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Preface

About This Manual
This document describes the features of the on-chip bootloader provided with 
C66x_Digital Signal Processors (DSP).

This document should be used in conjunction with the device-specific data manuals 
and user guides for peripherals used during the boot. This document supports only 
non-secure boot mode.

Notational Conventions
This document uses the following conventions:

• Commands and keywords are in boldface font.
• Arguments for which you supply values are in italic font.
• Terminal sessions and information the system displays are in screen font.
• Information you must enter is in boldface screen font.
• Elements in square brackets ([ ]) are optional.

Notes use the following conventions:

Note—Means reader take note. Notes contain helpful suggestions or references 
to material not covered in the publication.

The information in a caution or a warning is provided for your protection. Please read 
each caution and warning carefully.

CAUTION—Indicates the possibility of service interruption if precautions are 
not taken.

WARNING—Indicates the possibility of damage to equipment if precautions are 
not taken.
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Chapter 1

Introduction

IMPORTANT NOTE—The information in this document should be used in conjunction 
with information in the device-specific Keystone Architecture data manual that applies 
to the part number of your device.

This document describes the features of the on-chip ROM boot loader (RBL) when 
driven by C66x Digital Signal Processors (DSP). For the KeyStone devices that have a 
ARM in their architecture, the ROM bootloader can also be driven by the ARM. This 
document does not discuss about the features of the on-chip ROM boot loader when 
driven by the ARM. This document does not discuss the features and implementation 
of intermediate boot loader (IBL) and the application utility for merging multiple core 
applications into one application called multicore application deployment (MAD). For 
information on these items, see the applicable user guides.

This document should be used in conjunction with the device-specific data manuals 
and user guides for peripherals used during the boot. This document applies to 
non-secure boot mode only.

 1.1 "Bootloader Features" on page 1-2
 1.2 "Terms and Abbreviations" on page 1-2
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1.1 Bootloader Features
The ROM Boot Loader (RBL) is software code that resides in the on-chip read only 
memory (ROM) to assist the customer in transferring and executing their application 
code. The start address of the RBL is 0x20B00000. 

To accommodate different system scenarios, the RBL provides different boot modes. 
These boot modes can be broadly classified either as a host boot or memory boot mode. 

In a host boot mode, the RBL configures the boot device as a slave and waits for an 
external master (host) to load the application into the device to boot. 

In a memory boot mode, the RBL configures the boot device as a master and initiates 
the loading of the application code from the slave memory. Because different devices 
support different sets of boot modes, see the device-specific data manual to obtain the 
list of boot modes supported in that device.

In all boot modes, the entire boot operation can be partitioned into two sections:
• Initialization
• Boot process 

In the initialization phase, the RBL configures the device resources to start the boot 
process. The resources used depend upon the boot mode requirements. 

In the boot process phase, the image is loaded into the device and executed. The boot 
process depends on the following factors: 

• The trigger that initiated the boot operation
• The location of the boot image (host or memory). 

If the image is in an external host, the boot process varies depending on the host 
knowledge of the boot device memory map.

This document covers:
• The different triggers that can initiate the boot operation
• The initialization process
• The boot process based on the location of the image
• The specific boot process features for different boot modes

1.2 Terms and Abbreviations

Term Definition

I2C Inter-Integrated Circuit

MSMC Multicore Shared Memory Controller

PCIe Peripheral Component Interconnect Express

POR Power on Reset

RBL ROM Boot Loader

SPI Serial Peripheral Interface

SRIO Serial Rapid Input/Output
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Reset Types and Device Initialization

The boot process can be divided in to two steps. The first step is the initialization 
process, which depends on the type of reset that triggers the boot (this chapter). The 
second step is the boot mode-specific process (Chapter 3). 

 2.1 "Reset Types" on page 2-2
 2.2 "Device Initialization" on page 2-4
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2.1 Reset Types
In KeyStone devices, resets are used as the trigger for initiating the boot process and the 
boot process varies based on the type of the reset. There are four types of reset 
supported in the KeyStone architecture:

• Power-on reset (POR)
• Hard reset (chip 0 reset + chip 1 reset)
• Soft reset (chip 1 reset)
• Local reset

The first three types of reset are considered global resets because they affect the entire 
device, while the local reset affects only the CorePac. For local reset, the boot process is 
not triggered. For further details on the reset types, see the device-specific data manual.

Irrespective of the global reset type, the boot process is executed by C66x CorePac0 
when the boot loading process is set to use the C66x as the master to drive the boot. 
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The boot process flow under the different reset types is shown in Figure 2-1.
Figure 2-1 Boot Process
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2.2 Device Initialization
2.2.1 Initialization Process After Power On Reset

Power-on reset resets the entire chip. Everything on the device is reset to its default 
state and can be initiated by either the POR pin or the RESETFULL pin. While the POR 
pin is asserted during the power up sequence, the RESETFULL is asserted by a host to 
reset the entire device. The RESETFULL is also asserted during the power on reset 
sequence. During the RESETFULL assertion, the general purpose pins used for boot 
configuration are sampled to latch the boot configuration values into the device status 
(DEVSTAT) register. 

Using the device configuration setup from the device status (DEVSTAT) registers, the 
boot process executes an initialization code. The initialization settings that are executed 
by the RBL are listed below:

• The RBL enables the reset isolation in all peripherals that support it. The power 
state of these peripherals is not changed. The device-specific data manual lists all 
the peripherals that support reset isolation.

• The RBL also ensures that the power and clock domains are enabled for any 
peripherals that are required for boot.

• The RBL configures the system PLL to set the device speed. The boot 
configuration pins provide the RBL with the information about the reference 
clock used in the system. RBL gets the optimal operating speed of the device from 
the e-fuse register. The various reference clock frequency and operating clock 
frequency lists are available in the device-specific data manual.

• The main PLL stays in bypass mode for no-boot, SPI, and I2C boot. For other boot 
modes, a PLL initialization sequence executes inside the boot ROM to configure 
the main PLL in PLL mode.

• The RBL reserves a portion of the L2 in all the cores in the device to perform the 
boot process. The start address, size, and the definition of the sections reserved 
are listed in the device-specific data manuals. For EMIF16 boot, no memory is 
reserved by the RBL; memory usage depends entirely on the image stored in, and 
executed from, the NOR flash. 

• All the interrupts are disabled except IPC interrupts and the host interrupts that 
are needed for the PCIe, SRIO (DirectIO), and HyperLink boot modes.

• During the boot process, the RBL executes an IDLE command on the secondary 
CorePacs and keeps the secondary CorePacs waiting for an interrupt. After the 
application code to be loaded in these secondary CorePacs are loaded and the 
BOOT_MAGIC_ADDRESS values in individual CorePacs are populated, the 
application code in the CorePac0 can trigger the IPC interrupt to wake up the 
secondary cores and branch up to the address specified in the 
BOOT_MAGIC_ADDRESS.

• All L1D and L1P memory is configured by the boot code as cache memory. L2 
memory, however, is configured as addressable memory.

• The RBL also provides an ability for the user to configure the DDR EMIF before 
loading the image into the external memory during the boot process using a DDR 
structure. This structure is reserved in the L2. For every section that the RBL 
reads, it verifies if the DDR enable magic word is set. If the magic word is set, 
then the DDR structure is used to initialize the DDR. The structure definition of 
the DDR varies from device to device. See the device-specific data manual for the 
DDR configuration structure.
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• The RBL uses the pin-strapped boot mode pins (available through the DEVSTAT 
register) to setup the initial configuration structure, which is called the boot 
parameter table. This table is stored in the reserved section of L2 in CorePac0. 
Even though the boot parameter table format varies based on the boot mode 
selected, there are a first few offsets that are common across all boot modes for a 
specific device. These offsets are listed in the data manual.

• The RBL uses the BOOTCOMPLETE register, which controls the 
BOOTCOMPLETE pin status, to indicate the completion of the RBL boot 
process. The BOOTCOMPLETE pin goes high when the boot complete bits in the 
BOOTCOMPLETE register for all the cores are set. The RBL sets the bits for each 
CorePac once it completes the boot process in the CorePac and just before it exits 
the process. Because of legacy implementation, the BOOTCOMPLETE bit in the 
register corresponding to the CorePac0 is set by the hardware.

2.2.2 Initialization Process After Hard Reset or Soft Reset
The hard and soft resets are initiated by the reset pin and can be configured as a hard 
reset or a soft reset. 

By default, the reset is configured to be a hard reset. If the reset is configured as a 
hard reset, it will reset all internal modules except the test logic, emulation logic, and 
the reset-isolated modules. For information on reset isolation and a list of modules that 
have this feature, see the device-specific data manual. 

If the reset is configured as a soft reset, some of the MMRs and the memory are 
preserved in addition to the modules that are not reset by the hard reset. When the reset 
is asserted, the RBL first checks if the hibernation is enabled in the power status control 
register. 

If hibernation is enabled, the boot process carries out the hibernation sequence 
mentioned in section 2.2.3 . If hibernation is not enabled, the RBL will carry out the 
initialization process mentioned in section 2.2 followed by the boot specific process. 

The only difference in this boot process compared to one triggered by the power on 
reset is that the boot configuration pins are not sampled to update the device status 
registers. In addition, the power state controller will not reset any peripherals that are 
reset-isolated in the device. See the device-specific data manual for detailed 
descriptions of the different reset types.

2.2.3 The Effect of Hibernation on the Initialization Process 
To reduce power consumption, hibernation can be used to shutdown CorePacs and 
peripherals that are not used. The RBL’s involvement in the hibernation process is 
minimal. Before shutting down the CoresPacs, the user needs to set the hibernation 
enable bit and the mode bit and the branch address offset to which CorePac0 will jump 
to execute the wake up code sequence in the power state control register. 

After a hard or soft reset, the bootloader samples the power state control register to 
verify that hibernation is enabled. If hibernation is enabled, the bootloader resets a set 
of peripherals and avoids resets to other peripherals based on the hibernation mode set. 
In KeyStone devices, there are two hibernation modes: Hibernation1 and 
Hibernation2.
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In Hibernation1 mode, the critical status values and information are stored in the 
MSMC SRAM. A chip-level register is added to control the reset MSMC parity RAM. 
Before entering Hibernation1 mode, the user must correctly configure the chip-level 
register Chip Miscellaneous Control Register so the parity SRAM will not reset when a 
hard or soft reset is triggered to exit Hibernation1. 

During this hibernation mode, only MSMC SRAM content is preserved; the MSMC 
MMR is not preserved. Therefore, the user should save the MSMC MMR to a known 
memory location inside the MSMC SRAM before entering this hibernation mode. In 
general, when Hibernation1 is enabled, CorePac0 will disable DDR self-refresh and 
branch-to-address specified in PWRSTATECTL and the other CorePacs will be in the 
IDLE state. After wake-up, the user should make sure that the PWRSTATECTL’s 
standby and hibernation fields have become 0, then branch to the boot magic address. 
The response time in the case of Hibernation1 is less than 100 ms.

In Hibernation2 mode, the critical status values and data are stored in DDR memory. 
When the hard or soft reset is triggered to exit from Hibernation2 mode, the MSMC is 
also reset. The MSMC configuration is set to the default value after reset, so only the 
lower two gigabytes of four gigabytes of space in the DDR memory will be visible. 
Therefore, the branching address for exiting Hibernation2 mode should be set at the 
lower two-gigabyte boundary, between 0x8000_0000 to 0xFFFF_FFFF. 

In general, when Hibernation2 is enabled, CorePac0 will also disable DDR self-refresh, 
reset MSMC parity, and branch-to-address specified in PWRSTATECTL. The other 
CorePacs will be in the IDLE state and after wake up will verify that PWRSTATECTL’s 
standby and hibernation fields have become 0, then branch to the boot magic address. 
The response time is less than two seconds.

Before entering hibernation mode, the user can enable or disable reset isolation for the 
SRIO. When the SRIO has reset-isolation enabled before entering hibernation, the user 
should also make the LPSC for SRIO active because packet forwarding requires the 
VBUS clock to function. When the SRIO has reset-isolation disabled before entering 
hibernation, the SRIO block must be disabled by the user. This includes stopping the 
VBUS clock and disabling the PHY layer. Stopping the VBUS clock without disabling 
the PHY layer can cause system congestion and system hang.

When the PCIe is used in EP mode, the user must put the PCIe in the L1 powerdown 
mode before it enters the hibernation mode; the PCIe power domain should be kept on 
during hibernation mode. When the device exits hibernation mode, the RC device can 
issue a reset request to all the EP points to bring the PCIe endpoint alive.

To avoid resetting the DDR during hard reset, reset-isolation is provided for the DDR. 
The boot code enables the DDR reset-isolation by default and the user has the option 
to turn off the reset isolation-feature if it is not needed. (See the Power Sleep Controller 
(PSC) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas 
Instruments’’ on page ø-viii for information on disabling the reset-isolation for 
DDR3.) Because the DDR contents are preserved, the PLL for the DDR3 EMIF must 
stay locked and the DDR PHY must be active to preserve the DDR3 content. This 
avoids full calibration when resuming the normal operation -- full calibration can 
corrupt the DDR3 content. In summary, the DDR is alive during both hibernation 
modes and the DDR3 can be put into self-refresh mode to save power.
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The MSMC on this device does not support the PSC disable interface. Therefore, the 
MSMC cannot detect the status of the DDR3 EMIF when the DDR3 EMIF is disabled 
or enabled by the PSC. Because accesses to a disabled DDR3 EMIF would hang the 
device, the user can tie off the PSC control to DDR_EMIF to enable it on the chip level 
(always on). This linking of the PSC control plus the reset-isolation of DDR EMIF make 
it impossible to reset the EMIF controller independently of the rest of the chip. 
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Boot Modes

Because the ROM boot loader (RBL) supports many boot modes, a set of 
general-purpose pins is used to select a specific boot mode and also provide a minimal 
configuration for the specified boot mode. 

The values on these pins are then latched into a register in boot-configuration space 
called the Device Status Register (DEVSTAT) as the CorePac comes out of reset. The 
number of pins used for this configuration and their definitions vary with the devices. 
See the device-specific data manual for more information on these boot configuration 
pins.

 3.1 "Boot Processes" on page 3-2
 3.2 "Boot Configuration Format" on page 3-4
 3.3 "EMIF16 Bootloader Operation" on page 3-6
 3.4 "SRIO Bootloader Operation" on page 3-7
 3.5 "Ethernet Bootloader Operation" on page 3-8
 3.6 "PCI Express (PCIe) Bootloader Operation" on page 3-12
 3.7 "I2C Bootloader Operation" on page 3-13
 3.8 "SPI Bootloader Operation" on page 3-16
 3.9 "HyperLink Bootloader Operation" on page 3-17

 3.10 "UART Bootloader Operation" on page 3-18
 3.11 "NAND Bootloader Operation" on page 3-19
 3.12 "Boot Scenarios" on page 3-21
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3.1 Boot Processes
A factor that affects the boot process is the location of the boot image. Even though the 
boot process is unique to each boot mode, it can be broadly classified based on the 
location of the boot image. Based on this classification, the boot process falls into three 
categories:

• The ROM boot loader (RBL) loads the image from a secondary storage (memory 
boot).

• The image is loaded from a host that knows the memory map of the boot device.
• The image is loaded from a host that does not know the memory map of the boot 

device.

Within each of these possible boot flows, the boot process can be further divided into 
three sections for each of the unique boot modes:

• The initialization process, in which the RBL does a specific initialization routine 
based on the boot mode selected.

• The image loading process, in which the image loading into the device is directed 
by the peripheral protocol used for the specific boot mode.

• The hand-over process, in which the RBL handles the completion of the boot 
process and starts the boot image execution.

While rest of this section covers the boot process based on the boot image location, the 
remainder of this chapter will discuss the individual boot mode operations.

3.1.1 Boot Process in Memory Boot Modes
In the memory boot modes, the RBL controls the image download process for the boot 
device. The boot image should be translated into the format that the RBL can 
understand. In case of the memory boot modes, the boot image is converted to a boot 
table (see Chapter 3 ‘‘Boot Table’’ on page 3-4). The boot table is read from the 
secondary storage by the RBL and placed in the appropriate memory locations within 
the device. Once the RBL completes the image download process, it moves the program 
counter to the c_int00 address captured in the boot table and starts executing the boot 
image.

3.1.2 Boot Process in Host Boot Mode with Memory Map Knowledge of Boot Device
In the host boot mode, the ROM Boot Loader (RBL) waits for the host to load the 
image. For the boot modes in which the host knows the memory map of the boot 
device, the primary core (CorePac0) is in an IDLE wait mode and the host transfers the 
image into different memory locations of the device. Once the host completes 
the image loading process, it needs to provide the c_int00 address to the RBL to 
start the image execution. To do this, the RBL provides a reserved address area in the 
L2 where the host can write the c_int00 address. This reserved memory is called the 
boot magic address and the address of this location depends on the device. Check the 
device-specific data manual for the boot magic address. 

Once the host updates the boot magic address, it hands over control to the RBL by 
waking CorePac0. The RBL starts again, checks the boot magic address, and jumps the 
program counter to the specified address and starts the image execution.
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3.1.3 Boot Process in Host Boot Mode without the Knowledge of Memory Map
In the case of the host boot mode in which the host has no knowledge of the memory 
map of the boot device, the loading of the image into the device depends the ability of 
the RBL to decode the data sent by the host. In this case, the image should be translated 
into the boot table. Transferring this boot table image into the device depends on a 
specific boot mode. But once this boot image reaches the device, the RBL decodes the 
boot table and loads the image into the specific memory locations. Once the RBL 
completes downloading the images into the device, it moves the program counter to the 
c_int00 address captured in the boot table and starts executing the boot image.
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3.2 Boot Configuration Format
The RBL uses a set of tables to carry out the boot process. Before considering the 
individual boot modes, it is necessary to understand these different types of tables. 
There are three types of tables used by the RBL:

• Boot parameter table
• Boot table
• Boot configuration table

3.2.1 Boot Parameter Table
The boot parameter table is the most common format the RBL employs to determine 
the boot flow. Boot parameter tables have a first few parameters in the table common 
across all the boot modes while the rest of the table format is dependant on the boot 
mode selected. See the device-specific data manual for the boot parameter table format 
for different boot modes. The RBL copies a default boot parameter table for each boot 
mode into the reserved L2 section of CorePac0 and modifies the default values based 
on the boot configuration selected through the bootstrap pins. This table forms the 
maps for the RBL to execute the boot process.

3.2.2 Boot Table
The image to be loaded into the device is converted to a format recognizable by the 
RBL. This format is called the boot table. Code and data sections are inserted into the 
boot table automatically by the hex conversion utility. The hex conversion utility uses 
information embedded by the linker in the application file to determine the destination 
address and length for each section. Adding these sections to the boot table requires no 
special intervention by the user. The hex conversion utility adds all initialized sections 
in the application to the boot table. The remaining information included in this section 
describes the format of the sections in the boot table.

Each section is added to the boot table in the same format. The first entry is a 32-bit 
count representing the length of the section in bytes. The next entry is a 32-bit 
destination address, where the first byte of the section is copied.

The RBL continues to read and copy these sections until it encounters a section whose 
byte count is 0. This indicates the end of the boot table. Then, the bootloader branches 
to the entry point address (specified at the beginning of the boot table) and begins 
executing the application.

The boot table format is as follows:
• 32-bit header record indicating where the bootloader should branch after it has 

completed copying the data
• For each initialized section:

– 32-bit section byte count
– 32-bit section address (destination address for the copy)
– The data to be copied

• A 32-bit termination record (0x00000000)
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3.2.3 Boot Configuration Table
A boot configuration table is used if certain peripherals must be programmed with 
values that differ from their reset values before loading an application. For example, if 
the application needs to be loaded into DDR memory, the boot configuration table can 
be used to program the DDR registers and enable the DDR peripheral before loading 
the application code into DDR. 

Each table entry in the boot configuration table has three elements:
• The address to be modified
• The set mask
• The clear mask

The RBL reads the specified address, then sets any bits that are set in the set mask 
element and clears any bits that are set in the clear mask element. If both the set and 
clear mask elements are 0, the value in the address field is branched via a standard call 
with the return address stored in register B3. The boot configuration table is terminated 
when all three elements are 0.

3.2.4 Utilities Used to Generate Different Tables
Utilities used to generate different table formats are listed below:

• Hex6x is used to convert the application code into a boot table format.
• Romparse is used to append the boot parameter to a boot table or a boot 

configuration table. 
• Bootconvert6x is used to convert the boot table derived from a little endian 

application code to a big endian format. This is required as the RBL assumes all 
the images to be in big endian mode.

• B2i2c is used to convert the boot table into a i2c/spi format table. This table can 
be loaded into an EEPROM that is connected through I2C to the device.

• Bootpacket is used to break the boot table into packets that can be sent from the 
host to the device booted in Ethernet boot mode.

• Pcsendpkt is used to help the host send the packets generated by bootpacket to 
the boot device.
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3.3 EMIF16 Bootloader Operation
3.3.1 ROM Bootloader (RBL) Initialization Process

In this mode, the RBL does not do much during the initialization process. The RBL just 
configures the EMIF16 interface based on the configuration parameters specified in the 
boot parameter table for the EMIF16 boot mode. The boot parameter structure 
definition for the EMIF16 boot mode and the parts of this table that can be configured 
by the bootstrap pins are detailed in the device-specific data manual.

3.3.2 RBL Loading Process
During this process, the RBL just sets the program counter to the base address of the 
EMIF chip select that is specified through the boot strap pins. See the device-specific 
data manual to get the base address of the CS2 data memory. No return is expected. The 
RBL also does not reserve any memory in L2. The image will be stored in the flash and 
so no image transfer occurs during this boot mode.

3.3.3 RBL Hand Over Process
For this boot mode, there is no additional hand-over process that occurs.
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3.4 SRIO Bootloader Operation
3.4.1 RBL Initialization Process

In this boot mode, the RBL configures the SRIO to operate in both DirectIO and 
messaging mode. Before configuring the SRIO, the SerDes should be configured. The 
RBL initializes the PLL and the receive and the transmit channel registers. After 
configuring the SerDes and the SRIO for message and directIO mode, the boot code 
initializes the QMSS to configure transmit and receive queues. The boot code allocates 
a 32KB block of local L2 memory on CorePac0 for packet reception. This is divided into 
seven buffers of 4096 bytes each, with the remainder for the packet descriptors. The 
RBL also configures the SRIO in promiscuous mode and the queue manager subsystem 
to route all the messages received in message mode to the internal scratch memory for 
CorePac0. The RBL also configures the SRIO port and lanes based on the boot 
parameter values for the SRIO boot mode. 

3.4.2 RBL Loading Process
The loading process differs based on which SRIO mode is used by the host. If the 
directIO mode is used, the loading process follows the steps detailed in section 3.1.2  
on page 3-2. In this scenario, the RBL will be constantly polling the boot magic address. 

If the host uses the messaging mode, then the loading process follows the steps detailed 
in section 3.1.3  on page 3-3. The host is responsible for breaking the image into SRIO 
packets and generating messages destined for the boot device. Because the device is 
configured to route all the messages received to CorePac0, the packets are sent to 
CorePac0, where the RBL decodes the boot table content and retrieves the code to be 
placed in appropriate memory locations within the boot device. The boot messages are 
simply a segmented boot table prepended with the header shown in Table 3-1. The 
application that is loading the message from the host device should be responsible for 
packaging the message packets with the header before sending them to the device. Also, 
because reset isolation is enabled by default by the RBL, the application code should 
disable the reset isolation.

Because there is no provision in messaging mode for handling the messaging output, 
the host application should provide a delay between message transmissions to avoid an 
out-of-order message scenario.

3.4.3 RBL Hand-Over Process
The hand-over process also differs based on what SRIO mode is used by the host. If the 
directIO mode is used, the RBL will keep polling until the boot magic address becomes 
a non-zero value. Once the boot magic address becomes a non-zero value, the RBL 
changes the program counter and starts executing the boot image.

In the messaging mode, once the last block of image is received by the RBL, it changes 
the program counter to the c_int00 address and starts the boot image execution. After 
the boot table processing is complete, the boot code resets the queue manager, sets the 
boot complete bit, and branches to the address specified by the boot table. The 
interrupt maps are restored to their default values.

Table 3-1 SRIO Message Mode Boot Header

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

block Size = size of packet plus four byte header

Block Checksum one’s complement

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


3.5 Ethernet Bootloader Operation

3-8 KeyStone Architecture DSP Bootloader User Guide SPRUGY5C—July 2013
Submit Documentation Feedback 

Chapter 3—Boot Modes www.ti.com

3.5 Ethernet Bootloader Operation
3.5.1 RBL Initialization Process

When the device is set to boot through the Ethernet mode, the RBL configures SerDes, 
SGMII, and the switch plus the PASS and the Multicore Navigator (Packet DMA and 
the QMSS) (if it is available in the device). These initial configurations are determined 
by querying the boot mode pins of the DEVSTAT register and the boot parameter table 
for the Ethernet boot. The PHY is not initialized by the RBL and it is the responsibility 
of the host to initialize the ethernet PHY.

Based on the boot mode selected, the PA subsystem can be driven by either the main 
PLL reference clock or by the SerDes reference clock. If the main PLL reference clock 
is used, the PA multiplier configuration can be determined from the three PLL 
selection bits in the DEVSTAT register and the input clock, which is specified in the 
device-specific data manual. If the PA reference clock is used, the PA PLL clock 
configuration is selected based on the boot configuration value set through the 
bootstrap pins. See the device-specific data manual for the boot configuration 
definition. 

The external connection from the DSP to the host is selected through the device 
configuration bits in the boot mode pins of the DEVSTAT register. Not all KeyStone 
devices have a PA subsystem. In this case, only the SerDes reference clock is used to 
drive the Ethernet subsystem.

3.5.2 RBL Loading Process
Once the RBL initializes the peripherals to be used, it sends an Ethernet-ready packet 
to notify the host of the MAC address of the device. The structure of the Ethernet-ready 
packet is explained in section 3.5.2.1 . The host can use this to create packets of the 
boot table image and send to the boot device. The boot table packet format is explain 
in section 3.5.2.2 .

3.5.2.1 Ethernet-Ready Announcement Format
The Ethernet-ready announcement frame is made in the form of a BOOTP request so 
it can use a standard format. No response is processed for this message and it is 
constructed so that most—if not all—BOOTP and DHCP servers will discard it. The 
announcement frame is sent every three seconds (the time interval between the packets 
varies with the clock input); no retransmission is done.

The frame uses the DIX MAC Header format. The MAC header contains:
• Destination MAC address = H-MAC addr (from boot parameters, normally 

FF:FF:FF:FF:FF:FF)
• Source MAC address = this device’s MAC addr (from boot parameters)
• Type = IPV4 (0x800)

The IPV4 header contains:
• Version = 4
• Header length = 0
• TOS = 0
• Len = 328 (300 BOOTP + 8 UDP + 20 IP)
• ID = 0x0001
• Flags + Fragment offset = 0
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• TTL = 0x10
• Protocol = UDP (17)
• Header checksum = 0xA9A5
• SRC IP = 0.0.0.0
• DEST IP = 0.0.0.0

The UDP header contains:
• Source port = BOOTP client (68 decimal)
• Destination port = BOOTP server (67 decimal). 
• Length = 308 (300 BOOTP + 8 UDP)
• Checksum = 0 (not calculated)

The BOOTP payload contains:
• Opcode = Request (1)
• HW Type = Ethernet (1)
• HW Addr Len = 6
• Hop Count = 0
• Transaction ID = 0x12345678
• Number of seconds = 1
• Client IP = 0.0.0.0
• Your IP = 0.0.0.0
• Server IP = 0.0.0.0
• Gateway IP = 0.0.0.0
• Client HW Addr = this device's MAC address 
• Server hostname = ti-boot-table-svr
• Filename = ti-boot-table-XXXX (where XXXX is the four-character device ID 

from boot parameters)
• Vendor info = all 0s
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3.5.2.2 Ethernet Boot Image Packet Format
The boot table format is encapsulated in Ethernet frames with IPV4 and UDP 
headers. The following paragraphs describe the Ethernet frames that are accepted. 
Frames not matching the specified criteria are silently discarded and subsequent frames 
processed.

Frames using both DIX and 802.3 MAC header formats are accepted as are frames with 
and without VLAN tags. Any source MAC address is acceptable. A destination MAC 
address of this device (as specified in boot parameters) or the M-MAC specified in the 
boot parameters are accepted. VLAN fields (other than type/len) are ignored. If 802.3 
format MAC format is used, the SNAP/LLC header will be verified and skipped. The 
type field will select IPV4 type (0x0800). 

The IPV4 header validates the Version (4), flag and fragment fields, and protocol 
(UDP) field. The header length field is parsed to skip header option words. Any source 
and destination IP addresses are accepted.

The UDP header verifies that the source and destination port numbers match those 
specified in the boot parameters. If the boot parameter source port field is 0, any source 
port will be accepted. The UDP header length is sanity-tested against the adjusted 
frame length. If the UDP length is too long for the frame or is not a multiple of two, 
the frame is discarded. The UDP checksum is verified and the frame with incorrect 
UDP checksum is discarded if the UDP checksum field is non-zero.

The following checks are performed on the boot table frame header:
• The magic number field and opcode fields are compared to the expected values. 
• The sequence number field is compared to the expected value. The expected value 

of the sequence number is 0 for the first frame processed and increments by 1 for 
each processed frame.

The boot table frame payload (which is a multiple of four bytes in length) is processed 
by the boot-table processing function.

Table 3-2 Ether Boot Packet Format

Ethernet Header, One of The Following Types:

DIX Ethernet (DMAC, SMAC, type: 14 bytes)
802.3 w/ SNAP/LLC (DMAC, SMAC, len, LLC, SNAP: : 22 bytes)
DIX Ethernet w/ VLAN (18 bytes)
802.3 w/ VLAN and SNAP/LLC (26 bytes)

IPV4 (20 to 84 bytes)
UDP (8 bytes)

Boot Table Frame Header (4 bytes)
Boot Table Frame Payload (min 4 bytes, max limited by max Ethernet frame - previous headers)

Table 3-3 Boot Table Frame Header

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Boot Magic Number = 0x544b

Opcode = 0x01 Sequence number
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3.5.3 RBL Hand Over Process
Once the RBL receives the valid packet, it decodes it to get the image sections and loads 
them in the appropriate memory location. After the image is loaded, the RBL changes 
the program counter to the c_int00 address and starts the boot image execution.
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3.6 PCI Express (PCIe) Bootloader Operation
3.6.1 RBL Initialization Process

In the PCIe boot mode, the RBL configures the BAR registers, the number of windows, 
and their sizes to provide memory access to the host. The different BAR configurations 
that are initialized are shown in the device-specific data manual. The RBL also 
configures the SerDes from information it obtains from the boot parameter table. The 
RBL also configures the interrupt subsystem by configuring the chip-level interrupt 
controller, then executes the IDLE instruction (MSI or legacy interrupts can be used). 

3.6.2 RBL Loading Process
Once the host initiates the link with the boot device, it should load all sections of the 
boot image. The host is also responsible for updating the boot magic address of 
CorePac0.

3.6.3 RBL Hand-Over Process
In this boot mode, CorePac0 is executing an IDLE until the PCIe interrupt wakes it. 
This interrupt can be an MSI interrupt or a legacy interrupt. Once CorePac0 comes out 
of IDLE, the RBL reads the boot magic address and modifies the program counter to 
start executing the boot image.
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3.7 I2C Bootloader Operation
3.7.1 RBL Initialization Process

In the I2C boot mode, the RBL configures the I2C peripheral. Because the data is 
transferred using I2C from EEPROM, the interrupt subsystem and the EDMA are not 
enabled. A seven-bit address mode and an eight-bit data mode is the only supported 
transfer configuration.

I2C can operate either in master mode or in slave mode. In the master mode, the 
DSP drives the I2C slave device where the image is stored. In the slave mode, the DSP 
is driven by an I2C master device. The master device is usually another KeyStone device 
or a FPGA. The boot configuration options in the DEVSTAT register are used to select 
the master/slave mode. The RBL bypasses the PLL and runs the CorePacs at the 
reference clock frequency and also configures the I2C bus at the lower rate to start with. 

The EEPROM is traditionally partitioned into pages and each page into blocks of 
128 bytes, with each block numbered. The user is capable of loading the image at any 
block and provides the offset of the block through the boot configuration values. In 
addition, the user also has a provision to provide the speed of the I2C bus in the boot 
configuration values. A detailed summary of the I2C boot parameter table and the 
boot configuration definitions are listed in the device-specific data manual.

3.7.2 RBL Loading Process
In this boot mode, the RBL provides the user with the maximum control over the boot 
process. The loading process in this boot mode is more than just loading the image. The 
RBL also provides an option for the user to provide an entire boot parameter table, 
thereby controlling the configuration of the boot process. Based on the different 
options available to the user, the loading process in this boot mode can vary.

3.7.2.1 Loading a Boot Image From EEPROM Flash
In this mode, the I2C is configured as master. The first block (identified in the boot 
configuration) will contain the boot parameter table for I2C specifying the correct 
PLL configurations for the CorePacs. The user is also given a provision in the boot 
parameter table to provide the starting page of the boot image, block of the boot image, 
speed of the I2C bus, and the type of table that is available in the next block that the RBL 
is going to read. The RBL reads the first block, which is a boot parameter table and uses 
the information to reconfigure the device. Then the RBL gets the block and page 
information for obtaining the boot image and starts reading block by block. After each 
block, the RBL decodes the boot table and loads the image in appropriate memory 
locations.

3.7.2.2 Loading a Boot Image After Register Configuration
In this boot mode, the RBL also provides an option for the user to initialize registers 
before loading the image. The most common use case for this scenario is configuring 
the DDR controller before loading the image into DDR memory. In this case, the boot 
parameter table will have the type as boot config table. The boot parameter table also 
mentions where the next block to be read by RBL is located. This next block can be 
either a boot parameter table or can be a boot table. The user will be setting the I2C in 
master mode. 
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The boot config table format is explained in the Chapter 2. Each element in the table 
has three 32-bit fields, as shown in Table 3-4.

Table 3-5 shows an example boot configuration. Each of these entries in the table can 
be a standard entry, branch entry, or termination entry.

A standard entry has address  0, and set mask or clear mask  0. The ROM code reads 
the 32-bit value at the address, modifies the value as shown in Table 3-6 on a bit-by-bit 
basis, and writes the value back.

A branch entry has address  0, set mask = 0, clear mask = 0. The boot ROM makes a 
function call to the address. On return (if there is one), the table processing continues.

The table termination field has address, set mask, and clear mask all set to 0. When this 
entry is found, the boot ROM modifies the current active boot parameter table. The 
boot mode is changed to I2C master boot parameter table mode, the address is changed 
to the current next address value, and the boot is rerun.

Table 3-4 Config Table Layout

Entry 0 Address

Set Mask

Clear Mask

Entry 1 Address

Set Mask

Clear Mask

…

Entry N, Table Termination Address = 0

Set Mask = 0

Clear Mask = 0

Table 3-5 Boot Config Table Format

Offset Data Operation

0x0

0x4

0x8

0x0093001C

0xFFFF0000

0x0000FFFF

Set 16 bits MSBs and clear 16 LSBs at address 0x0093001C

0xC

0x10

0x14

0x00000000

0x00000000

0x00000000

Termination

Table 3-6 Standard Boot Config Table Options

Set Mask Bit Clear Mask Bit Operation

0 0 Bit value is unchanged

1 0 Bit value is set

0 1 Bit value is cleared

1 1 Bit value is toggled
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3.7.2.3 Loading a Boot Parameter Table
In this boot mode, the RBL provides the option to load only a boot parameter table. 
This option is useful if the user wants to load a new boot parameter table for booting in 
a different boot mode. The user will be setting the I2C to master mode.

3.7.2.4 Loading Image Into a Slave Device
The RBL also provides the option to set the I2C to slave mode and connect to a master 
device, which can then send the image to the boot device. The default slave address is 
set to the value specified in the boot configuration in the DEVSTAT register plus slave 
address. 

Also, the I2C bus on the master must run the bus at a speed that does not exceed the 
speed that the boot code is able to handle (100 kHz, minimum). A small delay is 
required between the blocks. The I2C master also needs to send six data bytes to the 
slave device before sending the boot table. 

The header format should be in the following format:
TTxx xx yy yy zz zz 
(for Receive I2C address value in the device configuration of 0x0)

Where:
TT= the slave address (part of the I2C command word not included in the data 
block) for the DSP in slave I2C boot mode. See the data manual for the slave 
address.
xx xx = length
yy yy = checksum
zz zz = boot option

3.7.3 RBL Hand-Over Process
In scenarios in which the I2C is set to master mode, the RBL will change the program 
counter to the c_int00 address and start to execute the image when the RBL completes 
reading the entire boot image from the EEPROM. 

In slave mode scenarios, the master will be sending the blocks that are then read by the 
slave, and once the slave device encounters the end of image, it changes the program 
counter to the c_int00 address and starts the execution of the boot image.
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3.8 SPI Bootloader Operation
3.8.1 RBL Initialization Process

In the SPI boot mode, the RBL initializes only the SPI peripheral. Similar to the I2C boot 
mode, in the SPI boot mode, the interrupt subsystem and the EDMA are not enabled. 
The image is read from the NOR flash. The RBL also bypasses the PLL and runs the 
CorePacs at the reference clock frequency. The flash connected is also divided in to 
blocks of 128 bytes and the starting block to be read can be provided by the user 
through the DEVSTAT register. A detailed summary of the SPI boot parameter table 
and the boot configuration definitions are listed in the device-specific data manual. 

3.8.2 RBL Loading Process
The SPI boot loading process is similar to the loading process explained in section 
3.7.2.1 except that the image is read from a NOR flash. All the other loading processes 
that are detailed for I2C master mode work for the SPI boot mode, too. 

3.8.3 RBL Hand-Over Process
In this boot mode, the RBL changes the program counter to the c_int00 address and 
starts to execute the image when the RBL completes reading the entire boot image from 
the NOR flash.
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3.9 HyperLink Bootloader Operation
3.9.1 RBL Initialization Process

In the HyperLink boot mode, the RBL configures the SerDes lanes to achieve the 
ultra-short-range (HyperLink) connection. The SerDes clock configurations are 
provided by the user through the boot configuration fields in the DEVSTAT register. 
The definition of the boot configuration fields and PCIe boot parameter table are 
available in the device-specific data manual.The RBL also initializes the chip-level 
interrupt controller to interrupt the DSP after the boot. After setting up the interrupt 
configuration, the RBL executes an idle instruction in CorePac0.

3.9.2 RBL Loading Process
Similar to the PCIe boot mode, the RBL has no role in transferring the boot image into 
the device. The host is responsible to load the code in the appropriate memory location 
and also populate the boot magic address with the c_int00 address. The host must also 
interrupt CorePac0 and bring it out of IDLE. 

3.9.3 RBL Hand-Over Process
Once CorePac0 comes out of IDLE, the RBL changes the program counter to the 
address specified in the boot magic address and starts the image execution.
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3.10 UART Bootloader Operation
3.10.1 RBL Initialization Process

In the UART boot mode, the UART module is the only peripheral configured. The 
baud rate, data, parity, and stop bits are configured based on the information in the 
UART boot parameter table. The boot parameter table definitions and the boot 
configuration values that can be configured through the bootstrap pins are in the 
device-specific data manual. Once the RBL configures the UART, it sends the UART 
pings for few seconds, which can be seen in the host. The UART boot mode supports 
only the CRC mode of xmodem and does not support checksum mode.

3.10.2 RBL Loading Process
The boot image to be loaded should be in the boot table format. Before the ping from 
the device stops, load the boot table from the host using the XMODEM protocol. Once 
the RBL starts receiving the table, it will decode the boot table load the image in 
appropriate memory locations.

3.10.3 RBL Hand-Over Process
When the entire image is loaded, the RBL loads the program counter with the c_int00 
address and starts the execution of the boot image. 

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?


3.11 NAND Bootloader Operation

SPRUGY5C—July 2013 KeyStone Architecture DSP Bootloader User Guide 3-19
Submit Documentation Feedback 

Chapter 3—Boot Modeswww.ti.com

3.11 NAND Bootloader Operation
3.11.1 RBL Initialization Process

In this boot mode, the boot image is stored in the NAND flash that is connected to the 
EMIF16 peripheral. The RBL configures the EMIF16 and then tries to read the 
geometry of the device. This includes:

• 8-bit or 16-bit data width
• Page size
• Number of pages per block
• Number of address cycles

Because the NAND market moves at such a fast rate, all devices may not be compatible. 
At run time, the RBL will attempt to check for compatibility with the NAND. The RBL 
also supports a 4b ECC. The structure of the ECC is stored in the EMIF16 hardware 
ECC block and the format depends on the EMIF16 hardware design.

The RBL will first check for ONFI compliance. Most ONFI-compliant devices should 
be supported. A read ID command will be issued to address 0x20 and four bytes will be 
read. If the four bytes match the word 0x49464E4F (ASCII for ONFI), the RBL will 
attempt to read the ONFI parameter page for the device geometry.

After which, the RBL will request four bytes of identifier code from the NAND by 
issuing a read ID command to address 0x00. The first and second bytes are the 
manufacture ID and device ID, respectively, and the fourth byte has information on the 
NAND parameters. If the device was found not to be ONFI-compliant, the RBL will try 
the following to determine geometry:

• Compare device ID with IDs and their parameters stored in ROM. It is impossible 
to have all devices listed in the table, and some devices may share IDs. If the ID is 
matched, the configuration is used and the next step is skipped.

• Read fourth byte data. This happens when the RBL finds no match with the device 
ID. The RBL will assume an 8-bit data bus width and check the device 
Manufacture ID to indicate Samsung format or Common format when reading 
the fourth byte parameters for NAND geometry. If non-Samsung, the RBL will be 
able to change the width to 16-bit, if necessary. Unfortunately, Samsung devices 
will remain in 8-bit mode.

The user can also use an I2C NAND configuration structure to provide the NAND 
geometry. Each word is read from the EEPROM in big-endian format regardless of the 
endianess of the device. The I2C NAND configuration structure definitions are 
explained in the device-specific data manual. The I2C NAND mode is supported only 
in selected devices. See the data manual for details.

3.11.2 RBL loading Process
The boot image to be loaded should be in the boot table format. The RBL will first check 
the first block set in the device configuration bits for bad block error. The RBL checks 
the Out Of Band (OoB) region’s first six bytes of page 0 and page 1 of each block. If the 
bytes are all set to 0xFF, then the RBL knows that the block is good and starts reading 
the block and loading the sections to the appropriate memory locations. It is up to the 
user to make sure that all the bad blocks are marked for ONFI spec and RBL. 
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3.11.3 RBL Hand-Over Process
After the entire image is loaded into the device, the RBL will update the program 
counter with the c_int00 address and starts the boot image execution. 
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3.12 Boot Scenarios
This section details the some of the most common boot scenarios in KeyStone devices. 

3.12.1 Booting a Simple Image Through I2C
In this case, the application to be executed is assumed to reside entirely in the internal 
memory of the KeyStone device. In this case the user will load the image into the 
EEPROM flash and the KeyStone device will be set to boot in I2C master mode. As 
discussed in section 3.7 , during the I2C master boot, the RBL configures the device in 
the lowest possible configuration. 

The first step for the user will be to configure the device in the desired operating 
condition. So the parameter index offset that will be set during the boot configuration 
should point to the block that carries the boot parameter table that can configure the 
device to the desired operating conditions. The boot parameter table should have the 
information for the PLL configuration, bus speed, core frequency, the table type for the 
next block to be read, and also the offset for the start of the next block. In this boot 
scenario, the next table type will be a boot table containing the application to be 
executed on the device. 

Both the boot parameter table and the boot table must be loaded in corresponding 
blocks in the EEPROM. Before loading, the application to be executed needs to be 
converted to a boot table format. The hex6x utility, available through the code 
generation tools for the KeyStone device, will help the user to convert the boot image 
into a boot table format. The hex6x utility divides the boot image into blocks containing 
the initialized section and also arranges these blocks in the ascending order of the 
memory map of these sections. In other words, the section to be stored in L2 memory 
will be arranged first before a section that is destined for MSMC and so on. For further 
information on the hex6x utility, see the assembler user guide.

The hex6x utility also provides a way for the user to make the application 
endian-agnostic. This is particularly important when the device is set in little endian 
mode. The RBL always assumes that the application to be loaded is in a big endian 
format. Making the boot table endian-agnostic helps loading the application in the 
correct byte order. Because all the KeyStone devices currently available are 32-bit 
devices, hex6x can preserve the byte order only if the sections are 32-bit-aligned. If the 
user’s application contains sections that are not 32-bit-aligned, then the boot table 
derived should be passed through the bconver64x utility to place these sections in 
correct byte order. 

The bconvert64x utility is provided to the user through the Multi Core Software 
Development Kit (MCSDK). The output of the bconvert64x utility should then be 
converted to blocks of 0x80 bytes (with each block is mapped to a parameter index) by 
the b2i2c utility. The b2i2c utility also adds the length and checksum for each of these 
blocks.

At this stage, the user should use some I2C writer to load this final boot table into the 
EEPROM to the appropriate index. Then the user should load the boot parameter table 
with the correct device configuration and the address offset pointing to the parameter 
index where the boot table is loaded. If the user uses CCS and loads the EEPROM 
through the device, then the boot table needs to be converted into a CCS dat file using 
the b2ccs utility. The romparse utility combines the boot table and the boot parameter 
table to ease the effort of loading the image into EEPROM. 
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The b2i2c, b2ccs, and romparse utilities are available through the MCSDK.

The sequence of steps to convert the boot application into the image and combine the 
image with an initial boot parameter table is listed below:

• The application is converted to boot table using the hex6x utility.
• The boot table is then reformatted to align at a 32 bit boundary using the 

bconvert64x utility.
• The byte-aligned boot table is then divided into 0x80 byte blocks and appended 

with length and checksum to adhere to the format required by the RBL by passing 
through the b2i2c utility.

• Optionally, the I2C boot table image obtained as the output of the b2i2c utility can 
be converted to a ccs dat file by passing it through the b2ccs utility.

• The boot image can also be combined with the initial boot parameter table using 
the romparse utility.

After the application boot table and the boot parameter tables are loaded, the user 
should then set the boot configuration pins to boot the device in I2C master boot mode 
and also set the parameter index to the block containing the boot parameter table. The 
boot configuration information is available in the device-specific data manual. 

During the boot process, the RBL decodes the boot configuration setup latched in the 
DEVSTAT register and starts reading the boot parameter table. Then the RBL uses the 
boot parameter table to initialize the device in the desired operating condition. The 
RBL also identifies that the next block to be read and also the type of that block to be a 
boot table. The RBL reads one block at a time and decodes the table to extract the 
different memory sections and load them appropriately. As explained in Chapter 2, the 
boot table also contains the information about the start address of the application. After 
loading all the sections, the RBL extracts the start address and jumps the CorePac0 
program counter to that address and starts running the application.

3.12.2 Booting an Image From I2C Into an External DDR Memory Using Boot Config Table
While in the previous boot case scenario, the image is assumed to be residing in the 
internal memory, in this boot scenario, the boot application is assumed to have some 
or all sections in the external memory. The RBL does not initialize the DDR EMIF 
controller as it depends on the DDR RAM connected. However, the RBL provides 
several methods to configure the controller before loading the application. 

One way to do this is to use the boot config table to initialize the controller.

In this case, the boot parameter table that is loaded in the beginning will be pointing to 
the block that contains the boot config table. The boot parameter table will also be 
modified to note that the next table type is the boot config table. The boot config table 
will have the set of registers needed to be configured for initializing the EMIF 
controller. For the format of the boot config table, see Chapter 2. 

While in the previous boot case scenario, the boot ends with the loading of boot table, 
in this scenario, the boot process needs to continue after configuring the controller 
registers. The boot parameter table also provides the next block address where the real 
boot table is located. In this scenario, the boot table and the modified boot parameter 
table can be loaded into the EEPROM in the same way as in the previous scenario. But 
the boot config table should be combined to the above image manually.
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After the complete image is loaded, the user can set the boot configuration exactly as in 
the previous boot scenario. After the power on reset, the RBL will load the boot 
parameter table from the parameter index specified in the boot configuration. After 
configuring the device to desired operating condition, the RBL will jump to the block 
containing the boot config table and start decoding the values to be configured in each 
of the registers. 

Once the configurations are complete, the RBL will derive the next block to proceed 
with the boot process. From this point, the RBL follows the same procedure to load the 
boot table into different memory locations and start executing the application.

3.12.3 Booting an Image From I2C Into an External DDR Memory Using DDR EMIF Table
Another way to initialize the DDR EMIF controller is to use the DDR EMIF table 
provided by the RBL. The table varies from one device to another. See the 
device-specific data manual for the structure of this table for a particular KeyStone part. 
The RBL uses the fact that the boot tables are arranged in the ascending order of the 
memory location of the different section. The DDR EMIF table resides in the L2 of the 
CorePac0. The exact address of this location is shown in the device-specific data 
manual as well. 

The user should embed this table into their application and hard code the location to 
the specified L2 address for that specific device. The structure of the table contains a set 
of magic addresses that are monitored by the RBL after every block read. If these magic 
registers are non-zero, the RBL stops the boot process and uses the structure value in 
the specified address and configures the DDR EMIF controller. After completing the 
configuration, the RBL continues its boot process of loading the application section 
from the EEPROM into different memory locations. Once all the sections are loaded, 
the RBL will modify the program counter of CorePac0 to the start address and start the 
execution of the user application.

3.12.4 Booting Multiple CorePacs in The Device From I2C
Up to this point, all the boot scenarios assumed that only CorePac0 is brought out of 
boot. In all the above cases, the other cores in the device are simply running IDLE and 
waiting for wakeup by CorePac0. From the RBL point of view, CorePac0 is considered 
to be the primary boot CorePac and the other CorePacs in the device are considered to 
be secondary. 

This boot scenario assumes that the user application that will be loaded into the device 
will be executed in all CorePacs. This boot scenario further assumes that the same 
application is loaded in all the CorePacs and the program resides completely in the 
shared L2 memory and the external DDR memory. This assumption has one copy of 
the application for all CorePacs. 

The application is created in the same way as in the previous boot scenarios. The 
process of loading the boot image and also the DDR EMIF controller are similar to the 
previous boot scenarios. In addition, the user will handle the loading of different 
sections of the code that need to be executed in different CorePacs. The assumption is 
that the user designed an application using the Corenum Register, which will be 
populated with the CorePac number of the executing core.
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The user should always provide the logic to populate the boot magic address of the 
secondary CorePacs and also wake up the secondary CorePacs by triggering an IPC 
interrupt for each of the secondary CorePacs. These portions will be executed only by 
CorePac0.

Once the RBL has initialized the DDR controller and loaded the application 
successfully, the RBL running in CorePac0 will modify the program counter of 
CorePac0 to the start of the application and start executing the application. CorePac0 
will, in turn, run the portion of the code to be run only for CorePac0 and set the boot 
magic address on the secondary CorePacs and then wake up the secondary CorePacs 
by setting the IPC interrupts for the other CorePacs.

3.12.5 Booting a Simple Image Through an Ethernet Boot
This boot scenario details the steps to boot an application using the Ethernet. The user 
sets the boot mode to Ethernet boot and also provides certain configurations for setting 
up the initial system configuration. The device-specific data manual covers the 
different boot configurations for Ethernet boot. 

Once the device is powered up, after configuring the device, the RBL will start sending 
a boot packet that contains the MAC address of the device. The application to be loaded 
must be converted to the boot table as mentioned in the boot scenarios above. The 
output of the bconvert64x utility should then be converted into a boot packet using the 
format detailed in the Ethernet boot mode section. 

The user can also use the bootpacket utility provided through the MCSDK for 
generating the boot packet as described in the Ethernet boot section. The user must also 
develop a host application to send the packet generated by a bootpacket utility to the 
boot device. The MCSDK provides a utility called pcsendpkt to generate such a packet. 
This utility takes the MAC address as an argument to generate the packet. 

Follow these steps to get a final boot image:
• Convert the application to a boot table using the hex6x utility.
• Reformat the boot table to align at a 32-bit boundary using the bconvert64x 

utility.
• Slice the output of the bconvert64x utility into the packets that need to be sent 

from the host to the boot device using a bootpacket utility.
• Use a host application to send the packets across the Ethernet from the host to the 

boot device.

Once the RBL starts receiving the packet in the expected format, it deconstructs the 
packet and extracts the boot table. The RBL will then modify the extracted boot table 
and place the different sections in suitable memory locations. After loading all the 
sections, the RBL then updates the program counter of CorePac0 and starts executing 
the user application as detailed in the previous boot scenarios.
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3.12.6 Booting a Simple Image Through SRIO DirectIO Mode
This boot scenario details the steps for booting an application through a boot mode that 
provides the memory map information of the device to the host. In this case, the RBL 
plays a very minimal role in the boot process. The RBL configures the device to put it 
into a desired operating condition. Then the RBL keeps polling the boot magic address 
of CorePac0. The user is responsible for loading the different boot sections into the 
device and also to populate the boot magic address. The RBL, once it sees the non-zero 
value in the boot magic address, updates the program counter of CorePac0 to the 
address mentioned in the boot magic address and starts executing the application. 
Because the RBL is not responsible for loading the boot application, the image is not 
converted to the boot table.

In other boot modes in which the device exposes the memory map to the host, the RBL 
runs an IDLE on CorePac0 and it is up to the user to send an interrupt from the host to 
wake CorePac0 and let the RBL check the boot magic address.
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