3
 2.3 "Cacheability " on page 2-4
 2.4 "Coherence" on page 2-6
 2.5 "On-Chip Debug Support " on page 2-16
 2.6 "Self-Modifying Code and L1P Coherence " on page 2-17
 2.7 "Changing Cache Configuration During Run-Time " on page 2-18
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2.1 Configuring L1 Caches
The configuration at boot time depends on the particular C66x device. The device may 
boot up as cache only, SRAM only, or a combination of each. See your device-specific 
data manual. 

The L1P and L1D cache sizes can be changed in the program code by issuing the 
appropriate chip support library (CSL) commands: 

CACHE_L1pSetSize(); 
CACHE_L1dSetSize(); 

Additionally, in the linker command file the memory to be used as SRAM has to be 
specified. Since caches cannot be used for code or data placement by the linker, all 
sections must be linked into SRAM or external memory. 
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2.2 Configuring L2 Cache 
At boot time L2 cache is disabled and all of L2 is configured as SRAM (addressable 
internal memory). If DSP/BIOS is used, L2 cache is enabled automatically; otherwise, 
L2 cache can be enabled in the program code by issuing the appropriate chip support 
library (CSL) command: CACHE_L2SetSize(); 

Additionally, in the linker command file the memory to be used as SRAM has to be 
specified. Since cache cannot be used for code or data placement by the linker, all 
sections must be linked into SRAM or external memory. 
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2.3 Cacheability 
For L1D and L2, you can control whether external memory addresses are cacheable or 
noncacheable. Each external memory address space of 16M bytes is controlled by a 
memory attribute register (MAR) bit (0 = noncacheable, 1 = cacheable). The memory 
attribute registers are documented in TMS320C66x CorePac User Guide in ‘‘Related 
Documentation from Texas Instruments’’ on page ø-x. For instance, to enable caching 
for the external memory range from 8000 0000h to 80FF FFFFh, the CSL function 
CACHE_enableCaching(CACHE_MAR128) can be used. This sets MAR128 to 1. 
After the MAR bit is set for an external memory space, new addresses accessed by the 
CORE will be cached. If it was left noncacheable, the requested data would simply be 
forwarded from external memory to the CORE without being stored in L1D or L2 
cache. Note that program fetches are always cached in L1P regardless of the MAR 
settings. At boot time, caching for external memory address space is disabled. 

The following description assumes 2048K bytes of L2 memory and that L1P and L1D 
are all cache. For C66x devices with different L2 sizes, see the device-specific data 
manual. The linker command file for a configuration of 1792K SRAM and 256K-bytes 
cache is shown in Example 2-1. 

The required CSL command sequence to enable caching of external memory locations 
and to enable L2 cache is shown in Example 2-2. The first command enables caching of 
the first 16 Mbytes in the external memory space by setting the appropriate MAR bit. 
Finally, L2 cache size is set to 256K bytes. 

Figure 2-1 shows all possible cache configurations for C66x devices with 2048K bytes 
of L2 memory. Slightly different configurations may exist for other C66x devices, see 
your device-specific data manual. 

Note that when the L2 cache size is increased, the memory is taken from the high 
memory addresses. 

Other configurations are set by adjusting the cache size in Example 2-1 and 
Example 2-2. 

Note—Do not define memory that is to be used or boots up as cache under the 
MEMORY directive. This memory is not valid for the linker to place code or 
data in. If L1D SRAM and/or L1P SRAM is to be used, it must first be made 
available by reducing the cache size. Data or code must be linked into L2 SRAM 
or external memory and then copied to L1 at run-time. 

Example 2-1 C66x Linker Command File

MEMORY 
{ 

L2SRAM: origin = 00800000h length = 001C0000h 
CE0: origin = 80000000h length = 01000000h 

} 
SECTIONS 
{ 

.cinit > L2SRAM 

.text > L2SRAM 

.stack > L2SRAM 

.bss > L2SRAM 

.const > L2SRAM 

.data > L2SRAM 

.far > L2SRAM 

.switch > L2SRAM 

.sysmem > L2SRAM 
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.tables > L2SRAM 

.cio > L2SRAM 

.external > CE0 
}

End of Example 2-1

Example 2-2 C66x CSL Command Sequence to Enable Caching 

#include <csl.h> 
#include <csl_cache.h>
... 
CACHE_enableCaching(CACHE_CE00);
CACHE_setL2Size(CACHE_256KCACHE);

End of Example 2-2

Figure 2-1 C66x L2 Memory Configurations
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2.4 Coherence
Generally, if multiple devices, such as the CORE or peripherals, share the same 
cacheable memory region, cache and memory can become incoherent. Consider the 
system shown in Figure 2-2. Suppose the CORE accesses a memory location that gets 
subsequently allocated in cache (1). Later, a peripheral is writes data to this same 
location that is meant to be read and processed by the CORE (2). However, since this 
memory location is kept in cache, the memory access hits in cache and the CORE reads 
the old data instead of the new data (3). A similar problem occurs if the CORE writes 
to a memory location that is cached, and the data is to be read by a peripheral. The data 
only gets updated in cache but not in memory from where the peripheral reads the data. 
The cache and the memory are said to be incoherent. 

Coherence needs to be addressed if the following is true: 
• Multiple requestors (CORE data path, CORE fetch path, peripherals, DMA 

controllers, other external entities) share a region of memory for the purpose of 
data exchange. 

• This memory region is cacheable by at least one device. 
• A memory location in this region has been cached. 
• And this memory location is modified (by any device). 

Consequently, if a memory location is shared, cached, and has been modified, there is 
a cache coherence problem. 

C66x DSPs automatically maintain cache coherence for data accesses by the CORE and 
EDMA/IDMA through a hardware cache coherence protocol based on snoop 
commands. The coherence mechanism is activated on a DMA read and write access. 
When a DMA read of a cached L2 SRAM location occurs, the data is directly forwarded 
from L1D cache to the DMA without being updated in L2 SRAM. On a DMA write, the 
data is forwarded to L1D cache and is updated in L2 SRAM. 
Figure 2-2 Cache Coherence Problem
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In the following cases, it is your responsibility to maintain cache coherence: 

• DMA or other external entity writes data or code to external memory that is then 
read by the CORE 

• CORE writes data to external memory that is then read by DMA or another 
external entity 

• DMA writes code to L2 SRAM that is then executed by the CORE (this case is 
supported by the hardware protocol on C621x/C671x and C64x DSPs, but is not 
supported on C66x DSPs) 

• CORE writes code to L2 SRAM or external memory that is then executed by the 
CORE 

For this purpose, the cache controller offers various commands that allow it to 
manually keep caches coherent. 

This section explains how to maintain coherence by describing the cache coherence 
protocol and providing examples for common types of applications. 

2.4.1 Snoop Coherence Protocol 
Before describing programmer-initiated cache coherence operations, it is beneficial to 
first understand the snoop-based protocols that are used by the cache controller to 
maintain coherence between the L1D cache and L2 SRAM for DMA accesses. 
Generally, snooping is a cache operation initiated by a lower-level memory to check if 
the address requested is cached (valid) in the higher-level memory. If yes, the 
appropriate operation is triggered. The C66x cache controller supports the following 
snoop commands: 

L1D Snoop–Read 
L1D Snoop–Write 

2.4.2 Cache Coherence Protocol for DMA Accesses to L2 SRAM 
To illustrate snooping, assume a peripheral writes data through the DMA to an input 
buffer located in L2 SRAM. Then the CORE reads the data, processes it, and writes it to 
an output buffer. From there, the data is sent through the DMA to another peripheral. 

The procedure for a DMA write is shown in Figure 2-3 and is: 
1. The peripheral requests a write access to a line in L2 SRAM that maps to set 0 in 

L1D. 
2. The L2 cache controller checks its local copy of the L1D tag RAM and determines 

if the line that was just requested is cached in L1D (by checking the valid bit and 
the tag). If the line is not cached in L1D, no further action needs to be taken and 
the data is written to memory. 

3. If the line is cached in L1D, the L2 controller updates the data in L2 SRAM and 
directly updates L1D cache by issuing a snoop–write command. Note that the 
dirty bit is not affected by this operation. 
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Figure 2-3 DMA Write to L2 SRAM

The procedure for a DMA read is shown in Figure 2-4 and is: 
1. The CORE writes the result to the output buffer. Assume that the output buffer 

was preallocated in L1D. Since the buffer is cached, only the cached copy of the 
data is updated, but not the data in L2 SRAM. 

2. When the peripheral issues a DMA read request to the memory location in L2 
SRAM, the controller checks to determine if the line that contains the memory 
location requested is cached in L1D. In this example, we already assumed that it 
is cached. However, if it was not cached, no further action would be taken and the 
peripheral would complete the read access. 

3. If the line is cached, the L2 controller sends a snoop–read command to L1D. The 
snoop first checks to determine if the corresponding line is dirty. If not, the 
peripheral is allowed to complete the read access. 

4. If the dirty bit is set, the snoop–read causes the data to be forwarded directly to 
the DMA without writing it to L2 SRAM. This is the case in this example, since 
we assumed that the CORE has written to the output buffer.

CORE
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Figure 2-4 DMA Read of L2 SRAM

2.4.2.1 L2 SRAM Double Buffering Example
Having described how coherence is maintained for a DMA write and read of L2 SRAM, 
a typical double buffering example is now presented. Assume data is read in from one 
peripheral, processed, and written out to another peripheral, a structure of a typical 
signal processing application. The data flow is shown in Figure 2-5. The idea is that 
while the CORE is processing data from one pair of buffers (for example, InBuffA and 
OutBuffA), the peripherals are writing/reading data using the other pair of buffers 
(InBuffB and OutBuffB) such that the DMA data transfer may occur in parallel with 
CORE processing. 

Assuming that InBuffA has been filled by the peripheral, the procedure is: 
1. InBuffB is being filled while the CORE is processing data in InBuffA. The lines of 

InBuffA are allocated in L1D. Data is processed by the CORE and is written 
through the write buffer to OutBuff A (remember that L1D is read-allocate only). 

2. When the peripheral is filling InBuffA with new data, the second peripheral is 
reading from OutBuffA and the CORE is processing InBuffB. For InBuffA, the L2 
cache controller automatically takes care of forwarding the data to L1D through 
snoop–writes. For OutBuffA, since it is not cached in L1D, no snoops are 
necessary. 

3. Buffers are then switched again, and so on. 
It may be beneficial to make the buffers in L2 SRAM fit into a multiple of L1D cache 
lines, in order to get the highest return (in terms of cached data) for every cache miss. 

The pseudo-code in Example 2-3 shows how a double buffering scheme could be 
realized. 

CORE
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Figure 2-5 Double Buffering in L2 SRAM

Example 2-3 Example 2-3. L2 SRAM DMA Double Buffering Code 

for (I=0; i<(DATASIZE/BUFSIZE)-2; i+=2) 
{ 
/* ----------------------------------------------------*/
/* InBuffA -> OutBuffA Processing */ 
/* ----------------------------------------------------*/

<DMA_transfer(peripheral, InBuffB, BUFSIZE)> 
<DMA_transfer(OutBuffB, peripheral, BUFSIZE)>
process(InBuffA, OutBuffA, BUFSIZE); 

/* -----------------------------------------------------*/ 
/*InBuffB -> OutBuffB Processing */
/* -----------------------------------------------------*/

<DMA_transfer(peripheral, InBuffA, BUFSIZE)> 
<DMA_transfer(OutBuffA, peripheral, BUFSIZE)>
process(InBuffB, OutBuffB, BUFSIZE); 

}

End of Example 2-3

2.4.2.2 Maintaining Coherence Between External Memory and Cache
Now the same double buffering scenario is considered, but with the buffers located in 
external memory. Since the cache controller does not automatically maintain 
coherence in this case, it is the programmer’s responsibility to maintain coherence. 
Again, the CORE reads in data from a peripheral, processes it, and writes it out to 
another peripheral via DMA. But now the data is additionally passed through L2 cache. 

CORE
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As shown in Figure 2-6, assume that transfers already have occurred, that both InBuff 
and OutBuff are cached in L2 cache, and that InBuff is cached in L1D. Further assume 
that the CORE has completed processing InBuffB, filled OutBuffB, and is now about to 
start processing InBuffA. The transfers that bring in new data into InBuffB and commit 
the data in OutBuffB to the peripheral are also about to begin. 

To maintain coherence, all the lines in L1D and L2 cache that map to the external 
memory input buffer have to be invalidated before the DMA transfer starts. This way 
the CORE will reallocate these lines from external memory next time the input buffer 
is read. 

Similarly, before OutBuffB is transferred to the peripheral, the data first has to be 
written back from L1D and L2 caches to external memory. This is done by issuing a 
writeback operation. Again, this is necessary since the CORE writes data only to the 
cached copies of the memory locations of OutBuffB that still may reside in L1D and L2 
cache. 

Figure 2-6 Double Buffering in External Memory

CORE
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The chip support library (CSL) provides a set of routines that allow the required cache 
coherence operations to be initiated. The start address of the buffer in external memory 
and the number of bytes need to be specified: 

CACHE_invL2(InBuffB, BUFSIZE, CACHE_WAIT); 
CACHE_wbL2(OutBuffB, BUFSIZE, CACHE_WAIT); 

If CACHE_WAIT is used, the routine waits until the operation has completed. This is 
the recommended mode of operation. If CACHE_NOWAIT is used, the routine 
initiates the operation and immediately returns. This allows the CORE to continue 
execution of the program while the coherence operation is performed in the 
background. However, care must be taken that the CORE is not accessing addresses 
that the cache controller is operating on since this may cause undesired results. The 
routine CACHE_wait() can then be used before the DMA transfer is initiated, to ensure 
completion of the coherence operation. More information on these cache coherence 
operations is in Section 2.4.3. 

The pseudo-code in Example 2-4 shows exactly in which order the cache coherence 
calls and the DMA transfers should occur. 

Example 2-4 External Memory DMA Double Buffering Code 

for (i=0; i<(DATASIZE/BUFSIZE)-2; i+=2) 
{ 
/* -----------------------------------------------------*/
/* InBuffA -> OutBuffA Processing */ 
/* -----------------------------------------------------*/

CACHE_InvL2(InBuffB, BUFSIZE, CACHE_WAIT); 
<DMA_transfer(peripheral, InBuffB, BUFSIZE)>
CACHE_wbL2(OutBuffB, BUFSIZE, CACHE_WAIT); 
<DMA_transfer(OutBuffB, peripheral, BUFSIZE)>
process(InBuffA, OutBuffA, BUFSIZE); 

/* -----------------------------------------------------*/ 
/*InBuffB -> OutBuffB Processing */ 
/* -----------------------------------------------------*/

CACHE_InvL2(InBuffA, BUFSIZE, CACHE_WAIT); 
<DMA_transfer(peripheral, InBuffA, BUFSIZE)>
CACHE_wbL2(OutBuffA, BUFSIZE, CACHE_WAIT); 
<DMA_transfer(OutBuffA, peripheral, BUFSIZE)>
process(InBuffB, OutBuffB, BUFSIZE); 

}

End of Example 2-4

In addition to the coherence operations, it is important that all DMA buffers are 
aligned at an L2 cache line, and are an integral multiple of cache lines large. Further 
details on why this is required are given in Section 2.4.3. These requirements can be 
achieved as shown: 
#pragma DATA_ALIGN(InBuffA, CACHE_L2_LINESIZE) 
#pragma DATA_ALIGN(InBuffB, CACHE_L2_LINESIZE)
#pragma DATA_ALIGN(OutBuffA,CACHE_L2_LINESIZE) 
#pragma DATA_ALIGN(OutBuffB,CACHE_L2_LINESIZE)
unsigned char InBuffA [N*CACHE_L2_LINESIZE]; 
unsigned char OutBuffA[N*CACHE_L2_LINESIZE];
unsigned char InBuffB [N*CACHE_L2_LINESIZE]; 
unsigned char OutBuffB[N*CACHE_L2_LINESIZE];

Alternatively, the CSL macro CACHE_ROUND_TO_LINESIZE(cache, element 
count, element size) can be used that automatically rounds array sizes up to the next 
multiple of a cache line size. The first parameter is the cache type, which can be L1D, 
L1P, or L2. 
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The array definitions would then look as: 
unsigned char InBuffA [CACHE_ROUND_TO_LINESIZE(L2, N, sizeof(unsigned char)]; 
unsigned char OutBuffA[CACHE_ROUND_TO_LINESIZE(L2, N, sizeof(unsigned char)]; 
unsigned char InBuffB [CACHE_ROUND_TO_LINESIZE(L2, N, sizeof(unsigned char)]; 
unsigned char OutBuffB[CACHE_ROUND_TO_LINESIZE(L2, N, sizeof(unsigned char)];

2.4.3 Usage Guidelines for L2 Cache Coherence Operations

CAUTION—If the guidelines set out in the section are not followed, correct 
functioning of the application cannot be assured.

Table 2-1 shows an overview of available L2 cache coherence operations for C66x 
devices. Note that these operations always operate on L1P and L1D even if L2 cache is 
disabled. Table 2-1 has to be interpreted as follows: 

1. First, the cache controller operates on L1P and L1D 
2. then, the operation is performed on L2 cache 

Note—A line cached in L1P or L1P is not necessarily cached in L2. A line may 
be evicted from L2 without being evicted from L1P or L1D. 

It is important to note that although a start address and a byte count is specified, the 
cache controller operates always on whole lines. Therefore, for the purpose of 
maintaining coherence, arrays must be: 

• a multiple of L2 cache lines large 
• aligned at an L2 cache line boundary 

An L2 cache line is 128 bytes. The cache controller operates on all lines that are 
“touched” by the specified range of addresses. Note that the maximum byte count that 
can be specified is 4 × 65 535 bytes (on some C66x devices the maximum is 4 × 65 408 
bytes, see your device-specific data manual), that is, one L2 cache operation can operate 
on at most 256K bytes. If the external memory buffer to be operated on is larger, 
multiple cache operations have to be issued. 

Table 2-1 L2 Cache Coherence Operations

Scope 
Coherence 
Operation CSL Command 

Operation 
on L2 Cache 

Operation 
on L1D Cache 

Operation 
on L1P Cache 

Range Invalidate L2 CACHE_invL2 (start 
address, byte count, wait) 

All lines within range 
invalidated (any dirty 
data is discarded). 

All lines within range 
invalidated (any dirty data 
is discarded). 

All lines within range 
invalidated. 

Writeback L2 CACHE_wbL2 (start 
address, byte count, wait) 

Dirty lines within range 
written back. All lines 
kept valid. 

Dirty lines within range 
written back. All lines kept 
valid. 

None 

Writeback– Invalidate 
L2 

CACHE_wbInvL2 (start 
address, byte count, wait) 

Dirty lines within range 
written back. All lines 
within range 
invalidated. 

Dirty lines within range 
written back.All lines 
within range invalidated. 

All lines within range 
invalidated. 

All L2 Cache Writeback All L2 CACHE_wbAllL2 (wait) All dirty lines in L2 
written back. All lines 
kept valid. 

All lines within range 
invalidated All dirty lines in 
L1D written back. All lines 
kept validL1D 
snoop–invalidate. 

None 

Writeback– Invalidate 
All L2 

CACHE_wbInvAllL2 (wait) All dirty lines in L2 
written back. All lines in 
L2 invalidated. 

All dirty lines in L1D 
written back. All lines in 
L1D invalidated. 

All lines in L1P invalidated. 
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The following guidelines should be followed for using cache coherence operations. 
Again, user-issued L2 cache coherence operations are only required if the CORE and 
DMA (or other external entity) share a cacheable region of external memory, that is, if 
the CORE reads data written by the DMA and conversely. 

The safest rule would be to issue a Writeback–Invalidate All prior to any DMA transfer 
to or from external memory. However, the disadvantage of this is that possibly more 
cache lines are operated on than is required, causing a larger than necessary cycle 
overhead. A more targeted approach is more efficient. First, it is only required to 
operate on those cache lines in memory that actually contain the shared buffer. Second, 
it can be distinguished between the three scenarios shown in Table 2-2. 

In scenario 3, the DMA may modify data that was written by the CORE and that data 
is then read back by the CORE. This is the case if the CORE initializes the memory (for 
example, clears it to zero) before a peripheral writes to the buffer. Before the DMA 
starts, the data written by the CORE needs to be committed to external memory and 
the buffer has to be invalidated. 

For a more in-depth discussion of coherence requirements for the C66x DSP, see 
Appendix B. 

2.4.4 Usage Guidelines for L1 Cache Coherence Operations

CAUTION—If the guidelines set out in the section are not followed, correct 
functioning of the application cannot be assured.

Table 2-3 and Table 2-4 show an overview of available L1 cache coherence operations 
for C66x devices. 

Table 2-2 Scenarios and Required L2 Coherence Operations on External Memory 

Scenario Coherence Operation Required 

DMA/Other reads data written by the CORE Writeback L2 before DMA/Other starts reading 

DMA/Other writes data (code) that is to be read (executed) by the CORE Invalidate L2 before DMA/Other starts writing 

DMA/Other modifies data written by the CORE that data is to be read back by the CORE Writeback–Invalidate L2 before DMA/Other starts writing 

Table 2-3 L1D Cache Coherence Operations

Scope Coherence Operation CSL Command Operation on L1D Cache 

Range Invalidate L1D CACHE_invL1d (start address, byte count, 
wait) 

All lines within range invalidated (any dirty data is discarded). 

Writeback L1D CACHE_wbL1d (start address, byte count, 
wait) 

Dirty lines within range written back. All lines kept valid. 

Writeback–Invalidate L1D CACHE_wbInvL1d (start address, byte 
count, wait) 

Dirty lines within range written back. All lines within range 
invalidated. 

All L1D 
Cache 

Writeback All L1D CACHE_wbAllL1d (wait) All dirty lines in L1D written back. All lines kept valid. 

Writeback–Invalidate All L1D CACHE_wbInvAllL1d (wait) All dirty lines in L1D written back. All lines invalidated. 
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It is important to note that although a start address and a byte count is specified, the 
cache controller operates always on whole lines. Therefore, for the purpose of 
maintaining coherence, arrays must be: 

• a multiple of L1D cache lines large 
• aligned at an L1D cache line boundary 

An L1D cache line is 64 bytes. The cache controller operates on all lines that are 
“touched” by the specified range of addresses. Note that the maximum byte count that 
can be specified is 4 × 65 535. Table 2-5 shows scenarios with the cache coherence 
operations to be followed. 

For a more in-depth discussion of coherence requirements for the C66x DSP, see 
Appendix B on page B-1. 

Table 2-4 L1P Cache Coherence Operations 

Scope Coherence Operation CSL Command Operation on L1P Cache 

Range Invalidate L1P CACHE_invL1p All lines within range invalidated. 

(start address, byte count, wait) 

All L1P Cache Invalidate All L1P CACHE_wbInvAllL1p All lines in L1P invalidated. 

(wait) 

Table 2-5 Scenarios and Required L1 Coherence Operations 

Scenario Coherence Operation Required 

DMA/Other writes code to L2 SRAM that is to be executed by the CORE Invalidate L1P before CORE starts executing 

CORE modifies code in L2 SRAM or external memory that is to be executed by 
the CORE

Invalidate L1P and Writeback-Invalidate L1D before CORE starts 
executing 
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2.5 On-Chip Debug Support 
The C66x DSPs provide on-chip debug support for debugging cache coherence issues 
(on earlier versions of some C66x devices, full functionality may be only provided on 
simulator platforms). Specifically, the C66x memory system allows emulation direct 
access to individual caches and reports cache state information (valid, dirty, LRU bits). 
This capability is exposed through the Memory Window in Code Composer Studio 
IDE (version 3.2 or higher). 

For example, if you suspect a coherence problem with DMA writing new data to a 
buffer in external memory because the CORE appears to read incorrect data, you could 
follow these steps. First ensure that you eliminated any unpredictable interaction of the 
CORE accesses with coherence operations to exclude other causes than cache 
incoherence (for example, source code errors such as stray CORE writes or reads). 

Then ensure that the buffer is aligned on L2 cache line boundaries to eliminate false 
addresses. For this purpose, the Memory Window provides visual cache line boundary 
markers that help you to easily identify misalignments. Next verify the correct use of 
cache coherence operations: 

1. Halt the CORE execution after completion of the invalidate coherence operation 
but before the first DMA write access. 

2. Verify that no line in the buffer is dirty. To check this, enable the Memory 
Analysis function (through the property window). Any dirty lines will then be 
displayed in a bold font style. 

3. Continue CORE execution. 
4. Halt the CORE again before the first CORE read. 
5. Verify that the buffer is (still) invalidated and contains the expected new data. If 

there is a problem and data happens to be cached, you can use the cache bypass 
check boxes to inspect data contents in external memory. 

The diagrams in Appendix B on page B-1 can help you develop similar procedures for 
other coherence scenarios. 
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2.6 Self-Modifying Code and L1P Coherence 
No coherence is maintained between L1D and L1P. That means if the CORE wants to 
write or modify program code, the writes may only update L1D, L2 SRAM, or L2 cache, 
but not L1P. For the CORE to be able to execute the modified code, the addresses 
containing the instructions must not be cached in either L1D or L1P. 

Consider an example where an interrupt vector table is to be modified during runtime, 
the following procedure has to be followed:

1. Disable interrupts
2. Perform CORE writes (STW) to modify code
3. Perform coherence operations: 

a. Perform an L1D Writeback–Invalidate operation
b. Perform an L1P Invalidate operation
c. Wait for the last operation to complete. Waiting for completion is done by 

polling the word count (xxWC) registers. This automatically ensures that any 
L1D write misses have drained from the write buffer. This is because polling 
a memory-mapped register is treated as a read miss that always causes the 
write buffer to be completely drained

4. Reenable interrupts
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2.7 Changing Cache Configuration During Run-Time 
This section explains how cache configurations may be safely changed during 
run-time.

2.7.1 Disabling External Memory Caching 
Disabling external memory caching after it was enabled should not be generally 
necessary. However if it is, then the following considerations should be taken into 
account. If the MAR bit is changed from 1 to 0, external memory addresses already 
cached stay in the cache and accesses to those addresses still hit. The MAR bit is only 
consulted if the external memory address misses in L2. (This includes the case where 
L2 is all SRAM. Since there is no L2 cache, this can also be interpreted as an L2 miss). 

If all addresses in the respective external memory address space are made 
noncacheable, the addresses need to be written back and invalidated first (see 
Section 2.4.3 and Section 2.4.4 for a description of user-initiated cache control 
operations).

2.7.2 Changing Cache Sizes During Run-Time 
Changing the size of caches during run time may be beneficial for some applications. 
Consider the following example for a C66x device with 64K bytes of L2. An application 
has two tasks, A and B. Task A benefits from 64K bytes of code and data being allocated 
in L2 SRAM, while task B would benefit from having 32K bytes of L2 cache. Assume 
the memory configuration as shown in Figure 2-7. The second 32K byte segment 
contains the routine, some global variables for task A (that need to be preserved during 
task B executes), and some variables for task A that after task switching are no longer 
needed. 

The memory region where this routine and the variables reside can then be freed 
(assume no other sections are located in this 32K byte segment) by copying the code 
and the global variables to another memory region in external memory using a DMA. 
Then, the cache mode can be switched. The cache controller will automatically 
writeback–invalidate all cache lines before initializing with the new size. Note that 
changing of the L2 cache size will not cause any evictions from L1P or L1D cache. The 
size change operation can be performed by the function CACHE_setL2Size().
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Figure 2-7 Changing L2 Cache Size During Runtime

To switch back to task A configuration, L2 cache line frames located in the 32K byte 
segment that is to be switched to SRAM have to be written back to external memory 
and invalidated. Since it is not known which external memory addresses are cached in 
these line frames, all of L2 is writeback–invalidated. This is automatically done by the 
cache controller when the cache size is switched. Code and global variables can then be 
copied back to their original location. 

The exact procedures are given in Table 2-6. The same procedure applies to L1P and 
L1D caches. 

Example 2-5 shows a C code example of how to change the L2 cache size. The 
corresponding linker command file is shown in Example 2-6. 

Table 2-6 Procedure for Changing Cache Sizes for L1P, L1D, and L2 

Switch To Perform

More Cache (Less SRAM) 1. DMA or copy needed code/data out of SRAM addresses to be converted to cache. 
2. Wait for completion of step 1.
3. Increase cache size usingCACHE_setL1pSize(), CACHE_setL1dSize(),or CACHE_setL2Size() 

Less Cache (More SRAM) 1. Decrease Cache size usingCACHE_setL1pSize(),CACHE_setL1dSize(),or CACHE_setL2Size()
2. DMA or copy back any code/data needed. 
3. Wait for completion of step 2. 
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Example 2-5 Changing L2 Cache Size Code 

/* --------------------------------------------------------------------*/ 
/* Buffer for Task A code and data in external memory */ 
/* --------------------------------------------------------------------*/ 
#pragma DATA_SECTION(buffer_A, ”.external”) 
unsigned char buffer_A[1024]; 
/* --------------------------------------------------------------------*/ 
/* Main */ 
/* --------------------------------------------------------------------*/ 
void main(void) 
{ 

int i; 
Uint32 id = DAT_XFRID_WAITNONE; 
/* -------------------------------------------------------------*/ 
/* Set L2 mode and open DAT*/ 
/* -------------------------------------------------------------*/

CACHE_enableCaching(CACHE_CE00); 
CACHE_setL2Size(CACHE_0KCACHE);
DAT_open(DAT_CHAANY, DAT_PRI_HIGH,0); 
/* -------------------------------------------------------------*/ 
/* Initialize state_A */ 
/* -------------------------------------------------------------*/ 
for (i=0; i<N_STATE_A; i++) 
{

state_A[i] = 1; 
} 
/* -------------------------------------------------------------*/ 
/* Task A -1*/ 
/* -------------------------------------------------------------*/  
process_A(state_A, N_STATE_A);
process_AB(state_A, local_var_A, N_STATE_A); 
/* -------------------------------------------------------------*/ 
/* Switch to configuration for Task B with 32K cache: */ 
/* 1) DMA needed code/data out of L2 SRAM addresses to be */ 
/* converted to cache. */ 
/* 2) Wait for completion of 1) */ 
/* 3) Switch mode */ 
/* Take address and word count information from map file */ 
/* -------------------------------------------------------------*/ 
id = DAT_copy((void*)0x8000, buffer_A, 0x0120);
DAT_wait(id); 
CACHE_setL2Size(CACHE_32KCACHE); 
/* -------------------------------------------------------------*/ 
/* Task B */ 
/* Cache into L2, destroys code/data in the L2 segment that */ 
/*previously was SRAM. */ 
/* -------------------------------------------------------------*/
process_AB(ext_data_B, ext_data_B, N_DATA_B); 
/* -------------------------------------------------------------*/ 
/* Switch back to configuration for Task A with 0K cache */ 
/* 1) Switch mode */ 
/* 2)DMA back any code/data needed */ 
/* 3) Wait for completion of 2) */ 
/* Take address and word count information from map file */ 
/* -------------------------------------------------------------*/  
CACHE_setL2Size(CACHE_0KCACHE);
id = DAT_copy(buffer_A, (void*)0x8000, 0x0120); 
DAT_wait(id); 
/* -------------------------------------------------------------*/ 
/* Task A -2 */ 
/* -------------------------------------------------------------*/
process_A(state_A, N_STATE_A); 
process_AB(state_A,
local_var_A, N_STATE_A); 
/* -------------------------------------------------------------*/ 
/* Exit*/ 
/* -------------------------------------------------------------*/ 
DAT_close(); 

} 
void process_A(unsigned char *x, int nx) 
{ 
int i; 
for (i=0; i<nx; i++) 

x[i] = x[i] * 2; 
} 
void process_AB(unsigned char *input, unsigned char *output, int size) 
{ 

int i; 
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for (i=0; i<size; i++)
output[i] = input[i] + 0x1; 

}

End of Example 2-5

Example 2-6 Linker Command File for Changing L2 Cache Size Code 

MEMORY 
{ 

L2_1: o = 00800000h l = 00008000h /*1st 32K segment: always SRAM */ 
L2_2: o = 00808000h l = 00008000h /*2nd 32K segment:Task A-SRAM,Task B-Cache */ 
CE0: o = 80000000h l = 01000000h /*external memory */ 

} 
SECTIONS 
{ 

.cinit > L2_1 

.text > L2_1 

.stack > L2_1 

.bss > L2_1 

.const > L2_1 

.data > L2_1

.far > L2_1 

.switch > L2_1 

.sysmem > L2_1 

.tables > L2_1 

.cio > L2_1 

.sram_state_A > L2_2 

.sram_process_A > L2_2 

.sram_local_var_A > L2_2 

.external > CE0 
}

End of Example 2-6
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Chapter 3

Optimizing for Cache Performance 

This chapter describes cache optimization techniques from a programmer’s point of 
view. The ideal scenario would be to have an application execute in a fast and large flat 
memory that is clocked at CORE speed. However, this scenario becomes more and 
more unrealistic the higher the CORE clock rate becomes. Introducing a 
cached-memory architecture inevitably causes some cycle count overhead compared to 
the flat memory model. However, since a cached-memory model enables the CORE to 
be clocked at a higher rate, the application generally executes faster (execution time = 
cycle count/clock rate). Still, the goal is to reduce the cache cycle overhead as much as 
possible. In some cases performance can be further improved by implementing 
algorithms with a cached architecture in mind. 

 3.1 "Differences Between C66x and C64x DSP " on page 3-2
 3.2 "Cache Performance Characteristics " on page 3-3
 3.3 "Application-Level Optimizations " on page 3-10
 3.4 "Procedural-Level Optimizations " on page 3-12
 3.5 "On-Chip Debug Support " on page 3-28
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3.1 Differences Between C66x and C64x DSP 
Readers who are familiar with the C64x cache architecture may want to take note of 
features that are new or have changed for C66x devices. The features described in this 
chapter are listed below. For a complete list of new and changed features, see Appendix 
A on page A-1. 

The width of the write buffer on C66x devices is increased to 128 bits; on C64x devices, 
the width is 64 bits. This results in fewer write buffer full stalls for write misses to 
sequential addresses that compensates for the lower draining rate of CORE/2 (CORE/1 
on C64x devices). 

The C66x devices add a tag update buffer that queues clean-to-dirty transitions to L2’s 
copy of the L1D tag RAM (this, so called, shadow tag RAM is required for the snoop 
cache coherence protocol). Occasionally, this may result in buffer full stalls, if a stream 
of write hits makes previously clean cache lines dirty at a high rate. 

The C66x devices add a high-bandwidth internal DMA (IDMA) between L1 and L2 
that can be used to efficiently page data in and out of L1 SRAM. See the TMS320C66x 
CorePac User Guide in ‘‘Related Documentation from Texas Instruments’’ on page ø-x 
for IDMA details. 

Access and bank conflicts between different requestors are resolved according to the 
settings of the C66x bandwidth management. See the TMS320C66x CorePac User 
Guide in ‘‘Related Documentation from Texas Instruments’’ on page ø-x for 
bandwidth management details.

The C66x cached controllers support cache freeze modes that prevent allocation of new 
lines. This can be particularly useful for L1P cache to prevent eviction of often reused 
code. See Section 3.4.3.1. 

Due to higher stall counts per miss on C66x devices, eliminating misses and exploiting 
miss pipelining has become even more important. This is made easier on the C66x 
devices through the support of L1 SRAM (see Section 3.2.3), larger L1 cache capacity, 
low-overhead snooping, and noninclusivity of L2 cache. 

As would be expected, the actual cache optimization methods are the same for C64x 
and C66x devices.

Exploiting L1D miss pipelining is critical for performance. On C64x devices, data miss 
pipelining reduces the stall count by 4; on C66x devices, data miss pipelining reduces 
the stall count by up to 7.5 (L2 SRAM with 0 wait states and 2 × 128-bit banking) or 9 
(L2 SRAM with 1 wait states and 4 × 128-bit banking).
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3.2 Cache Performance Characteristics 
The performance of cache mostly relies on the reuse of cache lines. The access to a line 
in memory that is not yet in cache will incur CORE stall cycles. As long as the line is 
kept in cache, subsequent accesses to that line will not cause any stalls. Thus, the more 
often the line is reused before it is evicted from cache, the less impact the stall cycles will 
have. Therefore, one important goal of optimizing an application for cache 
performance is to maximize line reuse. This can be achieved through an appropriate 
memory layout of code and data, and altering the memory access order of the CORE. 
In order to perform these optimizations, you should be familiar with the cache memory 
architecture, in particular the characteristics of the cache memories such as line size, 
associativity, capacity, replacement scheme, read/write allocation, miss pipelining, and 
write buffer. These characteristics were described in Chapter 1. You also have to 
understand under what conditions CORE stalls occur and the cycle penalty associated 
with these stalls. 

For this purpose, the next two sections present an overview of the C66x cache 
architecture detailing all important cache characteristics, cache stall conditions and 
associated stall cycles. These sections provide a useful reference for optimizing code for 
cache performance. 

3.2.1 Stall Conditions 
The most common stall conditions on C66x devices are: 

• Cross Path Stall: When an instruction attempts to read a register via a cross path 
that was updated in the previous cycle, one stall cycle is introduced. The compiler 
automatically tries to avoid these stalls whenever possible. 

• L1D Read and Write Hits: CORE accesses that hit in L1D SRAM or cache do not 
normally cause stalls, unless there is an access conflict with another requestor. 
Access priorities are governed by the bandwidth management settings. See the 
TMS320C66x CorePac User Guide in ‘‘Related Documentation from Texas 
Instruments’’ on page ø-x for bandwidth management details. L1D requestors 
include CORE data access, IDMA or EDMA, snoops and cache coherence 
operations. 

• L1D Cache Write Hits: CORE writes that hit in L1D cache do not normally cause 
stalls. However, a stream of write hits that make previously clean cache lines dirty 
at a high rate can cause stall cycles. The cause is a tag update buffer that queues 
clean-to-dirty transitions to L2’s copy of the L1D tag RAM (this, so called, 
shadow tag RAM is required for the snoop cache coherence protocol). 

• L1D Bank Conflict: L1D memory is organized in 8 × 32-bit banks. Parallel 
accesses that both hit in L1D and are to the same bank cause 1 cycle stall. See the 
TMS320C66x CorePac User Guide in ‘‘Related Documentation from Texas 
Instruments’’ on page ø-x for special case exceptions.
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• L1D Read Miss: Stall cycles are incurred for line allocations from L2 SRAM, L2 
cache, or external memory. L1D read miss stalls can be lengthened by: 
– L2 Cache Read Miss: The data has to be fetched from external memory first. 

The number of stall cycles depends on the particular device and the type of 
external memory. 

– L2 Access/Bank Conflict: L2 can service only one request at a time. Access 
priorities are governed by the bandwidth management settings. See the 
TMS320C66x CorePac User Guide in ‘‘Related Documentation from Texas 
Instruments’’ on page ø-x for bandwidth management details. L2 requestors 
include L1P (line fills), L1D (line fills, write buffer, tag update buffer, victim 
buffer), IDMA or EDMA, and cache coherence operations. 

– L1D Write Buffer Flush: If the write buffer contains data and a read miss 
occurs, the write buffer is first fully drained before the L1D read miss is 
serviced. This is required to maintain proper ordering of a write followed by 
a read. Write buffer draining can be lengthened by L2 access/bank conflicts 
and L2 cache write misses (the write buffer data misses L2 cache). 

– L1D Victim Buffer Writeback: If the victim buffer contains data and a read 
miss occurs, the contents are first written back to L2 before the L1D read miss 
is serviced. This is required to maintain proper ordering of a write followed 
by a read. The writeback can be lengthened by L2 access/bank conflicts. 

Consecutive and parallel misses will be overlapped, provided none of the above stall 
lengthening condition occurs and the two parallel/consecutive misses are not to the 
same set. 

• L1D Write Buffer Full: If an L1D write miss occurs and the write buffer is full, 
stalls occur until one entry is available. Write buffer draining can be lengthened 
by: 
– L2 Cache Read Miss: The data has to be fetched from external memory first. 

The number of stall cycles depends on the particular device and the type of 
external memory. 

– L2 Access/Bank Conflict: L2 can service only one request at a time. Access 
priorities are governed by the bandwidth management settings. See the 
TMS320C66x CorePac User Guide in ‘‘Related Documentation from Texas 
Instruments’’ on page ø-x for bandwidth management details. L2 requestors 
include L1P (line fills), L1D (line fills, write buffer, tag update buffer, victim 
buffer), IDMA or EDMA, and cache coherence operations.

– L1P Read Hits: CORE accesses that hit in L1P SRAM or cache do not 
normally cause stalls, unless there is an access conflict with another requestor 
or the access is to L1P ROM with wait-states. Access priorities are governed 
by the bandwidth management settings. See the TMS320C66x CorePac User 
Guide in ‘‘Related Documentation from Texas Instruments’’ on page ø-x for 
bandwidth management details. L1P requestors include CORE program 
access, IDMA or EDMA, and cache coherence operations. 

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


3.2 Cache Performance Characteristics 

SPRUGY8—November 2010 TMS320C66x DSP Cache User Guide 3-5
Submit Documentation Feedback 

Chapter 3—Optimizing for Cache Performance www.ti.com

• L1P Read Miss: Stall cycles are incurred for line allocations from L2 SRAM, L2 
cache, or external memory. L1P read miss stalls can be lengthened by: 
– L2 Cache Read Miss: The data has to be fetched from external memory first. 

The number of stall cycles depends on the particular device and the type of 
external memory. 

– L2 Access/Bank Conflict: L2 can service only one request at a time. Access 
priorities are governed by the bandwidth management settings. See the 
TMS320C66x CorePac User Guide in ‘‘Related Documentation from Texas 
Instruments’’ on page ø-x for bandwidth management details. L2 requestors 
include L1P (line fills), L1D (line fills, write buffer, tag update buffer, victim 
buffer), IDMA or EDMA, and cache coherence operations. 

Consecutive misses will be overlapped, provided none of the above stall lengthening 
condition occurs. 

Figure 3-1 shows the C66x memory architecture detailing all important characteristics, 
stall conditions and associated stall cycles. 

Figure 3-1 C66x Cache Memory Architecture
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Table 3-1 and Table 3-2 list the actual stall cycles for two different device 
configurations. One configuration is for devices that have an L2 with 0 wait-states and 
2 × 128-bit banks. The other configuration is for devices that have an L2 with 1 
wait-state and 4 × 128-bit banks. See your device-specific data manual to determine the 
L2 type for a particular device. 

Note on the notation of stall cycles: L1D cache stall cycles for C66x devices are 
sometimes specified as averages due to a varying L2 clock alignment relative to the 
memory access. Because L2 is clocked at CORE/2, a memory access occurring 
out-of-phase with the L2 clock reduces the number of stall cycles by 

1. For instance, a read miss may cost either 10 or 11 stall cycles depending on clock 
phase alignment. This is then noted as 10.5 stall cycles. 

3.2.2 C66x Pipelining of L1D Read Misses
The C66x cache architecture pipelines L1D read misses and allows parallel and 
consecutive read miss stall cycles to be overlapped. See Table 3-2 for the stall cycle 
formulas. 

Table 3-1 L1P Miss Pipelining Performance (Average Number of Stalls per Execute Packet) 

Instructions per 
Execute Packet 

L2 Type 

0 Wait-State, 2 × 128-bit Banks 1 Wait-State, 4 × 128-bit Banks 

L2 SRAM L2 Cache L2 SRAM L2 Cache

1 0.000 0.000 0.000 0.000

2 0.001 0.497 0.167 0.499

3 0.501 1.247 0.751 1.249

4 0.997 1.997 1.329 1.999

5 1.499 2.747 1.915 2.749

6 2.001 3.497 2.501 3.499 

7 2.497 4.247 3.079 4.249 

8 2.999 4.997 3.665 4.999

Table 3-2 L1D Performance Parameters (Number of Stalls)

Parameter 

L2 Type 

0 Wait-State, 2 × 128-bit Banks 1 Wait-State, 4 × 128-bit Banks 

L2 SRAM L2 Cache L2 SRAM L2 Cache 

Single Read Miss 10.5 12.5 12.5 14.5 

2 Parallel Read Misses
(pipelined) 

10.5 + 4 12.5 + 8 12.5 + 4 14.5 + 8 

M Consecutive Read Misses
(pipelined) 

10.5 + 3 × (M -1) 12.5 + 7 × (M -1) 12.5 + 3 × (M -1) 14.5 + 7 × (M -1) 

M Consecutive Parallel Read Misses
(pipelined) 

10.5 + 4 × (M/2 -1) +
3 × M/2 

12.5 + 8 × (M/2 -1) 
+ 7 × M/2 

12.5 + 4 × (M -1) 14.5 + 8 × (M/2 -1) +
7 × M/2 

Victim Buffer Flush on Read Miss disrupts miss 
pipelining plus 

maximum 11 stalls 

disrupts miss 
pipelining plus 

maximum 11 stalls 

disrupts miss 
pipelining plus 

maximum 10 stalls 

disrupts miss 
pipelining plus

maximum 10 stalls 

Write Buffer Drain Rate 2 cycles/entry 6 cycles/entry 2 cycles/entry 6 cycles/entry 
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This mechanism is further described in the TMS320C66x CorePac User Guide in 
‘‘Related Documentation from Texas Instruments’’ on page ø-x. Miss pipelining will be 
disrupted, if the L1D stall is lengthened by any of the conditions listed in Section 3.2.1. 
Note that when accessing memory sequentially, misses are not overlapped since on a 
miss one full cache line is allocated and subsequent accesses will hit. Therefore, to 
achieve full overlapping of stalls, you have to access two new cache lines every cycle, 
that is, step through memory in strides that are equal to the size of two cache lines. This 
is realized in the assembly routine “touch”, that can be used to allocate length bytes of 
a memory buffer *array into L1D. The routine loads (or touches) one byte each of two 
consecutive cache lines in parallel. To avoid bank conflicts, the two parallel loads are 
offset by one word. The access pattern is illustrated in Figure 3-2. The assembly routine 
is shown in Example 3-1. 

If a line does not reside in L1D, the load will miss and the line allocated in L1D. If the 
line already was allocated, there is no effect. The data read by the load is not used. The 
routine takes (0.5 × M + 16) cycles plus any stall cycles for “Consecutive Parallel Read 
Misses” to allocate M lines. 

Example: Consider a device with an L2 type with 0 wait-states and 2 × 128-bit banking. 
To allocate a 32K-byte array using the touch loop, it takes (0.5 × M + 16) + (10.5 + 4 × 
(M/2 -1) + 3 × M/2). With M = 32768 bytes/64-byte cache line size = 512, this is 2070.5 
cycles. On the other hand, if each line had been allocated individually, this would have 
taken 512 × 10.5 = 5376 cycles, or 2.6× the number of cycles. 

Figure 3-2 Memory Access Pattern of Touch Loop

Example 3-1 Touch Assembly Routine 

* ========================================================================= *
* TEXAS INSTRUMENTS, INC. *
* NAME *
* touch *
* PLATFORM *
* C64x *
* USAGE *
* This routine is C callable, and has the following C prototype: *
* void touch *
* ( *
* const void *array, /* Pointer to array to touch */ *
* int length /* Length array in bytes */ *
* ); *
* This routine returns no value and discards the loaded data. *
* DESCRIPTION *
* The touch() routine brings an array into the cache by reading *
* elements spaced one cache line apart in a tight loop. This *
* causes the array to be read into the cache, despite the fact *
* that the data being read is discarded. If the data is already *
* present in the cache, the code has no visible effect. *
* When touching the array, the pointer is first aligned to a cache- *
* line boundary, and the size of the array is rounded up to the *
* next multiple of two cache lines. The array is touched with two *
* parallel accesses that are spaced one cache-line and one bank *
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* apart. A multiple of two cache lines is always touched. *
* MEMORY NOTE *
* The code is ENDIAN NEUTRAL. *
* No bank conflicts occur in this code. *
* CODESIZE *
* 84 bytes *
* CYCLES *
* cycles = MIN(22, 16 + ((length + 124) / 128)) *
* For length = 1280, cycles = 27. *
* The cycle count includes 6 cycles of function-call overhead, but *
* does NOT include any cycles due to cache misses. *
.global _touch
.sect ".text:_touch"
_touch
B .S2 loop ; Pipe up the loop
|| MVK .S1 128, A2 ; Step by two cache lines
|| ADDAW .D2 B4, 31, B4 ; Round up # of iters
B .S2 loop ; Pipe up the loop
|| CLR .S1 A4, 0, 6, A4 ; Align to cache line
|| MV .L2X A4, B0 ; Twin the pointer
B .S1 loop ; Pipe up the loop
|| CLR .S2 B0, 0, 6, B0 ; Align to cache line
|| MV .L2X A2, B2 ; Twin the stepping constant
B .S2 loop ; Pipe up the loop
|| SHR .S1X B4, 7, A1 ; Divide by 128 bytes
|| ADDAW .D2 B0, 17, B0 ; Offset by one line + one word
[A1] BDEC .S1 loop, A1 ; Step by 128s through array
|| [A1] LDBU .D1T1 *A4++[A2], A3 ; Load from [128*i + 0]
|| [A1] LDBU .D2T2 *B0++[B2], B4 ; Load from [128*i + 68]
|| SUB .L1 A1, 7, A0
loop:
[A0] BDEC .S1 loop, A0 ; Step by 128s through array
|| [A1] LDBU .D1T1 *A4++[A2], A3 ; Load from [128*i + 0]
|| [A1] LDBU .D2T2 *B0++[B2], B4 ; Load from [128*i + 68]
|| [A1] SUB .L1 A1, 1, A1
BNOP .S2 B3, 5 ; Return
* ========================================================================= *
* End of file: touch.asm *
* ------------------------------------------------------------------------- *
* Copyright © 2001 Texas Instruments, Incorporated. *
* All Rights Reserved. *
* ========================================================================= *

End of Example 3-1

3.2.3 Optimization Techniques Overview 
The focus of this user's guide is on efficient use of the L1 caches. Since L1 characteristics 
(capacity, associativity, line size) are more restrictive than those of L2 cache, optimizing 
for L1 almost certainly implies that L2 cache is also used efficiently. Typically, there is 
not much benefit in optimizing only for L2 cache. It is recommended to use L2 cache 
for the general-purpose parts of the application with largely unpredictable memory 
accesses (general control flow, etc.). L1 and L2 SRAM should be used for time-critical 
signal processing algorithms. Data can be directly streamed into L1 SRAM using 
EDMA or IDMA, or into L2 SRAM using EDMA. Memory accesses can then be 
optimized for L1 cache. 

There are two important ways to reduce the cache overhead: 
1. Reduce the number of cache misses (in L1P, L1D, and L2 cache): This can be 

achieved by: 
a. Maximizing cache line reuse: 

i. Access all memory locations within a cached line. Since the data was 
allocated in cache causing expensive stall cycles, it should be used. 

ii. The same memory locations within a cached line should be reused as often 
as possible. Either the same data can be reread or new data written to 
already cached locations so that subsequent reads will hit. 

b. Avoiding eviction of a line as long as it is being reused: 
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i. Evictions can be prevented, if data is allocated in memory such that the 
number of cache ways is not exceeded when it is accessed. (The number 
of ways is exceeded if more lines map to the same set than the number of 
cache ways available.) 

ii. If this is not possible, evictions may be delayed by separating accesses to 
the lines that cause the eviction further apart in time. 

iii. Also, one may have lines evicted in a controlled manner relying on the 
LRU replacement scheme such that only lines that are no longer needed 
are evicted. 

2. Reduce the number of stall cycles per miss: This can be achieved by exploiting 
miss pipelining. 

Methods for reducing the number of cache misses and number of stalls per miss are 
described in this chapter. 

A good strategy for optimizing cache performance is to proceed in a top-down fashion, 
starting on the application level, moving to the procedural level, and if necessary 
considering optimizations on the algorithmic level. The optimization methods for the 
application level tend to be straightforward to implement and typically have a high 
impact on overall performance improvement. If necessary, fine tuning can then be 
performed using lower level optimization methods. Hence, the structure of this chapter 
reflects the order that one may want to address the optimizations. 
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3.3 Application-Level Optimizations 
On an application and system level, the following considerations are important for 
good cache performance. 

3.3.1 Streaming to External Memory or L1/L2 SRAM 
For streaming data from/to a peripheral or coprocessor using DMA, it is recommended 
to allocate the streaming buffers in L1 or L2 SRAM. This has several advantages over 
allocating the buffers in external memory: 

1. L1 and L2 SRAM are closer to the CORE; therefore, latency is reduced. If the 
buffers were located in external memory, data would be first written from the 
peripheral to external memory by the DMA, cached by L2, then cached by L1D, 
before reaching the CORE 

2. Cache coherence is automatically maintained by the cache controller for data 
accesses to L2 SRAM (and is not applicable at all to L1 SRAM). If the buffers are 
located in external memory, you have to take care to maintain coherence by 
manually issuing L2 cache coherence operations. In some cases, buffers may have 
to be allocated in external memory due to memory capacity restrictions. 
Section 2.4 describes in detail how to manage cache coherence. 

3. No additional latency due to coherence operations. The latency can be thought of 
as adding to the time required for processing the buffered data. In a typical double 
buffering scheme, this has to be taken into account when choosing the size of the 
buffers. 

For rapid-prototyping applications, where implementing DMA double-buffering 
schemes are considered too time consuming and would like to be avoided, allocating 
all code and data in external memory and using L2 as All Cache may be an appropriate 
way. Following the simple rules for using L2 cache coherence operations described in 
Section 2.4, this is a fast way to get an application up and running without the need to 
perform DSP-style optimizations. Once the correct functioning of the application has 
been verified, bottlenecks in the memory management and critical algorithms can be 
identified and optimized. 

3.3.2 Using L1 SRAM 
C66x devices provide L1D and L1P SRAM that may be used for code and data that is 
sensitive to cache penalties, for instance: 

• Performance critical code or data 
• Code or data that is shared by many algorithms 
• Code or data that is accessed frequently 
• Functions with large code size or large data structures 
• Data structures with irregular accesses that would make cache less efficient 
• Streaming buffers (for example, on devices where L2 is small and better 

configured as cache) 

Since the size of L1 SRAM is limited, the decision of what code and data to allocate in 
L1 SRAM needs to be made carefully. Allocating large amount of L1 SRAM may require 
reducing L1 cache size that could mean lower performance for code and data in L2 and 
external memory. 
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L1 SRAM size can be kept smaller if code and data can be copied to L1 SRAM as 
required, making use of code and/or data overlays. IDMA can be used to very-fast page 
in code or data from L2 SRAM. If code/data is to be paged in from external memory, 
EDMA must be used. However, very-frequent paging may add more overhead than 
caching. So a trade-off must be found between the SRAM and cache size. 

3.3.3 Signal Processing versus General-Purpose Processing Code 
It may be beneficial to distinguish between DSP-style processing and general-purpose 
processing in an application. 

Since control and data flow of DSP processing are usually well understood, the code 
better lends itself to a more careful optimization than general-purpose code. 
General-purpose processing is typically dominated by straight-line execution, control 
flow, and conditional branching. This code typically does not exhibit much parallelism 
and execution depends on many conditions and tends to be largely unpredictable. That 
is, data memory accesses are mostly random, and access to program memory is linear 
with many branches. This makes optimization much more difficult. Therefore, in the 
case when L2 SRAM is insufficient to hold code and data of the entire application, it is 
recommended to allocate general-purpose code and associated data in external 
memory and allow L2 cache to handle memory accesses. This makes more L2 SRAM 
memory available for performance-critical signal processing code. Due to the 
unpredictable nature of general-purpose code, L2 cache should be made as large as 
possible. The cache that can be configured between 32K bytes and 256K bytes. 

DSP code and data may benefit from being allocated in L2 SRAM or L1 SRAM. 
Allocation in L2 SRAM reduces cache overhead and gives you more control over 
memory accesses since only level 1 cache is involved whose behavior is easier to 
analyze. This allows you to make some modifications to algorithms in the way the 
CORE is accessing data, and/or to alter data structures to allow for more cache-friendly 
memory access patterns. 

Allocation in L1 SRAM eliminates any caching altogether and requires no memory 
optimization except for bank conflicts. 

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


3.4 Procedural-Level Optimizations 

3-12 TMS320C66x DSP Cache User Guide SPRUGY8—November 2010
Submit Documentation Feedback 

Chapter 3—Optimizing for Cache Performance www.ti.com

3.4 Procedural-Level Optimizations 
Procedural-level optimizations are concerned with changing the way data and 
functions are allocated in memory, and the way functions are called. No changes are 
made to individual algorithms, that is algorithms (for example, FIR filters, etc.) that 
were implemented for a flat memory model are used as is. Only the data structures that 
are accessed by the algorithm are optimized to make more efficient use of cache. In 
most cases these type of optimizations are sufficient, except for some algorithms such 
as the FFT whose structure has to be modified in order to take advantage of cache. Such 
a cache-optimized FFT is provided in the C66x DSP Library (DSPLIB). 

The goal is to reduce the number of cache misses and/or the stall cycles associated with 
a miss. The first can be achieved by reducing the amount of memory that is being 
cached (see Section 3.4.1) and reusing already cached lines. Reuse can be achieved by 
avoiding evictions and writing to preallocated lines. Stall cycles of a miss can be reduced 
by exploiting miss pipelining. 

We can distinguish between three different read miss scenarios: 
1. All data/code of the working set fits into cache (no capacity misses by definition), 

but conflict misses occur. The conflict misses can be eliminated by allocating the 
code or data contiguously in memory. This is described in Section 3.4.3 and 
Section 3.4.4. 

2. The data set is larger than cache, contiguously allocated, and not reused. Conflict 
misses occur, but no capacity misses (because data is not reused). The conflict 
misses can be eliminated, for instance by interleaving cache sets. This is discussed 
in Section 3.4.5. 

3. The data set is larger than cache, capacity misses (because same data is reused) 
and conflict misses occur. Conflict and capacity misses can be eliminated by 
splitting up data sets and processing one set at a time. This method is referred to 
as blocking or tiling and is discussed in Section 3.4.6. 

Avoiding stalls that are caused directly or indirectly by the write buffer are described in 
Section 3.4.7. 

Processing chains, in which the results of one algorithm form the input of the next 
algorithm, provide an opportunity to eliminate all cache misses except for the 
compulsory misses of the first algorithm in the chain. This is explained in Section 3.4.2. 
A more comprehensive example that demonstrates this important concept is provided 
in Section 3.4.2. 

3.4.1 Reduce Memory Bandwidth Requirements by Choosing Appropriate Data Type 
It should be ensured that memory-efficient data types are chosen. For instance, if the 
data is maximum 16-bits wide, it should be declared as short rather than integer. This 
halves the memory requirements for the array, which also reduces the number of 
compulsory misses by a factor of 2. This typically only requires a minor change in the 
algorithm to accept the new data type. Additionally, the algorithm is likely to execute 
much faster, since smaller data containers may allow SIMD optimizations to be 
performed by the compiler. Especially in the cases where an application is ported from 
another platform to a DSP system, inefficient data types may exist. 
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3.4.2 Processing Chains 
Often the results of one algorithm form the input of the next algorithm. If the 
algorithms operate out-of-place (that is, the results are placed in an array different from 
the input), the input array gets allocated in L1D, but the output is passed through the 
write buffer to next lower memory level (L2 or external memory). The next algorithm 
then again suffers miss penalties when reading the data. On the other hand, if the 
output of the first algorithm were written to L1D, then the data could be directly reused 
from cache without incurring cache stalls. There are many possible configurations for 
processing chains. The concept is shown in Figure 3-3. 

Figure 3-3 Processing Chain with Two Functions

Consider Example 3-2, a 4-channel filter system consisting of a FIR filter followed by a 
dot product. The FIR filter in the first iteration allocates in[ ] and h[ ] in L1D and writes 
out[ ] to L2 SRAM. Subsequently, out[ ] and w[ ] are allocated in L1D by the dotprod 
routine. For the next iteration, the FIR routine writes its results to L1D, rather L2 
SRAM, and the function dotprod does not incur any read misses. 

In total, four arrays, in[ ], h[ ], out[ ], and w[ ] are allocated in L1D. If it is assumed that 
the total data working set required for one iteration fits into L1D, conflict misses can 
still occur if more than two of the arrays map to the same sets (since L1D is 2-way 
set-associative). As described in Section 3.4.4, these arrays should be allocated 
contiguously in memory to avoid conflict misses. What exact memory allocation is 
chosen depends on the size of the arrays and the capacity of L1D. 

Example 3-2 Channel FIR/Dot Product Processing Chain Routine 

#define NX NR+NH-1
short in [4][NX]; /* input samples */
short out [NR]; /* FIR output */
short w [NR]; /* weights for dot product */
short h [4][NH]; /* FIR filter coefficients */
short out2 ; /* final output */
for (i=0; i<4; i++)
{
fir(in[i], h[i], out, NR, NH);
out2 = dotprod(out, w, NR);
}

End of Example 3-2

The number of input samples, NX, shall be chosen such that the array occupies about 
one–forth of L1D. We assume that NH filter taps occupy two cache lines. The number 
of output samples produced is then NR = NX – NH + 1. Figure 3-4 shows how the 
individual arrays map to the L1D cache sets. We can neglect the coefficient array since 
it occupies only 4 × NH = 8 cache lines. It can be seen that within one iteration no more 
that two arrays map the same sets, that is, no conflict misses will occur. Capacity misses 
will also not occur since the total size of the data set accessed within one iteration fits 
into L1D. 

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


3.4 Procedural-Level Optimizations 

3-14 TMS320C66x DSP Cache User Guide SPRUGY8—November 2010
Submit Documentation Feedback 

Chapter 3—Optimizing for Cache Performance www.ti.com

Figure 3-4 Memory Layout for Channel FIR/Dot Product Processing Chain Routine 

3.4.3 Avoiding L1P Conflict Misses
In this read miss scenario, all code of the working set fits into cache (no capacity misses 
by definition), but conflict misses occur. This section first explains how L1P conflict 
misses are caused, then describes how the conflict misses can be eliminated by 
allocating the code contiguously in memory. 

The L1P set number is determined by the memory address modulo the capacity divided 
by the line size. Memory addresses that map to the same set and are not contained in 
the same cache line will evict one another. 

Compiler and linker do not give considerations to cache conflicts, and an inappropriate 
memory layout may cause conflict misses during execution. This section describes how 
most of the evictions can be avoided by altering the order in which functions are linked 
in memory. Generally, this can be achieved by allocating code that is accessed within 
some local time window contiguously in memory. 

Consider the code in Example 3-3. Assume that function_1 and function_2 have been 
placed by the linker such that they overlap in L1P, as shown in Figure 3-5. When 
function_1 is called the first time, it is allocated in L1P causing three misses (1). A 
following call to function_2 causes its code to be allocated in L1P, resulting in five 
misses (2). This also will evict parts of the code of function_1, lines 3 and 4, since these 
lines overlap in L1P (3). When function_1 is called again in the next iteration, these 
lines have to be brought back into L1P, only to be evicted again by function_2. Hence, 
for all following iterations, each function call causes two misses, totaling four L1P 
misses per iteration. 

These type of misses are called conflict misses. They can be completely avoided by 
allocating the code of the two functions into nonconflicting sets. The most 
straightforward way this can be achieved is to place the code of the two functions 
contiguously in memory (4). 

Note that it also would be possible to move function_2 to any place where none of its 
sets conflicts with function_1. This would prevent eviction as well; however, the first 
method has the advantage that you do not need to worry about absolute address 
placement, but can simply change the order in which the functions are allocated in 
memory. 
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Example 3-3 L1P Conflicts Code 

for (i=0; i<N; i++) 
{ 

function_1(); 
function_2(); 

}

End of Example 3-3

Figure 3-5 Avoiding L1P Evictions

Note—With code generation tools 5.0 (CCS 3.0) and later, the GROUP 
directive must be used to force a specific link order. 

There are two ways for allocating functions contiguously in memory: 
• Use the compiler option –mo to place each C and linear assembly function into 

its own individual section (assembly functions have to be placed in sections using 
the .sect directive). Inspect the map file to determine the section names for the 
functions chosen by the compiler. In the example, the sections names are 
.text:_function_1 and .text:_function_2. Now, the linker command file can be 
specified as: 

MEMORY 

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


3.4 Procedural-Level Optimizations 

3-16 TMS320C66x DSP Cache User Guide SPRUGY8—November 2010
Submit Documentation Feedback 

Chapter 3—Optimizing for Cache Performance www.ti.com

{ 
L2SRAM: o = 00800000h l = 00010000h 
EXT_MEM: o = 80000000h l = 01000000h 

} 
SECTIONS 
{

.cinit > L2SRAM 

.GROUP > L2SRAM 
{ 
.text:_function_1 
.text:_function_2
.text 

} 
.stack > L2SRAM 
.bss > L2SRAM 
.const > L2SRAM 
.data > L2SRAM
.far > L2SRAM 
.switch > L2SRAM 
.sysmem > L2SRAM 
.tables > L2SRAM 
.cio> L2SRAM 
.external > EXT_MEM 

}

The linker will link all sections in exactly the order specified within the GROUP 
statement. In this case, the code for function_1 is followed by function_2 and 
then by all other functions located in the section .text. No changes are required in 
the source code. However, be aware that using the -mo compiler option can result 
in overall code size growth because any section containing code will be aligned at 
a 32–byte boundary. 
Note that the linker can only place entire sections, but not individual functions 
that reside in the same section. In case of precompiled libraries or object files that 
have multiple functions in a section or were compiled without -mo, there is no 
way to reassign individual functions to different sections without recompiling the 
library. 

• To avoid the disadvantage of using –mo, only the functions that require 
contiguous placement may be assigned individual sections by using the #pragma 
CODE_SECTION before the definition of the functions: 

#pragma CODE_SECTION(function_1,".funct1") 
#pragma CODE_SECTION(function_2,".funct2") 
void function_1(){...} 
void function_2(){...}

The linker command file would then be specified as: 
... 
SECTIONS 
{ 

.cinit > L2SRAM 

.GROUP > L2SRAM 
{ 

.funct1 .funct2 

.text 
} 

.stack > L2SRAM 
... 
}

Those functions should be considered for reordering that are repeatedly called within 
the same loop, or within some time frame. 

If the capacity of the cache is not sufficient to hold all functions of a loop, the loop may 
have to be split up in order to achieve code reuse without evictions. This may increase 
the memory requirements for temporary buffers to hold output data. Assume that the 
combined code size of function_1 and function_2, as shown in Example 3-4, is larger 
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than the size of L1P. In Example 3-5, the code loop has been split so that both functions 
can be executed from L1P repeatedly, considerably reducing misses. However, the 
temporary buffer tmp[ ] now has to hold all intermediate results from each call to 
function_1. 

Example 3-4 Combined Code Size is Larger than L1P 

for (i=0; i<N; i++) 
{ 

function_1(in[i], tmp); 
function_2(tmp, out[i]); 

}

End of Example 3-4

Example 3-5 Code Split to Execute from L1P 

for (i=0; i<N; i++) 
{ 

function_1(in[i], tmp[i]); 
} 
for (i=0; i<N; i++) 
{ 

function_2(tmp[i], out[i]);
}

End of Example 3-5

3.4.3.1 Freezing L1P Cache 
The C66x cache controllers allow you to put caches into freeze mode that prevents 
allocation of new lines. After freezing, the contents of cache will not be evicted by 
conflicts (note that all other cache actions behave as normal, for example, dirty bit 
updates, LRU updates, snooping, cache coherence operations). 

The freeze mode of L1P cache can be controlled through the CSL functions: 
CACHE_freezeL1p(); 
CACHE_unfreezeL1p(); 

This allows code to be forcefully retained in cache. Generally this is useful if code that 
is reused would be evicted in between by other code that is executed only once, such as 
interrupt service routines. Not caching code that is not reused has no impact on its 
performance, and at the same time eliminates misses on cached code that is reused. 

An exception may be code that contains non-SPLOOP loops, since every iteration 
would miss. On the other hand, SPLOOP loops do not suffer from this problem since 
they are executed from the CORE internal loop buffer. For more information on 
SPLOOP, refer to the TMS320C66x CPU and Instruction Set Reference Guide ‘‘Related 
Documentation from Texas Instruments’’ on page ø-x.

3.4.4 Avoiding L1D Conflict Misses 
In this read miss scenario, all data of the working set fits into cache (no capacity misses 
by definition), but conflict misses occur. This section first explains how L1D conflict 
misses are caused, then describes how the conflict misses can be eliminated by 
allocating data contiguously in memory.
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The L1D set number is determined by the memory address modulo the capacity of one 
cache way divided by the line size. In a direct-mapped cache such as L1P, these 
addresses would evict one another if those addresses are not contained in the same 
cache line. However, in the 2-way set-associative L1D, two conflicting lines can be kept 
in cache without causing evictions. Only if another third memory location is allocated 
that maps to that same set, one of the previously allocated lines in this set will have to 
be evicted (which one will be evicted is determined by the least-recently-used rule). 

Compiler and linker do not give considerations to cache conflicts, and an inappropriate 
memory layout may cause conflict misses during execution. This section describes how 
most of the evictions can be avoided by altering the memory layout of arrays. Generally, 
this can be achieved by allocating data that is accessed within the same local time 
window contiguously in memory. 

Optimization methods similar to the ones described for L1P in Section 3.4.3 can be 
applied to data arrays. However, the difference between code and data is that L1D is a 
2-way set-associative cache and L1P is direct-mapped. This means that in L1D, two 
data arrays can map to the same sets and still reside in L1D at the same time. The 
following example illustrates the associativity of L1D. 

Consider the dotprod routine shown in Example 3-6 that computes the dot product of 
two input vectors. 

Example 3-6 Dot Product Function Code 

int dotprod 
( 

const short *restrict x, 
const short *restrict h, 
int nx 

) 
{ 

int i, r = 0; 
for (i=0;i<nx; i++) 
{ 

r += x[i] * h[i]; 
} 
return r; 

}

End of Example 3-6

Assume we have two input vectors in1 and in2, and two coefficient vectors w1 and w2. 
We would like to multiply each of the input vectors with each of the coefficient vectors, 
in1 × w1, in2 × w2, in1 × w2, and in2 × w1. We could use the following call sequence 
of dotprod to achieve this: 
r1 = dotprod(in1, w1, N); 
r2 = dotprod(in2, w2, N); 
r3 = dotprod(in1, w2, N); 
r4 = dotprod(in2, w1, N);

Further assume that each array is one-fourth the total L1D capacity, such that all four 
arrays fit into L1D. However, assume that we have given no consideration to memory 
layout and declared the arrays as: 
short in1 [N]; 
short other1 [N]; 
short in2 [N]; 
short other2 [N]; 
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short w1 [N]; 
short other3 [N]; 
short w2 [N];

The arrays other1, other2, and other3 are used by other routines in the same 
application. It is assumed that the arrays are allocated contiguously in the section .data 
in the order they are declared. The assigned addresses can be verified in the map file 
(generated with the option –m). Since each way in L1D is half the size of the total 
capacity, all memory locations that are the size of one way apart map to the same set. 
In this case, in1, in2, w1, and w2 all map to the same sets in L1D. A layout for L1D is 
shown on the left in Figure 3-6. Note that this is only one possible configuration of 
many. The exact configuration depends on the start address of the first array, in1, and 
the state of the LRU bit (which decides the way the line is allocated). However, all 
configurations are equivalent in terms of cache performance.

Figure 3-6 Mapping of Arrays to L1D Sets for Dot Product Example

The first call to dotprod allocates in1 and w1 into L1D, as shown in Figure 3-6. This 
causes S compulsory misses, where S is the total number of sets. The second call causes 
in1 and w1 to be evicted and replaced with in2 and w2, which causes another S misses. 
The third call reuses w2, but replaces in2 with in1 resulting in S/2 misses. Finally, the 
last call again causes S misses, because in1 and w2 are replaced with in2 and w1. 

To reduce the read misses, we can allocate the arrays contiguously in memory as 
follows: 
short in1 [N]; 
short in2 [N]; 
short w1 [N]; 
short w2 [N]; 
short other1 [N]; 
short other2 [N];
short other3 [N];
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We grouped together the definitions of the arrays that are used by the routine. Now all 
arrays, in1, in2, w1, and w2 can fit into L1D as shown on the right in Figure 3-6. Note 
that due to the memory allocation rules of the linker, it cannot always be assured that 
consecutive definitions of arrays are allocated contiguously in the same section (for 
example, const arrays will be placed in the .const section and not in .data). Therefore, 
the arrays must be assigned to a user-defined section, for instance: 

#pragma DATA_SECTION(in1, ".mydata") 
#pragma DATA_SECTION(in2, ".mydata") 
#pragma DATA_SECTION(w1, ".mydata") 
#pragma DATA_SECTION(w2, ".mydata') 
#pragma DATA_ALIGN(in1, 32)
short in1 [N]; 
short in2 [N]; 
short w1 [N]; 
short w2 [N];

Additionally, the arrays are aligned at a cache line boundary to save some extra misses. 

Note that it may be necessary to align the arrays at different memory banks to avoid 
bank conflicts, for example: 
#pragma DATA_MEM_BANK(in1, 0) 
#pragma DATA_MEM_BANK(in2, 0) 
#pragma DATA_MEM_BANK(w1, 2)
#pragma DATA_MEM_BANK(w2, 2)

Exploiting miss pipelining can further reduce the cache miss stalls. The touch loop 
discussed in Section 3.2.2 is used to preallocate all arrays, in1, in2, w1, and w2, in L1D. 
Since all arrays are allocated contiguously in memory, one call of the touch routine is 
sufficient: 
touch(in1, 4*N*sizeof(short)); 
r1 = dotprod(in1, w1, N); 
r2 = dotprod(in2, w2, N); 
r3 = dotprod(in1, w2, N); 
r4 = dotprod(in2, w1, N);

3.4.5 Avoiding L1D Thrashing
In this read miss scenario, the data set is larger than cache, contiguously allocated, but 
data is not reused. Conflict misses occur, but no capacity misses (since data is not 
reused). This section describes how the conflict misses can be eliminated, for instance, 
by interleaving cache sets. 

Thrashing is caused if more than two read misses occur to the same set evicting a line 
before all of its data was accessed. Provided all data is allocated contiguously in 
memory, this condition can only occur if the total data set accessed is larger than the 
L1D capacity. These conflict misses can be completely eliminated by allocating the data 
set contiguously in memory and pad arrays as to force an interleaved mapping to cache 
sets. 

Consider the weighted dot product routine shown in Example 3-7. 

Example 3-7 Weighted Dot Product 

int w_dotprod(const short *restrict w, const short *restrict x, const short 
*restrict h, int N) 
{ 

int i, sum = 0; 
_nassert((int)w % 8 == 0); 
_nassert((int)x % 8 == 0); 
_nassert((int)h % 8 == 0); 
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#pragma MUST_ITERATE(16,,4) 
for (i=0; i<N; i++) sum += w[i] * x[i] * h[i]; 

return sum; 
}

End of Example 3-7

If the three arrays w[ ], x[ ], and h[ ] are allocated in memory such that they are all 
aligned to the same set, L1D thrashing occurs. The contents of the L1D set, at the time 
when an access is made, is listed in Table 3-3. It can be seen that whenever an array 
element is attempted to be read, it is not contained in L1D. Consider the first iteration 
of the loop, all three arrays are accessed and cause three read misses to the same set. The 
third read miss evicts a line just allocated by one of the two previous read misses. 
Assume that first w[0] and then x[0] is accessed, causing one full line of w[ ] and x[ ] to 
be allocated in L1D. If there was no further allocation to the same set, accesses to w[1] 
and x[1] in the next iteration would be cache hits. However, the access to h[0] causes 
the line of w[ ] allocated by the previous access to w[0] to be evicted (because it was 
least-recently-used) and a line of h[ ] to be allocated in its place. In the next iteration, 
w[1] causes a read miss, evicting the line of x[ ]. Next, x[1] is accessed that was just 
evicted, causing another read miss and eviction of the line of h[ ]. This pattern repeats 
for every iteration of the loop. Since each array is evicted just before its line is reused, 
every single read access in the routine causes a read miss.

These conflict misses can be completely eliminated by allocating the data set 
contiguously in memory and pad arrays as to force an interleaved mapping to cache 
sets. For instance: 
#pragma DATA_SECTION(w, ".mydata") 
#pragma DATA_SECTION(x, ".mydata") 
#pragma DATA_SECTION(pad,".mydata") 
#pragma DATA_SECTION(h, ".mydata") 
#pragma DATA_ALIGN (w, CACHE_L1D_LINESIZE) 
short w [N]; short x [N]; 
char pad [CACHE_L1D_LINESIZE]; 
short h [N];

The linker command file would then be specified as: 
... 
SECTIONS 
{ 

GROUP > L2SRAM 
{ 

.mydata:w 

.mydata:x 

.mydata:pad 

.mydata:h 
} 

... 
}

Table 3-3 Contents of an L1D Set at the Time When an Array is Accessed (Weighted Dot 
Product Example) 

Read Access To Way 0 Way 1 LRU 

w[0] – – 0

x[0] w – 1 

h[0] w x 0 

w[1] h x 1 

x[1 ]h w 0

h[1] x w 1 

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


3.4 Procedural-Level Optimizations 

3-22 TMS320C66x DSP Cache User Guide SPRUGY8—November 2010
Submit Documentation Feedback 

Chapter 3—Optimizing for Cache Performance www.ti.com

This causes allocation of the array h[ ] in the next set, thus avoiding eviction of w[ ]. 
Now all three arrays can be kept in L1D. This memory configuration is shown in 
Figure 3-7. The line of array h[ ] will be only evicted when the data of one line has been 
consumed and w[ ] and x[ ] are allocated in the next set. Eviction of h[ ] is irrelevant 
since all data in the line has been used and will not be accessed again.

Figure 3-7 Memory Layout and Contents of L1D After the First Two Iterations

3.4.6 Avoiding Capacity Misses
In this read miss scenario, data is reused, but the data set is larger than cache causing 
capacity and conflict misses. These misses can be eliminated by splitting up data sets 
and processing one subset at a time. This method is referred to as blocking or tiling. 

Consider the dot product routine that is called four times with one reference vector and 
four different input vectors: 
short in1[N]; 
short in2[N]; 
short in3[N]; 
short in4[N]; 
short w [N]; 
r1 = dotprod(in1, w, N);
r2 = dotprod(in2, w, N); 
r3 = dotprod(in3, w, N); 
r4 = dotprod(in4, w, N);

Assume that each array is twice the L1D capacity. We expect compulsory misses for 
in1[ ] and w[ ] for the first call. For the remaining calls, we expect compulsory misses 
for in2[ ], in3[ ], and in4[ ], but would like to reuse w[ ] from cache. However, after each 
call, the beginning of w[ ] has already been replaced with the end of w[ ], since the 
capacity is insufficient. The following call then suffers again misses for w[ ]. 

The goal is to avoid eviction of a cache line before it is reused. We would like to reuse 
the array w[ ]. This memory configuration is shown in Figure 3-8. The first line of w[ ] 
will be the first one to be evicted when the cache capacity is exhausted. In this example, 
the cache capacity is exhausted after N/4 outputs have been computed, since this 
required N/4 × 2 arrays = N/2 array elements to be allocated in L1D. If we stop 
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processing in1[ ] at this point and start processing in2[ ], we can reuse the elements of 
w[ ] that we just allocated in cache. Again, after having computed another N/4 outputs, 
we skip to processing in3[ ] and finally to in4[ ]. After that, we start computing the 
second N/4 outputs for in1[ ], and so on. 

The restructured code for the example would look like this: 
for (i=0; i<4; i++) 
{ 

o = i * N/4; dotprod(in1+o, w+o, N/4); 
dotprod(in2+o, w+o, N/4);
dotprod(in3+o, w+o, N/4); 
dotprod(in4+o, w+o, N/4); 

}

Figure 3-8 Memory Layout for Dotprod Example\

We can further reduce the number of read miss stalls by exploiting miss pipelining. The 
touch loop is used to allocate w[ ] once at the start of the iteration; then before each call 
of dotprod, the required input array is allocated: 

for (i=0; i<4; i++) 
{ 

o = i * N/4; 
touch(w+o, N/4 * sizeof(short)); 
touch(in1+o, N/4 *sizeof(short)); 
dotprod(in1+o, w+o, N/4); 
touch(w+o, N/4 * sizeof(short)); 
touch(in2+o, N/4 * sizeof(short)); 
dotprod(in2+o, w+o, N/4); 
touch(w+o, N/4 * sizeof(short)); 
touch(in3+o, N/4 * sizeof(short)); 
dotprod(in3+o, w+o, N/4); 
touch(w+o, N/4 * sizeof(short)); 
touch(in4+o, N/4 * sizeof(short)); 
dotprod(in4+o, w+o, N/4); 

}

It is important to note that the LRU scheme automatically retains the line that hits (w[ 
] in this case), as long as two lines in the same set are always accessed in the same order. 
(Assume that way 0 in set X is accessed before way 1 in set X. The next time set X is 
accessed, it should be in the same order: way 0, then way 1). This LRU behavior cannot 
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be assured if the access order changes. Example: If after dotprod array w[ ] is LRU and 
array in[ ] is MRU, w[ ] was accessed before in[ ]. If the next dotprod accesses w[ ] first 
again, the access will hit and the line of w[ ] turns MRU and is protected from eviction. 
However, if now the touch loop is used, in[ ] is accessed before w[ ]. Accesses to in[ ] 
will miss and evict w[ ] since it is LRU. Therefore, it has to be ensured that after each 
dotprod w[ ] is MRU. This is achieved by retouching w[ ] before allocating the next in[ 
] with touch. This forces w[ ] to become MRU and is protected form eviction. The extra 
touch loop will not cost many cycles since no cache misses occur, that is, (number of 
lines)/2 + 16 cycles. 

In this example, arrays w[ ] and in[ ] should be aligned to different memory banks to 
avoid bank conflicts. 

#pragma DATA_SECTION(in1, ".mydata") 
#pragma DATA_SECTION(in2, ".mydata") 
#pragma DATA_SECTION(in3, ".mydata") 
#pragma DATA_SECTION(in4, ".mydata") 
#pragma DATA_SECTION(w,".mydata") /* this implies #pragma DATA_MEM_BANK(w, 0) */
#pragma DATA_ALIGN(w, CACHE_L1D_LINESIZE) short w [N]; /* avoid bank conflicts */
#pragma DATA_MEM_BANK(in1, 2) 
short in1[N]; 
short in2[N]; 
short in3[N]; 
short in4[N];

3.4.7 Avoiding Write Buffer Related Stalls
The L1D write buffer can be the cause for additional stalls. Generally, write misses do 
not cause stalls since they pass through the write buffer to the lower level memory (L2 
or external memory). However, the depth of the write buffer is limited to four entries. 
To make more efficient use of each 128-bit wide entry, the write buffer merges 
consecutive write misses to sequential addresses into the same entry. If the write buffer 
is full and a another write miss occurs, the CORE stalls until an entry in the buffer 
becomes available. Also, a read miss causes the write buffer to be completely drained 
before the miss is serviced. This is necessary to ensure proper read-after-write ordering 
(the read that caused the miss may access data that is still in the write buffer). The 
number of cycles it takes to drain the write buffer adds to the normal read miss stall 
cycles. For additional information, see the TMS320C66x CorePac User Guide in 
‘‘Related Documentation from Texas Instruments’’ on page ø-x. 

Write buffer related stalls can be easily avoided by allocating the output buffer in L1D 
cache. Writes will then hit in L1D rather than being passed on to the write buffer. 
Consider the constant-vector add routine in Example 3-8. 

Example 3-8 Add Constant to Vector Function 

void vecaddc(const short *restrict x, short c, short *restrict r, int nx) 
{ 

int i; 
for (i = 0 ; i < nx; i++) r[i] = x[i] + c; 

}

End of Example 3-8

Assume the scenario shown in Example 3-9. A constant c is added to four input vectors 
in[4][N] and the results are then used to compute the dot product with the reference 
vector ref[ ]. 
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In the first iteration, vecaddc may suffer read miss stalls for allocating in[0], and write 
buffer stalls while writing results to out[ ]. Also, dotprod will see read miss stalls for out[ 
] and ref[ ]. If arrays out[ ] and ref[ ] can be retained in L1D for the remaining iterations, 
only compulsory misses for in[ ] will be incurred. Since out[ ] is now allocated in L1D, 
writes will hit instead of passing through the write buffer. 

Example 3-9 Vecaddc/Dotprod Code 

short in[4][N]; 
short out [N]; 
short ref [N]; 
short c, r; for (i=0; i<4; i++) 
{ 

vecaddc(in[i], c, out, N); 
r = dotprod(out, ref, N); 

}

End of Example 3-9

The size of each array shall be 2048 elements such that one array occupies one-eighth 
of L1D, as shown in Figure 3-9. An optimized C version of the vecaddc routine was 
used that computes eight results every 2 cycles in the inner loop, that is, it takes N/4 
cycles to execute plus some cycles for set-up code. Thus, we expect to see 512 execute 
cycles for vecaddc. The routine accesses 2048 elements, 4096 bytes spanning 64 cache 
lines. Assuming an L2 type with 1 wait state and 4 × 128-bit banks, we expect to see 64 
misses × 12.5 stalls = 800 stall cycles. Additionally, there will be write buffer related 
stalls. Two STDW instructions are issued every 2 cycles in the kernel. When the output 
array is not in L1D (for the first iteration in Example 3-9), the write buffer fills at an 
average rate of one entry every 2 cycles because the two double words are merged into 
one entry. Since the write buffer drains at the same rate, there will not be any write 
buffer full conditions. However, every time a read miss occurs, the write buffer will be 
drained completely to maintain proper program ordering. Due to support for write 
merging, the write buffer does not generally suffer write buffer full stalls, except when 
there is a stream of write misses occurring out of order. 
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Figure 3-9 Memory Layout for Vecaddc/Dotprod Example

The interaction of write buffer related stalls and read misses is listed in Table 3-4. 
Consider the loop prolog and kernel shown in Example 3-10. Every other cycle, 16 
bytes are read from the input array. Therefore, after 8 execute cycles, 16 bytes × 8/2 
cycles = 64 bytes are consumed which equals one cache line. The write buffer entries 
shall be denoted A, B, C, ..., etc. In the first execution cycle of the prolog, one read miss 
and one read hit occurs that costs 12.5 stall cycles. The subsequent 3 LDDW||LDDW’s 
hit in L1D. The write buffer starts filling up in execute cycle 8 (the predicate for STW 
on cycle 6 is false). On execute cycle 9, the next read miss occurs. The write buffer still 
contains A that needs to be drained taking one cycle. Then the write buffer starts filling 
again. The pattern from execute cycle 9 to 16 now repeats. In summary, we expect to 
see the following number of L1D stall cycles: 

12.5 + ((12.5 + 1) × 63) = 863

The dotprod routine sees 128 read misses since it accesses 4096 elements. We expect to 
see 128 misses × 12.5 cycles = 1600 stall cycles. 
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For iterations 2 to 4, vecaddc will only suffer read miss stalls for the in[ ] array. Any 
write buffer related stalls will no longer occur since the output array was allocated in 
L1D by the dotprod routine in the previous iteration. Also, the dotprod routine will not 
incur any stalls since both out[ ] and ref[ ] arrays are held in L1D. 

Example 3-10 C64x Assembly Code for Prolog and Kernel of Routine vecaddc 

L1: ; PIPED LOOP PROLOG
LDDW .D2T2 *++B9(16),B7:B6 ; (P) |10|
|| [ A0] BDEC .S1 L2,A0 ; (P)
|| LDDW .D1T1 *A8++(16),A5:A4 ; (P) |10|
ZERO .D1 A1
PACK2 .L1 A3,A3,A3
|| LDDW .D2T2 *++B9(16),B7:B6 ; (P) @|10|
|| [ A0] BDEC .S1 L2,A0 ; (P) @
|| LDDW .D1T1 *A8++(16),A5:A4 ; (P) @|10|
SUB .D2X A6,8,B8
|| MV .D1 A6,A9
|| MVKH .S1 0x10000,A1 ; init prolog collapse predicate
;**---------------------------------------------------------------------------*
L2: ; PIPED LOOP KERNEL
ADD2 .S2X B7,A3,B5 ; |10|
|| [ A0] BDEC .S1 L2,A0 ; @@
|| LDDW .D1T1 *A8++(16),A5:A4 ; @@@|10|
|| LDDW .D2T2 *++B9(16),B7:B6 ; @@@|10|
[ A1] MPYSU .M1 2,A1,A1 ;
|| [!A1] STDW .D1T1 A7:A6,*A9++(16) ; |10|
|| [!A1] STDW .D2T2 B5:B4,*++B8(16) ; |10|
|| ADD2 .S2X B6,A3,B4 ; @|10|
|| ADD2 .S1 A5,A3,A7 ; @|10|
|| ADD2 .L1 A4,A3,A6 ; @|10|
;**----------------------------------------------------------------------------*

End of Example 3-10

Table 3-4 Interaction of Read Miss and Write Buffer Activity for the First Call of Vecaddc (n 
= 0 to 62) 

Execute Cycle Read Activity Write Buffer Contents

1 read miss –

2 – – 

3 hit – 

4 – – 

5 hit – 

6 – – 

7 hit – 

8 – A 

9 + 8 × n read miss, 1 write buffer drain stall A 

10+8×n – B 

11+8×n hit B 

12+8×n – C 

13+8×n hit C 

14+8×n – D

15+8×n hit D 

16+8×n – E 
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3.5 On-Chip Debug Support 
The C66x devices support a feature that allows read-out of the cache tag RAM (on 
earlier version of some C66x devices, this feature is only supported on simulator 
platforms). This feature is exposed in Code Composer Studio IDE (version 3.2 or 
higher) through the Cache Tag RAM Viewer. The viewer displays for each cache line 
the cache type, set number, way number, valid/dirty/LRU bits and the line address 
(with symbols). This allows you to analyze cache behavior by single-stepping through 
the algorithm and observing the changes in the cache. This helps with choosing the 
appropriate optimization method and verifying the results of the optimization.
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Appendix A

Cache Differences Between C66x DSP and C64x DSP 

Readers who are familiar with the C64x cache architecture may want to take note of 
features that are new or have changed for C66x devices. The features described in this 
user guide are listed in Table A-1. 

Table A-1 Cache Differences Between C66x DSP and C64x DSP  (Part 1 of 2)

Feature Difference

Memory Sizes and Types On C66x devices, each L1D and L1P implement SRAM additionally to cache. The size of cache is 
user-configurable and can be set to 4K, 8K, 16K, or 32K bytes. The amount of available SRAM is device 
dependent and specified in the device-specific data sheet. On C64x devices, only cache with a fixed size of 16K 
bytes is implemented. 

On C66x devices, the maximum possible size of L2 is increased. See the device-specific data sheet for the actual 
amount of available L2 memory. L2 cache size configurations are the same as on C64x devices. 

Cacheability The cacheability settings of external memory addresses (through MAR bits) only affect L1D and L2 caches on 
C66x devices; that is, program fetches to external memory addresses are always cached in L1P regardless of the 
cacheability setting. This is not the case on C64x devices, where the settings affects all caches, L1P, L1D, and L2. 

The cacheability control of external memory addresses covers the entire external address space on C66x 
devices. In contrast, on C64x devices only a subset of the address space is covered. 

Snooping Protocol The snooping cache coherence protocol on C66x devices directly forwards data to L1D cache and the DMA. On 
C64x devices, invalid and writeback cache lines to maintain coherence. The C66x snooping mechanism is more 
efficient since it eliminates cache miss overhead caused by invalidates. 

The snoop coherence protocol on C66x devices does not maintain coherence between L1P cache and L2 
SRAM, as is the case on C64x devices. This is the responsibility of the programmer. 

Cache Coherence Operations On C66x devices, the L2 cache coherence operations always operate on L1P and L1D, even if L2 cache is 
disabled. This is not the case on C64x devices, which requires the explicit use of L1 coherence operations. 

C66x devices support a complete set of range and global L1D cache coherence operations. In contrast, C64x 
devices support only L1D range invalidate and writeback-invalidate. 

On cache size changes, C66x devices automatically writeback–invalidate cache before initializing it with the 
new size. In contrast, C64x devices required an explicit writeback–invalidate to be issued by the programmer 
(however, this is handled as part of the CSL function). 

On C66x devices, L2 cache is non-inclusive of L1D and L1P. This means that a line eviction from L2 will not 
cause the corresponding lines in L1P and L1D to be evicted. However, this is the case on C64x devices. The 
advantage of non-inclusivity is that line allocations in L2 due to program fetches will not evict data from L1D 
cache, and line allocations in L2 due to data accesses will not evict program code from L1P. This helps reduce 
the number of cache misses. 
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Cache Performance and Optimization The width of the write buffer on C66x devices is increased to 128 bits; on C64x devices, the width is 64 bits. This 
results in fewer write buffer full stalls for write misses to sequential addresses that compensates for the lower 
draining rate of CPU/2 (was CPU/1 on C64x DSP). 

The C66x devices add a tag update buffer that queues clean-to-dirty transitions to L2’s copy of the L1D tag 
RAM (this so-called shadow tag RAM is required for the snoop cache coherence protocol). Occasionally this 
may result in buffer full stalls, if a stream of write hits makes previously clean cache lines dirty at a high rate. 

C66x devices add a high-bandwidth internal DMA (IDMA) between L1 and L2 that can be used to efficiently 
page data in and out of L1 SRAM. See the TMS320C66x CorePac User Guide in  for details on the IDMA. 

Access and bank conflicts between different requestors are resolved according to the settings of C66x 
bandwidth management. See the TMS320C66x CorePac User Guide in ‘‘Related Documentation from Texas 
Instruments’’ on page ø-x for details on bandwidth management. 

C66x cached controllers support cache freeze modes that prevents allocation of new lines. This can be 
particularly useful for L1P cache to prevent eviction of often reused code. See Section 3.4.3.1. 

Due to higher stall counts per miss on C66x devices, eliminating misses and exploiting miss pipelining has 
become even more important. This is made easier on the C66x device through the support of L1 SRAM (see 
Section 3.3), larger L1 cache capacity, low-overhead snooping and non-inclusivity of L2 cache. 

As would be expected, the actual cache optimization methods are the same for C64x and C66x DSPs. 

Exploiting L1D miss pipelining is critical for performance. Whereas on C64x DSP data miss pipelining reduced 
the stall count by 4; on C66x DSP, the stall count is reduced by up to 7.5 (L2 SRAM with 0 wait-state and 2 × 
128-bit banking) or 9 (L2 SRAM with 1 wait-state and 4 × 128-bit banking). 

Table A-1 Cache Differences Between C66x DSP and C64x DSP  (Part 2 of 2)

Feature Difference
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Appendix B

C66x DSP Cache Coherence 

In the cases where no hardware coherence protocol exists, it is the programmer’s 
responsibility to maintain cache coherence. For this purpose, C66x DSP memory 
controllers support cache coherence operations that can be initiated by the program. 
The coherence operations include: 

• Invalidate (INV): Evicts cache lines and discards data. 
• Writeback (WB): Writes back data, lines stay in cache and are marked as clean. 
• Writeback–Invalidate (WBINV): Writes back data and evicts cache lines. 

They are available for L1P, L1D, and L2 cache. Note that L2 coherence operations 
always operate first on L1P and L1D. 

Table B-1 and Table B-2 show the coherence matrices for the C66x DSP memory 
system. If a copy of a physical address (L2 SRAM or external memory) exists in cache 
at the time of a write access by a source entity, the coherence matrices indicate how the 
data written is made visible to the read access by the destination entity. This is achieved 
by different methods: 

1. Forward the new data to a cache or memory visible to the destination entity: 
snoop–write, L1D WB/WBINV, L2 WB/WBINV. 

2. Forward the new data directly to the destination entity: snoop–read. 
3. Remove the copy from cache to make the memory containing the new data visible 

to the destination entity: L1P INV, L1D INV/WBINV, L2 INV/WBINV. 

Part of making data visible to the destination is also ensuring that the data is not 
corrupted by any eviction of dirty lines. Evictions could overwrite data written by 
another entity, if the addresses written are for some reason still dirty in cache. Evictions 
are part of general CORE memory activity and are not generally predictable. How this 
is achieved is noted in the coherence matrices. 
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Note that in order to practically meet some of the conditions set out in the coherence 
matrices, a cache line must not contain any false addresses, that is, only contains 
addresses that are meant to be operated on by the coherence operation. This is achieved 
by aligning the start and end address of buffers at cache line boundaries. See the 
following section for further details. 

Note—Practically, some conditions can only be assured if there are no false 
addresses or stray CORE accesses. See text box in Table B-1 and Table B-2 for 
details. 

Table B-1 Coherence Matrix for L2 SRAM Addresses

Source Destination Location of Line at the Time of the Write Access 

(Write Access) (Read Access) L1P Cache L1D Cache 

DMA DMA No action required since inherently coherent (L1P 
cache does not affect visibility). 

L1D WB, INV, or WBINV to avoid potential corruption of newly 
written data: Line must not be dirty at the time of the DMA 
write access. 

CORE Data Path No action required since inherently coherent (L1P 
cache does not affect visibility). 

Snoop-write: Data written to L2 SRAM and directly forwarded 
to L1D cache. 

CORE Fetch 
Path 

L1P INV for visibility: Line must be invalid at the 
time of the first CORE fetch access after the write. 

L1D WB, INV, or WBINV to avoid potential corruption of newly 
written code: Line must not be dirty at the time of the DMA 
write access. 

CORE Data 
Path 

DMA No action required since inherently coherent (L1P 
cache does not affect visibility). 

Snoop-read: Data directly forwarded to DMA without 
updating L2 SRAM. 

CORE Data Path No action required since inherently coherent (L1P 
cache does not affect visibility). 

No action required since inherently coherent. 

CORE Fetch 
Path 

L1P INV for visibility: Line must be invalid at the 
time of the first CORE fetch access after the write. 

L1D WB or WBINV for visibility: Dirty line with new code must 
have been written back by the time the fetch access is made. 

Table B-2 Coherence Matrix for an External Memory Address (Part 1 of 2)

Source Destination Address Location at the Time of the Write Access 

(Write Access) (Read Access) L1P Cache L1D Cache L2 Cache 

DMA/Other DMA/Other No action required since 
inherently coherent (L1P cache 
does not affect visibility). 

L1D WB, INV, or WBINV to avoid 
potential corruption of newly 
written data: Line must not be 
dirty at the time of the 
DMA/other write access. 

L2 WB, INV, or WBINV to avoid 
potential corruption of newly 
written data: Line must not be 
dirty at the time of the 
DMA/other write access. 

CORE Data Path No action required since 
inherently coherent (L1P cache 
does not affect visibility). 

L1D WB, INV, or WBINV to avoid 
potential corruption of newly 
written data: Line must not be 
dirty at the time of the 
DMA/other write access. L1D INV 
or WBINV for visibility: Line must 
be invalid at the time of the first 
CORE read access after the write. 

L2 WB, INV, or WBINV to avoid 
potential corruption of newly 
written data: Line must not be 
dirty at the time of the 
DMA/other write access. L2 INV or 
WBINV for visibility: Line must be 
invalid at the time of the first 
CORE read access after the write. 

CORE Fetch Path L1P INV for visibility: Line must be 
invalid at the time of the first 
CORE fetch access after the write. 

L1D WB, INV, or WBINV to avoid 
corruption of newly written code: 
Line must not be dirty at the time 
of the DMA/other write access. 

L2 WB, INV or WBINV to avoid 
potential corruption of newly 
written code: Line must not be 
dirty at the time of the 
DMA/other write access. L2 INV or 
WBINV for visibility: Line must be 
invalid at the time of the first 
CORE fetch access after the write. 
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The most common scenario is DMA-to-data and data-to-DMA. Examples for the 
DMA-to-fetch case are code overlays and for the data-to-fetch case code overlays, 
copying boot code (memcpy), and self-modifying code. DMA-to-DMA is an atypical 
use case. Consider for instance, data written by a DMA to an address in external 
memory that is destined for the CORE data path. If at the time of writing a copy of the 
address is held in L2 cache, first, any potential corruption of the new data through dirty 
line evictions must be avoided and, second, the new data must be made visible 
(readable) to the CORE data path since it is written “underneath” L2 cache. Data 
corruption can be avoided by making the line clean (through writeback) or removing 
it from cache altogether (through invalidate). Visibility is achieved by invalidating the 
address, so that a CORE read access picks up the new data from external memory rather 
than the old data in L2 cache. Practically, you would not operate on individual lines as 
the coherence matrices might suggest. Coherence operations rather are initiated on 
blocks of addresses by specifying the start address and the length. 

Note that stray CORE accesses can reverse the effects of coherence operations. It is 
assumed here that they do not exist or have been eliminated. If not, then a stray access 
could potentially reallocate and/or redirty a line just before or even during a 
DMA/other access. The results of this are unpredictable. 

In order to assure the requirements set out in the coherence matrices, there are some 
important practical implications: 

• Any requirements for visibility can be assured if the block coherence operation is 
initiated any time after the last write and completes before the first read access to 
that block. 

• The requirement for visibility “Line must be invalid at the time of the first 
read/fetch access after the write” can also be assured if the block coherence 
operation is completed before the first write and there are no false addresses. See 
the following section for further details on false addresses. 

• The requirement for avoiding data corruption, that is, “Line must not be dirty at 
the time of the DMA/other write access” can be assured if the block coherence 
operation completes before the first write access by the DMA/other, but only if 
there are no false addresses. See the following section for further details on false 
addresses. 

CORE Data Path DMA/Other No action required since 
inherently coherent (L1P cache 
does not affect visibility). 

L1D WB or WBINV for visibility: 
Dirty line with new data must 
have been written back by the 
time the DMA/other read access 
is made. 

L2 WB or WBINV for visibility: 
Dirty line with new data must 
have been written back by the 
time the DMA/other read access 
is made. 

CORE Data Path No action required since 
inherently coherent (L1P cache 
does not affect visibility). 

No action required since 
inherently coherent. 

No action required since 
inherently coherent. 

CORE Fetch Path L1P INV for visibility: Line must be 
invalid at the time of the first 
CORE fetch access after the write. 

L1D WB or WBINV for visibility: 
Dirty line with new code must 
have been written back by the 
time the CORE fetch access is 
made. No action required since 
inherently coherent. 

No action required since 
inherently coherent. 

Table B-2 Coherence Matrix for an External Memory Address (Part 2 of 2)

Source Destination Address Location at the Time of the Write Access 

(Write Access) (Read Access) L1P Cache L1D Cache L2 Cache 
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• To avoid data corruption through the use of the invalidate operation (without 
writeback), false addresses must be eliminated. See the following section for 
further details on false addresses. 

Some considerations that simplify the use of coherence operations: 
• It must be assumed that an address is held in all caches, since it is generally not 

known where an individual address is held. Thus, all coherence operations should 
be performed for a given source–destination scenario. Practically however, 
initiating an L2 coherence operation is sufficient in the case of external memory 
addresses, since any L2 cache coherence operation implicitly operates first on 
L1D and L1P. The exception is the data-to-fetch path scenario for which separate 
L1D and L1P coherence operations need to be performed (note that this applies 
to L2 SRAM as well as external memory addresses). 

• If it is certain that DMA/other never writes to lines dirty in cache, writing back or 
invalidating the line before the DMA/other access is not required. 

• The two coherence operations required for visibility and avoidance of data 
corruption can be collapsed into one by completing an INV or WBINV before the 
first write access by the DMA/other. Again, this only works if there are no false 
addresses. 

The following figures show the correct timing for the use of user-initiated cache 
coherence operations in each scenario.

Figure B-1 External Memory: DMA Write, CORE Read (Data)

CORE data path read

CORE data path read
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Figure B-2 External Memory: DMA Write, CORE Read (Code)

Figure B-3 External Memory: CORE Write, DMA Read (Data)

Figure B-4 L2 SRAM/External Memory: CORE Write (Data), CORE Read (Code)

CORE fetch path read

CORE fetch path read

CORE data path write

CORE data path write

CORE data path write

CORE fetch path read

CORE fetch path read
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Figure B-5 L2 SRAM: DMA Write, CORE Read (Code)

CORE fetch path read

CORE fetch path read
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B.1 Eliminating False Addresses
In the coherence matrices, it is assumed that each line only contains addresses that are 
meant to be operated on. Addresses that were not meant to be operated on are referred 
to as false addresses. If they existed then:

• The effect of coherence operations that were meant to make data visible to the 
CORE could be undone, but only if they were performed before the write access. 
The condition stated in the coherence matrix is that the “line must be invalid at 
the time of the first read/fetch access after the write”. However, if the CORE 
accessed false addresses after lines were already invalidated the line might be 
allocated again before the write instead of after as required. 

• The effect of coherence operations that were meant to eliminate potential data 
corruption of newly written data by the DMA/other could be undone. The 
condition stated in the coherence matrix is that the “line must not be dirty at the 
time of the DMA/other write access”. However, if the CORE wrote to false 
addresses in cache after the line was already made clean or invalidated (through 
WB, INV, or WBINV), it might be made dirty again. 

• The use of L1D INV or L2 INV would cause loss of data if these false addresses 
were recently written by the CORE but not yet written back to physical memory. 
The use of WBINV instead of INV would avoid this type of data corruption. 

Since it is difficult to control CORE accesses to false addresses, it is strongly 
recommended that false addresses are eliminated. This is done by aligning the start 
address of a buffer in external memory at an L2 cache line size boundary and making 
its length a multiple of the L2 cache line size (128 bytes). For L2 SRAM addresses, the 
L1D cache line size (64 bytes) may be used instead, and for the CORE data path versus 
fetch path coherence case, the L1P cache line size (32 bytes) may be used (regardless of 
L2 SRAM or external memory addresses). 
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