
TMS320VC5505/5504 DSP
Universal Serial Bus 2.0 (USB) Controller

User's Guide

Literature Number: SPRUFO0

September 2009

2 SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Preface .. 13
1 Introduction .. 16

1.1 Purpose of the Peripheral ... 16

1.2 Features ... 16

1.3 Functional Block Diagram ... 17

1.4 Industry Standard(s) Compliance Statement ... 17

2 Architecture .. 17
2.1 Clock Control ... 17

2.2 Signal Descriptions .. 18

2.3 Memory Map .. 18

2.4 USB_DP/USB_DM Polarity Inversion ... 19

2.5 Indexed and Non-Indexed Registers .. 19

2.6 USB PHY Initialization ... 19

2.7 Dynamic FIFO Sizing .. 21

2.8 USB Controller Peripheral Mode Operation .. 21

2.9 Communications Port Programming Interface (CPPI) 4.1 DMA Overview 40

2.10 BYTEMODE Bits of the USB System Control Register ... 60

2.11 Reset Considerations .. 60

2.12 Interrupt Support ... 60

2.13 DMA Event Support ... 60

2.14 Power Management ... 60

3 Registers .. 61
3.1 USB Controller Register Summary .. 61

3.2 Revision Identification Registers (REVID1 and REVID2) ... 69

3.3 Control Register (CTRLR) .. 70

3.4 Status Register (STATR) ... 70

3.5 Emulation Register (EMUR) .. 70

3.6 Mode Registers (MODE1 and MODE2) .. 72

3.7 Auto Request Register (AUTOREQ) .. 74

3.8 SRP Fix Time Registers (SRPFIXTIME1 and SRPFIXTIME2) .. 75

3.9 Teardown Registers (TEARDOWN1 and TEARDOWN2) .. 76

3.10 USB Interrupt Source Registers (INTSRCR1 and INTSRCR2) .. 77

3.11 USB Interrupt Source Set Registers (INTSETR1 and INTSETR2) .. 78

3.12 USB Interrupt Source Clear Registers (INTCLRR1 and INTCLRR2) ... 79

3.13 USB Interrupt Mask Registers (INTMSKR1 and INTMSKR2) ... 80

3.14 USB Interrupt Mask Set Registers (INTMSKSETR1 and INTMSKSETR2) 81

3.15 USB Interrupt Mask Clear Registers (INTMSKCLRR1 and INTMSKCLRR2) 82

3.16 USB Interrupt Source Masked Registers (INTMASKEDR1 and INTMASKEDR2) 83

3.17 USB End of Interrupt Register (EOIR) .. 84

3.18 USB Interrupt Vector Registers (INTVECTR1 and INTVECTR2) ... 84

3.19 Generic RNDIS EP1 Size Registers (GREP1SZR1 and GREP1SZR2) .. 85

3SPRUFO0–September 2009 Table of Contents
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com

3.20 Generic RNDIS EP2 Size Registers (GREP2SZR1 and GREP2SZR2) .. 86

3.21 Generic RNDIS EP3 Size Registers (GREP3SZR1 and GREP3SZR2) .. 87

3.22 Generic RNDIS EP4 Size Registers (GREP4SZR1 and GREP4SZR2) .. 88

3.23 Function Address Register (FADDR) .. 89

3.24 Power Management Register (POWER) .. 89

3.25 Interrupt Register for Endpoint 0 Plus Transmit Endpoints 1 to 4 (INTRTX) 90

3.26 Interrupt Register for Receive Endpoints 1 to 4 (INTRRX) ... 90

3.27 Interrupt Enable Register for INTRTX (INTRTXE) ... 91

3.28 Interrupt Enable Register for INTRRX (INTRRXE) .. 91

3.29 Interrupt Register for Common USB Interrupts (INTRUSB) .. 92

3.30 Interrupt Enable Register for INTRUSB (INTRUSBE) .. 93

3.31 Frame Number Register (FRAME) .. 93

3.32 Index Register for Selecting the Endpoint Status and Control Registers (INDEX) 94

3.33 Register to Enable the USB 2.0 Test Modes (TESTMODE) ... 94

3.34 Maximum Packet Size for Peripheral/Host Transmit Endpoint (TXMAXP) 95

3.35 Control Status Register for Peripheral Endpoint 0 (PERI_CSR0) ... 96

3.36 Control Status Register for Peripheral Transmit Endpoint (PERI_TXCSR) 97

3.37 Maximum Packet Size for Peripheral Receive Endpoint (RXMAXP) ... 98

3.38 Control Status Register for Peripheral Receive Endpoint (PERI_RXCSR) 99

3.39 Count 0 Register (COUNT0) .. 100

3.40 Receive Count Register (RXCOUNT) ... 100

3.41 Configuration Data Register (CONFIGDATA) .. 101

3.42 Transmit and Receive FIFO Registers for Endpoint 0 (FIFO0R1 and FIFO0R2) 102

3.43 Transmit and Receive FIFO Registers for Endpoint 1 (FIFO1R1 and FIFO1R2) 103

3.44 Transmit and Receive FIFO Registers for Endpoint 2 (FIFO2R1 and FIFO2R2) 104

3.45 Transmit and Receive FIFO Registers for Endpoint 3 (FIFO3R1 and FIFO3R2) 105

3.46 Transmit and Receive FIFO Registers for Endpoint 4 (FIFO4R1 and FIFO4R2) 106

3.47 Device Control Register (DEVCTL) .. 107

3.48 Transmit Endpoint FIFO Size (TXFIFOSZ) ... 108

3.49 Receive Endpoint FIFO Size (RXFIFOSZ) .. 108

3.50 Transmit Endpoint FIFO Address (TXFIFOADDR) .. 109

3.51 Hardware Version Register (HWVERS) ... 109

3.52 Receive Endpoint FIFO Address (RXFIFOADDR) ... 110

3.53 CDMA Revision Identification Registers (DMAREVID1 and DMAREVID2) 110

3.54 CDMA Teardown Free Descriptor Queue Control Register (TDFDQ) .. 110

3.55 CDMA Emulation Control Register (DMAEMU) .. 111

3.56 CDMA Transmit Channel n Global Configuration Registers (TXGCR1[n] and TXGCR2[n]) 112

3.57 CDMA Receive Channel n Global Configuration Registers (RXGCR1[n] and RXGCR2[n]) 113

3.58 CDMA Receive Channel n Host Packet Configuration Registers A (RXHPCR1A[n] and
RXHPCR2A[n]) ... 115

3.59 CDMA Receive Channel n Host Packet Configuration Registers B (RXHPCR1B[n] and
RXHPCR2B[n]) ... 116

3.60 CDMA Scheduler Control Register (DMA_SCHED_CTRL1 and DMA_SCHED_CTRL2) 117

3.61 CDMA Scheduler Table Word n Registers (ENTRYLSW[n]-ENTRYMSW[n]) 118

3.62 Queue Manager Revision Identification Registers (QMGRREVID1 and QMGRREVID2) 119

3.63 Queue Manager Queue Diversion Registers (DIVERSION1 and DIVERSION2) 120

4 Contents SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com

3.64 Queue Manager Free Descriptor/Buffer Starvation Count Register 0 (FDBSC0) 121

3.65 Queue Manager Free Descriptor/Buffer Starvation Count Register 1 (FDBSC1) 121

3.66 Queue Manager Free Descriptor/Buffer Starvation Count Register 2 (FDBSC2) 122

3.67 Queue Manager Free Descriptor/Buffer Starvation Count Register 3 (FDBSC3) 122

3.68 Queue Manager Free Descriptor/Buffer Starvation Count Register 4 (FDBSC4) 123

3.69 Queue Manager Free Descriptor/Buffer Starvation Count Register 5 (FDBSC5) 123

3.70 Queue Manager Free Descriptor/Buffer Starvation Count Register 6 (FDBSC6) 124

3.71 Queue Manager Free Descriptor/Buffer Starvation Count Register 7 (FDBSC7) 124

3.72 Queue Manager Linking RAM Region 0 Base Address Registers (LRAM0BASE1 and LRAM0BASE2)
... 125

3.73 Queue Manager Linking RAM Region 0 Size Register (LRAM0SIZE) .. 126

3.74 Queue Manager Linking RAM Region 1 Base Address Registers (LRAM1BASE1 and LRAM1BASE2)
... 127

3.75 Queue Manager Queue Pending Register 0 (PEND0) .. 128

3.76 Queue Manager Queue Pending Register 1 (PEND1) .. 128

3.77 Queue Manager Queue Pending Register 2 (PEND2) .. 129

3.78 Queue Manager Queue Pending Register 3 (PEND3) .. 129

3.79 Queue Manager Queue Pending Register 4 (PEND4) .. 130

3.80 Queue Manager Queue Pending Register 5 (PEND5) .. 130

3.81 Queue Manager Memory Region R Base Address Registers (QMEMRBASE1[R] and
QMEMRBASE2[R]) .. 131

3.82 Queue Manager Memory Region R Control Registers
(QMEMRCTRL1[R] and QMEMRCTRL2[R]) ... 132

3.83 Queue Manager Queue N Control Register D (CTRL1D[N] and CTRL2D[N]) 133

3.84 Queue Manager Queue N Status Register A (QSTATA[N]) .. 134

3.85 Queue Manager Queue N Status Registers B (QSTAT1B[N] and QSTAT2B[N]) 134

3.86 Queue Manager Queue N Status Register C (QSTATC[N]) .. 135

5SPRUFO0–September 2009 Contents
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com

List of Figures

1 Functional Block Diagram .. 17

2 USB Clocking Diagram ... 17

3 USB System Control Register (USBSCR) [1C32h] ... 20

4 Interrupt Service Routine Flow Chart ... 22

5 CPU Actions at Transfer Phases .. 27

6 Sequence of Transfer ... 27

7 Service Endpoint 0 Flow Chart .. 29

8 IDLE Mode Flow Chart ... 30

9 TX Mode Flow Chart .. 31

10 RX Mode Flow Chart.. 32

11 USB Controller Block Diagram .. 40

12 Host Packet Descriptor Layout .. 43

13 Host Buffer Descriptor Layout ... 44

14 Teardown Descriptor Layout ... 44

15 Relationship Between Memory Regions and Linking RAM .. 48

16 High-Level Transmit and Receive Data Transfer Example .. 52

17 Transmit Descriptors and Queue Status Configuration .. 54

18 Transmit USB Data Flow Example (Initialization) ... 55

19 Transmit USB Data Flow Example (Completion).. 56

20 Receive Descriptors and Queue Status Configuration ... 57

21 Receive USB Data Flow Example (Initialization) .. 57

22 Receive USB Data Flow Example (Completion) .. 58

23 Revision Identification Register (REVID1) ... 69

24 Revision Identification Register (REVID2) ... 69

25 Control Register (CTRLR).. 70

26 Status Register (STATR) ... 70

27 Emulation Register (EMUR).. 71

28 Mode Register 1 (MODE1) ... 72

29 Mode Register 2 (MODE2) ... 72

30 Auto Request Register (AUTOREQ).. 74

31 SRP Fix Time Register 1 (SRPFIXTIME1)... 75

32 SRP Fix Time Register 2 (SRPFIXTIME2)... 75

33 Teardown Register 1 (TEARDOWN1) .. 76

34 Teardown Register 2 (TEARDOWN2) .. 76

35 USB Interrupt Source Register 1 (INTSRCR1) .. 77

36 USB Interrupt Source Register 2 (INTSRCR2) .. 77

37 USB Interrupt Source Set Register 1 (INTSETR1).. 78

38 USB Interrupt Source Set Register 2 (INTSETR2).. 78

39 USB Interrupt Source Clear Register 1 (INTCLRR1) ... 79

40 USB Interrupt Source Clear Register 2 (INTCLRR2) ... 79

41 USB Interrupt Mask Register 1 (INTMSKR1) .. 80

42 USB Interrupt Mask Register 2 (INTMSKR2) .. 80

43 USB Interrupt Mask Set Register 1 (INTMSKSETR1).. 81

44 USB Interrupt Mask Set Register 2 (INTMSKSETR2).. 81

45 USB Interrupt Mask Clear Register 1 (INTMSKCLRR1) ... 82

46 USB Interrupt Mask Clear Register 2 (INTMSKCLRR2) ... 82

47 USB Interrupt Source Masked Register 1 (INTMASKEDR1) .. 83

6 List of Figures SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com

48 USB Interrupt Source Masked Register 2 (INTMASKEDR2) .. 83

49 USB End of Interrupt Register (EOIR) .. 84

50 USB Interrupt Vector Register 1 (INTVECTR1) ... 84

51 USB Interrupt Vector Register 2 (INTVECTR2) ... 84

52 Generic RNDIS EP1 Size Register 1 (GREP1SZR1)... 85

53 Generic RNDIS EP1 Size Register 2 (GREP1SZR2)... 85

54 Generic RNDIS EP2 Size Register 1 (GREP2SZR1)... 86

55 Generic RNDIS EP2 Size Register 2 (GREP2SZR2)... 86

56 Generic RNDIS EP3 Size Register 1 (GREP3SZR1)... 87

57 Generic RNDIS EP3 Size Register 2 (GREP3SZR2)... 87

58 Generic RNDIS EP4 Size Register 1 (GREP4SZR1)... 88

59 Generic RNDIS EP4 Size Register 2 (GREP4SZR2)... 88

60 Function Address Register (FADDR) ... 89

61 Power Management Register (POWER) ... 89

62 Interrupt Register for Endpoint 0 Plus Tx Endpoints 1 to 4 (INTRTX).. 90

63 Interrupt Register for Receive Endpoints 1 to 4 (INTRRX) .. 90

64 Interrupt Enable Register for INTRTX (INTRTXE) .. 91

65 Interrupt Enable Register for INTRRX (INTRRXE).. 91

66 Interrupt Register for Common USB Interrupts (INTRUSB) ... 92

67 Interrupt Enable Register for INTRUSB (INTRUSBE) .. 93

68 Frame Number Register (FRAME) .. 93

69 Index Register for Selecting the Endpoint Status and Control Registers (INDEX) 94

70 Register to Enable the USB 2.0 Test Modes (TESTMODE)... 94

71 Maximum Packet Size for Peripheral/Host Transmit Endpoint (TXMAXP) .. 95

72 Control Status Register for Peripheral Endpoint 0 (PERI_CSR0)... 96

73 Control Status Register for Peripheral Transmit Endpoint (PERI_TXCSR).. 97

74 Maximum Packet Size for Peripheral Receive Endpoint (RXMAXP) ... 98

75 Control Status Register for Peripheral Receive Endpoint (PERI_RXCSR) .. 99

76 Count 0 Register (COUNT0) ... 100

77 Receive Count Register (RXCOUNT) ... 100

78 Configuration Data Register (CONFIGDATA).. 101

79 Transmit and Receive FIFO Register 1 for Endpoint 0 (FIFO0R1).. 102

80 Transmit and Receive FIFO Register 2 for Endpoint 0 (FIFO0R2).. 102

81 Transmit and Receive FIFO Register 1 for Endpoint 1 (FIFO1R1).. 103

82 Transmit and Receive FIFO Register 2 for Endpoint 1 (FIFO1R2).. 103

83 Transmit and Receive FIFO Register 1 for Endpoint 2 (FIFO2R1).. 104

84 Transmit and Receive FIFO Register 2 for Endpoint 2 (FIFO2R2).. 104

85 Transmit and Receive FIFO Register 1 for Endpoint 3 (FIFO3R1).. 105

86 Transmit and Receive FIFO Register 2 for Endpoint 3 (FIFO3R2).. 105

87 Transmit and Receive FIFO Register 1 for Endpoint 4 (FIFO4R1).. 106

88 Transmit and Receive FIFO Register 2 for Endpoint 4 (FIFO4R2).. 106

89 Device Control Register (DEVCTL).. 107

90 Transmit Endpoint FIFO Size (TXFIFOSZ) ... 108

91 Receive Endpoint FIFO Size (RXFIFOSZ) ... 108

92 Transmit Endpoint FIFO Address (TXFIFOADDR) .. 109

93 Hardware Version Register (HWVERS)... 109

94 Receive Endpoint FIFO Address (RXFIFOADDR) .. 110

95 CDMA Revision Identification Register 1 (DMAREVID1) ... 110

96 CDMA Revision Identification Register 2 (DMAREVID2) ... 110

7SPRUFO0–September 2009 List of Figures
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com

97 CDMA Teardown Free Descriptor Queue Control Register (TDFDQ) .. 111

98 CDMA Emulation Control Register (DMAEMU).. 111

99 CDMA Transmit Channel n Global Configuration Register 1 (TXGCR1[n]) 112

100 CDMA Transmit Channel n Global Configuration Register 2 (TXGCR2[n]) 112

101 CDMA Receive Channel n Global Configuration Register 1 (RXGCR1[n]) 113

102 CDMA Receive Channel n Global Configuration Register 2 (RXGCR2[n]) 113

103 Receive Channel n Host Packet Configuration Register 1 A (RXHPCR1A[n]) 115

104 Receive Channel n Host Packet Configuration Register 2 A (RXHPCR2A[n]) 115

105 Receive Channel n Host Packet Configuration Register 1 B (RXHPCR1B[n]) 116

106 Receive Channel n Host Packet Configuration Register 2 B (RXHPCR2B[n]) 116

107 CDMA Scheduler Control Register 1 (DMA_SCHED_CTRL1) .. 117

108 CDMA Scheduler Control Register 2 (DMA_SCHED_CTRL2) .. 117

109 CDMA Scheduler Table Word n Registers (ENTRYLSW[n])... 118

110 CDMA Scheduler Table Word n Registers (ENTRYMSW[n]) .. 118

111 Queue Manager Revision Identification Register 1 (QMGRREVID1) ... 119

112 Queue Manager Revision Identification Register 2 (QMGRREVID2) ... 119

113 Queue Manager Queue Diversion Register 1 (DIVERSION1) ... 120

114 Queue Manager Queue Diversion Register 2 (DIVERSION2) ... 120

115 Queue Manager Free Descriptor/Buffer Starvation Count Register 0 (FDBSC0) 121

116 Queue Manager Free Descriptor/Buffer Starvation Count Register 1 (FDBSC1) 121

117 Queue Manager Free Descriptor/Buffer Starvation Count Register 2 (FDBSC2) 122

118 Queue Manager Free Descriptor/Buffer Starvation Count Register 3 (FDBSC3) 122

119 Queue Manager Free Descriptor/Buffer Starvation Count Register 4 (FDBSC4) 123

120 Queue Manager Free Descriptor/Buffer Starvation Count Register 5 (FDBSC5) 123

121 Queue Manager Free Descriptor/Buffer Starvation Count Register 6 (FDBSC6) 124

122 Queue Manager Free Descriptor/Buffer Starvation Count Register 7 (FDBSC7) 124

123 Queue Manager Linking RAM Region 0 Base Address Register 1 (LRAM0BASE1) 125

124 Queue Manager Linking RAM Region 0 Base Address Register 2 (LRAM0BASE2) 125

125 Queue Manager Linking RAM Region 0 Size Register (LRAM0SIZE).. 126

126 Queue Manager Linking RAM Region 1 Base Address Register 1 (LRAM1BASE1) 127

127 Queue Manager Linking RAM Region 1 Base Address Register 2 (LRAM1BASE2) 127

128 Queue Manager Queue Pending Register 0 (PEND0).. 128

129 Queue Manager Queue Pending Register 1 (PEND1).. 128

130 Queue Manager Queue Pending Register 2 (PEND2).. 129

131 Queue Manager Queue Pending Register 3 (PEND3).. 129

132 Queue Manager Queue Pending Register 4 (PEND4).. 130

133 Queue Manager Queue Pending Register 5 (PEND5).. 130

134 Queue Manager Memory Region R Base Address Register 1 (QMEMRBASE1[R]) 131

135 Queue Manager Memory Region R Base Address Register 2 (QMEMRBASE2[R]) 131

136 Queue Manager Memory Region R Control Register 1 (QMEMRCTRL1[R]).................................... 132

137 Queue Manager Memory Region R Control Register 2 (QMEMRCTRL2[R]).................................... 132

138 Queue Manager Queue N Control Register 1 D (CTRL1D[N]) .. 133

139 Queue Manager Queue N Control Register 2 D (CTRL2D[N]) .. 133

140 Queue Manager Queue N Status Register A (QSTATA[N]) ... 134

141 Queue Manager Queue N Status Register 1 B (QSTAT1B[N]).. 134

142 Queue Manager Queue N Status Register 2 B (QSTAT2B[N]).. 134

143 Queue Manager Queue N Status Register C (QSTATC[N]) ... 135

8 List of Figures SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com

List of Tables

1 USB Terminal Functions.. 18

2 USB Controller Memory Map .. 18

3 USB System Control Register (USBSCR) Field Descriptions ... 20

4 PERI_TXCSR Register Bit Configuration for Bulk IN Transactions... 34

5 PERI_RXCSR Register Bit Configuration for Bulk OUT Transactions ... 35

6 PERI_TXCSR Register Bit Configuration for Isochronous IN Transactions 37

7 PERI_RXCSR Register Bit Configuration for Isochronous OUT Transactions 39

8 Allocation of Queues .. 45

9 Interrupts Generated by the USB Controller ... 59

10 USB Interrupt Conditions ... 59

11 Effect of USBSCR BYTEMODE Bits on USB Access .. 60

12 Universal Serial Bus (USB) Registers .. 61

13 Common USB Register Layout .. 62

14 Common USB Registers ... 62

15 USB Indexed Register Layout when Index Register Set to Select Endpoint 0.................................... 63

16 USB Indexed Register Layout when Index Register Set to Select Endpoint 1-4 63

17 USB Indexed Registers... 63

18 USB FIFO Registers .. 64

19 Dynamic FIFO Control Register Layout .. 64

20 Dynamic FIFO Control Registers .. 65

21 Control and Status Registers for Endpoints 0-4 ... 65

22 CPPI DMA (CMDA) Registers ... 66

23 Queue Manager (QMGR) Registers .. 67

24 Revision Identification Register (REVID1) Field Descriptions ... 69

25 Revision Identification Register (REVID2) Field Descriptions ... 69

26 Control Register (CTRLR) Field Descriptions.. 70

27 Status Register (STATR) Field Descriptions... 70

28 Emulation Register (EMUR) Field Descriptions ... 71

29 Mode Register 1 (MODE1) Field Descriptions... 72

30 Mode Register 2 (MODE2) Field Descriptions... 73

31 Auto Request Register (AUTOREQ) Field Descriptions ... 74

32 SRP Fix Time Register 1 (SRPFIXTIME1) Field Descriptions .. 75

33 SRP Fix Time Register 2 (SRPFIXTIME2) Field Descriptions .. 75

34 Teardown Register 1 (TEARDOWN1) Field Descriptions.. 76

35 Teardown Register 2 (TEARDOWN2) Field Descriptions.. 76

36 USB Interrupt Source Register 1 (INTSRCR1) Field Descriptions.. 77

37 USB Interrupt Source Register 2 (INTSRCR2) Field Descriptions.. 77

38 USB Interrupt Source Set Register 1 (INTSETR1) Field Descriptions ... 78

39 USB Interrupt Source Set Register 2 (INTSETR2) Field Descriptions ... 78

40 USB Interrupt Source Clear Register 1 (INTCLRR1) Field Descriptions... 79

41 USB Interrupt Source Clear Register 2 (INTCLRR2) Field Descriptions... 79

42 USB Interrupt Mask Register 1 (INTMSKR1) Field Descriptions.. 80

43 USB Interrupt Mask Register 2 (INTMSKR2) Field Descriptions.. 80

44 USB Interrupt Mask Set Register 1 (INTMSKSETR1) Field Descriptions ... 81

45 USB Interrupt Mask Set Register 2 (INTMSKSETR2) Field Descriptions ... 81

46 USB Interrupt Mask Clear Register 1 (INTMSKCLRR1) Field Descriptions 82

47 USB Interrupt Mask Clear Register 2 (INTMSKCLRR2) Field Descriptions 82

9SPRUFO0–September 2009 List of Tables
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com

48 USB Interrupt Source Masked Register 1 (INTMASKEDR1) Field Descriptions.................................. 83

49 USB Interrupt Source Masked Register 2 (INTMASKEDR2) Field Descriptions.................................. 83

50 USB End of Interrupt Register (EOIR) Field Descriptions.. 84

51 USB Interrupt Vector Register 1 (INTVECTR1) Field Descriptions ... 84

52 USB Interrupt Vector Register 2 (INTVECTR2) Field Descriptions ... 84

53 Generic RNDIS EP1 Size Register 1 (GREP1SZR1) Field Descriptions .. 85

54 Generic RNDIS EP1 Size Register 2 (GREP1SZR2) Field Descriptions .. 85

55 Generic RNDIS EP2 Size Register 1 (GREP2SZR1) Field Descriptions .. 86

56 Generic RNDIS EP2 Size Register 2 (GREP2SZR2) Field Descriptions .. 86

57 Generic RNDIS EP3 Size Register 1 (GREP3SZR1) Field Descriptions .. 87

58 Generic RNDIS EP3 Size Register 2 (GREP3SZR2) Field Descriptions .. 87

59 Generic RNDIS EP4 Size Register 1 (GREP4SZR1) Field Descriptions .. 88

60 Generic RNDIS EP4 Size Register 2 (GREP4SZR2) Field Descriptions .. 88

61 Function Address Register (FADDR) Field Descriptions ... 89

62 Power Management Register (POWER) Field Descriptions... 89

63 Interrupt Register for Endpoint 0 Plus Transmit Endpoints 1 to 4 (INTRTX) Field Descriptions 90

64 Interrupt Register for Receive Endpoints 1 to 4 (INTRRX) Field Descriptions 90

65 Interrupt Enable Register for INTRTX (INTRTXE) Field Descriptions .. 91

66 Interrupt Enable Register for INTRRX (INTRRXE) Field Descriptions ... 91

67 Interrupt Register for Common USB Interrupts (INTRUSB) Field Descriptions 92

68 Interrupt Enable Register for INTRUSB (INTRUSBE) Field Descriptions.. 93

69 Frame Number Register (FRAME) Field Descriptions.. 93

70 Index Register for Selecting the Endpoint Status and Control Registers (INDEX)
Field Descriptions ... 94

71 Register to Enable the USB 2.0 Test Modes (TESTMODE) Field Descriptions 94

72 Maximum Packet Size for Peripheral/Host Transmit Endpoint (TXMAXP)
Field Descriptions ... 95

73 Control Status Register for Peripheral Endpoint 0 (PERI_CSR0)
Field Descriptions ... 96

74 Control Status Register for Peripheral Transmit Endpoint (PERI_TXCSR)
Field Descriptions ... 97

75 Maximum Packet Size for Peripheral Receive Endpoint (RXMAXP) Field Descriptions......................... 98

76 Control Status Register for Peripheral Receive Endpoint (PERI_RXCSR)
Field Descriptions ... 99

77 Count 0 Register (COUNT0) Field Descriptions ... 100

78 Receive Count Register (RXCOUNT) Field Descriptions... 100

79 Configuration Data Register (CONFIGDATA) Field Descriptions ... 101

80 Transmit and Receive FIFO Register 1 for Endpoint 0 (FIFO0R1) Field Descriptions 102

81 Transmit and Receive FIFO Register 2 for Endpoint 0 (FIFO0R2) Field Descriptions 102

82 Transmit and Receive FIFO Register 1 for Endpoint 1 (FIFO1R1) Field Descriptions 103

83 Transmit and Receive FIFO Register 2 for Endpoint 1 (FIFO1R2) Field Descriptions 103

84 Transmit and Receive FIFO Register 1 for Endpoint 2 (FIFO2R1) Field Descriptions 104

85 Transmit and Receive FIFO Register 2 for Endpoint 2 (FIFO2R2) Field Descriptions 104

86 Transmit and Receive FIFO Register 1 for Endpoint 3 (FIFO3R1) Field Descriptions 105

87 Transmit and Receive FIFO Register 2 for Endpoint 3 (FIFO3R2) Field Descriptions 105

88 Transmit and Receive FIFO Register 1 for Endpoint 4 (FIFO4R1) Field Descriptions 106

89 Transmit and Receive FIFO Register 2 for Endpoint 4 (FIFO4R2) Field Descriptions 106

90 Device Control Register (DEVCTL) Field Descriptions ... 107

91 Transmit Endpoint FIFO Size (TXFIFOSZ) Field Descriptions... 108

92 Receive Endpoint FIFO Size (RXFIFOSZ) Field Descriptions ... 108

10 List of Tables SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com

93 Transmit Endpoint FIFO Address (TXFIFOADDR) Field Descriptions.. 109

94 Hardware Version Register (HWVERS) Field Descriptions .. 109

95 Receive Endpoint FIFO Address (RXFIFOADDR) Field Descriptions .. 110

96 CDMA Revision Identification Register 1 (DMAREVID1) Field Descriptions..................................... 110

97 CDMA Revision Identification Register 2 (DMAREVID2) Field Descriptions..................................... 110

98 CDMA Teardown Free Descriptor Queue Control Register (TDFDQ) Field Descriptions...................... 111

99 CDMA Emulation Control Register (DMAEMU) Field Descriptions ... 111

100 CDMA Transmit Channel n Global Configuration Register 1 (TXGCR1[n]) Field Descriptions................ 112

101 CDMA Transmit Channel n Global Configuration Register 2 (TXGCR2[n]) Field Descriptions................ 112

102 CDMA Receive Channel n Global Configuration Register 1 (RXGCR1[n]) Field Descriptions 113

103 CDMA Receive Channel n Global Configuration Register 2 (RXGCR2[n]) Field Descriptions 113

104 Receive Channel n Host Packet Configuration Register 1 A (RXHPCR1A[n])
Field Descriptions .. 115

105 Receive Channel n Host Packet Configuration Register 2 A (RXHPCR2A[n])
Field Descriptions .. 115

106 Receive Channel n Host Packet Configuration Register 1 B (RXHPCR1B[n])
Field Descriptions .. 116

107 Receive Channel n Host Packet Configuration Register 2 B (RXHPCR2B[n])
Field Descriptions .. 116

108 CDMA Scheduler Control Register 1 (DMA_SCHED_CTRL1) Field Descriptions 117

109 CDMA Scheduler Control Register 2 (DMA_SCHED_CTRL2) Field Descriptions 117

110 CDMA Scheduler Table Word n Registers (ENTRYLSW[n]) Field Descriptions 118

111 CDMA Scheduler Table Word n Registers (ENTRYMSW[n]) Field Descriptions................................ 118

112 Queue Manager Revision Identification Register 1 (QMGRREVID1) Field Descriptions....................... 119

113 Queue Manager Revision Identification Register 2 (QMGRREVID2) Field Descriptions....................... 119

114 Queue Manager Queue Diversion Register 1 (DIVERSION1) Field Descriptions............................... 120

115 Queue Manager Queue Diversion Register 2 (DIVERSION2 Field Descriptions 120

116 Queue Manager Free Descriptor/Buffer Starvation Count Register 0 (FDBSC0)
Field Descriptions .. 121

117 Queue Manager Free Descriptor/Buffer Starvation Count Register 1 (FDBSC1)
Field Descriptions .. 121

118 Queue Manager Free Descriptor/Buffer Starvation Count Register 2 (FDBSC2)
Field Descriptions .. 122

119 Queue Manager Free Descriptor/Buffer Starvation Count Register 3 (FDBSC3)
Field Descriptions .. 122

120 Queue Manager Free Descriptor/Buffer Starvation Count Register 4 (FDBSC4)
Field Descriptions .. 123

121 Queue Manager Free Descriptor/Buffer Starvation Count Register 5 (FDBSC5)
Field Descriptions .. 123

122 Queue Manager Free Descriptor/Buffer Starvation Count Register 6 (FDBSC6)
Field Descriptions .. 124

123 Queue Manager Free Descriptor/Buffer Starvation Count Register 7 (FDBSC7)
Field Descriptions .. 124

124 Queue Manager Linking RAM Region 0 Base Address Register 1 (LRAM0BASE1)
Field Descriptions .. 125

125 Queue Manager Linking RAM Region 0 Base Address Register 2 (LRAM0BASE2)
Field Descriptions .. 125

126 Queue Manager Linking RAM Region 0 Size Register (LRAM0SIZE)
Field Descriptions .. 126

127 Queue Manager Linking RAM Region 1 Base Address Register 1 (LRAM1BASE1)
Field Descriptions .. 127

128 Queue Manager Linking RAM Region 1 Base Address Register (LRAM1BASE2)
Field Descriptions .. 127

11SPRUFO0–September 2009 List of Tables
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com

129 Queue Manager Queue Pending Register 0 (PEND0) Field Descriptions 128

130 Queue Manager Queue Pending Register 1 (PEND1) Field Descriptions 128

131 Queue Manager Queue Pending Register 2 (PEND2) Field Descriptions 129

132 Queue Manager Queue Pending Register 3 (PEND3) Field Descriptions 129

133 Queue Manager Queue Pending Register 4 (PEND4) Field Descriptions 130

134 Queue Manager Queue Pending Register 5 (PEND5) Field Descriptions 130

135 Queue Manager Memory Region R Base Address Register 1 (QMEMRBASE1[R])
Field Descriptions .. 131

136 Queue Manager Memory Region R Base Address Register 2 (QMEMRBASE2[R])
Field Descriptions .. 131

137 Queue Manager Memory Region R Control Register 1 (QMEMRCTRL1[R])
Field Descriptions .. 132

138 Queue Manager Memory Region R Control Register 2 (QMEMRCTRL2[R])
Field Descriptions .. 133

139 Queue Manager Queue N Control Register 1 D (CTRL1D[N]) Field Descriptions 133

140 Queue Manager Queue N Control Register 2 D (CTRL2D[N]) Field Descriptions 133

141 Queue Manager Queue N Status Register A (QSTATA[N]) Field Descriptions 134

142 Queue Manager Queue N Status Register 1 B (QSTAT1B[N]) Field Descriptions 134

143 Queue Manager Queue N Status Register 2 B (QSTAT2B[N]) Field Descriptions 135

144 Queue Manager Queue N Status Register C (QSTATC[N]) Field Descriptions 135

12 List of Tables SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Preface
SPRUFO0–September 2009

Read This First

This document describes the universal serial bus 2.0 (USB) in the TMS320VC5505/5504 Digital Signal
Processor (DSP). The controller complies with the USB 2.0 standard high-speed and full-speed functions.
In addition, the four test modes for high-speed operation described in the USB 2.0 specification are
supported. It also allows options that allow the USB controller to be forced into full-speed mode and
high-speed mode that may be used for debug purposes.

NOTE: With regard to references of Isochronous mode in this document, note that only Isochronous
Asynchronous mode is supported by C5505/04.

Notational Conventions

This document uses the following conventions.

• Hexadecimal numbers are shown with the suffix h. For example, the following number is 40
hexadecimal (decimal 64): 40h.

• Registers in this document are shown in figures and described in tables.

– Each register figure shows a rectangle divided into fields that represent the fields of the register.
Each field is labeled with its bit name, its beginning and ending bit numbers above, and its
read/write properties below. A legend explains the notation used for the properties.

– Reserved bits in a register figure designate a bit that is used for future device expansion.

Related Documentation From Texas Instruments

The following documents describe the TMS320VC5505/5504 Digital Signal Processor (DSP). Copies of
these documents are available on the internet at www.ti.com.

SWPU073 — TMS320C55x 3.0 CPU Reference Guide. This manual describes the architecture,
registers, and operation of the fixed-point TMS320C55x digital signal processor (DSP) CPU.

SPRU652 — TMS320C55x DSP CPU Programmer’s Reference Supplement. This document describes
functional exceptions to the CPU behavior.

SPRUFO0 — TMS320VC5505/5504 Digital Signal Processor (DSP) Universal Serial Bus 2.0 (USB)
User's Guide. This document describes the universal serial bus 2.0 (USB) in the
TMS320VC5505/5504 Digital Signal Processor (DSP). The USB controller supports data
throughput rates up to 480 Mbps. It provides a mechanism for data transfer between USB devices.

SPRUFO1 — TMS320VC5505/5504 Digital Signal Processor (DSP) Inter-Integrated Circuit (I2C)
Peripheral User's Guide. This document describes the inter-integrated circuit (I2C) peripheral in
the TMS320VC5505/5504 Digital Signal Processor (DSP) device. The I2C peripheral provides an
interface between the device and other devices compliant with Phillips Semiconductors Inter-IC bus
(I2C-bus) specification version 2.1 and connected by way of an I2C-bus. This document assumes
the reader is familiar with the I2C-bus specification.

SPRUFO2 — TMS320VC5505/5504 Digital Signal Processor (DSP) Timer/Watchdog Timer User's
Guide. This document provides an overview of the three 32-bit timers in the TMS320VC5505/5504
Digital Signal Processor (DSP) device. The 32-bit timers of the device are software programmable
timers that can be configured as general-purpose (GP) timers. Timer 2 can be configured as a GP,
a Watchdog (WD), or both simultaneously.

13SPRUFO0–September 2009 Preface
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SWPU073
http://www.ti.com/lit/pdf/SPRU652
http://www.ti.com/lit/pdf/SPRUFO0
http://www.ti.com/lit/pdf/SPRUFO1
http://www.ti.com/lit/pdf/SPRUFO2
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Related Documentation From Texas Instruments www.ti.com

SPRUFO3 — TMS320VC5505/5504 Digital Signal Processor (DSP) Serial Peripheral Interface (SPI)
User's Guide. This document describes the serial peripheral interface (SPI) in the
TMS320VC5505/5504 Digital Signal Processor (DSP) device. The SPI is a high-speed synchronous
serial input/output port that allows a serial bit stream of programmed length (1 to 32 bits) to be
shifted into and out of the device at a programmed bit-transfer rate. The SPI supports multi-chip
operation of up to four SPI slave devices. The SPI can operate as a master device only.

SPRUFO4 — TMS320VC5505/5504 Digital Signal Processor (DSP) General-Purpose Input/Output
(GPIO) User's Guide. This document describes the general-purpose input/output (GPIO) on the
TMS320VC5505/5504 digital signal processor (DSP). The GPIO peripheral provides dedicated
general-purpose pins that can be configured as either inputs or outputs. When configured as an
input, you can detect the state of an internal register. When configured as an output you can write
to an internal register to control the state driven on the output pin.

SPRUFO5 — TMS320VC5505/5504 Digital Signal Processor (DSP) Universal Asynchronous
Receiver/Transmitter (UART) User's Guide. This document describes the universal asynchronous
receiver/transmitter (UART) peripheral in the TMS320VC5505/5504 Digital Signal Processor (DSP)
device. The UART performs serial-to-parallel conversions on data received from a peripheral device
and parallel-to-serial conversion on data received from the CPU.

SPRUF07 — TMS320VC5505/5504 Digital Signal Processor (DSP) Real-Time Clock (RTC) User's
Guide. This document describes the operation of the Real-Time Clock (RTC) module in the
TMS320VC5505/5504 Digital Signal Processor (DSP) device. The RTC also has the capability to
wake-up the power management and apply power to the rest of the device through an alarm,
periodic interrupt, or external WAKEUP signal.

SPRUFO8 — TMS320VC5505/5504 Digital Signal Processor (DSP) External Memory Interface
(EMIF) User's Guide. This document describes the operation of the external memory interface
(EMIF) in the TMS320VC5505/5504 Digital Signal Processor (DSP) device. The purpose of the
EMIF is to provide a means to connect to a variety of external devices.

SPRUFO9 — TMS320VC5505/5504 Digital Signal Processor (DSP) Direct Memory Access (DMA)
Controller User's Guide. This document describes the features and operation of the DMA
controller that is available on the TMS320VC5505/5504 Digital Signal Processor (DSP) device. The
DMA controller is used to move data among internal memory, external memory, and peripherals
without intervention from the CPU and in the background of CPU operation.

SPRUFP0 — TMS320VC5505 Digital Signal Processor (DSP) System User's Guide. This document
describes various aspects of the TMS320VC5505/5504 digital signal processor (DSP) including:
system memory, device clocking options and operation of the DSP clock generator, power
management features, interrupts, and system control.

SPRUGL6 — TMS320VC5504 Digital Signal Processor (DSP) System User's Guide. This document
describes various aspects of the TMS320VC5505/5504 digital signal processor (DSP) including:
system memory, device clocking options and operation of the DSP clock generator, power
management features, interrupts, and system control.

SPRUFP1 — TMS320VC5505 Digital Signal Processor (DSP) Successive Approximation (SAR)
Analog to Digital Converter (ADC) User's Guide. This document provides an overview of the
Successive Approximation (SAR) Analog to Digital Converter (ADC) on the TMS320VC5505/5504
Digital Signal Processor (DSP). The SAR is a 10-bit ADC using a switched capacitor architecture
which converts an analog input signal to a digital value.

SPRUFP3 — TMS320VC5505 Digital Signal Processor (DSP) Liquid Crystal Display Controller
(LCDC) User's Guide. This document describes the liquid crystal display controller (LCDC) in the
TMS320VC5505/5504 Digital Signal Processor (DSP) device. The LCD controller includes a LCD
Interface Display Driver (LIDD) controller.

14 Read This First SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRUFO3
http://www.ti.com/lit/pdf/SPRUFO4
http://www.ti.com/lit/pdf/SPRUFO5
http://www.ti.com/lit/pdf/SPRUFO7
http://www.ti.com/lit/pdf/SPRUFO8
http://www.ti.com/lit/pdf/SPRUFO9
http://www.ti.com/lit/pdf/SPRUFP0
http://www.ti.com/lit/pdf/SPRUGL6
http://www.ti.com/lit/pdf/SPRUFP1
http://www.ti.com/lit/pdf/SPRUFP3
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Related Documentation From Texas Instruments

SPRUFP4 — TMS320VC5505/5504 Digital Signal Processor (DSP) Inter-IC Sound (I2S) Bus User's
Guide. This document describes the features and operation of Inter-IC Sound (I2S) Bus in the
TMS320VC5505/5504 Digital Signal Processor (DSP) device. This peripheral allows serial transfer
of full duplex streaming data, usually streaming audio, between DSP and an external I2S peripheral
device such as an audio codec.

15SPRUFO0–September 2009 Read This First
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRUFP4
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

User's Guide
SPRUFO0–September 2009

Universal Serial Bus (USB) Controller

1 Introduction

This document describes the universal serial bus (USB) controller. The controller complies with the USB
2.0 standard high-speed and full-speed functions. In addition, the four test modes for high-speed operation
described in the USB 2.0 specification are supported. It also allows options that allow the USB controller
to be forced into full-speed mode and high-speed mode that may be used for debug purposes.

1.1 Purpose of the Peripheral

The USB controller provides a low-cost connectivity solution for consumer portable devices by providing a
mechanism for data transfer between USB devices up to 480 Mbps. With the USB controller, you can use
the DSP to create a high-speed USB slave device that is complaint with the Universal Serial Bus
Specification version 2.0.

1.2 Features

The USB has the following features:

• Operating as a peripheral, it complies with the USB 2.0 standard for high-speed (480 Mbps) and
full-speed (12 Mbps) operation with a host

• Supports 4 simultaneous RX and TX endpoints, in addition to control endpoint, more devices can be
supported by dynamically switching endpoints states

• Each endpoint (other than endpoint 0) can support all transfer types (control, bulk, interrupt, and
isochronous)

• Includes a 4K endpoint FIFO RAM, and supports programmable FIFO sizes
• Includes a DMA controller that supports 4 TX and 4 RX DMA channels
• Includes four types of Communications Port Programming Interface (CPPI) 4.1 DMA compliant transfer

modes, Transparent, Generic RNDIS, RNDIS, and Linux CDC mode of DMA for accelerating RNDIS
type protocols using short packet termination over USB

• DMA supports single data transfer size up to 4Mbytes

16 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

CPPI
DMA

Engine
FIFO

Packet
Encode/
Decode

USB
2.0

PHY

USB
HOST

REFCLK
(from USB Oscillator)

Registers, Interrupts, Endpoint Control,
and Packet Scheduling

Internal
Bus

USB 2.0
Subsystem

USB_MXO USB_MXI

USB
Oscillator

REFCLK

USBSCR
[USBOSCDIS]

12 MHz

SYSCLK

www.ti.com Architecture

1.3 Functional Block Diagram

The USB functional block diagram is shown in Figure 1.

Figure 1. Functional Block Diagram

1.4 Industry Standard(s) Compliance Statement

This device conforms to USB 2.0 Specification.

2 Architecture

2.1 Clock Control

Figure 2 shows the clock connections for the USB2.0 module. Note that there is a built-in oscillator that
generates a 12 MHz reference clock for the internal PLL of the USB 2.0 subsystem. The USB2.0
subsystem peripheral bus clock is sourced from the system clock (SYSCLK).

NOTE: The device system clock (SYSCLK) must be at least 30 MHz for proper USB operation.

Figure 2. USB Clocking Diagram

17SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Architecture www.ti.com

2.2 Signal Descriptions

The USB controller provides the I/O signals listed in Table 1.

Table 1. USB Terminal Functions

Name I/O (1) Description

USB_DP A I/O/Z USB D+ (differential signal pair)

USB_DM A I/O/Z USB D- (differential signal pair)

USB_VBUS A I Five volt input that signifies that VBUS is connected.

USB_REXT A I/O/Z External resistor connect.

USB_MXI I 12 MHz crystal oscillator input.

USB_MXO O 12 MHz crystal oscillator output.

USB_LDOO PWR USB module LDO output. This output is regulated to 1.3V.

USB_LDOI PWR USB module LDO input. This input handles a voltage range of 1.8V to 3.6V.

VSS_USBOSC PWR 3.3V USB oscillator power supply.

VDD_USBPLL PWR 3.3V USB PLL power supply.

VDDA_USBXCVR PWR 3.3V USB transceiver power supply.

VDDA_USB PWR 1.3V USB analog power supply.

VDD_USB PWR 1.3V USB PLL and oscillator digital power supply.

VSS_USBOSC GND USB oscillator ground.

VSS_USBPLL GND USB PLL ground.

VSSA_USBXCVR GND USB transceiver ground.

VSS_USBXCVR GND USB ground for reference circuits.

VSSA_USB GND USB analog ground.

VSS_USB GND USB PLL and oscillator digital ground.

(1) I = Input, O = Output, Z = High impedance, GND = Ground, A = Analog signal, PWR = Power supply pin.

2.3 Memory Map

The USB controller can access internal single-access RAM (SARAM) and external memory. It cannot
access dual-access RAM (DARAM). The starting address for SARAM and external memory is different
from the point-of-view of the CPU and USB controller. The memory map, as seen by the USB controller
and the CPU, is shown in Table 2.

Table 2. USB Controller Memory Map

USB Start Byte Address CPU Start Word Address CPU Memory Map USB Controller Memory Map

0001 0000h (1) 00 0000h (1) DARAM Reserved

0009 0000h 00 8000h SARAM SARAM

0100 0000h 02 8000h EMIF CS0 EMIF CS0

0200 0000h 40 0000h EMIF CS2 EMIF CS2

0300 0000h 60 0000h EMIF CS3 EMIF CS3

0400 0000h 70 0000h EMIF CS4 EMIF CS4

0500 0000h 78 0000h EMIF CS5 EMIF CS5

(1) CPU word addresses 00 0000h - 00 005Fh (which correspond to byte addresses 00 0000h - 00 00BFh) are reserved for the
memory-mapped registers (MMRs) of the DSP CPU.

18 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Architecture

2.4 USB_DP/USB_DM Polarity Inversion

The polarity of the USB data pins (USB_DP and USB_DM) can be inverted through the USBDATPOL bit
of the USB system control register (USBSCR). Since USB_DP is equal to the inverse of USB_DM (they
form a differential pair), inverting these pins allows you to effectively swap their function. This allows
flexibility in board design by allowing different USB connector configurations. In particular, this allows for
mounting the connector on either side of the board and for arranging the data pins so they do not
physically cross each other.

2.5 Indexed and Non-Indexed Registers

The USB controller provides two mechanisms of accessing the endpoint control and status registers:

• Indexed Endpoint Control/Status Registers: These registers are located at I/O address 8410h to
841Fh. The endpoint is selected by programming the INDEX register of the controller.

• Non-indexed Endpoint Control/Status Registers: These registers are located at I/O address 8500h to
854Fh. Registers at address 8500h to 850Fh map to Endpoint 0; at address 8510h to 851Fh map to
Endpoint 1, and so on.

For detailed information about the USB controller registers, see Section 3.

2.6 USB PHY Initialization

The general procedure for USB PHY initialization consists of enabling the USB on-chip oscillator,
configuring PHY parameters, and finally resetting the PHY. The detailed USB PHY initialization sequence
is as follows:

1. The bits USBOSCBIASDIS and USBOSCDIS in the USB system control register (USBSCR) should be
cleared to 0 to enable the on-chip USB oscillatory if not enabled already.

2. Wait cycles for the on-chip oscillator to stabilize. Refer to the device-specific data manual for oscillator
stabilization time.

3. To configure the PHY for normal operation, the bits USBPWDN, USBSESSEND, and USBPLLEN in
USBSCR should be cleared to 0, the USBVBUSDET bit should be set to 1, and the USBDATPOL bit
should be set according to the system requirements (set to 1 for normal operation).

4. Enable the USB clock by clearing USBCG to 0 in the peripheral clock gating configuration register 2
(PCGCR2).

5. Set the USBCLKSTPREQ bit.
6. Set COUNT = 20h in the peripheral software reset counter register (PSRCR).
7. Reset the USB controller by setting USB_RST to 1 in the peripheral reset control register (PRCR). This

bit will self-clear once the reset has been completed.

For more information on the PCGCR2, CLKSTOP, PSRCR, and PRCR refer to the TMS320VC5505
System User's Guide (SPRUFP0).

19SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRUFP0
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Architecture www.ti.com

2.6.1 USB System Control Register (USBSCR)

The USB system control register is used to disable the USB on-chip oscillator and to power-down the
USB.

The USB system control register (USBSCR) is shown in Figure 3 and described in Table 3.

Figure 3. USB System Control Register (USBSCR) [1C32h]

15 14 13 12 11 8

USBPWDN USBSESSEND USBVBUSDET USBPLLEN Reserved

R/W-1 R/W-0 R/W-1 R/W-0 R-0

7 6 5 4 3 2 1 0

Reserved USBDATPOL Reserved USBOSCBIASDIS USBOSCDIS BYTEMODE

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 3. USB System Control Register (USBSCR) Field Descriptions

Bit Field Value Description

15 USBPWDN USB module power.

0 USB module is powered.

1 USB module is powered-down.

14 USBSESSEND USB VBUS session end comparator enable.

0 USB VBUS session end comparator is disabled.

1 USB VBUS session end comparator is enabled.

13 USBVBUSDET USB VBUS detect enable.

0 USB VBUS detect comparator is disabled.

1 USB VBUS detect comparator is enabled.

12 USBPLLEN USB PLL enable.

0 Normal USB operation.

1 Override USB suspend end behavior and force release of PLL from suspend state.

11-7 Reserved 0 Reserved. Always write 0 to these bits.

6 USBDATPOL USB data polarity bit.

0 Reverse polarity on DP and DM signals.

1 Normal polarity.

5-4 Reserved 0 Reserved.

3 USBOSCBIASDIS USB internal oscillator bias resistor disable.

0 Internal oscillator bias resistor enabled (normal operating mode).

1 Internal oscillator bias resistor disabled.

2 USBOSCDIS USB oscillator disable bit.

0 USB internal oscillator enable.

1 USB internal oscillator disabled.

1-0 BYTEMODE USB byte mode select bits.

0 Word accesses by the CPU are allowed.

1h Byte accesses by the CPU are allowed (high byte is selected).

2h Byte accesses by the CPU are allowed (low byte is selected).

3h Reserved.

20 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Architecture

2.7 Dynamic FIFO Sizing

The USB controller supports a total of 4K RAM to dynamically allocate FIFO to all endpoints. The
allocation of FIFO space to the different endpoints requires the specification for each Tx and Rx endpoint
of:

• The start address of the FIFO within the RAM block
• The maximum size of packet to be supported
• Whether double-buffering is required.

These details are specified through four registers, which are added to the indexed area of the memory
map. That is, the registers for the desired endpoint are accessed after programming the INDEX register
with the desired endpoint value. Section 3.48, Section 3.49, Section 3.50, and Section 3.52 provide details
of these registers.

NOTE: The option of setting FIFO sizes dynamically only applies to Endpoints 1 to 4. Endpoint 0
FIFO has a fixed size (64 bytes) and a fixed location (start address 0).

It is the responsibility of the firmware to ensure that all the Tx and Rx endpoints that are
active in the current USB configuration have a block of RAM assigned exclusively to that
endpoint that is at least as large as the maximum packet size set for that endpoint.

2.8 USB Controller Peripheral Mode Operation

The USB controller can be used as a high-speed or a full-speed USB peripheral device attached to a
conventional USB host (such as a PC).

The USB2.0 controller will transition to session when it sees power (must be greater or equal to 4.01V) on
the USB0_VBUS pin, assuming that the firmware has set the SOFTCONN bit in the POWER register and
has enabled the data lines and there is an external host sourcing power on the USB0_VBUS line. The
USB 2.0 controller will then set the SESSION bit upon detecting the power on the USB0_VBUS line and it
will connect its 1.5Kohm pull-up resistor so it signifies to the external host out it is a Full-Speed device.
Note that even when operating as a High-Speed; it has to first come up as Full-Speed. The USB2.0
controller will then wait for a reset signal from the host.

2.8.1 USB Interrupts

The USB controller interrupts the CPU on completion of the data transfer on any of the endpoints or on
detecting reset, resume, suspend, connect, disconnect, or start-of-frame (SOF) on the bus.

When the CPU is interrupted with a USB interrupt, it needs to read the interrupt status register to
determine the endpoints that have caused the interrupt and jump to the appropriate routine. If multiple
endpoints have caused the interrupt, endpoint 0 should be serviced first followed by the other endpoints.
The suspend interrupt should be serviced last.

The flowchart in Figure 4 describes the interrupt service routine for the USB module.

The following sections describe the programming of USB controller in peripheral mode.

21SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Read Interrupt
Status Register

Resume
Interrupt

?

Resume Routine
Yes

No

EP0
Interrupt

?

No

Receive
Interrupt

?

No

Transmit
Interrupt

?

No

SOF
Interrupt

?

No

Disconn
Interrupt

?

No

Peripheral
EP0 Routine

Yes

Peripheral
Rx Routine

Yes

Peripheral
Tx Routine

Yes

Resume
Routine

Yes

Disconnect
Routine

Yes

Suspend
Interrupt

?

Suspend
Routine

Yes

Architecture www.ti.com

Figure 4. Interrupt Service Routine Flow Chart

2.8.2 Connect, Suspend Mode, and Reset Signaling

The following sections describe the operation of the USB controller during connect, suspend mode, and
USB reset.

2.8.2.1 Soft Connect

After a reset, the SOFTCONN bit in the POWER register is cleared to 0. The controller will therefore
appear disconnected until the software has set the SOFTCONN bit to 1. The application software can then
choose when to set the PHY into its normal mode. Systems with a lengthy initialization procedure may use
this to ensure that initialization is complete and the system is ready to perform enumeration before
connecting to the USB.

Once the SOFTCONN bit of the POWER register has been set, the software can also simulate a
disconnect by clearing this bit to 0.

22 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Architecture

2.8.2.2 Suspend Mode

The controller monitors activity on the bus and when no activity has occurred for 3 ms, it goes into
Suspend mode. If the Suspend interrupt has been enabled, an interrupt will be generated.

At this point, the controller can be left active (and hence able to detect when Resume signaling occurs on
the USB), or the application may arrange to disable the controller by stopping its clock. However, the
controller will not then be able to detect Resume signaling on the USB. As a result, some external
hardware will be needed to detect Resume signaling (by monitoring the DM and DP signals) so that the
clock to the controller can be restarted.

When Resume signaling occurs on the bus, first the clock to the controller must be restarted if necessary.
Then the controller will automatically exit Suspend mode. If the Resume interrupt is enabled, an interrupt
will be generated.

If the software wants to initiate a remote wake-up while the controller is in Suspend mode, it should write
to the POWER register to set the RESUME bit to 1. The software should then leave this bit set for
approximately 10 ms (minimum of 2 ms, a maximum of 15 ms) before resetting it to 0.

NOTE: No resume interrupt will be generated when the software initiates a remote wake-up.

2.8.2.3 Reset Signaling

If the HSENA bit in the POWER register was set, the controller also tries to negotiate for high-speed
operation.

Whether high-speed operation is selected is indicated by the HSMODE bit of the POWER register.

When the application software receives a reset interrupt, it should close any open pipes and wait for bus
enumeration to begin.

23SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Architecture www.ti.com

2.8.3 Control Transactions

Endpoint 0 is the main control endpoint of the core. The software is required to handle all the standard
device requests that may be sent or received via endpoint 0. These are described in Universal Serial Bus
Specification, Revision 2.0, Chapter 9. The protocol for these device requests involves different numbers
and types of transactions per transfer. To accommodate this, the software needs to take a state machine
approach to command decoding and handling.

The Standard Device Requests received by a USB peripheral device can be divided into three categories:
Zero Data Requests (in which all the information is included in the command), Write Requests (in which
the command will be followed by additional data), and Read Requests (in which the device is required to
send data back to the host).

This section looks at the sequence of actions that the software must perform to process these different
types of device request.

NOTE: The Setup packet associated with any standard device request should include an 8-byte
command. Any setup packet containing a command field of anything other than 8 bytes will
be automatically rejected by the controller.

2.8.3.1 Zero Data Requests

Zero data requests have all their information included in the 8-byte command and require no additional
data to be transferred. Examples of Zero Data standard device requests are:

• SET_FEATURE
• CLEAR_FEATURE
• SET_ADDRESS
• SET_CONFIGURATION
• SET_INTERFACE

The sequence of events will begin, as with all requests, when the software receives an endpoint 0
interrupt. The RXPKTRDY bit of the PERI_CSR0 register will also have been set. The 8-byte command
should then be read from the endpoint 0 FIFO, decoded, and the appropriate action taken.

For example, if the command is SET_ADDRESS, the 7-bit address value contained in the command
should be written to the FADDR register. The PERI_CSR0 register should then be written to set the
SERV_RXPKTRDY bit (indicating that the command has been read from the FIFO) and to set the
DATAEND bit (indicating that no further data is expected for this request). The interval between setting the
SERV_RXPKTRDY bit and setting the DATAEND bit should be very small to avoid getting a SetupEnd
error condition.

When the host moves to the status stage of the request, a second endpoint 0 interrupt will be generated to
indicate that the request has completed. No further action is required from the software. The second
interrupt is just a confirmation that the request completed successfully. For SET_ADDRESS command,
the address should be set in the FADDR register only after the status stage interrupt is received.

If the command is an unrecognized command, or for some other reason cannot be executed, then when it
has been decoded, the PERI_CSR0 register should be written to set the SERV_RXPKTRDY bit and to set
the SENDSTALL bit. When the host moves to the status stage of the request, the controller will send a
STALL to tell the host that the request was not executed. A second endpoint 0 interrupt will be generated
and the SENTSTALL bit in the PERI_CSR0 register will be set.

If the host sends more data after the DATAEND bit has been set, then the controller will send a STALL.
An endpoint 0 interrupt will be generated and the SENTSTALL bit in the PERI_CSR0 register will be set.

NOTE: DMA is not supported for endpoint 0, so the command should be read by accessing the
endpoint 0 FIFO register.

24 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Architecture

2.8.3.2 Write Requests

Write requests involve an additional packet (or packets) of data being sent from the host after the 8-byte
command. An example of a Write standard device request is: SET_DESCRIPTOR.

The sequence of events will begin, as with all requests, when the software receives an endpoint 0
interrupt. The RXPKTRDY bit of PERI_CSR0 will also have been set. The 8-byte command should then
be read from the Endpoint 0 FIFO and decoded.

As with a zero data request, the PERI_CSR0 register should then be written to set the SERV_RXPKTRDY
bit (indicating that the command has been read from the FIFO) but in this case the DATAEND bit should
not be set (indicating that more data is expected).

When a second endpoint 0 interrupt is received, the PERI_CSR0 register should be read to check the
endpoint status. The RXPKTRDY bit in the PERI_CSR0 register should be set to indicate that a data
packet has been received. The COUNT0 register should then be read to determine the size of this data
packet. The data packet can then be read from the endpoint 0 FIFO.

If the length of the data associated with the request (indicated by the wLength field in the command) is
greater than the maximum packet size for endpoint 0, further data packets will be sent. In this case,
PERI_CSR0 should be written to set the SERV_RXPKTRDY bit, but the DATAEND bit should not be set.

When all the expected data packets have been received, the PERI_CSR0 register should be written to set
the SERV_RXPKTRDY bit and to set the DATAEND bit (indicating that no more data is expected).

When the host moves to the status stage of the request, another endpoint 0 interrupt will be generated to
indicate that the request has completed. No further action is required from the software, the interrupt is
just a confirmation that the request completed successfully.

If the command is an unrecognized command, or for some other reason cannot be executed, then when it
has been decoded, the PERI_CSR0 register should be written to set the SERV_RXPKTRDY bit and to set
the SENDSTALL bit. When the host sends more data, the controller will send a STALL to tell the host that
the request was not executed. An endpoint 0 interrupt will be generated and the SENTSTALL bit in the
PERI_CSR0 register will be set.

If the host sends more data after the DATAEND bit has been set, then the controller will send a STALL.
An endpoint 0 interrupt will be generated and the SENTSTALL bit will be set.

25SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Architecture www.ti.com

2.8.3.3 Read Requests

Read requests have a packet (or packets) of data sent from the function to the host after the 8-byte
command. Examples of Read Standard Device Requests are:

• GET_CONFIGURATION
• GET_INTERFACE
• GET_DESCRIPTOR
• GET_STATUS
• SYNCH_FRAME

The sequence of events will begin, as with all requests, when the software receives an endpoint 0
interrupt. The RXPKTRDY bit in the PERI_CSR0 register will also have been set. Next, the 8-byte
command should be read from the endpoint 0 FIFO and decoded. The PERI_CSR0 register should then
be written to set the SERV_RXPKTRDY bit (indicating that the command has read from the FIFO).

The data to be sent to the host should be written to the endpoint 0 FIFO. If the data to be sent is greater
than the maximum packet size for endpoint 0, only the maximum packet size should be written to the
FIFO. The PERI_CSR0 register should then be written to set the TXPKTRDY bit (indicating that there is a
packet in the FIFO to be sent). When the packet has been sent to the host, another endpoint 0 interrupt
will be generated and the next data packet can be written to the FIFO.

When the last data packet has been written to the FIFO, the PERI_CSR0 register should be written to set
the TXPKTRDY bit and to set the DATAEND bit (indicating that there is no more data after this packet).

When the host moves to the status stage of the request, another endpoint 0 interrupt will be generated to
indicate that the request has completed. No further action is required from the software: the interrupt is
just a confirmation that the request completed successfully.

If the command is an unrecognized command, or for some other reason cannot be executed, then when it
has been decoded, the PERI_CSR0 register should be written to set the SERV_RXPKTRDY bit and to set
the SENDSTALL bit. When the host requests data, the controller will send a STALL to tell the host that the
request was not executed. An endpoint 0 interrupt will be generated and the SENTSTALL bit in the
PERI_CSR0 register will be set.

If the host requests more data after the DATAEND bit has been set, then the controller will send a STALL.
An endpoint 0 interrupt will be generated and the SENTSTALL bit will be set.

2.8.3.4 Endpoint 0 States

The endpoint 0 control needs three modes – IDLE, TX, and RX – corresponding to the different phases of
the control transfer and the states endpoint 0 enters for the different phases of the transfer (described in
later sections).

The default mode on power-up or reset should be IDLE. The RXPKTRDY bit in the PERI_CSR0 register
becoming set when endpoint 0 is in IDLE state indicates a new device request. Once the device request is
unloaded from the FIFO, the controller decodes the descriptor to find whether there is a data phase and, if
so, the direction of the data phase of the control transfer (in order to set the FIFO direction). See Figure 5.

Depending on the direction of the data phase, endpoint 0 goes into either TX state or RX state. If there is
no Data phase, endpoint 0 remains in IDLE state to accept the next device request.

The actions that the CPU needs to take at the different phases of the possible transfers (for example,
loading the FIFO, setting TXPKTRDY) are indicated in Figure 6 .

NOTE: The controller changes the FIFO direction, depending on the direction of the data phase
independently of the CPU.

26 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Idle

Tx state Rx state

Sequence #1 Sequence #2

Sequence #3

IntSetup IN data
phase

Int IN data
phase

Int IN data
phase

Int Status phase
(OUT)

IntSequence #1

Idle TX state Idle

set TxPktRdy
Load FIFO and

and set DataEnd

Load FIFO
and set
TxPktRdy

Unload device
req. and clear

RxPktRdy

Load FIFO
and set
TxPktRdy

CPU actions

Status phaseSetup

CPU actions

Sequence #2

RxPktRdy
and clear
Unload FIFO

OUT data

Idle

Unload FIFO
and clear
RxPktRdy

phase
OUT dataInt Int

phase

clear RxPktRdy
Unload FIFO and

and set DataEnd

Int OUT data
phase

Int
(IN)

Int

RX state Idle

Unload
device req.
and clear
RxPktRdy

Setup IntSequence #3 Status phase
(IN)

Int

No data phase

DataEnd
clear RxPktRdy and set
Unload device req and

Idle

CPU actions

www.ti.com Architecture

Figure 5. CPU Actions at Transfer Phases

Figure 6. Sequence of Transfer

27SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Architecture www.ti.com

2.8.3.5 Endpoint 0 Service Routine

An Endpoint 0 interrupt is generated when:

• The controller sets the RXPKTRDY bit in the PERI_CSR0 register after a valid token has been
received and data has been written to the FIFO.

• The controller clears the TXPKTRDY bit of PERI_CSR0 after the packet of data in the FIFO has been
successfully transmitted to the host.

• The controller sets the SENTSTALL bit of PERI_CSR0 after a control transaction is ended due to a
protocol violation.

• The controller sets the SETUPEND bit of PERI_CSR0 because a control transfer has ended before
DATAEND is set.

Whenever the endpoint 0 service routine is entered, the software must first check to see if the current
control transfer has been ended due to either a STALL condition or a premature end of control transfer. If
the control transfer ends due to a STALL condition, the SENTSTALL bit would be set. If the control
transfer ends due to a premature end of control transfer, the SETUPEND bit would be set. In either case,
the software should abort processing the current control transfer and set the state to IDLE.

Once the software has determined that the interrupt was not generated by an illegal bus state, the next
action taken depends on the endpoint state. Figure 7 shows the flow of this process.

If endpoint 0 is in IDLE state, the only valid reason an interrupt can be generated is as a result of the
controller receiving data from the bus. The service routine must check for this by testing the RXPKTRDY
bit of PERI_CSR0. If this bit is set, then the controller has received a SETUP packet. This must be
unloaded from the FIFO and decoded to determine the action the controller must take. Depending on the
command contained within the SETUP packet, endpoint 0 will enter one of three states:

• If the command is a single packet transaction (SET_ADDRESS, SET_INTERFACE etc.) without any
data phase, the endpoint will remain in IDLE state.

• If the command has an OUT data phase (SET_DESCRIPTOR etc.), the endpoint will enter RX state.
• If the command has an IN data phase (GET_DESCRIPTOR etc.), the endpoint will enter TX state.

If the endpoint 0 is in TX state, the interrupt indicates that the core has received an IN token and data
from the FIFO has been sent. The software must respond to this either by placing more data in the FIFO if
the host is still expecting more data or by setting the DATAEND bit to indicate that the data phase is
complete. Once the data phase of the transaction has been completed, endpoint 0 should be returned to
IDLE state to await the next control transaction.

NOTE: All command transactions include a field that indicates the amount of data the host expects
to receive or is going to send.

If the endpoint is in RX state, the interrupt indicates that a data packet has been received. The software
must respond by unloading the received data from the FIFO. The software must then determine whether it
has received all of the expected data. If it has, the software should set the DATAEND bit and return
endpoint 0 to IDLE state. If more data is expected, the firmware should set the SERV_RXPKTRDY bit of
PERI_CSR0 to indicate that it has read the data in the FIFO and leave the endpoint in RX state.

28 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Service
endpoint 0

Read endpoint 0 CSR

Sent
stall

?

Yes Clear SentStall bit
state −> IDLE

No

No

Set ServicedSetupEnd
state −> IDLE

Setup
end
?

Yes

State Yes

No

= IDLE
?

IDLE mode

TX mode

No

= TX
?

State Yes

RX mode= RX*
?

State Yes

* By default

www.ti.com Architecture

Figure 7. Service Endpoint 0 Flow Chart

29SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

IDLE mode

RxPktRdy
set?

Return
No

Yes

Set
ServiceRxPktRdy

Unload FIFO

Decode command

Yes

Command
has data

phase
?

No
Process command

Set DataEnd
Set ServicedRxPktRdy

Return

Data

No

phase = IN
?

State −> TX
Yes

Return

State −> RX

Return

Architecture www.ti.com

2.8.3.5.1 IDLE Mode

IDLE mode is the mode the endpoint 0 control must select at power-on or reset and is the mode to which
the endpoint 0 control should return when the RX and TX modes are terminated. It is also the mode in
which the SETUP phase of control transfer is handled (as outlined in Figure 8).

Figure 8. IDLE Mode Flow Chart

30 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

TX mode

Write
� MaxP bytes

to FIFO

Last
packet

?

No

Yes

Set TxPktRdy
and set DataEnd

state −> IDLE

Return

TxPktRdy
Set

www.ti.com Architecture

2.8.3.5.2 TX Mode

When the endpoint is in TX state all arriving IN tokens need to be treated as part of a data phase until the
required amount of data has been sent to the host. If either a SETUP or an OUT token is received while
the endpoint is in the TX state, this will cause a SetupEnd condition to occur as the core expects only IN
tokens. See Figure 9.

Three events can cause TX mode to be terminated before the expected amount of data has been sent:

1. The host sends an invalid token causing a SETUPEND condition (bit 4 of PERI_CSR0 set).
2. The software sends a packet containing less than the maximum packet size for endpoint 0.
3. The software sends an empty data packet.

Until the transaction is terminated, the software simply needs to load the FIFO when it receives an
interrupt that indicates a packet has been sent from the FIFO. (An interrupt is generated when
TXPKTRDY is cleared.)

When the software forces the termination of a transfer (by sending a short or empty data packet), it should
set the DATAEND bit of PERI_CSR0 (bit 3) to indicate to the core that the data phase is complete and
that the core should next receive an acknowledge packet.

Figure 9. TX Mode Flow Chart

31SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

RX mode

RxPktRdy
set
?

Return
No

Yes

Read Count0
register (n)

Unload n bytes
from FIFO

Last
packet

?

No

Yes

Set
ServicedRxPktRdy

Set
ServicedRxPktRdy

and DataEnd
state->IDLE

Return

Architecture www.ti.com

2.8.3.5.3 RX Mode

In RX mode, all arriving data should be treated as part of a data phase until the expected amount of data
has been received. If either a SETUP or an IN token is received while the endpoint is in RX state, a
SetupEnd condition will occur as the controller expects only OUT tokens.

Three events can cause RX mode to be terminated before the expected amount of data has been
received as shown in Figure 10:

1. The host sends an invalid token causing a SETUPEND condition (setting bit 4 of PERI_CSR0).
2. The host sends a packet which contains less than the maximum packet size for endpoint 0.
3. The host sends an empty data packet.

Until the transaction is terminated, the software unloads the FIFO when it receives an interrupt that
indicates new data has arrived (setting RXPKTRDY bit of PERI_CSR0) and to clear RXPKTRDY by
setting the SERV_RXPKTRDY bit of PERI_CSR0 (bit 6).

When the software detects the termination of a transfer (by receiving either the expected amount of data
or an empty data packet), it should set the DATAEND bit (bit 3 of PERI_CSR0) to indicate to the controller
that the data phase is complete and that the core should receive an acknowledge packet next.

Figure 10. RX Mode Flow Chart

32 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Architecture

2.8.3.5.4 Error Handling

A control transfer may be aborted due to a protocol error on the USB, the host prematurely ending the
transfer, or if the software wishes to abort the transfer (for example, because it cannot process the
command).

The controller automatically detects protocol errors and sends a STALL packet to the host under the
following conditions:

• The host sends more data during the OUT Data phase of a write request than was specified in the
command. This condition is detected when the host sends an OUT token after the DATAEND bit (bit 3
of PERI_CSR0) has been set.

• The host requests more data during the IN Data phase of a read request than was specified in the
command. This condition is detected when the host sends an IN token after the DATAEND bit in the
PERI_CSR0 register has been set.

• The host sends more than Max Packet Size data bytes in an OUT data packet.
• The host sends a non-zero length DATA1 packet during the STATUS phase of a read request.

When the controller has sent the STALL packet, it sets the SENTSTALL bit (bit 2 of PERI_CSR0) and
generates an interrupt. When the software receives an endpoint 0 interrupt with the SENTSTALL bit set, it
should abort the current transfer, clear the SENTSTALL bit, and return to the IDLE state.

If the host prematurely ends a transfer by entering the STATUS phase before all the data for the request
has been transferred, or by sending a new SETUP packet before completing the current transfer, then the
SETUPEND bit (bit 4 of PERI_CSR0) will be set and an endpoint 0 interrupt generated. When the
software receives an endpoint 0 interrupt with the SETUPEND bit set, it should abort the current transfer,
set the SERV_SETUPEND bit (bit 7 of PERI_CSR0), and return to the IDLE state. If the RXPKTRDY bit
(bit 0 of PERI_CSR0) is set this indicates that the host has sent another SETUP packet and the software
should then process this command.

If the software wants to abort the current transfer, because it cannot process the command or has some
other internal error, then it should set the SENDSTALL bit (bit 5 of PERI_CSR0). The controller will then
send a STALL packet to the host, set the SENTSTALL bit (bit 2 of PERI_CSR0) and generate an endpoint
0 interrupt.

2.8.3.5.5 Additional Conditions

The controller automatically responds to certain conditions on the USB bus or actions by the host. The
details are:

• Stall Issued to Control Transfers

– The host sends more data during an OUT Data phase of a Control transfer than was specified in
the device request during the SETUP phase. This condition is detected by the controller when the
host sends an OUT token (instead of an IN token) after the software has unloaded the last OUT
packet and set DataEnd.

– The host requests more data during an IN data phase of a Control transfer than was specified in
the device request during the SETUP phase. This condition is detected by the controller when the
host sends an IN token (instead of an OUT token) after the software has cleared TXPKTRDY and
set DataEnd in response to the ACK issued by the host to what should have been the last packet.

– The host sends more than MaxPktSize data with an OUT data token.
– The host sends the wrong PID for the OUT Status phase of a Control transfer.
– The host sends more than a zero length data packet for the OUT Status phase.

• Zero Length Out Data Packets In Control Transfer

– A zero length OUT data packet is used to indicate the end of a Control transfer. In normal
operation, such packets should only be received after the entire length of the device request has
been transferred (i.e., after the software has set DataEnd). If, however, the host sends a zero
length OUT data packet before the entire length of device request has been transferred, this signals
the premature end of the transfer. In this case, the controller will automatically flush any IN token
loaded by software ready for the Data phase from the FIFO and set SETUPEND bit (bit 4 of
PERI_CSR0).

33SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Architecture www.ti.com

2.8.4 Bulk Transactions

2.8.4.1 Bulk In Transactions

A Bulk IN transaction is used to transfer non-periodic data from the USB peripheral device to the host.

The following optional features are available for use with a Tx endpoint for Bulk IN transactions:

• Double packet buffering: When enabled, up to two packets can be stored in the FIFO awaiting
transmission to the host. Double packet buffering is enabled by setting the DPB bit of TXFIFOSZ
register (bit 4).

• DMA: If DMA is enabled for the endpoint, a DMA request will be generated whenever the endpoint is
able to accept another packet in its FIFO. This feature allows the DMA controller to load packets into
the FIFO without processor intervention.
When DMA is enabled and DMAMODE bit of PERI_TXCSR is set, an endpoint interrupt is not
generated for completion of the packet transfer. An endpoint interrupt is generated only in the error
conditions.

2.8.4.1.1 Setup

In configuring a TX endpoint for bulk transactions, the TXMAXP register must be written with the
maximum packet size (in bytes) for the endpoint. This value should be the same as the wMaxPacketSize
field of the Standard Endpoint Descriptor for the endpoint and the PERI_TXCSR register should be set as
shown in Table 4 when using DMA:

Table 4. PERI_TXCSR Register Bit Configuration for Bulk IN Transactions

Bit Position Bit Field Name Configuration

Bit 14 ISO Cleared to 0 for bulk mode operation.

Bit 13 MODE Set to 1 to make sure the FIFO is enabled (only necessary if the FIFO is shared with an RX
endpoint).

Bit 12 DMAEN Set to 1 if DMA requests must be enabled.

Bit 11 FRCDATATOG Cleared to 0 to allow normal data toggle operations.

Bit 10 DMAMODE Set to 1 when DMA is enabled and EP interrupt is not needed for each packet transmission.

When the endpoint is first configured (following a SET_CONFIGURATION or SET_INTERFACE command
on Endpoint 0), the lower byte of PERI_TXCSR should be written to set the CLRDATATOG bit (bit 6). This
will ensure that the data toggle (which is handled automatically by the controller) starts in the correct state.

Also if there are any data packets in the FIFO, indicated by the FIFONOTEMPTY bit (bit 1 of
PERI_TXCSR) being set, they should be flushed by setting the FLUSHFIFO bit (bit 3 of PERI_TXCSR).

NOTE: It may be necessary to set this bit twice in succession if double buffering is enabled.

2.8.4.1.2 Operation

When data is to be transferred over a Bulk IN pipe, a data packet needs to be loaded into the FIFO and
the PERI_TXCSR register written to set the TXPKTRDY bit (bit 0). When the packet has been sent, the
TXPKTRDY bit will be cleared by the USB controller and an interrupt generated so that the next packet
can be loaded into the FIFO. If double packet buffering is enabled, then after the first packet has been
loaded and the TXPKTRDY bit set, the TXPKTRDY bit will immediately be cleared by the USB controller
and an interrupt generated so that a second packet can be loaded into the FIFO. The software should
operate in the same way, loading a packet when it receives an interrupt, regardless of whether double
packet buffering is enabled or not.

In the general case, the packet size must not exceed the size specified by the lower 11 bits of the
TXMAXP register. This part of the register defines the payload (packet size) for transfers over the USB
and is required by the USB Specification to be either 8, 16, 32, 64 (Full-Speed or High-Speed) or
512 bytes (High-Speed only).

34 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Architecture

The host may determine that all the data for a transfer has been sent by knowing the total amount of data
that is expected. Alternatively it may infer that all the data has been sent when it receives a packet which
is smaller than the stated payload (TXMAXP[10-0]). In the latter case, if the total size of the data block is a
multiple of this payload, it will be necessary for the function to send a null packet after all the data has
been sent. This is done by setting TXPKTRDY when the next interrupt is received, without loading any
data into the FIFO.

If large blocks of data are being transferred, then the overhead of calling an interrupt service routine to
load each packet can be avoided by using DMA.

2.8.4.1.3 Error Handling

If the software wants to shut down the Bulk IN pipe, it should set the SENDSTALL bit (bit 4 of
PERI_TXCSR). When the controller receives the next IN token, it will send a STALL to the host, set the
SENTSTALL bit (bit 5 of PERI_TXCSR) and generate an interrupt.

When the software receives an interrupt with the SENTSTALL bit (bit 5 of PERI_TXCSR) set, it should
clear the SENTSTALL bit. It should however leave the SENDSTALL bit set until it is ready to re-enable the
Bulk IN pipe.

NOTE: If the host failed to receive the STALL packet for some reason, it will send another IN
token, so it is advisable to leave the SENDSTALL bit set until the software is ready to
re-enable the Bulk IN pipe. When a pipe is re-enabled, the data toggle sequence should be
restarted by setting the CLRDATATOG bit in the PERI_TXCSR register (bit 6).

2.8.4.2 Bulk OUT Transactions

A Bulk OUT transaction is used to transfer non-periodic data from the host to the function controller.

The following optional features are available for use with an Rx endpoint for Bulk OUT transactions:

• Double packet buffering: When enabled, up to two packets can be stored in the FIFO on reception
from the host. Double packet buffering is enabled by setting the DPB bit of the RXFIFOSZ register (bit
4).

• DMA: If DMA is enabled for the endpoint, a DMA request will be generated whenever the endpoint has
a packet in its FIFO. This feature can be used to allow the DMA controller to unload packets from the
FIFO without processor intervention.
When DMA is enabled, endpoint interrupt will not be generated for completion of packet reception.
Endpoint interrupt will be generated only in the error conditions.

2.8.4.2.1 Setup

In configuring an Rx endpoint for Bulk OUT transactions, the RXMAXP register must be written with the
maximum packet size (in bytes) for the endpoint. This value should be the same as the wMaxPacketSize
field of the Standard Endpoint Descriptor for the endpoint. In addition, the relevant interrupt enable bit in
the INTRRXE register should be set (if an interrupt is required for this endpoint) and the PERI_RXCSR
register should be set as shown in Table 5.

Table 5. PERI_RXCSR Register Bit Configuration for Bulk OUT Transactions

Bit Position Bit Field Name Configuration

Bit 14 ISO Cleared to 0 to enable Bulk protocol.

Bit 13 DMAEN Set to 1 if a DMA request is required for this endpoint.

Bit 12 DISNYET Cleared to 0 to allow normal PING flow control. This will affect only high speed transactions.

Bit 11 DMAMODE Always clear this bit to 0.

35SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Architecture www.ti.com

When the endpoint is first configured (following a SET_CONFIGURATION or SET_INTERFACE command
on Endpoint 0), the lower byte of PERI_RXCSR should be written to set the CLRDATATOG bit (bit 7).
This will ensure that the data toggle (which is handled automatically by the USB controller) starts in the
correct state.

Also if there are any data packets in the FIFO (indicated by the RXPKTRDY bit (bit 0 of PERI_RXCSR)
being set), they should be flushed by setting the FLUSHFIFO bit (bit 4 of PERI_RXCSR).

NOTE: It may be necessary to set this bit twice in succession if double buffering is enabled.

2.8.4.2.2 Operation

When a data packet is received by a Bulk Rx endpoint, the RXPKTRDY bit (bit 0 of PERI_RXCSR) is set
and an interrupt is generated. The software should read the RXCOUNT register for the endpoint to
determine the size of the data packet. The data packet should be read from the FIFO, then the
RXPKTRDY bit should be cleared.

The packets received should not exceed the size specified in the RXMAXP register (as this should be the
value set in the wMaxPacketSize field of the endpoint descriptor sent to the host). When a block of data
larger than wMaxPacketSize needs to be sent to the function, it will be sent as multiple packets. All the
packets will be wMaxPacketSize in size, except the last packet which will contain the residue. The
software may use an application specific method of determining the total size of the block and hence when
the last packet has been received. Alternatively it may infer that the entire block has been received when it
receives a packet which is less than wMaxPacketSize in size. (If the total size of the data block is a
multiple of wMaxPacketSize, a null data packet will be sent after the data to signify that the transfer is
complete.)

In the general case, the application software will need to read each packet from the FIFO individually. If
large blocks of data are being transferred, the overhead of calling an interrupt service routine to unload
each packet can be avoided by using DMA.

2.8.4.2.3 Error Handling

If the software wants to shut down the Bulk OUT pipe, it should set the SENDSTALL bit (bit 5 of
PERI_RXCSR). When the controller receives the next packet it will send a STALL to the host, set the
SENTSTALL bit (bit 6 of PERI_RXCSR) and generate an interrupt.

When the software receives an interrupt with the SENTSTALL bit (bit 6 of PERI_RXCSR) set, it should
clear this bit. It should however leave the SENDSTALL bit set until it is ready to re-enable the Bulk OUT
pipe.

NOTE: If the host failed to receive the STALL packet for some reason, it will send another packet,
so it is advisable to leave the SENDSTALL bit set until the software is ready to re-enable the
Bulk OUT pipe. When a Bulk OUT pipe is re-enabled, the data toggle sequence should be
restarted by setting the CLRDATATOG bit (bit 7) in the PERI_RXCSR register.

2.8.5 Interrupt Transactions

An Interrupt IN transaction uses the same protocol as a Bulk IN transaction and can be used the same
way. Similarly, an Interrupt OUT transaction uses almost the same protocol as a Bulk OUT transaction
and can be used the same way.

Tx endpoints in the USB controller have one feature for Interrupt IN transactions that they do not support
in Bulk IN transactions. In Interrupt IN transactions, the endpoints support continuous toggle of the data
toggle bit.

This feature is enabled by setting the FRCDATATOG bit in the PERI_TXCSR register (bit 11). When this
bit is set, the controller will consider the packet as having been successfully sent and toggle the data bit
for the endpoint, regardless of whether an ACK was received from the host.

36 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Architecture

Another difference is that interrupt endpoints do not support PING flow control. This means that the
controller should never respond with a NYET handshake, only ACK/NAK/STALL. To ensure this, the
DISNYET bit in the PERI_RXCSR register (bit 12) should be set to disable the transmission of NYET
handshakes in high-speed mode.

Though DMA can be used with an interrupt OUT endpoint, it generally offers little benefit as interrupt
endpoints are usually expected to transfer all their data in a single packet.

2.8.6 Isochronous Transactions

2.8.6.1 Isochronous IN Transactions

An Isochronous IN transaction is used to transfer periodic data from the function controller to the host.

The following optional features are available for use with a Tx endpoint for Isochronous IN transactions:

• Double packet buffering: When enabled, up to two packets can be stored in the FIFO awaiting
transmission to the host. Double packet buffering is enabled by setting the DPB bit of TXFIFOSZ
register (bit 4).

NOTE: Double packet buffering is generally advisable for Isochronous transactions in order to
avoid Underrun errors as described in later section.

• DMA: If DMA is enabled for the endpoint, a DMA request will be generated whenever the endpoint is
able to accept another packet in its FIFO. This feature allows the DMA controller to load packets into
the FIFO without processor intervention.
However, this feature is not particularly useful with Isochronous endpoints because the packets
transferred are often not maximum packet size and the PERI_TXCSR register needs to be accessed
following every packet to check for Underrun errors.
When DMA is enabled and DMAMODE bit of PERI_TXCSR is set, endpoint interrupt will not be
generated for completion of packet transfer. Endpoint interrupt will be generated only in the error
conditions.

2.8.6.1.1 Setup

In configuring a Tx endpoint for Isochronous IN transactions, the TXMAXP register must be written with
the maximum packet size (in bytes) for the endpoint. This value should be the same as the
wMaxPacketSize field of the Standard Endpoint Descriptor for the endpoint. In addition, the relevant
interrupt enable bit in the INTRTXE register should be set (if an interrupt is required for this endpoint) and
the PERI_TXCSR register should be set as shown in Table 6.

Table 6. PERI_TXCSR Register Bit Configuration for Isochronous IN Transactions

Bit Position Bit Field Name Configuration

Bit 14 ISO Set to 1 to enable Isochronous transfer protocol.

Bit 13 MODE Set to 1 to ensure the FIFO is enabled (only necessary if the FIFO is shared with an Rx
endpoint).

Bit 12 DMAEN Set to 1 if DMA Requests have to be enabled.

Bit 11 FRCDATATOG Ignored in Isochronous mode.

Bit 10 DMAMODE Set it to 1, when DMA is enabled and EP interrupt is not needed for each packet
transmission.

37SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Architecture www.ti.com

2.8.6.1.2 Operation

An Isochronous endpoint does not support data retries, so if data underrun is to be avoided, the data to be
sent to the host must be loaded into the FIFO before the IN token is received. The host will send one IN
token per frame (or microframe in High-speed mode), however the timing within the frame (or microframe)
can vary. If an IN token is received near the end of one frame and then at the start of the next frame,
there will be little time to reload the FIFO. For this reason, double buffering of the endpoint is usually
necessary.

An interrupt is generated whenever a packet is sent to the host and the software may use this interrupt to
load the next packet into the FIFO and set the TXPKTRDY bit in the PERI_TXCSR register (bit 0) in the
same way as for a Bulk Tx endpoint. As the interrupt could occur almost any time within a
frame(/microframe), depending on when the host has scheduled the transaction, this may result in
irregular timing of FIFO load requests. If the data source for the endpoint is coming from some external
hardware, it may be more convenient to wait until the end of each frame(/microframe) before loading the
FIFO as this will minimize the requirement for additional buffering. This can be done by using either the
SOF interrupt or the external SOF_PULSE signal from the controller to trigger the loading of the next data
packet. The SOF_PULSE is generated once per frame(/microframe) when a SOF packet is received. (The
controller also maintains an external frame(/microframe) counter so it can still generate a SOF_PULSE
when the SOF packet has been lost.) The interrupts may still be used to set the TXPKTRDY bit in
PERI_TXCSR (bit 0) and to check for data overruns/underruns.

Starting up a double-buffered Isochronous IN pipe can be a source of problems. Double buffering requires
that a data packet is not transmitted until the frame(/microframe) after it is loaded. There is no problem if
the function loads the first data packet at least a frame(/microframe) before the host sets up the pipe (and
therefore starts sending IN tokens). But if the host has already started sending IN tokens by the time the
first packet is loaded, the packet may be transmitted in the same frame(/microframe) as it is loaded,
depending on whether it is loaded before, or after, the IN token is received. This potential problem can be
avoided by setting the ISOUPDATE bit in the POWER register (bit 7). When this bit is set, any data packet
loaded into an Isochronous Tx endpoint FIFO will not be transmitted until after the next SOF packet has
been received, thereby ensuring that the data packet is not sent too early.

2.8.6.1.3 Error Handling

If the endpoint has no data in its FIFO when an IN token is received, it will send a null data packet to the
host and set the UNDERRUN bit in the PERI_TXCSR register (bit 2). This is an indication that the
software is not supplying data fast enough for the host. It is up to the application to determine how this
error condition is handled.

If the software is loading one packet per frame(/microframe) and it finds that the TXPKTRDY bit in the
PERI_TXCSR register (bit 0) is set when it wants to load the next packet, this indicates that a data packet
has not been sent (perhaps because an IN token from the host was corrupted). It is up to the application
how it handles this condition: it may choose to flush the unsent packet by setting the FLUSHFIFO bit in
the PERI_TXCSR register (bit 3), or it may choose to skip the current packet.

38 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Architecture

2.8.6.2 Isochronous OUT Transactions

An Isochronous OUT transaction is used to transfer periodic data from the host to the function controller.

Following optional features are available for use with an Rx endpoint for Isochronous OUT transactions:

• Double packet buffering: When enabled, up to two packets can be stored in the FIFO on reception
from the host. Double packet buffering is enabled by setting the DPB bit of RXFIFOSZ register (bit 4).

NOTE: Double packet buffering is generally advisable for Isochronous transactions in order to
avoid Overrun errors.

• DMA: If DMA is enabled for the endpoint, a DMA request will be generated whenever the endpoint has
a packet in its FIFO. This feature can be used to allow the DMA controller to unload packets from the
FIFO without processor intervention.
However, this feature is not particularly useful with Isochronous endpoints because the packets
transferred are often not maximum packet size and the PERI_RXCSR register needs to be accessed
following every packet to check for Overrun or CRC errors.
When DMA is enabled, endpoint interrupt will not be generated for completion of packet reception.
Endpoint interrupt will be generated only in the error conditions.

2.8.6.2.1 Setup

In configuring an Rx endpoint for Isochronous OUT transactions, the RXMAXP register must be written
with the maximum packet size (in bytes) for the endpoint. This value should be the same as the
wMaxPacketSize field of the Standard Endpoint Descriptor for the endpoint. In addition, the relevant
interrupt enable bit in the INTRRXE register should be set (if an interrupt is required for this endpoint) and
the PERI_RXCSR register should be set as shown in Table 7.

Table 7. PERI_RXCSR Register Bit Configuration for Isochronous OUT Transactions

Bit Position Bit Field Name Configuration

Bit 14 ISO Set to 1 to enable isochronous protocol.

Bit 13 DMAEN Set to 1 if a DMA request is required for this endpoint.

Bit 12 DISNYET Ignored in isochronous transfers.

Bit 11 DMAMODE Always clear this bit to 0.

2.8.6.2.2 Operation

An Isochronous endpoint does not support data retries so, if a data overrun is to be avoided, there must
be space in the FIFO to accept a packet when it is received. The host will send one packet per frame (or
microframe in High-speed mode); however, the time within the frame can vary. If a packet is received near
the end of one frame(/microframe) and another arrives at the start of the next frame, there will be little time
to unload the FIFO. For this reason, double buffering of the endpoint is usually necessary.

An interrupt is generated whenever a packet is received from the host and the software may use this
interrupt to unload the packet from the FIFO and clear the RXPKTRDY bit in the PERI_RXCSR register
(bit 0) in the same way as for a Bulk Rx endpoint. As the interrupt could occur almost any time within a
frame(/microframe), depending on when the host has scheduled the transaction, the timing of FIFO unload
requests will probably be irregular. If the data sink for the endpoint is going to some external hardware, it
may be better to minimize the requirement for additional buffering by waiting until the end of each
frame(/microframe) before unloading the FIFO. This can be done by using either the SOF interrupt or the
external SOF_PULSE signal from the controller to trigger the unloading of the data packet. The
SOF_PULSE is generated once per frame(/microframe) when a SOF packet is received. (The controller
also maintains an external frame(/microframe) counter so it can still generate a SOF_PULSE when the
SOF packet has been lost.) The interrupts may still be used to clear the RXPKTRDY bit in PERI_RXCSR
and to check for data overruns/underruns.

39SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Main
Memory

CPU

Interrupts

Queue
Push/Pop

Operations

Queue
Manager

CPPI
DMA

(CDMA)

Queue
Push/Pop
Operations

cdma_sreq

cdma_sready

CDMA
Scheduler
(CDMAS)

Queue Indicators

FIFO_full

FIFO_empty SSRAM/
PPU

(CPPI
FIFO)

F
IF

O
_f

u
ll

F
IF

O
_e

m
p

ty

Transfer
DMA

(XDMA)

Mentor
USB 2.0

Core

USB
PHY

Configuration
Rd/Wr

DMA_req[8]

Endpoint
FIFOs

USB
Bus

REFCLK

CPPI 4.1

USB Controller

Architecture www.ti.com

2.8.6.2.3 Error Handling

If there is no space in the FIFO to store a packet when it is received from the host, the OVERRUN bit in
the PERI_RXCSR register (bit 2) will be set. This is an indication that the software is not unloading data
fast enough for the host. It is up to the application to determine how this error condition is handled.

If the controller finds that a received packet has a CRC error, it will still store the packet in the FIFO and
set the RXPKTRDY bit (bit 0 of PERI_RXCSR) and the DATAERROR bit (bit 3 of PERI_RXCSR). It is left
up to the application how this error condition is handled.

2.9 Communications Port Programming Interface (CPPI) 4.1 DMA Overview

The CPPI DMA module supports the transmission and reception of USB packets. The CPPI DMA is
designed to facilitate the segmentation and reassembly of CPPI compliant packets to/from smaller data
blocks that are natively compatible with the specific requirements of each networking port. Multiple Tx and
Rx channels are provided within the DMA which allow multiple segmentation or reassembly operations to
be effectively performed in parallel (but not actually simultaneously). The DMA controller maintains state
information for each of the ports/channels which allows packet segmentation and reassembly operations
to be time division multiplexed between channels in order to share the underlying DMA hardware. A DMA
scheduler is used to control the ordering and rate at which this multiplexing occurs.

The CPPI (version 4.1) DMA controller sub-module is a common 4 dual-port DMA Controller. It supports 4
Tx and 4 Rx Ports and each port attaches to the associated endpoint in the controller. Port 1 maps to
endpoint 1 and Port 2 maps to endpoint 2 and Port 3 maps to endpoint 3 and Port 4 maps to endpoint 4,
while endpoint 0 can not utilize the DMA and the firmware is responsible to load or offload the endpoint 0
FIFO via CPU.

Figure 11 displays the USB controller block diagram.

Figure 11. USB Controller Block Diagram

40 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Architecture

Host— The host is an intelligent system resource that configures and manages each communications
control module. The host is responsible for allocating memory, initializing all data structures, and
responding to port interrupts.

Main Memory— The area of data storage managed by the CPU. The CPPI DMA (CDMA) reads and
writes CPPI packets from and to main memory. This memory can exist internal or external from the
device.

Queue Manager (QM)— The QM is responsible for accelerating management of a variety of Packet
Queues and Free Descriptor / Buffer Queues. It provides status indications to the CDMA Scheduler
when queues are empty or full.

CPPI DMA (CDMA)— The CDMA is responsible for transferring data between the CPPI FIFO and Main
Memory. It acquires free Buffer Descriptor from the QM (Receive Submit Queue) for storage of
received data, posts received packets pointers to the Receive Completion Queue, transmits
packets stored on the Transmit Submit Queue (Transmit Queue) , and posts completed transmit
packets to the Transmit Completion Queue.

CDMA Scheduler (CDMAS)— The CDMAS is responsible for scheduling CDMA transmit and receive
operations. It uses Queue Indicators from the QM and the CDMA to determine the types of
operations to schedule.

CPPI FIFO— The CPPI FIFO provides 8 FIFO interfaces (one for each of the 4 transmit and receive
endpoints). Each FIFO contains two 64-byte memory storage elements (ping-pong buffer storage).

Transfer DMA (XDMA)— The XDMA receives DMA requests from the Mentor USB 2.0 Core and initiates
DMAs to the CPPI FIFO.

Endpoint FIFOs— The Endpoint FIFOs are the USB packet storage elements used by the Mentor USB
2.0 Core for packet transmission or reception. The XDMA transfers data between the CPPI FIFO
and the Endpoint FIFOs for transmit operations and between the Endpoint FIFOs and the CPPI
FIFO for receive operations.

Mentor USB 2.0 Core— This controller is responsible for processing USB bus transfers (control, bulk,
interrupt, and isochronous). It supports 4 transmit and 4 receive endpoints in addition to endpoint 0
(control).

2.9.1 CPPI Terminology

The following terms are important in the discussion of DMA CPPI.

Port— A port is the communications module (peripheral hardware) that contains the control logic for
Direct Memory Access for a single transmit/receive interface or set of interfaces. Each port may
have multiple communication channels that transfer data using homogenous or heterogeneous
protocols. A port is usually subdivided into transmit and receive pairs which are independent of
each other. Each endpoint, excluding endpoint 0, has its own dedicated port.

Channel— A channel refers to the sub-division of information (flows) that is transported across ports.
Each channel has associated state information. Channels are used to segregate information flows
based on the protocol used, scheduling requirements (example: CBR, VBR, ABR), or concurrency
requirements (that is, blocking avoidance). All four ports have dedicated single channels, channel 0,
associated for their use in a USB application.

Data Buffer— A data buffer is a single data structure that contains payload information for transmission to
or reception from a port. A data buffer is a byte aligned contiguous block of memory used to store
packet payload data. A data buffer may hold any portion of a packet and may be linked together
(via descriptors) with other buffers to form packets. Data buffers may be allocated anywhere within
the device memory map. The Buffer Length field of the packet descriptor indicates the number of
valid data bytes in the buffer. There may be from 1 to 4M-1 valid data bytes in each buffer.

Host Buffer Descriptor— A buffer descriptor is a single data structure that contains information about
one or more data buffers. This type of descriptor is required when more than one descriptor is
needed to define an entire packet, i.e., it either defines the middle of a packet or end of a packet.

41SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Architecture www.ti.com

Host Packet Descriptor— A packet descriptor is another name for the first buffer descriptor within a
packet. Some fields within a data buffer descriptor are only valid when it is a packet descriptor
including the tags, packet length, packet type, and flags. This type of descriptor is always used to
define a packet since it provides packet level information that is useful to both the ports and the
Host in order to properly process the packet. It is the only descriptor used when single descriptor
solely defines a packet. When multiple descriptors are needed to define a packet, the packet
descriptor is the first descriptor used to define a packet.

Free Descriptor/Buffer Queue— A free descriptor/buffer queue is a hardware managed list of available
descriptors with pre-linked empty buffers that are to be used by the receive ports for host type
descriptors. Free Descriptor/Buffer Queues are implemented by the Queue Manager.

Teardown Descriptor— Teardown Descriptor is a special structure which is not used to describe either a
packet or a buffer but is instead used to describe the completion of a channel halt and teardown
event. Channel teardown is an important function because it ensures that when a connection is no
longer needed that the hardware can be reliably halted and any remaining packets which had not
yet been transmitted can be reclaimed by the Host without the possibility of losing buffer or
descriptor references (which results in a memory leak).

Packet Queue— A packet queue is hardware managed list of valid (i.e. populated) packet descriptors
that is used for forwarding a packet from one entity to another for any number of purposes.

Queue Manager— The queue manager is a hardware module that is responsible for accelerating
management of the packet queues. Packets are added to a packet queue by writing the 32-bit
descriptor address to a particular memory mapped location in the Queue Manager module. Packets
are de-queued by reading the same location for that particular queue. A single Queue Manager is
used for a USB application.

NOTE: All descriptors (regardless of type) must be allocated at addresses that are naturally aligned
to the smallest power of 2 that is equal to or greater than the descriptor size.

2.9.2 Host Packet Descriptor (SOP Descriptor)

Host Packet Descriptors are designed to be used when USB like application requires support for true,
unlimited fragment count scatter/gather type operations. The Host Packet Descriptor is the first descriptor
on multiple descriptors setup or the only descriptor in a single descriptors setup. The Host Packet
Descriptor contains the following information:

• Indicator which identifies the descriptor as a Host Packet Descriptor (always 10h)
• Source and Destination Tags (Reserved)
• Packet Type
• Packet Length
• Protocol Specific Region Size
• Protocol Specific Control/Status Bits
• Pointer to the first valid byte in the SOP data buffer
• Length of the SOP data buffer
• Pointer to the next buffer descriptor in the packet

Host Packet Descriptors can vary in size of their defined fields from 32 bytes up to 104 bytes. Within this
range, Host Packet Descriptors always contain 32 bytes of required information and may also contain 8
bytes of software specific tagging information and up to 64 bytes (indicated in 4 byte increments) of
protocol specific information. How much protocol specific information (and therefore the allocated size of
the descriptors) is application dependent.

NOTE: Descriptors can be located anywhere within the 16MB address space of the device (except
for DARAM, which is not accessible by the USB controller). However, all descriptors must be
placed in a single contiguous block of up to 64KW.

42 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Original Buffer Information Word 1 (Original Buffer Pointer)

Original Buffer Information Word 0 (Original Buffer Length)

Linking Information (Next Descriptor Pointer)

Buffer Information Word 1 (Buffer Pointer)

Buffer Information Word 0 (Buffer Length)

Packet and Buffer Information Word 2

Packet Information Word 1

Packet Information Word 0

Optional Software-Specific Information
(2 Words (8 Bytes))

Optional Protocol-Specific Information
(0 to 64 Bytes in Multiples of 4 Bytes)

Optional Private Data
(Any Number of Bytes in Multiples of 4 Bytes)

Required Information
(32 Bytes)

Optional Information
(Not Required for USB)

www.ti.com Architecture

The Host Packet Descriptor layout is shown in Figure 12.

Figure 12. Host Packet Descriptor Layout

2.9.3 Host Buffer Descriptor (Non-SOP Descriptor)

The Host Buffer Descriptor is identical in size and organization to a Host Packet Descriptor but does not
include valid information in the packet level fields and does not include a populated region for protocol
specific information. The packet level fields is not needed since the SOP descriptor contain this
information and additional copy of this data is not needed/necessary.

Host Buffer Descriptors are designed to be linked onto a Host Packet Descriptor or another Host Buffer
Descriptor to provide support for unlimited scatter / gather type operations. Host Buffer Descriptors provide
information about a single corresponding data buffer. Every Host buffer descriptor stores the following
information:

• Pointer to the first valid byte in the data buffer
• Length of the data buffer
• Pointer to the next buffer descriptor in the packet

Host Buffer Descriptors always contain 32 bytes of required information. Since it is a requirement that it is
possible to convert a Host descriptor between a Buffer Descriptor and a Packet Descriptor (by filling in the
appropriate fields) in practice, Host Buffer Descriptors will be allocated using the same sizes as Host
Packet Descriptors. In addition, since the 5 LSBs of the Descriptor Pointers are used in CPPI 4.1 for the
purpose of indicating the length of the descriptor, the minimum size of a descriptor is always 32 bytes.
(For more information on Descriptor Size, see Section 3.82).

NOTE: Descriptors can be located anywhere within the 16MB address space of the device (except
for DARAM, which is not accessible by the USB controller). However, all descriptors must be
placed in a single contiguous block of up to 64KW.

43SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Original Buffer Information Word 1 (Original Buffer Pointer)

Original Buffer Information Word 0 (Original Buffer Length)

Linking Information (Next Descriptor Pointer)

Buffer Information Word 1 (Buffer Pointer)

Buffer Information Word 0 (Buffer Length)

Word 2 [Pkt Info] Reserved

Word 1 (Reserved)

Word 0 (Reserved)

Required Information
(32 Bytes)

Word 2 [Buffer Info]

Reserved Pad (4 Bytes)

Teardown Info (4 Bytes)

Required Information
(32 Bytes)

Reserved Pad (4 Bytes)

Reserved Pad (4 Bytes)

Reserved Pad (4 Bytes)

Reserved Pad (4 Bytes)

Reserved Pad (4 Bytes)

Reserved Pad (4 Bytes)

Architecture www.ti.com

The descriptor layout is shown in Figure 13.

Figure 13. Host Buffer Descriptor Layout

2.9.4 Teardown Descriptor

The Teardown Descriptor is not like the Host Packet or Buffer Descriptors since it is not used to describe
either a packet or a buffer. The Teardown Descriptor is always 32 bytes long and is comprised of 4 bytes
of actual teardown information and 28 bytes of pad (see Figure 14). Since the 5 LSBs of the Descriptor
Pointers are used in CPPI 4.1 for the purpose of indicating the length of the descriptor, the minimum size
of a descriptor is 32 bytes.

Teardown Descriptor is used to describe a channel halt and teardown event. Channel teardown ensures
that when a connection is no longer needed that the hardware can be reliably halted and any remaining
packets which had not yet been transmitted can be reclaimed by the Host without the possibility of losing
buffer or descriptor references (which results in a memory leak).

NOTE: Descriptors can be located anywhere within the 16MB address space of the device (except
for DARAM, which is not accessible by the USB controller). However, all descriptors must be
placed in a single contiguous block of up to 64KW.

The Teardown Descriptor contains the following information:

• Indicator which identifies the descriptor as a Teardown Packet Descriptor
• DMA Controller Number where teardown occurred
• Channel number within DMA where teardown occurred
• Indicator of whether this teardown was for the Tx or Rx channel

Figure 14. Teardown Descriptor Layout

44 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Architecture

Teardown operation of an endpoint requires three operations. The teardown register in the CPPI DMA
must be written, the corresponding endpoint bit in TEARDOWN of the USB module must be set, and the
FlushFIFO bit in the Mentor USB controller TX/RXCSR register must be set. Writing to TEARDOWN in the
USB2.0 module resets the CPPI FIFO occupancy value and pointers to 0. It also resets the current state
of the XDMA for the endpoint selected, after any current operations have been completed. Note that due
to VBUSP bridge latency, the CPPI FIFO occupancy values will not be reset immediately upon writing of
TEARDOWN.

2.9.5 Queues

Several types of queues exist (a total of 64 queues) within the CPPI 4.1 DMA. Regardless of the type of
queue a queue is, queues are used to hold pointers to host or buffer packet descriptors while they are
being passed between the Host and / or any of the ports in the system. All queues are maintained within
the Queue Manager module.

The following type of Queues exist:

• Receive Free Descriptor/Buffer Queue
• Receive Completion (Return) Queue
• Transmit Submit Queue (also referred as Transmit Queue)
• Transmit Completion (Return) Queue
• Free Descriptor Queue (Unassigned: Can be used for Completion or Application Specific purposes)

Table 8 displays the allocation (partition) of the available Queues.

Table 8. Allocation of Queues

Starting Queue Number Number of Queues Function

0 16 RX +Free Descriptor/Buffer (submit) queues

16 2 USB Endpoint 1 TX (submit) queues

18 2 USB Endpoint 2 TX (submit) queues

20 2 USB Endpoint 3 TX (submit) queues

22 2 USB Endpoint 4 TX (submit) queues

24 2 TX Completion (return) queues

26 2 RX Completion (return) queues

28 36 Unassigned (application-defined) queues

2.9.5.1 Queuing Packets

Prior to queuing packets, the host/firmware should construct data buffer as well host packet/buffer
descriptors within the 16MB address space of the device (except for DARAM which is not accessible by
the USB controller).

NOTE: Descriptors must be placed in a single contiguous block of up to 64KW anywhere in the
16MB address space of the device, except DARAM which is not accessible by the USB
controller.

Queuing of packets onto a packet queue is accomplished by writing a pointer to the Packet Descriptor into
a specific address within the selected queue (Register D of Queue N). Packet is always queued onto the
tail of the queue. The Queue Manager provides a unique set of addresses for adding packets for each
queue that it manages.

NOTE: The control register D for each queue is split up into two registers (CTRL1D and CTRL2D).
To load a descriptor pointer into a queue, use a single double word write to CTRL1D.

45SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Architecture www.ti.com

2.9.5.2 De-Queuing Packets

De-queuing of packets from a packet queue is accomplished by reading the head packet pointer from a
specific address within the selected queue (Register D of Queue N). After the head pointer has been read,
the Queue Manager will invalidate the head pointer and will replace it with the next packet pointer in the
queue. This functionality, which is implemented in the Queue Manager, prevents the ports from needing to
traverse linked lists and allows for certain optimizations to be performed within the Queue Manager.

NOTE: The control register D for each queue is split up into two registers (CTRL1D and CTRL2D).
To unload a descriptor pointer into a queue, use a single word read from CTRL1D. The
return value will be the lower 16 bits of the descriptor address. Since all descriptors must be
within a 64KW memory range, a read from CTRL2D is not necessary.

2.9.5.3 Type of Queues

Several types of queues exist and all are managed by the Queue Manager which is part of the CPPI 4.1
DMA. All accesses to the queues are through memory mapped registers and no external memory setup is
required by the firmware.

2.9.5.3.1 Receive Free Descriptor/Buffer (Submit) Queue

Receive ports use queues referred to as "receive free descriptor / buffer queues" to forward completed
receive packets to the host or another peer port entity. The entries on the Free Descriptor / Buffer Queues
have pre-attached empty buffers whose size and location are described in the "original buffer information"
fields in the descriptor. The host is required to allocate both the descriptor and buffer and pre-link them
prior to adding (submitting) a descriptor to one of the available receive free descriptor / buffer queue. The
first 16 queues (Queue 0 up to Queue 15) are reserved for all four receive ports to handle incoming
packets.

2.9.5.3.2 Transmit (Submit) Queue

Transmit ports use packet queues referred to as "transmit (submit) queues" to store the packets that are
waiting to be transmitted. Each port has dedicated queues (2 queues per port) that are reserved
exclusively for a use by a single port. Multiple queues per port/channel are allocated to facilitate Quality of
Service (QoS) for applications that require QoS. Queue 16 and 17 are allocated for port 1, Queue 18 and
19 are allocated for port 2 and Queue 20 and Queue 21 are allocated for port 3 and Queue 22 and 23 are
allocated for port 4.

2.9.5.3.3 Transmit Completion Queue

Transmit ports also use packet queues referred to as "transmit completion queues" to return packets to
the host after they have been transmitted. Even though, non-allocated queues can be used for this
purpose, a total of two dedicated queues (Queue 24 and Queue 25), that is to be shared amongst all four
transmit ports, have been reserved for returning transmit packets after end of transmit operation when the
firmware desires to receive interrupt when transmission completes.

2.9.5.3.4 Receive Completion Queue

Receive ports also use packet queues referred to as "receive completion queues" to return packets to the
port after they have been received. Even though, non-allocated queues can be used for this purpose, a
total of two dedicated queues (Queue 26 and Queue 27), that is to be shared amongst all four transmit
ports, have been reserved for returning received packets to the receive ports after end of receive
operation when the firmware desires to receive interrupt when transmission completes.

46 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Architecture

2.9.5.3.5 Unassigned (Application Defined) Queue

Thirty-six additional queues (Queue 28 to Queue 63) exist that have not been dedicated for exclusive use.
The user can use these queues as a Completion Queues or Free Descriptor/Buffer queue.

When these queues are used as Completion Queues, interrupt will not be generated. However, the
queues will have the list of descriptor pointers for the packets that have completed transmission or
reception. The firmware can use polling method by continually performing the de-queuing technique onto
the particular unassigned queue used to identify if the reception or transmission has completed.

When unassigned queues are used as free descriptor/buffer queue, the user can use these queues to
queue/store available descriptors for future receive and transmit operations by the firmware popping the
respective assigned queue and retrieving and populating descriptor prior to submitting the updated
descriptor.

2.9.5.3.6 Teardown Queue

The Teardown Queue is used by the DMA to communicate a completion of a channel teardown after a
channel teardown is invoked on to a channel. The pointer to the teardown descriptor is written to the
teardown queue, which is also the Completion Queue, when the channel teardown completes.

2.9.5.3.7 Diverting Queue Packets from one Queue to Another

The host can move the entire contents of one queue to another queue by writing the source queue
number and the destination queue number to the Queue Diversion Register. When diverting packets, the
host can choose whether the source queue contents should be pushed onto the tail of the destination
queue.

2.9.6 Memory Regions and Linking RAM

In addition to allocating memory for raw data, the host is responsible for allocating additional memory for
exclusive use of the CPPI DMA as well as the Queue Manager. The Queue Manager has the capability of
managing up to 16 Memory Regions. These Memory regions are used to allocate descriptors of variable
sizes. The total number of descriptors that can be managed by the Queue Manager should not exceed
64K. Each memory region has descriptors of one configurable size. These 64K descriptors are referenced
internally in the queue manager by a 16-bit quantity index.

The queue manager uses a linking RAM to store information (16-bit quantity index) about how the
descriptors are logically connected to one another. A total of two Linking RAMs exists to be used by all
Memory Regions. Each location in the linking RAM stores information for one descriptor index. The linking
information for all descriptors in a given memory region is stored in a contiguous fashion in the linking
RAM. The host, when it initializes the memory regions, also writes the index number corresponding to the
first descriptor in a given region.

This information is used by the queue manager to compute where exactly in memory a particular
descriptor is stored. The size of the linking RAM to be allotted by the host/firmware should be large
enough to contain information for the amount of descriptor defined within the total Memory Regions. A
total of 4 bytes of RAM is required for each descriptor. Figure 15 illustrates the relationship between
memory regions and linking RAM.

NOTE: The reason for the existence of the two Linking RAMs is for the case when the user desires
to allocate Linking RAMs in both internal and external memory. There is no restriction as to
the placement of the Linking RAM.

47SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Region 0
128 x 32

Bytes

Memory Region 0
Base Address

Region 1
32 x 64
Bytes

Memory Region 1
Base Address

Region 2
64 x 32
Bytes

Memory Region 2
Base Address

Region N
64 x 32
Bytes

Memory Region N
Base Address

64
Entries

Index w

128
Entries

Index x

64 Entries Index y

32
Entries

Index z

65535

Linking RAM
Region 0

Linking RAM
Region 1

0

Architecture www.ti.com

Figure 15. Relationship Between Memory Regions and Linking RAM

2.9.7 Zero Length Packets

A special case is the handling of null packets with the CPPI 4.1 compliant DMA controller. Upon receiving
a zero length USB packet, the XFER DMA will send a data block to the DMA controller with byte count of
zero and the zero byte packet bit of INFO Word 2 set. The DMA controller will then perform normal End of
Packet termination of the packet, without transferring data.

If a zero-length USB packet is received, the XDMA will send the CDMA a data block with a byte count of 0
and this bit set. The CDMA will then perform normal EOP termination of the packet without transferring
data. For transmit, if a packet has this bit set, the XDMA will ignore the CPPI packet size and send a
zero-length packet to the USB controller.

2.9.8 CPPI DMA Scheduler

The CPPI DMA scheduler is responsible for controlling the rate and order between the different Tx and Rx
threads that are provided in the CPPI DMA controller. The scheduler table RAM exists within the
scheduler.

2.9.8.1 CPPI DMA Scheduler Initialization

Before the scheduler can be used, the host is required to initialize and enable the block. This initialization
is performed as follows:

1. The Host initializes entries within an internal memory array in the scheduler. This array contains up to
256 entries and each entry consists of a DMA channel number and a bit indicating if this is a Tx or Rx
opportunity. These entries represent both the order and frequency that various Tx and Rx channels will
be processed. A table size of 256 entries allows channel bandwidth to be allocated with a maximum
precision of 1/256th of the total DMA bandwidth. The more entries that are present for a given channel,
the bigger the slice of the bandwidth that channel will be given. Larger tables can be accommodated to
allow for more precision. This array can only be written by the Host, it cannot be read.

2. If the application does not need to use the entire 256 entries, firmware can initialize the portion of the
256 entries and indicate the last entry used by writing to the LAST_ENTRY bits in the CDMA
Scheduler Control Register 1 (DMA_SCHED_CTRL1) in the scheduler.

3. The host writes to the ENABLE bit in DMA_SCHED_CTRL1 to enable the scheduler. The scheduler is
not required to be disabled in order to change the scheduler array contents.

48 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Architecture

2.9.8.2 Scheduler Operation

Once the scheduler is enabled it will begin processing the entries in the table and when appropriate
passing credits to the DMA controller to perform a Tx or Rx operation. The operation of the DMA controller
is as follows:

1. After the DMA scheduler is enabled it begins with the table index set to 0.
2. The scheduler reads the entry pointed to by the index and checks to see if the channel in question is

currently in a state where a DMA operation can be accepted. The following must both be true:

• The DMA channel must be enabled.
• The CPPI FIFO that the channel talks to has free space on TX (FIFO full signal is not asserted) or

a valid block on Rx (FIFO empty signal is not asserted).
3. If the DMA channel is capable of processing a credit to transfer a block, the DMA scheduler will issue

that credit via the DMA scheduling interface. These are the steps:

(a) The DMA controller may not be ready to accept the credit immediately and it may stall the
scheduler until it can accept the credit. The DMA controller only accepts credits when it is in the
IDLE state.

(b) Once a credit has been accepted, the scheduler will increment the index to the next entry and will
start at step 2.

4. If the channel in question is not currently capable of processing a credit, the scheduler will increment
the index in the scheduler table to the next entry and will start at step 2.

5. When the scheduler attempts to increment its index to the value programmed in the table size register,
the index will reset to 0.

2.9.9 CPPI DMA Transfer Interrupt Handling

The CPPI DMA 4.1 Interrupt handling mechanism does not go through the PDR Interrupt handler built into
the core. The DMA interrupt line is directly routed to the Interrupt Dispatcher in a PDR compliant manner.
The DMA interrupt is not maskable. The firmware needs to use queues not reserved by H/W as
Completion Queues if require for DMA interrupt to be generated on a completion of a transfer.

Queues 24 and 25 are reserved by H/W for DMA transmit operations and queues 26 and 27 are reserved
by H/W for DMA receive operations. If firmware uses these queues as completion queues, interrupt will be
generated when the transfer completes. If need not to generate an interrupt, firmware is required to use
queues that are not reserved as completion queues (queues 28 to 67).

2.9.10 DMA State Registers

The port must store and maintain state information for each transmit and receive port/channel. The state
information is referred to as the Tx DMA State and Rx DMA State.

2.9.10.1 Transmit DMA State Registers

The Tx DMA State is a combination of control fields and protocol specific port scratchpad space used to
manipulate data structures and transmit packets. Each transmit channel has two queues. Each queue has
a one head descriptor pointer and one completion pointer. There are four Tx DMA State registers; one for
each port/channel.

The following information is stored in the Tx DMA State:

• Tx Queue Head Descriptor Pointer(s)
• Tx Completion Pointer(s)
• Protocol specific control/status (port scratchpad)

2.9.10.2 Receive DMA State Registers

The Rx DMA State is a combination of control fields and protocol specific port scratchpad space used to
manipulate data structures in order to receive packets. Each receive channel has only one queue. Each
channel queue has one head descriptor pointer and one completion pointer. There are four Rx DMA State
registers; one for each port/channel.

49SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Architecture www.ti.com

The following information is stored in the Rx DMA State:

• Rx Queue Head Descriptor Pointer
• Rx Queue Completion Pointer
• Rx Buffer Offset

2.9.11 USB DMA Protocols Supported

Four different type of DMA transfers are supported by the CPPI 4.1 DMA; Transparent, RNDIS, Generic
RNDIS, and Linux CDC. The following sections will outline the details on these DMA transfer types.

2.9.11.1 Transparent DMA

Transparent Mode DMA operation is the default DMA mode where DMA interrupt is generated whenever a
DMA packet is transferred. In the transparent mode, DMA packet size cannot be greater than USB
MaxPktSize for the endpoint. This transfer type is ideal for transfer (not packet) sizes that are less than a
max packet size.

Transparent DMA Transfer Setup

The following will configure all four ports/channels for Transparent DMA Transfer type.

• Make sure that RNDIS Mode is disabled globally. RNDIS bit in the control register (CTRLR) is cleared
to 0.

• Configure the endpoint mode control fields in the DMA Mode Registers (MODE1 and MODE2) for
Transparent Mode (RXn_MODE and TXn_MODE = 0h).

2.9.11.2 RNDIS

RNDIS mode DMA is used for large transfers (i.e., total data size to be transferred is greater than USB
MaxPktSize where the MzxPktSize is a multiple of 64 bytes) that requires multiple USB packets. This is
accomplished by breaking the larger packet into smaller packets, where each packet size being USB
MaxPktSize except the last packet where its size is less than USB MaxPktSize, including zero bytes. This
implies that multiple USB packets of MaxPktSize will be received and transferred together as a single
large DMA transfer and the DMA interrupt is generated only at the end of the complete reception of DMA
transfer. The protocol defines the end of the complete transfer by receiving a short USB packet (smaller
than USB MaxPktSize as mentioned in USB specification 2.0). If the DMA packet size is an exact multiple
of USB MaxPktSize, the DMA controller waits for a zero byte packet at the end of complete transfer to
signify the completion of the transfer.

NOTE: RNDIS Mode DMA is supported only when USB MaxPktSize is an integral multiple of
64 bytes.

RNDIS DMA Transfer Setup

The following will configure all four ports/channels for RNDIS DMA Transfer type. If all endpoints are to be
configured with the same RNDIS DMA transfer type, then you can enable for RNDIS mode support from
the Control Register and the content of the Mode Register will be ignored.

If you need to enable RNDIS support globally.

• Enable RNDIS Mode globally. RNDIS bit in the control register (CTRLR) is set to 1.

If you need to enable RNDIS support at the port/channel (endpoint) level.

• Disable RNDIS Mode globally. RNDIS bit in the control register (CTRLR) is cleared to 0.
• Configure the endpoint mode control fields in the DMA Mode Registers (MODE1 and MODE2) for

RNDIS Mode (RXn_MODE and TXn_MODE = 1h).

The above two setups yield the same result.

50 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Architecture

2.9.11.3 Generic RNDIS

Generic RNDIS DMA transfer mode is identical to the normal RNDIS mode in nearly all respects, except
for the exception case where the last packet of the transfer can either be a short packet or the
MaxPktSize. Generic RNDIS transfer makes use of a RNDIS EP Size register (there exists a register for
each endpoint) that must be programmed with a value that is an integer multiple of the endpoint size for
the DMA to know the end of the transfer when the last packet size is equal to the USB MaxPktSize. For
example, it the Tx/RxMaxP is programmed with a value of 64, the Generic RNDIS EP Size register for that
endpoint must be programmed with a value that is an integer multiple of 64 (for example, 64, 128, 192,
256, etc.).

In other words, when using Generic RNDIS mode and the DMA is tasked to transfer data transfer size that
is less than a value programmed within the RNDIS EP Size register and this transfer will be resulting with
a short packet, the DMA will terminate the transfer when encountering the short packet behaving exactly
as the RNDIS DMA transfer type.

This means that Generic RNDIS mode will perform data transfer in the same manner as RNDIS mode,
closing the CPPI packet when a USB packet is received that is less than the USB MaxPktSize size.
Otherwise, the packet will be closed when the value in the Generic RNDIS EP Size register is reached.

Using RNDIS EP Size register, a packet of up to 64K bytes can be transferred. This is to allow the host
software to program the USB module to transfer data that is an exact multiple of the USB MaxPktSize
(Tx/RxMaxP programmed value) without having to send an additional short packet to terminate.

NOTE: As in RNDIS mode, the USB max packet size of any Generic RNDIS mode enabled
endpoints must be a multiple of 64 bytes. Generic RNDIS acceleration should not be enabled
for endpoints where the max packet size is not a multiple of 64 bytes. Only transparent mode
should be used for such endpoints.

Generic RNDIS DMA Transfer Setup

The following will configure all four ports/channels for Generic RNDIS DMA Transfer type.

• Disable RNDIS Mode globally. RNDIS bit in the control register (CTRLR) is cleared to 0.
• Configure the endpoint mode control fields in the DMA Mode Registers (MODE1 and MODE2) for

Generic RNDIS Mode (RXn_MODE and TXn_MODE = 3h).

2.9.11.4 Linux CDC

Linux CDC DMA transfer mode acts in the same manner as RNDIS packets, except for the case where
the last data matches the max USB packet size. If the last data packet of a transfer is a short packet
where the data size is greater than zero and less the USB MaxPktSize, then the behavior of the Linux
CDC DMA transfer type is identical with the RNDIS DMA transfer type. The only exception is when the
short packet length terminating the transfer is a Null Packet. In this case, instead of transferring the Null
Packet, it will transfer a data packet of size 1 byte with the data value of 0h.

In transmit operation, if an endpoint is configured or CDC Linux mode, upon receiving a Null Packet from
the CPPI DMA, the XFER DMA will then generate a packet containing 1 byte of data, whose value is 0h,
indicating the end of the transfer. During receive operation, the XFER DMA will recognize the one byte
zero packet as a termination of the data transfer, and sends a block of data with the EOP indicator set and
a byte count of one to the CPPI DMA controller. The CPPI DMA realizing the end of the transfer
termination will not update/increase the packet size count of the Host Packet Descriptor.

Linux CDC DMA Transfer Setup

The following will configure all four ports/channels for Linux CDC DMA Transfer type.

• Disable RNDIS Mode globally. RNDIS bit in the control register (CTRLR) is cleared to 0.
• Configure the endpoint mode control fields in the DMA Mode Registers (MODE1 and MODE2) for

Linux CDC Mode (RXn_MODE and TXn_MODE = 2h).

51SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

PD

DB

BD

DB

BD

DB

CPU CPPI DMA XDMA USB Packets

CPPI Transmit (USB IN)

CPPI Receive (USB OUT)

Single Transfer
in Main Memory

(608 Bytes)

CPPI Packet in
Main Memory

(256 Byte DBs)

CPPI FIFO
(64-Byte Blocks) Endpoint FIFOs

(512 Bytes)

Single Transfer
in External USB
Host (608 Bytes)

Architecture www.ti.com

2.9.12 USB Data Flow Using DMA

The necessary steps required to perform a USB data transfer using the CPPI 4.1 DMA is expressed using
an example for both transmit and receive cases. Assume a device is ready to perform a data transfer of
size 608 bytes (see Figure 16).

Figure 16. High-Level Transmit and Receive Data Transfer Example

Example assumptions:

• The CPPI data buffers are 256 bytes in length.
• The USB endpoint 1 Tx and Rx endpoint 1 size are 512 bytes.
• A single transfer length is 608 bytes.
• The SOP offset is 0.

This translates to the following:

• Transmit Case:

– 1 Host Packet Descriptor with Packet Length field of 608 bytes and a Data Buffer of size 256 Bytes
linked to the 1st Host Buffer Descriptor.

– First Host Buffer Descriptor with a Data Buffer size of 256 Bytes linked to the 2nd Buffer Descriptor.
– Second Host Buffer Descriptor with a Data Buffer size of 96 bytes (can be greater, the Packet

Descriptor contain the size of the packet) linked with its link word set to Null.
• Receive Case:

– Two Host Buffer Descriptors with 256 bytes of Data Buffer Size
– One Host Buffer Descriptor with 96 bytes (can be greater) of Data Buffer size

Within the rest of this section, the following nomenclature is used.

BD— Host Buffer Descriptor

DB— Data Buffer Size of 256 Bytes

PBD— Pointer to Host Buffer Descriptor

PD— Host Packet Descriptor

PPD— Pointer to Host Packet Descriptor

52 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Architecture

RXCQ— Receive Completion Queue or Receive Return Queue (for all Rx EPs, use 26 or 27)

RXSQ— Receive Free Packet/Buffer Descriptor Queue or Receive Submit Queue. (for all Rx EPs, use 0
to 15)

TXCQ— Transmit Completion Queue or Transmit Return Queue (for all Tx EPs, use 24 or 25)

TXSQ— Transmit Queue or Transmit Submit Queue (for EP1, use 16 or 17)

53SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Next Descriptor Pointer

Buffer Pointer

Buffer Size (256)

Buffer Descriptor

Packet Size (608)

Packet Descriptor

Buffer Pointer

Buffer Size (256)

Next Descriptor Pointer

0

Buffer Pointer

Buffer Size (96)

Buffer Descriptor

Data Buffer
(Valid Data)

PPD

PBD(1)

PBD(2)

Data Buffer
(Valid Data)

Data Buffer
(Valid Data)

CPPI Packet

PBD(1) PBD(2)PPDHead Tail

Queue 16: TXSQ

Head Tail

Queue 24: TXCQ

Architecture www.ti.com

2.9.12.1 Transmit USB Data Flow Using DMA

The transmit descriptors and queue status configuration prior to the transfer taking place is shown in
Figure 17. An example of initialization for a transmit USB data flow is shown in Figure 18.

Figure 17. Transmit Descriptors and Queue Status Configuration

54 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Main
Memory

CPU

Interrupts

Queue
Push/Pop

Operations

Queue
Manager

CPPI
DMA

(CDMA)

Queue
Push/Pop
Operations

cdma_sreq

cdma_sready

CDMA
Scheduler
(CDMAS)

Queue Indicators

FIFO_full

FIFO_empty CPPI
FIFO

F
IF

O
_f

u
ll

F
IF

O
_e

m
p

ty

Transfer
DMA

(XDMA)

Mentor
USB 2.0

Core

Configuration
Rd/Wr

DMA_req[8]

Endpoint
FIFOs

USB
Bus

CPPI 4.1

USB Controller

TXSQ

Queue
16

TXCQ

Queue
24

www.ti.com Architecture

Figure 18. Transmit USB Data Flow Example (Initialization)

Step 1 (Initialization for Tx):

1. The CPU initializes Queue Manager with the Memory Region 0 base address and Memory Region 0
size, Link RAM0 Base address, Link RAM0 data size, and Link RAM1 Base address.

2. The CPU creates PD, BDs, and DBs in main memory and link as indicated in Figure 18.
3. It then initializes and configures the Queue Manager, Channel Setup, DMA Scheduler, and Mentor

USB 2.0 Core.
4. It then adds (pushes) the PPD and the two PBDs to the TXSQ

NOTE: You can create more BD/DB pairs and push them on one of the unassigned queues. The
firmware can pop a BD/DP pair from this chosen queue and can create its HPD or HBDs and
pre link them prior to submitting the pointers to the HPD and HBD on to the TXSQ.

Step 2 (CDMA and XDMA transfers packet data into Endpoint FIFO for Tx):

1. The Queue Manager informs the CDMAS that the TXSQ is not empty.
2. CDMAS checks that the CPPI FIFO FIFO_full is not asserted, then issues a credit to the CDMA.
3. CDMA reads the packet descriptor pointer and descriptor size hint from the Queue Manager.
4. CMDA reads the packet descriptor from memory.
5. For each 64-byte block of data in the packet data payload:

(a) The CDMA transfers a max burst of 64-byte block from the data to be transferred in main memory
to the CPPI FIFO.

(b) The XDMA sees FIFO_empty not asserted and transfers 64-byte block from CPPI FIFO to Endpoint
FIFO.

(c) The CDMA performs the above 2 steps 3 more times since the data size of the HPD is 256 bytes.
6. The CDMA reads the first buffer descriptor pointer.
7. CDMA reads the buffer descriptor from memory.

55SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Main
Memory

CPU

Interrupts

Queue
Push/Pop

Operations

Queue
Manager

CPPI
DMA

(CDMA)

Queue
Push/Pop
Operations

cdma_sreq

cdma_sready

CDMA
Scheduler
(CDMAS)

Queue Indicators

FIFO_full

FIFO_empty CPPI
FIFO

F
IF

O
_f

u
ll

F
IF

O
_e

m
p

ty

Transfer
DMA

(XDMA)

Mentor
USB 2.0

Core

Configuration
Rd/Wr

DMA_req[8]

Endpoint
FIFOs

USB
Bus

CPPI 4.1

USB Controller

TXSQ

Queue
16

TXCQ

Queue
24

Architecture www.ti.com

8. For each 64-byte block of data in the packet data payload:

(a) The CDMA transfers a max burst of 64-byte block from the data to be transferred in main memory
to the CPPI FIFO.

(b) The XDMA sees FIFO_empty not asserted and transfers 64-byte block from CPPI FIFO to Endpoint
FIFO.

(c) The CDMA performs the above 2 steps 2 more times since data size of the HBD is 256 bytes.
9. The CDMA reads the second buffer descriptor pointer.
10. CDMA reads the buffer descriptor from memory.
11. For each 64-byte block of data in the packet data payload:

(a) The CDMA transfers a max burst of 64-byte block from the data to be transferred in main memory
to the CPPI FIFO.

(b) The XDMA sees FIFO_empty not asserted and transfers 64-byte block from CPPI FIFO to Endpoint
FIFO.

(c) The CDMA transfers the last remaining 32-byte from the data to be transferred in main memory to
the CPPI FIFO.

(d) The XDMA sees FIFO_empty not asserted and transfers 32-byte block from CPPI FIFO to Endpoint
FIFO.

Step 3 (Mentor USB 2.0 Core transmits USB packets for Tx):

1. Once the XDMA has transferred enough 64-byte blocks of data from the CPPI FIFO to fill the Endpoint
FIFO, it signals the Mentor USB 2.0 Core that a TX packet is ready (sets the endpoint’s TxPktRdy bit).

2. The Mentor USB 2.0 Core will transmit the packet from the Endpoint FIFO out on the USB BUS when
it receives a corresponding IN request from the attached USB Host.

3. After the USB packet is transferred, the Mentor USB 2.0 Core issues a TX DMA_req to the XDMA.
4. This process is repeated until the entire packet has been transmitted. The XDMA will also generate the

required termination packet depending on the termination mode configured for the endpoint.

An example of the completion for a transmit USB data flow is shown in Figure 19.

Figure 19. Transmit USB Data Flow Example (Completion)

Step 4 (Return packet to completion queue and interrupt CPU for Tx):

1. After all data for the packet has been transmitted (as specified by the packet size field), the CDMA will
write the pointer to the packet descriptor to the TX Completion Queue specified in the return queue
manager / queue number fields of the packet descriptor.

56 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Buffer Descriptor (2)PBD(2) Buffer

Buffer Descriptor (1)PBD(1) Buffer

Next Descriptor Pointer

Buffer Pointer

Buffer Size (256)

Buffer Descriptor (0)PBD(0)

Data Buffer
(No Valid

Data)

PBD(1) PBD(2)PBD(0)Head Tail

Queue 0: RXSQ

Head Tail

Queue 26: RXCQ

Main
Memory

CPU

Interrupts

Queue
Push/Pop

Operations

Queue
Manager

CPPI
DMA

(CDMA)

Queue
Push/Pop
Operations

cdma_sreq

cdma_sready

CDMA
Scheduler
(CDMAS)

Queue Indicators

FIFO_full

FIFO_empty CPPI
FIFO

F
IF

O
_f

u
ll

F
IF

O
_e

m
p

ty

Transfer
DMA

(XDMA)

Mentor
USB 2.0

Core

Configuration
Rd/Wr

DMA_req[8]

Endpoint
FIFOs

USB
Bus

CPPI 4.1

USB Controller

RXSQ

Queue 0
RXCQ

Queue 26

www.ti.com Architecture

2. The Queue Manager then indicates the status of the TXSQ (empty) to the CDMAS and the TXCQ to
the CPU via an interrupt.

2.9.12.2 Receive USB Data Flow Using DMA

The receive descriptors and queue status configuration prior to the transfer taking place is shown in
Figure 20. An example of initialization for a receive USB data flow is shown in Figure 21.

Figure 20. Receive Descriptors and Queue Status Configuration

Figure 21. Receive USB Data Flow Example (Initialization)

57SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Main
Memory

CPU

Interrupts

Queue
Push/Pop

Operations

Queue
Manager

CPPI
DMA

(CDMA)

Queue
Push/Pop
Operations

cdma_sreq

cdma_sready

CDMA
Scheduler
(CDMAS)

Queue Indicators

FIFO_full

FIFO_empty SSRAM/
PPU

F
IF

O
_f

u
ll

F
IF

O
_e

m
p

ty

Transfer
DMA

(XDMA)

Mentor
USB 2.0

Core

Configuration
Rd/Wr

DMA_req[8]

Endpoint
FIFOs

USB
Bus

CPPI 4.1

USB Controller

RXSQ

Queue 0
RXCQ

Queue 26

Architecture www.ti.com

Step 1 (Initialization for Rx):

1. The CPU initializes Queue Manager with the Memory Region 0 base address and Memory Region 0
size, Link RAM0 Base address, Link RAM0 data size, and Link RAM1 Base address.

2. The CPU creates BDs, and DBs in main memory and link them as indicated in Figure 21.
3. It then initializes the RXCQ queue and configures the Queue Manager, Channel Setup, DMA

Scheduler, and Mentor USB 2.0 Core.
4. It then adds (pushes) the address of the three PHDs into the RXSQ.

Step 2 (Mentor USB 2.0 Core receives a packet, XDMA starts data transfer for Receive):

1. The Mentor USB 2.0 Core receives a USB packet from the USB Host and stores it in the Endpoint
FIFO.

2. It then asserts a DMA_req to the XDMA informing it that data is available in the Endpoint FIFO.
3. The XDMA verifies the corresponding CPPI FIFO is not full via the FIFO_full signal, then starts

transferring 64-byte data blocks from the Endpoint FIFO into the CPPI FIFO.

Step 3 (CDMA transfers data from SSRAM / PPU to main memory for Receive):

1. The CDMAS see FIFO_empty de-asserted (there is RX data in the FIFO) and issues a transaction
credit to the CDMA.

2. The CDMA begins packet reception by fetching the first PBD from the Queue Manager using the Free
Descriptor / Buffer Queue 0 (Rx Submit Queue) index that was initialized in the RX port DMA state for
that channel.

3. The CDMA will then begin writing the 64-byte block of packet data into this DB.
4. The CDMA will continue filling the buffer with additional 64-byte blocks of data from the CPPI FIFO and

will fetch additional PBD as needed using the Free Descriptor / Buffer Queue 1, 2, and 3 indexes for
the 2nd, 3rd, and remaining buffers in the packet. After each buffer is filled, the CDMA writes the buffer
descriptor to main memory.

An example of the completion for a receive USB data flow is shown in Figure 22 .

Figure 22. Receive USB Data Flow Example (Completion)

58 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Architecture

Step 4 (CDMA completes the packet transfer for Receive):

1. After the entire packet has been received, the CDMA writes the packet descriptor to main memory.
2. The CDMA then writes the packet descriptor to the RXCQ specified in the Queue Manager / Queue

Number fields in the RX Global Configuration Register.
3. The Queue Manager then indicates the status of the RXCQ to the CPU via an interrupt.
4. The CPU can then process the received packet by popping the received packet information from the

RXCQ and accessing the packet’s data from main memory.

2.9.13 Interrupt Handling

Table 9 lists the interrupts generated by the USB controller.

Table 9. Interrupts Generated by the USB Controller

Interrupt Description

Tx Endpoint [4-0] Tx endpoint ready or error condition. For endpoints 4 to 0. (Rx and Tx for endpoint 0)

Rx Endpoint [4-1] Rx endpoint ready or error condition. For endpoints 4 to 1. (Endpoint 0 has interrupt status in
Tx interrupt)

USB Core[3-0] Interrupts for 4 USB conditions

DMA Tx Completion [3-0] Tx DMA completion interrupt for channel 3 to 0 using Queues 24 and 25

DMA Rx Completion [3-0] Rx DMA completion interrupt for channel 3 to 0 using Queues 26 and 27

Whenever any of these interrupt conditions are generated, the host processor is interrupted. The software
needs to read the different interrupt status registers (discussed in later section) to determine the source of
the interrupt.

The USB interrupt conditions are listed in Table 10.

Table 10. USB Interrupt Conditions

Interrupt Description

USB[3] SOF started

USB[2] Reset Signaling detected

USB[1] Resume signaling detected

USB[0] Suspend Signaling detected

2.9.13.1 USB Core Interrupts

Interrupt status can be determined using the INTSRCR (interrupt source) registers. These registers are
non-masked. To clear the interrupt source, set the corresponding interrupt bit in INTCLRR registers. For
debugging purposes, interrupt can be set manually through INTSETR registers.

The interrupt controller provides the option of masking the interrupts. A mask can be set using
INTMSKSETR registers and can be cleared by setting the corresponding bit in the INTMSKCLRR
registers. The mask can be read from INTMSKR registers. The masked interrupt status is determined
using the INTMASKEDR registers.

The host processor software should write to the End Of Interrupt Register (EOIR) to acknowledge the
completion of an interrupt.

NOTE: While EOIR is not written, the interrupt from the USB controller remains asserted.

59SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Architecture www.ti.com

2.10 BYTEMODE Bits of the USB System Control Register

The CPU cannot generate 8-bit accesses to its data or I/O space. This presents a problem given that
some USB controller I/O registers are only 8 bits in width.

For these situations, the BYTEMODE bits of the USB system control register (USBSCR) can be used to
program the DSP switched central resource (SCR) such that a CPU word access generates single byte
access when reading or writing from USB controller I/O registers.

Table 11 summarizes the effect of the BYTEMODE bits for different CPU operations. For more details on
USBSCR, please refer to Section 2.6.1.

Table 11. Effect of USBSCR BYTEMODE Bits on USB Access

BYTEMODE Setting CPU Access to USB Register

BYTEMODE = 0h (16-bit word access) Entire register contents are accessed.

BYTEMODE = 1h (8-bit access with high byte Only the upper byte of the register is accessed.
selected)

BYTEMODE = 2h (8-bit access with low byte Only the lower byte of the register is accessed.
selected)

2.11 Reset Considerations

The USB controller has two reset sources: hardware reset and the soft reset.

2.11.1 Software Reset Considerations

The USB controller can be reset by software through the RESET bit in the control register (CTRLR) or
through the USB_RST bit in the peripheral reset control register (PCR).

When the RESET bit in the control register (CTRLR) is set, all the USB controller registers and DMA
operations are reset. The bit is cleared automatically.

When USB_RST is set to 1, a hardware reset is forced on the USB controller. The effects of a hardware
reset are described in the next section. Please note that the USB input clock must be enabled when using
USB_RST (see Section 2.1).

2.11.2 Hardware Reset Considerations

A hardware reset is always initiated during a full chip reset. Alternatively, software can force an USB
controller hardware reset through the USB_RST bits of the peripheral reset control register (PRCR). For
more details on PRCR, please refer to the TMS320VC5505 System User Guide (SPRUFP0).

When a hardware reset is asserted, all the registers are set to their default values.

2.12 Interrupt Support

The USB controller is capable of interrupting the CPU. For more information on the mapping of interrupts,
see the TMS320VC5505 System User Guide (SPRUFP0).

2.13 DMA Event Support

The USB is an internal bus master peripheral and does not utilize system DMA events. The USB has its
own dedicated DMA, CPPI 4.1 DMA, that it utilizes for DMA driven data transfer.

2.14 Power Management

The USB controller can be clock gated to conserve power during periods of no activity. The clock gating
the peripheral is controlled by the CPU. For detailed information on power management procedures, see
the TMS320VC5505 System User Guide (SPRUFP0).

60 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRUFP0
http://www.ti.com/lit/pdf/SPRUFP0
http://www.ti.com/lit/pdf/SPRUFP0
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3 Registers

3.1 USB Controller Register Summary

The following sections summarize the registers for the universal serial bus (USB) controller. Please note
that the USB controller includes an USB2.0 mentor core and a communication part programming interface
(CPPI) DMA, each with its own set of registers.

3.1.1 Universal Serial Bus (USB) Controller Registers

Table 12 lists the registers of the USB controller. Refer to the sections listed for detailed information on
each register.

NOTE: Some USB controller registers are 8-bits wide. However, the CPU cannot generate 8-bit
accesses to its data or I/O space. When accessing these registers, program the BYTEMODE
bits of the USB system control register (USBSCR) to mask the upper or lower byte of of a
word access. The BYTEMODE bits should be set to 00b (16-bit access) when accessing any
other register. See Section 2.10 for more details on the BYTEMODE bits.

Table 12. Universal Serial Bus (USB) Registers

CPU Word
Address Acronym Register Description Section

8000h REVID1 Revision Identification Register 1 Section 3.2

8001h REVID2 Revision Identification Register 2 Section 3.2

8004h CTRLR Control Register Section 3.3

8008h STATR Status Register Section 3.4

800Ch EMUR Emulation Register Section 3.5

8010h MODE1 Mode Register 1 Section 3.6

8011h MODE2 Mode Register 2 Section 3.6

8014h AUTOREQ Auto Request Register Section 3.7

8018h SRPFIXTIME1 SRP Fix Time Register 1 Section 3.8

8019h SRPFIXTIME2 SRP Fix Time Register 2 Section 3.8

801Ch TEARDOWN1 Teardown Register 1 Section 3.9

801Dh TEARDOWN2 Teardown Register 2 Section 3.9

8020h INTSRCR1 USB Interrupt Source Register 1 Section 3.10

8021h INTSRCR2 USB Interrupt Source Register 2 Section 3.10

8024h INTSETR1 USB Interrupt Source Set Register 1 Section 3.11

8025h INTSETR2 USB Interrupt Source Set Register 2 Section 3.11

8028h INTCLRR1 USB Interrupt Source Clear Register 1 Section 3.12

8029h INTCLRR2 USB Interrupt Source Clear Register 2 Section 3.12

802Ch INTMSKR1 USB Interrupt Mask Register 1 Section 3.13

802Dh INTMSKR2 USB Interrupt Mask Register 2 Section 3.13

8030h INTMSKSETR1 USB Interrupt Mask Set Register 1 Section 3.14

8031h INTMSKSETR2 USB Interrupt Mask Set Register 2 Section 3.14

8034h INTMSKCLRR1 USB Interrupt Mask Clear Register 1 Section 3.15

8035h INTMSKCLRR2 USB Interrupt Mask Clear Register 2 Section 3.15

8038h INTMASKEDR1 USB Interrupt Source Masked Register 1 Section 3.16

8039h INTMASKEDR2 USB Interrupt Source Masked Register 2 Section 3.16

803Ch EOIR USB End of Interrupt Register Section 3.17

8040h INTVECTR1 USB Interrupt Vector Register 1 Section 3.18

8041h INTVECTR2 USB Interrupt Vector Register 2 Section 3.18

61SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

Table 12. Universal Serial Bus (USB) Registers (continued)

CPU Word
Address Acronym Register Description Section

8050h GREP1SZR1 Generic RNDIS EP1Size Register 1 Section 3.19

8051h GREP1SZR2 Generic RNDIS EP1Size Register 2 Section 3.19

8054h GREP2SZR1 Generic RNDIS EP2 Size Register 1 Section 3.20

8055h GREP2SZR2 Generic RNDIS EP2 Size Register 2 Section 3.20

8058h GREP3SZR1 Generic RNDIS EP3 Size Register 1 Section 3.21

8059h GREP3SZR2 Generic RNDIS EP3 Size Register 2 Section 3.21

805Ch GREP4SZR1 Generic RNDIS EP4 Size Register 1 Section 3.22

805Dh GREP4SZR2 Generic RNDIS EP4 Size Register 2 Section 3.22

3.1.2 Mentor USB2.0 Core Registers

This section lists the registers of the Mentor USB2.0 core integrated in the USB controller.

NOTE: Some USB controller registers are 8-bits wide. However, the CPU cannot generate 8-bit
accesses to its data or I/O space. When accessing these registers, program the BYTEMODE
bits of the USB system control register (USBSCR) to mask the upper or lower byte of of a
word access. The BYTEMODE bits should be set to 00b (16-bit access) when accessing any
other register. See Section 2.10 for more details on the BYTEMODE bits.

3.1.2.1 Common USB Registers

Table 14 lists the common USB registers. Some common USB registers are 8-bit wide and share a word
address with other 8-bit registers. Table 13 describes how the common USB registers are laid out in
memory.

Table 13. Common USB Register Layout

Register

CPU Word Address Byte 1 Byte 0

8400h POWER FADDR

8401h INTRTX

8404h INTRRX

8405h INTRTXE

8408h INTRRXE

8409h INTRUSBE INTRUSB

840Ch FRAME

840Dh TESTMODE INDEX

Table 14. Common USB Registers

CPU Word
Address Acronym Register Description Section

8400h FADDR_POWER Function Address Register, Power Management Register Section 3.23

8401h INTRTX Interrupt Register for Endpoint 0 plus Transmit Endpoints 1 to 4 Section 3.25

8404h INTRRX Interrupt Register for Receive Endpoints 1 to 4 Section 3.26

8405h INTRTXE Interrupt enable register for INTRTX Section 3.27

8408h INTRRXE Interrupt Enable Register for INTRRX Section 3.28

8409h INTRUSB_INTRUSBE Interrupt Register for Common USB Interrupts, Interrupt Enable Section 3.29
Register

62 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

Table 14. Common USB Registers (continued)

CPU Word
Address Acronym Register Description Section

840Ch FRAME Frame Number Register Section 3.31

840Dh INDEX_TESTMODE Index Register for Selecting the Endpoint Status and Control Section 3.32
Registers, Register to Enable the USB 2.0 Test Modes

3.1.2.2 Indexed Registers

Table 17 lists the index registers. These registers operate on the endpoint selected by the index register.
(The index register is the low-8 bits of the INDEX_TESTMODE 16 bits register). Table 15 describes how
the indexed USB registers are laid out in memory when endpoint 0 is selected in the index register
(INDEX = 0). Similarly, Table 16 shows the layout of the indexed registers when endpoints 1-4 are
selected in the index register (INDEX = 1 or 2 or 3 or 4).

Table 15. USB Indexed Register Layout when Index Register Set to Select Endpoint 0

Register

CPU Word Address Byte 1 Byte 0

8410h Reserved

8411h PERI_CSR0

8414h Reserved

8415h Reserved

8418h COUNT0

8419h Reserved

841Ch Reserved

841Dh CONFIGDATA_INDX Reserved

Table 16. USB Indexed Register Layout when Index Register Set to Select Endpoint 1-4

Register

CPU Word Address Byte 1 Byte 0

8410h TXMAXP

8411h PERI_TXCSR

8414h RXMAXP

8415h PERI_RXCSR

8418h RXCOUNY

8419h Reserved

841Ch Reserved

841Dh Reserved

Table 17. USB Indexed Registers

CPU Word
Address Acronym Register Description Section

8410h TXMAXP_MAP Maximum Packet Size for Peripheral/Host Transmit Endpoint. (Index Section 3.34
register set to select Endpoints 1-4)

8411h PERI_CSR0 Control Status Register for Peripheral Endpoint 0. (Index register set Section 3.35
to select Endpoint 0)

PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint. (Index Section 3.36
register set to select Endpoints 1-4)

8414h RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint. (Index Section 3.37
register set to select Endpoints 1-4)

63SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

Table 17. USB Indexed Registers (continued)

CPU Word
Address Acronym Register Description Section

8415h PERI_RXCSR Control Status Register for Peripheral Receive Endpoint. (Index Section 3.38
register set to select Endpoints 1-4)

8418h COUNT0 Number of Received Bytes in Endpoint 0 FIFO. (Index register set to Section 3.39
select Endpoint 0)

RXCOUNT Number of Bytes in Host Receive Endpoint FIFO. (Index register set Section 3.40
to select Endpoints 1- 4)

8419h - Reserved

841Ch - Reserved

841Dh CONFIGDATA_INDC Returns details of core configuration. (index register set to select Section 3.41
(Upper byte of 841Dh) Endpoint 0)

3.1.2.3 FIFO Registers

Table 18 lists the FIFO registers of the USB2.0 Mentor core.

Table 18. USB FIFO Registers

CPU Word
Address Acronym Register Description Section

8420h FIFO0R1 Transmit and Receive FIFO Register 1 for Endpoint 0 Section 3.42

8421h FIFO0R2 Transmit and Receive FIFO Register 2 for Endpoint 0 Section 3.42

8424h FIFO1R1 Transmit and Receive FIFO Register 1 for Endpoint 1 Section 3.43

8425h FIFO1R2 Transmit and Receive FIFO Register 2 for Endpoint 1 Section 3.43

8428h FIFO2R1 Transmit and Receive FIFO Register 1 for Endpoint 2 Section 3.44

8429h FIFO2R2 Transmit and Receive FIFO Register 2 for Endpoint 2 Section 3.44

842Ch FIFO3R1 Transmit and Receive FIFO Register 1 for Endpoint 3 Section 3.45

842Dh FIFO3R2 Transmit and Receive FIFO Register 2 for Endpoint 3 Section 3.45

8430h FIFO4R1 Transmit and Receive FIFO Register 1 for Endpoint 4 Section 3.46

8431h FIFO4R2 Transmit and Receive FIFO Register 2 for Endpoint 4 Section 3.46

3.1.2.4 Dynamic FIFO Control Registers

Table 20 lists the dynamic FIFO control registers of the US2.0 Mentor core. Some common USB registers
are 8-bit wide and share a word address with other 8-bit registers. Table 19 describes how the common
USB registers are laid out in memory.

Table 19. Dynamic FIFO Control Register Layout

Register

CPU Word Address Byte 1 Byte 0

8460h Reserved

8461h RXFIFOSZ TXFIFOSZ

8464h TXFIFOADDR

8465h RXFIFOADDR

846Ch HWVERS

64 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

Table 20. Dynamic FIFO Control Registers

CPU Word
Address Acronym Register Description Section

8460h - Reserved

8461h TXFIFOSZ_RXFIFOSZ Transmit Endpoint FIFO Size, Receive Endpoint FIFO Size (Index Section 3.48
register set to select Endpoints 1-4)

8464h TXFIFOADDR Transmit Endpoint FIFO Address (Index register set to select Section 3.50
Endpoints 1-4)

8465h RXFIFOADDR Receive Endpoint FIFO Address (Index register set to select Section 3.52
Endpoints 1-4)

846Ch HWVERS Hardware Version Register Section 3.51

3.1.2.5 Control and Status Registers for Endpoints 0-4

Table 21 lists the control and status registers for endpoints 0-4 of the USB2.0 Mentor Core.

Table 21. Control and Status Registers for Endpoints 0-4

CPU Word
Address Acronym Register Description Section

Control and Status Register for Endpoint 1

8510h TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint Section 3.34

8511h PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral Section 3.36
mode)

8514h RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint Section 3.37

8515h PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral Section 3.38
mode)

8518h RXCOUNT Number of Bytes in Host Receive endpoint FIFO Section 3.40

8519h - Reserved

851Ch - Reserved

851Dh - Reserved

Control and Status Register for Endpoint 2

8520h TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint Section 3.34

8521h PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral Section 3.36
mode)

8524h RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint Section 3.37

8525h PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral Section 3.38
mode)

8528h RXCOUNT Number of Bytes in Host Receive endpoint FIFO Section 3.40

8529h - Reserved

852Ch - Reserved

852Dh - Reserved

65SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

Table 21. Control and Status Registers for Endpoints 0-4 (continued)

CPU Word
Address Acronym Register Description Section

Control and Status Register for Endpoint 3

8530h TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint Section 3.34

8531h PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral Section 3.36
mode)

8534h RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint Section 3.37

8535h PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral Section 3.38
mode)

8538h RXCOUNT Number of Bytes in Host Receive endpoint FIFO Section 3.40

8539h - Reserved

853Ch - Reserved

853Dh - Reserved

Control and Status Register for Endpoint 4

8540h TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint Section 3.34

8541h PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral Section 3.36
mode)

8544h RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint Section 3.37

8545h PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral Section 3.38
mode)

8548h RXCOUNT Number of Bytes in Host Receive endpoint FIFO Section 3.40

8549h - Reserved

854Ch - Reserved

854Dh - Reserved

3.1.3 Communications Port Programming Interface (CPPI) 4.1 DMA Registers

This section lists the registers of the communications port programming interface (CPPI) DMA. Refer to
the sections listed for detailed information on each register.

3.1.3.1 CPPI DMA (CMDA) Registers

Table 22 lists the register of the CPPI DMA (CMDA).

Table 22. CPPI DMA (CMDA) Registers

CPU Word
Address Acronym Register Description Section

9000h DMAREVID1 CDMA Revision Identification Register 1 Section 3.53

9001h DMAREVID2 CDMA Revision Identification Register 2 Section 3.53

9004h TDFDQ CDMA Teardown Free Descriptor Queue Control Register Section 3.54

9008h DMAEMU CDMA Emulation Control Register Section 3.55

9800h TXGCR1[0] Transmit Channel 0 Global Configuration Register 1 Section 3.56

9801h TXGCR2[0] Transmit Channel 0 Global Configuration Register 2 Section 3.56

9808h RXGCR1[0] Receive Channel 0 Global Configuration Register 1 Section 3.57

9809h RXGCR2[0] Receive Channel 0 Global Configuration Register 2 Section 3.57

980Ch RXHPCR1A[0] Receive Channel 0 Host Packet Configuration Register 1 A Section 3.58

980Dh RXHPCR2A[0] Receive Channel 0 Host Packet Configuration Register 2 A Section 3.58

9810h RXHPCR1B[0] Receive Channel 0 Host Packet Configuration Register 1 B Section 3.59

9811h RXHPCR2B[0] Receive Channel 0 Host Packet Configuration Register 2 B Section 3.59

9820h TXGCR1[1] Transmit Channel 1 Global Configuration Register 1 Section 3.56

9821h TXGCR2[1] Transmit Channel 1 Global Configuration Register 2 Section 3.56

66 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

Table 22. CPPI DMA (CMDA) Registers (continued)

CPU Word
Address Acronym Register Description Section

9828h RXGCR1[1] Receive Channel 1 Global Configuration Register 1 Section 3.57

9829h RXGCR2[1] Receive Channel 1 Global Configuration Register 2 Section 3.57

982Ch RXHPCR1A[1] Receive Channel 1 Host Packet Configuration Register 1 A Section 3.58

982Dh RXHPCR2A[1] Receive Channel 1 Host Packet Configuration Register 2 A Section 3.58

9830h RXHPCR1B[1] Receive Channel 1 Host Packet Configuration Register 1 B Section 3.59

9831h RXHPCR2B[1] Receive Channel 1 Host Packet Configuration Register 2 B Section 3.59

9840h TXGCR1[2] Transmit Channel 2 Global Configuration Register 1 Section 3.56

9841h TXGCR2[2] Transmit Channel 2 Global Configuration Register 2 Section 3.56

9848h RXGCR1[2] Receive Channel 2 Global Configuration Register 1 Section 3.57

9849h RXGCR2[2] Receive Channel 2 Global Configuration Register 2 Section 3.57

984Ch RXHPCR1A[2] Receive Channel 2 Host Packet Configuration Register 1 A Section 3.58

984Dh RXHPCR2A[2] Receive Channel 2 Host Packet Configuration Register 2 A Section 3.58

9850h RXHPCR1B[2] Receive Channel 2 Host Packet Configuration Register 1 B Section 3.59

9851h RXHPCR2B[2] Receive Channel 2 Host Packet Configuration Register 2 B Section 3.59

9860h TXGCR1[3] Transmit Channel 3 Global Configuration Register 1 Section 3.56

9861h TXGCR2[3] Transmit Channel 3 Global Configuration Register 2 Section 3.56

9868h RXGCR1[3] Receive Channel 3 Global Configuration Register 1 Section 3.57

9869h RXGCR2[3] Receive Channel 3 Global Configuration Register 2 Section 3.57

986Ch RXHPCR1A[3] Receive Channel 3 Host Packet Configuration Register 1 A Section 3.58

986Dh RXHPCR2A[3] Receive Channel 3 Host Packet Configuration Register 2 A Section 3.58

9870h RXHPCR1B[3] Receive Channel 3 Host Packet Configuration Register 1 B Section 3.59

9871h RXHPCR2B[3] Receive Channel 3 Host Packet Configuration Register 2 B Section 3.59

A000h DMA_SCHED_CTRL1 CDMA Scheduler Control Register 1 Section 3.60

A001h DMA_SCHED_CTRL2 CDMA Scheduler Control Register 1 Section 3.60

A800h + 4 × N ENTRYLSW[N] CDMA Scheduler Table Word N Registers LSW (N = 0 to 63) Section 3.61

A801h + 4 × N ENTRYMSW[N] CDMA Scheduler Table Word N Registers MSW (N = 0 to 63) Section 3.61

3.1.3.2 Queue Manager (QMGR) Registers

Table 23 lists the registers of the queue manager.

Table 23. Queue Manager (QMGR) Registers

CPU Word
Address Acronym Register Description Section

C000h QMGRREVID1 Queue Manager Revision Identification Register 1 Section 3.62

C001h QMGRREVID2 Queue Manager Revision Identification Register 2 Section 3.62

C008h DIVERSION1 Queue Manager Queue Diversion Register 1 Section 3.63

C009h DIVERSION2 Queue Manager Queue Diversion Register 2 Section 3.63

C020h FDBSC0 Queue Manager Free Descriptor/Buffer Starvation Count Register 0 Section 3.64

C021h FDBSC1 Queue Manager Free Descriptor/Buffer Starvation Count Register 1 Section 3.65

C024h FDBSC2 Queue Manager Free Descriptor/Buffer Starvation Count Register 2 Section 3.66

C025h FDBSC3 Queue Manager Free Descriptor/Buffer Starvation Count Register 3 Section 3.67

C028h FDBSC4 Queue Manager Free Descriptor/Buffer Starvation Count Register 4 Section 3.68

C029h FDBSC5 Queue Manager Free Descriptor/Buffer Starvation Count Register 5 Section 3.69

C02Ch FDBSC6 Queue Manager Free Descriptor/Buffer Starvation Count Register 6 Section 3.70

C02Dh FDBSC7 Queue Manager Free Descriptor/Buffer Starvation Count Register 7 Section 3.71

C080h LRAM0BASE1 Queue Manager Linking RAM Region 0 Base Address Register 1 Section 3.72

67SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

Table 23. Queue Manager (QMGR) Registers (continued)

CPU Word
Address Acronym Register Description Section

C081h LRAM0BASE2 Queue Manager Linking RAM Region 0 Base Address Register 2 Section 3.72

C084h LRAM0SIZE Queue Manager Linking RAM Region 0 Size Register Section 3.73

C085h - Reserved

C088h LRAM1BASE1 Queue Manager Linking RAM Region 1 Base Address Register 1 Section 3.74

C089h LRAM1BASE2 Queue Manager Linking RAM Region 1 Base Address Register 2 Section 3.74

C090h PEND0 Queue Manager Queue Pending 0 Section 3.75

C091h PEND1 Queue Manager Queue Pending 1 Section 3.76

C094h PEND2 Queue Manager Queue Pending 2 Section 3.77

C095h PEND3 Queue Manager Queue Pending 3 Section 3.78

C098h PEND4 Queue Manager Queue Pending 4 Section 3.79

C099h PEND5 Queue Manager Queue Pending 5 Section 3.80

D000h + 16 × R QMEMRBASE1[R] Queue Manager Memory Region R Base Address Register 1 (R = 0 Section 3.81
to 15)

D001h + 16 × R QMEMRBASE2[R] Queue Manager Memory Region R Base Address Register 2 (R = 0 Section 3.81
to 15)

D004h + 16 × R QMEMRCTRL1[R] Queue Manager Memory Region R Control Register (R = 0 to 15) Section 3.82

D005h + 16 × R QMEMRCTRL2[R] Queue Manager Memory Region R Control Register (R = 0 to 15) Section 3.82

E00Ch + 16 × N CTRL1D Queue Manager Queue N Control Register 1 D (N = 0 to 63) Section 3.83

E00Dh + 16 × N CTRL2D Queue Manager Queue N Control Register 2 D (N = 0 to 63) Section 3.83

E800h + 16 × N QSTATA Queue Manager Queue N Status Register A (N = 0 to 63) Section 3.84

E804h + 16 × N QSTAT1B Queue Manager Queue N Status Register 1 B (N = 0 to 63) Section 3.85

E805h + 16 × N QSTAT2B Queue Manager Queue N Status Register 2 B (N = 0 to 63) Section 3.85

E808h + 16 × N QSTATC Queue Manager Queue N Status Register C (N = 0 to 63) Section 3.86

68 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3.2 Revision Identification Registers (REVID1 and REVID2)

The revision identification registers (REVID1 and REVID2) contain the revision for the USB 2.0 controller
module. The REVID1 is shown in Figure 23 and described in Table 24. The REVID2 is shown in Figure 24
and described in Table 25.

Figure 23. Revision Identification Register (REVID1)

15 0

REVLSB

R- 0800h

LEGEND: R = Read only; -n = value after reset

Figure 24. Revision Identification Register (REVID2)

15 0

REVMSB

R-4EA1h

LEGEND: R = Read only; -n = value after reset

Table 24. Revision Identification Register (REVID1) Field Descriptions

Bit Field Value Description

15-0 REVLSB 0-FFFFh Least significant bits of the revision ID of the USB module.

Table 25. Revision Identification Register (REVID2) Field Descriptions

Bit Field Value Description

15-0 REVMSB 0-FFFFh Most significant bits of the revision ID of the USB module.

69SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.3 Control Register (CTRLR)

The control register (CTRLR) allows the CPU to control various aspects of the module. The CTRLR is
shown in Figure 25 and described in Table 26.

Figure 25. Control Register (CTRLR)

15 5 4 3 2 1 0

Reserved RNDIS UINT Reserved CLKFACK RESET

R-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 26. Control Register (CTRLR) Field Descriptions

Bit Field Value Description

15-5 Reserved 0 Reserved

4 RNDIS Global RNDIS mode enable for all endpoints.

0 Global RNDIS mode is disabled.

1 Global RNDIS mode is enabled.

3 UINT USB non-PDR interrupt handler enable.

0 PDR interrupt handler is enabled.

1 PDR interrupt handler is disabled.

2 Reserved 0 Reserved

1 CLKFACK Clock stop fast ACK enable.

0 Clock stop fast ACK is disabled.

1 Clock stop fast ACK is enabled.

0 RESET Soft reset.

0 No effect.

1 Writing a 1 starts a module reset.

3.4 Status Register (STATR)

The status register (STATR) allows the CPU to check various aspects of the module. The STATR is
shown in Figure 26 and described in Table 27.

Figure 26. Status Register (STATR)

15 1 0

Reserved DRVVBUS

R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 27. Status Register (STATR) Field Descriptions

Bit Field Value Description

15-1 Reserved 0 Reserved.

0 DRVVBUS Current DRVVBUS value.

0 DRVVBUS value is logic 0.

1 DRVVBUS value is logic 1.

3.5 Emulation Register (EMUR)

The emulation register (EMUR) allows the CPU to configure the CBA 3.0 emulation interface. The EMUR
is shown in Figure 27 and described in Table 28.

70 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

Figure 27. Emulation Register (EMUR)

15 3 2 1 0

Reserved RT_SEL SOFT FREERUN

R-0 R/W-0 R/W-1 R/W-1

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 28. Emulation Register (EMUR) Field Descriptions

Bit Field Value Description

15-3 Reserved 0 Reserved.

2 RT_SEL Real-time enable.

0 Enable.

1 No effect.

1 SOFT Soft stop.

0 No effect.

1 Soft stop enable.

0 FREERUN Free run.

0 No effect.

1 Free run enable.

71SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.6 Mode Registers (MODE1 and MODE2)

The mode registers (MODE1 and MODE2) allow the CPU to individually enable RNDIS/Generic/CDC
modes for each endpoint. Using the global RNDIS bit in the control register (CTRLR) overrides this
register and enables RNDIS mode for all endpoints. The MODE1 is shown in Figure 28 and described in
Table 29. The MODE2 is shown in Figure 29 and described in Table 30.

Figure 28. Mode Register 1 (MODE1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved TX4_MODE Reserved TX3_MODE Reserved TX2_MODE Reserved TX1_MODE

R R/W R R/W R R/W R R/W

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 29. Mode Register 2 (MODE2)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved RX4_MODE Reserved RX3_MODE Reserved RX2_MODE Reserved RX1_MODE

R R/W R R/W R R/W R R/W

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 29. Mode Register 1 (MODE1) Field Descriptions

Bit Field Value Description

15-14 Reserved 0 Reserved.

13-12 TX4_MODE 0-3h Transmit endpoint 4 mode control.

0 Transparent mode on Transmit endpoint 4.

1h RNDIS mode on Transmit endpoint 4.

2h CDC mode on Transmit endpoint 4.

3h Generic RNDIS mode on Transmit endpoint 4.

11-10 Reserved 0 Reserved.

9-8 TX3_MODE 0-3h Transmit endpoint 3 mode control.

0 Transparent mode on Transmit endpoint 3.

1h RNDIS mode on Transmit endpoint 3.

2h CDC mode on Transmit endpoint 3.

3h Generic RNDIS mode on Transmit endpoint 3.

7-6 Reserved 0 Reserved.

5-4 TX2_MODE 0-3h Transmit endpoint 2 mode control.

0 Transparent mode on Transmit endpoint 2.

1h RNDIS mode on Transmit endpoint 2.

2h CDC mode on Transmit endpoint 2.

3h Generic RNDIS mode on Transmit endpoint 2.

3-2 Reserved 0 Reserved.

1-0 TX1_MODE 0-3h Transmit endpoint 1 mode control.

0 Transparent mode on Transmit endpoint 1.

1h RNDIS mode on Transmit endpoint 1.

2h CDC mode on Transmit endpoint 1.

3h Generic RNDIS mode on Transmit endpoint 1.

72 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

Table 30. Mode Register 2 (MODE2) Field Descriptions

Bit Field Value Description

15-14 Reserved 0 Reserved.

13-12 RX4_MODE 0-3h Receive endpoint 4 mode control.

0 Transparent mode on Receive endpoint 4.

1h RNDIS mode on Receive endpoint 4.

2h CDC mode on Receive endpoint 4.

3h Generic RNDIS mode on Receive endpoint 4.

11-10 Reserved 0 Reserved.

9-8 RX3_MODE 0-3h Receive endpoint 3 mode control.

0 Transparent mode on Receive endpoint 3.

1h RNDIS mode on Receive endpoint 3.

2h CDC mode on Receive endpoint 3.

3h Generic RNDIS mode on Receive endpoint 3.

7-6 Reserved 0 Reserved.

5-4 RX2_MODE 0-3h Receive endpoint 2 mode control.

0 Transparent mode on Receive endpoint 2.

1h RNDIS mode on Receive endpoint 2.

2h CDC mode on Receive endpoint 2.

3h Generic RNDIS mode on Receive endpoint 2.

3-2 Reserved 0 Reserved.

1-0 RX1_MODE 0-3h Receive endpoint 1 mode control.

0 Transparent mode on Receive endpoint 1.

1h RNDIS mode on Receive endpoint 1.

2h CDC mode on Receive endpoint 1.

3h Generic RNDIS mode on Receive endpoint 1.

73SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.7 Auto Request Register (AUTOREQ)

The auto request register (AUTOREQ) allows the CPU to enable an automatic IN token request
generation for host mode RX operation per each RX endpoint. This feature has the DMA set the REQPKT
bit in the control status register for host receive endpoint (HOST_RXCSR) when it clears the RXPKTRDY
bit after reading out a packet. The REQPKT bit is used by the core to generate an IN token to receive
data. By using this feature, the host can automatically generate an IN token after the DMA finishes
receiving data and empties an endpoint buffer, thus receiving the next data packet as soon as possible
from the connected device. Without this feature, the CPU will have to manually set the REQPKT bit for
every USB packet.

There are two modes that auto request can function in: always or all except an EOP. The always mode
sets the REQPKT bit after every USB packet the DMA receives thus generating a new IN token after each
USB packet. The EOP mode sets the REQPKT bit after every USB packet that is not an EOP (end of
packet) in the CPPI descriptor. For RNDIS, CDC, and Generic RNDIS modes, the auto request stops
when the EOP is received (either via a short packet for RNDIS, CDC, and Generic RNDIS or the count is
reached for Generic RNDIS), making it useful for starting a large RNDIS packet and having it auto
generate IN tokens until the end of the RNDIS packet. For transparent mode, every USB packet is an
EOP CPPI packet so the auto request never functions and acts like auto request is disabled.

The AUTOREQ is shown in Figure 30 and described in Table 31.

Figure 30. Auto Request Register (AUTOREQ)

15 8 7 6 5 4 3 2 1 0

Reserved RX4_AUTREQ RX3_AUTREQ RX2_AUTREQ RX1_AUTREQ

R-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 31. Auto Request Register (AUTOREQ) Field Descriptions

Bit Field Value Description

15-8 Reserved 0 Reserved.

7-6 RX4_AUTREQ 0-3h Receive endpoint 4 auto request enable.

0 No auto request.

1h Auto request on all but EOP.

2h Reserved.

3h Auto request always.

5-4 RX3_AUTREQ 0-3h Receive endpoint 3 auto request enable.

0 No auto request.

1h Auto request on all but EOP.

2h Reserved.

3h Auto request always.

3-2 RX2_AUTREQ 0-3h Receive endpoint 2 auto request enable.

0 No auto request.

1h Auto request on all but EOP.

2h Reserved.

3h Auto request always.

1-0 RX1_AUTREQ 0-3h Receive endpoint 1 auto request enable.

0 No auto request.

1h Auto request on all but EOP.

2h Reserved.

3h Auto request always.

74 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3.8 SRP Fix Time Registers (SRPFIXTIME1 and SRPFIXTIME2)

The SRP fix time registers (SRPFIXTIME1 and SRPFIXTIME2) allow the CPU to configure the maximum
amount of time the SRP fix logic blocks the Avalid from the PHY to the Mentor core. The SRPFIXTIME1 is
shown in Figure 31 and described in Table 32. The SRPFIXTIME2 is shown in Figure 32 and described in
Table 33.

Figure 31. SRP Fix Time Register 1 (SRPFIXTIME1)

15 0

SRPFIXTIMELSB

R/W-DE80h

LEGEND: R/W = Read/Write; -n = value after reset

Figure 32. SRP Fix Time Register 2 (SRPFIXTIME2)

15 0

SRPFIXTIMEMSB

R/W-0280h

LEGEND: R/W = Read/Write; -n = value after reset

Table 32. SRP Fix Time Register 1 (SRPFIXTIME1) Field Descriptions

Bit Field Value Description

15-0 SRPFIXTIMELSB 0-FFFFh SRP fix maximum time in 60 MHz cycles. Together, SRPFIXTIME1 and
SRPFIXTIME2 specify a 32 bit value. Default is 700 ms (280 DE80h).

Table 33. SRP Fix Time Register 2 (SRPFIXTIME2) Field Descriptions

Bit Field Value Description

15-0 SRPFIXTIMEMSB 0-FFFFh SRP fix maximum time in 60 MHz cycles. Together, SRPFIXTIME1 and
SRPFIXTIME2 specify a 32 bit value. Default is 700 ms (280 DE80h).

75SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.9 Teardown Registers (TEARDOWN1 and TEARDOWN2)

The teardown registers (TEARDOWN1 and TEARDOWN2) control the tearing down of receive and
transmit FIFOs in the USB controller. When a 1 is written to a valid bit in TEARDOWN1 or TEARDOWN2,
the CPPI FIFO pointers for that endpoint are cleared. TEARDOWN1 and TEARDOWN2 must be used in
conjunction with the CPPI DMA teardown mechanism. The Host should also write the FLUSHFIFO bits in
the TXCSR and RXCSR registers to ensure a complete teardown of the endpoint.

The TEARDOWN1 is shown in Figure 33 and described in Table 34. The TEARDOWN2 is shown in
Figure 34 and described in Table 35.

Figure 33. Teardown Register 1 (TEARDOWN1)

15 5 4 1 0

Reserved RX_TDOWN Reserved

R-0 R/W-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 34. Teardown Register 2 (TEARDOWN2)

15 5 4 1 0

Reserved TX_TDOWN Reserved

R-0 R/W-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 34. Teardown Register 1 (TEARDOWN1) Field Descriptions

Bit Field Value Description

15-5 Reserved 0 Reserved.

4-1 RX_TDOWN Receive endpoint teardown.

0 Disable.

1 Enable.

0 Reserved 0 Reserved.

Table 35. Teardown Register 2 (TEARDOWN2) Field Descriptions

Bit Field Value Description

15-5 Reserved 0 Reserved.

4-1 TX_TDOWN Transmit endpoint teardown.

0 Disable.

1 Enable.

0 Reserved 0 Reserved.

76 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3.10 USB Interrupt Source Registers (INTSRCR1 and INTSRCR2)

The USB interrupt source registers (INTSRCR1 and INTSRCR2) contain the status of the interrupt
sources generated by the USB core (not the DMA). The INTSRCR1 is shown in Figure 35 and described
in Table 36. The INTSRCR2 is shown in Figure 36 and described in Table 37.

Figure 35. USB Interrupt Source Register 1 (INTSRCR1)

15 13 12 9 8 5 4 0

Reserved RX Reserved TX

R-0 R-0

LEGEND: R = Read only; -n = value after reset

Figure 36. USB Interrupt Source Register 2 (INTSRCR2)

15 9 8 0

Reserved USB

R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 36. USB Interrupt Source Register 1 (INTSRCR1) Field Descriptions

Bit Field Value Description

15-13 Reserved 0 Reserved.

12 RX4 0/1 Receive interrupt source for EndPoint4

11 RX3 0/1 Receive interrupt source for EndPoint3

10 RX2 0/1 Receive interrupt source for EndPoint2

9 RX1 0/1 Receive interrupt source for EndPoint1

8-5 Reserved 0

4 TX4 0/1 Transmit interrupt source for EndPoint4

3 TX3 0/1 Transmit interrupt source for EndPoint3

2 TX2 0/1 Transmit interrupt source for EndPoint2

1 TX1 0/1 Transmit interrupt source for EndPoint1

0 RX1/TX1 0/1 Both Receive and Transmit interrupt source for EndPoint0

Table 37. USB Interrupt Source Register 2 (INTSRCR2) Field Descriptions

Bit Field Value Description

15-9 Reserved 0 Reserved.

8-0 USB 0-1FFh USB interrupt sources. (Please see Figure 67 for the definition of each bit here.)

77SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.11 USB Interrupt Source Set Registers (INTSETR1 and INTSETR2)

The USB interrupt source set registers (INTSETR1 and INTSETR2) allow the USB interrupt sources to be
manually triggered. A read of this register returns the USB interrupt source register value. The INTSETR1
is shown in Figure 37 and described in Table 38. The INTSETR2 is shown in Figure 38 and described in
Table 39.

Figure 37. USB Interrupt Source Set Register 1 (INTSETR1)

15 13 12 9 8 5 4 0

Reserved RX Reserved TX

R-0 R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 38. USB Interrupt Source Set Register 2 (INTSETR2)

15 9 8 0

Reserved USB

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 38. USB Interrupt Source Set Register 1 (INTSETR1) Field Descriptions

Bit Field Value Description

15-13 Reserved 0 Reserved.

12-8 RX 0-Fh Write a 1 to set equivalent Receive endpoint interrupt source. Allows the USB interrupt sources to
be manually triggered.

7-5 Reserved 0 Reserved.

4-0 TX 0-1Fh Write a 1 to set equivalent Transmit endpoint interrupt source. Allows the USB interrupt sources to
be manually triggered.

Table 39. USB Interrupt Source Set Register 2 (INTSETR2) Field Descriptions

Bit Field Value Description

15-9 Reserved 0 Reserved.

8-0 USB 0-1FFh Write a 1 to set equivalent USB interrupt source. Allows the USB interrupt sources to be manually
triggered.

78 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3.12 USB Interrupt Source Clear Registers (INTCLRR1 and INTCLRR2)

The USB interrupt source clear registers (INTCLRR1 and INTCLRR2) allow the CPU to acknowledge an
interrupt source and turn it off. A read of this register returns the USB interrupt source register value. The
INTCLRR1 is shown in Figure 39 and described in Table 40. The INTCLRR2 is shown in Figure 40 and
described in Table 41.

Figure 39. USB Interrupt Source Clear Register 1 (INTCLRR1)

15 13 12 9 8 5 4 0

Reserved RX Reserved TX

R-0 R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 40. USB Interrupt Source Clear Register 2 (INTCLRR2)

15 9 8 0

Reserved USB

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 40. USB Interrupt Source Clear Register 1 (INTCLRR1) Field Descriptions

Bit Field Value Description

15-13 Reserved 0 Reserved.

12-8 RX 0-Fh Write a 1 to clear equivalent Receive endpoint interrupt source. Allows the CPU to acknowledge an
interrupt source and turn it off.

7-5 Reserved 0 Reserved.

4-0 TX 0-1Fh Write a 1 to clear equivalent Transmit endpoint interrupt source. Allows the CPU to acknowledge an
interrupt source and turn it off.

Table 41. USB Interrupt Source Clear Register 2 (INTCLRR2) Field Descriptions

Bit Field Value Description

15-9 Reserved 0 Reserved.

8-0 USB 0-1FFh Write a 1 to clear equivalent USB interrupt source. Allows the CPU to acknowledge an interrupt
source and turn it off.

79SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.13 USB Interrupt Mask Registers (INTMSKR1 and INTMSKR2)

The USB interrupt mask registers (INTMSKR1 and INTMSKR2) contain the masks of the interrupt sources
generated by the USB core (not the DMA). These masks are used to enable or disable interrupt sources
generated on the masked source interrupts (the raw source interrupts are never masked). The bit
positions are maintained in the same position as the interrupt sources in the USB interrupt source register.

The INTMSKR1 is shown in Figure 41 and described in Table 42. The INTMSKR2 is shown in Figure 42
and described in Table 43.

Figure 41. USB Interrupt Mask Register 1 (INTMSKR1)

15 13 12 9 8 5 4 0

Reserved RX Reserved TX

R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Figure 42. USB Interrupt Mask Register 2 (INTMSKR2)

15 9 8 0

Reserved USB

R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 42. USB Interrupt Mask Register 1 (INTMSKR1) Field Descriptions

Bit Field Value Description

15-13 Reserved 0 Reserved.

12-8 RX 0-Fh Receive endpoint interrupt source masks.

7-5 Reserved 0 Reserved.

4-0 TX 0-1Fh Transmit endpoint interrupt source masks.

Table 43. USB Interrupt Mask Register 2 (INTMSKR2) Field Descriptions

Bit Field Value Description

15-9 Reserved 0 Reserved.

8-0 USB 0-1FFh USB interrupt source masks.

80 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3.14 USB Interrupt Mask Set Registers (INTMSKSETR1 and INTMSKSETR2)

The USB interrupt mask set registers (INTMSKSETR1 and INTMSKSETR2) allow the USB masks to be
individually enabled. A read to this register returns the USB interrupt mask register value. The
INTMSKSETR1 is shown in Figure 43 and described in Table 44. The INTMSKSETR2 is shown in
Figure 44 and described in Table 45.

Figure 43. USB Interrupt Mask Set Register 1 (INTMSKSETR1)

15 13 12 9 8 5 4 0

Reserved RX Reserved TX

R-0 R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 44. USB Interrupt Mask Set Register 2 (INTMSKSETR2)

15 9 8 0

Reserved USB

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 44. USB Interrupt Mask Set Register 1 (INTMSKSETR1) Field Descriptions

Bit Field Value Description

15-13 Reserved 0 Reserved.

12-8 RX 0-Fh Write a 1 to set equivalent Receive endpoint interrupt mask.

7-5 Reserved 0 Reserved.

4-0 TX 0-1Fh Write a 1 to set equivalent Transmit endpoint interrupt mask.

Table 45. USB Interrupt Mask Set Register 2 (INTMSKSETR2) Field Descriptions

Bit Field Value Description

15-9 Reserved 0 Reserved.

8-0 USB 0-1FFh Write a 1 to set equivalent USB interrupt mask.

81SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.15 USB Interrupt Mask Clear Registers (INTMSKCLRR1 and INTMSKCLRR2)

The USB interrupt mask clear registers (INTMSKCLRR1 and INTMSKCLRR2) allow the USB interrupt
masks to be individually disabled. A read to this register returns the USB interrupt mask register value.
The INTMSKCLRR1 is shown in Figure 45 and described in Table 46. The INTMSKCLRR2 is shown in
Figure 46 and described in Table 47.

Figure 45. USB Interrupt Mask Clear Register 1 (INTMSKCLRR1)

15 13 12 9 8 5 4 0

Reserved RX Reserved TX

R-0 R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 46. USB Interrupt Mask Clear Register 2 (INTMSKCLRR2)

15 9 8 0

Reserved USB

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 46. USB Interrupt Mask Clear Register 1 (INTMSKCLRR1) Field Descriptions

Bit Field Value Description

15-13 Reserved 0 Reserved.

12-8 RX 0-Fh Write a 1 to clear equivalent Receive endpoint interrupt mask.

7-5 Reserved 0 Reserved.

4-0 TX 0-1Fh Write a 1 to clear equivalent Transmit endpoint interrupt mask.

Table 47. USB Interrupt Mask Clear Register 2 (INTMSKCLRR2) Field Descriptions

Bit Field Value Description

15-9 Reserved 0 Reserved.

8-0 USB 0-1FFh Write a 1 to clear equivalent USB interrupt mask.

82 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3.16 USB Interrupt Source Masked Registers (INTMASKEDR1 and INTMASKEDR2)

The USB interrupt source masked registers (INTMASKEDR1 and INTMASKEDR2) contain the status of
the interrupt sources generated by the USB core masked by the USB interrupt mask register values. The
INTMASKEDR1 is shown in Figure 47 and described in Table 48. The INTMASKEDR2 is shown in
Figure 48 and described in Table 49.

Figure 47. USB Interrupt Source Masked Register 1 (INTMASKEDR1)

15 13 12 9 8 5 4 0

Reserved RX Reserved TX

R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Figure 48. USB Interrupt Source Masked Register 2 (INTMASKEDR2)

15 9 8 0

Reserved USB

R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 48. USB Interrupt Source Masked Register 1 (INTMASKEDR1) Field Descriptions

Bit Field Value Description

15-13 Reserved 0 Reserved.

12-8 RX 0-Fh Receive endpoint interrupt sources masked.

7-5 Reserved 0 Reserved.

4-0 TX 0-1Fh Transmit endpoint interrupt sources masked.

Table 49. USB Interrupt Source Masked Register 2 (INTMASKEDR2) Field Descriptions

Bit Field Value Description

15-9 Reserved 0 Reserved.

8-0 USB 0-1FFh USB interrupt sources masked.

83SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.17 USB End of Interrupt Register (EOIR)

The USB end of interrupt register (EOIR) allows the CPU to acknowledge completion of an interrupt by
writing 0 to the EOI_VECTOR bit. The EOIR is shown in Figure 49 and described in Table 50.

Figure 49. USB End of Interrupt Register (EOIR)

15 8 7 0

Reserved EOI_VECTOR

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 50. USB End of Interrupt Register (EOIR) Field Descriptions

Bit Field Value Description

15-8 Reserved 0 Reserved.

7-0 EOI_VECTOR 0-FFh EOI Vector.

3.18 USB Interrupt Vector Registers (INTVECTR1 and INTVECTR2)

The USB interrupt vector registers (INTVECTR1 and INTVECTR2) recycle the Interrupt Vector input to be
read by the CPU. The INTVECTR1 is shown in Figure 50 and described in Table 51. The INTVECTR2 is
shown in Figure 51 and described in Table 52.

Figure 50. USB Interrupt Vector Register 1 (INTVECTR1)

15 0

VECTORLSB

R-0

LEGEND: R = Read only; -n = value after reset

Figure 51. USB Interrupt Vector Register 2 (INTVECTR2)

15 0

VECTORMSB

R-0

LEGEND: R = Read only; -n = value after reset

Table 51. USB Interrupt Vector Register 1 (INTVECTR1) Field Descriptions

Bit Field Value Description

15-0 VECTORLSB 0-FFFFh Input Interrupt Vector. Together, INTVECTR1 and INTVECTR2 specify a 32 bit value.

Table 52. USB Interrupt Vector Register 2 (INTVECTR2) Field Descriptions

Bit Field Value Description

15-0 VECTORMSB 0-FFFFh Input Interrupt Vector. Together, INTVECTR1 and INTVECTR2 specify a 32 bit value.

84 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3.19 Generic RNDIS EP1 Size Registers (GREP1SZR1 and GREP1SZR2)

The generic RNDIS EP1 size registers (GREP1SZR1 and GREP1SZR2) are programmed with a RNDIS
packet size in bytes. When EP1 is in Generic RNDIS mode, the received USB packets are collected into a
single CPPI packet that is completed when the number of bytes equal to the value of this register have
been received, or a short packet is received. The packet size must be an integer multiple of the endpoint
size. The maximum packet size that can be used is 10000h, or 65536.

The GREP1SZR1 is shown in Figure 52 and described in Table 53. The GREP1SZR2 is shown in
Figure 53 and described in Table 54.

Figure 52. Generic RNDIS EP1 Size Register 1 (GREP1SZR1)

15 0

EP1_SIZE_LSB

R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 53. Generic RNDIS EP1 Size Register 2 (GREP1SZR2)

15 1 0

Reserved EP1_SIZE_MSB

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 53. Generic RNDIS EP1 Size Register 1 (GREP1SZR1) Field Descriptions

Bit Field Value Description

15-0 EP1_SIZE_LSB 0-FFFFh Generic RNDIS packet size. Together, GREP1SZR1 and GREP1SZR2 specify the packet
size.

Table 54. Generic RNDIS EP1 Size Register 2 (GREP1SZR2) Field Descriptions

Bit Field Value Description

15-1 Reserved 0 Reserved.

0 EP1_SIZE_MSB 0-1 Generic RNDIS packet size. Together, GREP1SZR1 and GREP1SZR2 specify the packet
size.

85SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.20 Generic RNDIS EP2 Size Registers (GREP2SZR1 and GREP2SZR2)

The generic RNDIS EP2 size registers (GREP2SZR1 and GREP2SZR2) are programmed with a RNDIS
packet size in bytes. When EP2 is in Generic RNDIS mode, the received USB packets are collected into a
single CPPI packet that is completed when the number of bytes equal to the value of this register have
been received, or a short packet is received. The packet size must be an integer multiple of the endpoint
size. The maximum packet size that can be used is 10000h, or 65536.

The GREP2SZR1 is shown in Figure 54 and described in Table 55. The GREP2SZR2 is shown in
Figure 55 and described in Table 56.

Figure 54. Generic RNDIS EP2 Size Register 1 (GREP2SZR1)

15 0

EP2_SIZE_LSB

R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 55. Generic RNDIS EP2 Size Register 2 (GREP2SZR2)

15 1 0

Reserved EP2_SIZE_MSB

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 55. Generic RNDIS EP2 Size Register 1 (GREP2SZR1) Field Descriptions

Bit Field Value Description

15-0 EP2_SIZE_LSB 0-FFFFh Generic RNDIS packet size. Together, GREP2SZR1 and GREP2SZR2 specify the packet
size.

Table 56. Generic RNDIS EP2 Size Register 2 (GREP2SZR2) Field Descriptions

Bit Field Value Description

15-1 Reserved 0 Reserved.

0 EP2_SIZE_MSB 0-1 Generic RNDIS packet size. Together, GREP2SZR1 and GREP2SZR2 specify the packet
size.

86 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3.21 Generic RNDIS EP3 Size Registers (GREP3SZR1 and GREP3SZR2)

The generic RNDIS EP3 size registers (GREP3SZR1 and GREP3SZR2) are programmed with a RNDIS
packet size in bytes. When EP3 is in Generic RNDIS mode, the received USB packets are collected into a
single CPPI packet that is completed when the number of bytes equal to the value of this register has
been received, or a short packet is received. The packet value must be an integer multiple of the endpoint
size. The maximum packet size that can be used is 10000h, or 65536.

The GREP3SZR1 is shown in Figure 56 and described in Table 57. The GREP3SZR2 is shown in
Figure 57 and described in Table 58.

Figure 56. Generic RNDIS EP3 Size Register 1 (GREP3SZR1)

15 0

EP3_SIZE_LSB

R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 57. Generic RNDIS EP3 Size Register 2 (GREP3SZR2)

15 1 0

Reserved EP3_SIZE_MSB

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 57. Generic RNDIS EP3 Size Register 1 (GREP3SZR1) Field Descriptions

Bit Field Value Description

15-0 EP3_SIZE_LSB 0-FFFFh Generic RNDIS packet size. Together, GREP3SZR1 and GREP3SZR2 specify the packet
size.

Table 58. Generic RNDIS EP3 Size Register 2 (GREP3SZR2) Field Descriptions

Bit Field Value Description

15-1 Reserved 0 Reserved.

0 EP3_SIZE_MSB 0-1 Generic RNDIS packet size. Together, GREP3SZR1 and GREP3SZR2 specify the packet
size.

87SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.22 Generic RNDIS EP4 Size Registers (GREP4SZR1 and GREP4SZR2)

The generic RNDIS EP4 size registers (GREP4SZR1 and GREP4SZR2) are programmed with a RNDIS
packet size in bytes. When EP4 is in Generic RNDIS mode, the received USB packets are collected into a
single CPPI packet that is completed when the number of bytes equal to the value of this register has
been received, or a short packet is received. The packet size must be an integer multiple of the endpoint
size. The maximum packet size that can be used is 10000h, or 65536.

The GREP4SZR1 is shown in Figure 58 and described in Table 59. The GREP4SZR2 is shown in
Figure 59 and described in Table 60.

Figure 58. Generic RNDIS EP4 Size Register 1 (GREP4SZR1)

15 0

EP4_SIZE_LSB

R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 59. Generic RNDIS EP4 Size Register 2 (GREP4SZR2)

15 1 0

Reserved EP4_SIZE_MSB

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 59. Generic RNDIS EP4 Size Register 1 (GREP4SZR1) Field Descriptions

Bit Field Value Description

15-0 EP4_SIZE_LSB 0-FFFFh Generic RNDIS packet size. Together, GREP4SZR1 and GREP4SZR2 specify the packet
size.

Table 60. Generic RNDIS EP4 Size Register 2 (GREP4SZR2) Field Descriptions

Bit Field Value Description

15-1 Reserved 0 Reserved

0 EP4_SIZE_MSB 0-1 Generic RNDIS packet size. Together, GREP4SZR1 and GREP4SZR2 specify the packet
size.

88 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3.23 Function Address Register (FADDR)

The function address register (FADDR) is shown in Figure 60 and described in Table 61.

Figure 60. Function Address Register (FADDR)

7 6 0

Reserved FUNCADDR

R-0 R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 61. Function Address Register (FADDR) Field Descriptions

Bit Field Value Description

7 Reserved 0 Reserved.

6-0 FUNCADDR 0-7Fh 7_bit address of the peripheral part of the transaction.

This register should be written with the address received through a SET_ADDRESS command,
which will then be used for decoding the function address in subsequent token packets.

When used in Host mode, this register should be set to the value sent in a SET_ADDRESS
command during device enumeration as the address for the peripheral device.

3.24 Power Management Register (POWER)

The power management register (POWER) is shown in Figure 61 and described in Table 62.

Figure 61. Power Management Register (POWER)

7 6 5 4 3 2 1 0

ISOUPDATE SOFTCONN HSEN HSMODE RESET RESUME SUSPENDM ENSUSPM

R/W-0 R/W-0 R/W-1 R-0 R-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 62. Power Management Register (POWER) Field Descriptions

Bit Field Value Description

7 ISOUPDATE 0-1 When set, the USB controller will wait for an SOF token from the time TxPktRdy is set before
sending the packet. If an IN token is received before an SOF token, then a zero length data packet
will be sent. This bit only affects endpoints performing Isochronous transfers.

6 SOFTCONN 0-1 If Soft Connect/Disconnect feature is enabled, then the USB D+/D- lines are enabled when this bit
is set and tri-stated when this bit is cleared.

5 HSEN 0-1 When set, the USB controller will negotiate for high-speed mode when the device is reset by the
hub. If not set, the device will only operate in full-speed mode.

4 HSMODE 0-1 This bit is set when the USB controller has successfully negotiated for high-speed mode.

3 RESET 0-1 This bit is set when Reset signaling is present on the bus. Note: this bit is read-only.

2 RESUME 0-1 Set to generate Resume signaling when the controller is in Suspend mode. The bit should be
cleared after 10 ms (a maximum of 15 ms) to end Resume signaling. In Host mode, this bit is also
automatically set when Resume signaling from the target is detected while the USB controller is
suspended.

1 SUSPENDM 0-1 This bit is set on entry into Suspend mode. It is cleared when the interrupt register is read, or the
RESUME bit is set.

0 ENSUSPM 0-1 Set to enable the SUSPENDM output.

89SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.25 Interrupt Register for Endpoint 0 Plus Transmit Endpoints 1 to 4 (INTRTX)

The interrupt register for endpoint 0 plus transmit endpoints 1 to 4 (INTRTX) is shown in Figure 62 and
described in Table 63.

Figure 62. Interrupt Register for Endpoint 0 Plus Tx Endpoints 1 to 4 (INTRTX)

15 8

Reserved

R-0

7 5 4 3 2 1 0

Reserved EP4TX EP3TX EP2TX EP1TX EP0

R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 63. Interrupt Register for Endpoint 0 Plus Transmit Endpoints 1 to 4 (INTRTX) Field
Descriptions

Bit Field Value Description

15-5 Reserved 0 Reserved.

4 EP4TX 0-1 Transmit Endpoint 4 interrupt active.

3 EP3TX 0-1 Transmit Endpoint 3 interrupt active.

2 EP2TX 0-1 Transmit Endpoint 2 interrupt active.

1 EP1TX 0-1 Transmit Endpoint 1 interrupt active.

0 EP0 0-1 Endpoint 0 interrupt active.

3.26 Interrupt Register for Receive Endpoints 1 to 4 (INTRRX)

The interrupt register for receive endpoints 1 to 4 (INTRRX) is shown in Figure 63 and described in
Table 64.

Figure 63. Interrupt Register for Receive Endpoints 1 to 4 (INTRRX)

15 8

Reserved

R-0

7 5 4 3 2 1 0

Reserved EP4RX EP3RX EP2RX EP1RX Reserved

R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 64. Interrupt Register for Receive Endpoints 1 to 4 (INTRRX) Field Descriptions

Bit Field Value Description

15-5 Reserved 0 Reserved.

4 EP4RX 0-1 Receive Endpoint 4 interrupt active.

3 EP3RX 0-1 Receive Endpoint 3 interrupt active.

2 EP2RX 0-1 Receive Endpoint 2 interrupt active.

1 EP1RX 0-1 Receive Endpoint 1 interrupt active.

0 Reserved 0 Reserved.

90 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3.27 Interrupt Enable Register for INTRTX (INTRTXE)

The interrupt enable register for INTRTX (INTRTXE) is shown in Figure 64 and described in Table 65.

Figure 64. Interrupt Enable Register for INTRTX (INTRTXE)

15 8

Reserved

R-0

7 5 4 3 2 1 0

Reserved EP4TX EP3TX EP2TX EP1TX EP0

R-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 65. Interrupt Enable Register for INTRTX (INTRTXE) Field Descriptions

Bit Field Value Description

15-5 Reserved 0 Reserved.

4 EP4TX 0-1 Transmit Endpoint 4 interrupt active.

3 EP3TX 0-1 Transmit Endpoint 3 interrupt active.

2 EP2TX 0-1 Transmit Endpoint 2 interrupt active.

1 EP1TX 0-1 Transmit Endpoint 1 interrupt active.

0 EP0 0-1 Endpoint 0 interrupt active.

3.28 Interrupt Enable Register for INTRRX (INTRRXE)

The interrupt enable register for INTRRX (INTRRXE) is shown in Figure 65 and described in Table 66.

Figure 65. Interrupt Enable Register for INTRRX (INTRRXE)

15 8

Reserved

R-0

7 5 4 3 2 1 0

Reserved EP4RX EP3RX EP2RX EP1RX Reserved

R-0 R/W-1 R/W-1 R/W-1 R/W-1 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 66. Interrupt Enable Register for INTRRX (INTRRXE) Field Descriptions

Bit Field Value Description

15-5 Reserved 0 Reserved.

4 EP4RX 0-1 Receive Endpoint 4 interrupt active.

3 EP3RX 0-1 Receive Endpoint 3 interrupt active.

2 EP2RX 0-1 Receive Endpoint 2 interrupt active.

1 EP1RX 0-1 Receive Endpoint 1 interrupt active.

0 Reserved 0 Reserved.

91SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.29 Interrupt Register for Common USB Interrupts (INTRUSB)

The interrupt register for common USB interrupts (INTRUSB) is shown in Figure 66 and described in
Table 67.

NOTE: Unless the UINT bit of CTRLR is set, do not read or write this register directly. Use the
INTSRCR register instead.

Figure 66. Interrupt Register for Common USB Interrupts (INTRUSB)

7 6 5 4 3 2 1 0

VBUSERR SESSREQ DISCON CONN SOF RESET_BABBLE RESUME SUSPEND

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 67. Interrupt Register for Common USB Interrupts (INTRUSB) Field Descriptions

Bit Field Value Description

7 VBUSERR 0-1 Set when VBus drops below the VBus valid threshold during a session. Only valid when the USB
controller is 'A' device. All active interrupts will be cleared when this register is read.

6 SESSREQ 0-1 Set when session request signaling has been detected. Only valid when USB controller is 'A'
device.

5 DISCON 0-1 Set when a session ends.

4 CONN 0-1 Set when a device connection is detected. Only valid in host mode.

3 SOF 0-1 Set when a new frame starts.

2 RESET_BABBLE 0-1 Set when reset signaling is detected on the bus.

1 RESUME 0-1 Set when resume signaling is detected on the bus while the USB controller is in suspend mode.

0 SUSPEND 0-1 Set when suspend signaling is detected on the bus.

92 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3.30 Interrupt Enable Register for INTRUSB (INTRUSBE)

The interrupt enable register for INTRUSB (INTRUSBE) is shown in Figure 67 and described in Table 68.

NOTE: Unless the UINT bit of CTRLR is set, do not read or write this register directly. Use the
INTSETR/INTCLRR registers instead.

Figure 67. Interrupt Enable Register for INTRUSB (INTRUSBE)

7 6 5 4 3 2 1 0

VBUSERR SESSREQ DISCON CONN SOF RESET_BABBLE RESUME SUSPEND

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-1 R/W-1 R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 68. Interrupt Enable Register for INTRUSB (INTRUSBE) Field Descriptions

Bit Field Value Description

7 VBUSERR 0-1 Vbus error interrupt enable.

6 SESSREQ 0-1 Session request interrupt enable.

5 DISCON 0-1 Disconnect interrupt enable.

4 CONN 0-1 Connect interrupt enable.

3 SOF 0-1 Start of frame interrupt enable.

2 RESET_BABBLE 0-1 Reset interrupt enable.

1 RESUME 0-1 Resume interrupt enable.

0 SUSPEND 0-1 Suspend interrupt enable.

3.31 Frame Number Register (FRAME)

The frame number register (FRAME) is shown in Figure 68 and described in Table 69.

Figure 68. Frame Number Register (FRAME)

15 11 10 0

Reserved FRAMENUMBER

R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 69. Frame Number Register (FRAME) Field Descriptions

Bit Field Value Description

15-11 Reserved 0 Reserved.

10-0 FRAMENUMBER 0-7FFh Last received frame number.

93SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.32 Index Register for Selecting the Endpoint Status and Control Registers (INDEX)

The index register for selecting the endpoint status and control registers (INDEX) is shown in Figure 69
and described in Table 70.

Figure 69. Index Register for Selecting the Endpoint Status and Control Registers (INDEX)

7 4 3 0

Reserved EPSEL

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 70. Index Register for Selecting the Endpoint Status and Control Registers (INDEX)
Field Descriptions

Bit Field Value Description

7-4 Reserved 0 Reserved.

3-0 EPSEL 0-Fh Each transmit endpoint and each receive endpoint have their own set of control/status registers.
EPSEL determines which endpoint control/status registers are accessed. Before accessing an
endpoint's control/status registers, the endpoint number should be written to the Index register to
ensure that the correct control/status registers appear in the memory-map.

3.33 Register to Enable the USB 2.0 Test Modes (TESTMODE)

The register to enable the USB 2.0 test modes (TESTMODE) is shown in Figure 70 and described in
Table 71.

Figure 70. Register to Enable the USB 2.0 Test Modes (TESTMODE)

7 6 5 4 3 2 1 0

FORCE_HOST FIFO_ACCESS FORCE_FS FORCE_HS TEST_PACKET TEST_K TEST_J TEST_SE0_NAK

R/W-0 W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Table 71. Register to Enable the USB 2.0 Test Modes (TESTMODE) Field Descriptions

Bit Field Value Description

7 FORCE_HOST 0-1 Set this bit to forcibly put the USB controller into Host mode when SESSION bit is set,
regardless of whether it is connected to any peripheral. The controller remains in Host
mode until the Session bit is cleared, even if a device is disconnected. And if the
FORCE_HOST but remains set, it will re-enter Host mode next time the SESSION bit is
set. The operating speed is determined using the FORCE_HS and FORCE_FS bits.

6 FIFO_ACCESS 0-1 Set this bit to transfer the packet in EP0 Tx FIFO to EP0 Receive FIFO. It is cleared
automatically.

5 FORCE_FS 0-1 Set this bit to force the USB controller into full-speed mode when it receives a USB reset.

4 FORCE_HS 0-1 Set this bit to force the USB controller into high-speed mode when it receives a USB
reset.

3 TEST_PACKET 0-1 Set this bit to enter the Test_Packet test mode. In this mode, the USB controller
repetitively transmits a 53-byte test packet on the bus, the form of which is defined in the
Universal Serial Bus Specification Revision 2.0. Note: The test packet has a fixed format
and must be loaded into the Endpoint 0 FIFO before the test mode is entered.

2 TEST_K 0-1 Set this bit to enter the Test_K test mode. In this mode, the USB controller transmits a
continuous K on the bus.

1 TEST_J 0-1 Set this bit to enter the Test_J test mode. In this mode, the USB controller transmits a
continuous J on the bus.

0 TEST_SE0_NAK 0-1 Set this bit to enter the Test_SE0_NAK test mode. In this mode, the USB controller
remains in high-speed mode, but responds to any valid IN token with a NAK.

94 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3.34 Maximum Packet Size for Peripheral/Host Transmit Endpoint (TXMAXP)

The maximum packet size for peripheral/host transmit endpoint (TXMAXP) is shown in Figure 71 and
described in Table 72.

Figure 71. Maximum Packet Size for Peripheral/Host Transmit Endpoint (TXMAXP)

15 11 10 0

Reserved MAXPAYLOAD

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 72. Maximum Packet Size for Peripheral/Host Transmit Endpoint (TXMAXP)
Field Descriptions

Bit Field Value Description

15-11 Reserved 0 Reserved.

10-0 MAXPAYLOAD 0-FFh The maximum payload transmitted in a single transaction. The value set can be up to 1024 bytes,
but is subject to the constraints placed by the USB Specification on packet sizes for Bulk, Interrupt,
and Isochronous transfers in full-speed and high-speed operations. The value written to this register
should match the wMaxPacketSize field of the Standard Endpoint Descriptor for the associated
endpoint. A mismatch could cause unexpected results.

95SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.35 Control Status Register for Peripheral Endpoint 0 (PERI_CSR0)

The control status register for peripheral endpoint 0 (PERI_CSR0) is shown in Figure 72 and described in
Table 73.

Figure 72. Control Status Register for Peripheral Endpoint 0 (PERI_CSR0)

15 9 8

Reserved FLUSHFIFO

R-0 W-0

7 6 5 4 3 2 1 0

SERV_SETUPEND SERV_RXPKTRDY SENDSTALL SETUPEND DATAEND SENTSTALL TXPKTRDY RXPKTRDY

W-0 W-0 W-0 R-0 W-0 R/W-0 R/W-0 R-0

LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset

Table 73. Control Status Register for Peripheral Endpoint 0 (PERI_CSR0)
Field Descriptions

Bit Field Value Description

15-9 Reserved 0 Reserved.

8 FLUSHFIFO 0-1 Set this bit to flush the next packet to be transmitted/read from the Endpoint 0 FIFO. The
FIFO pointer is reset and the TXPKTRDY/RXPKTRDY bit is cleared.

Note: FLUSHFIFO has no effect unless TXPKTRDY/RXPKTRDY is set.

7 SERV_SETUPEND 0-1 Set this bit to clear the SETUPEND bit. It is cleared automatically.

6 SERV_RXPKTRDY 0-1 Set this bit to clear the RXPKTRDY bit. It is cleared automatically.

5 SENDSTALL 0-1 Set this bit to terminate the current transaction. The STALL handshake will be transmitted
and then this bit will be cleared automatically.

4 SETUPEND 0-1 This bit will be set when a control transaction ends before the DATAEND bit has been
set. An interrupt will be generated, and the FIFO will be flushed at this time. The bit is
cleared by the writing a 1 to the SERV_SETUPEND bit.

3 DATAEND 0-1 Set this bit to 1:

a. When setting TXPKTRDY for the last data packet.

b. When clearing RXPKTRDY after unloading the last data packet.

c. When setting TXPKTRDY for a zero length data packet. It is cleared automatically.

2 SENTSTALL 0-1 This bit is set when a STALL handshake is transmitted. This bit should be cleared.

1 TXPKTRDY 0-1 Set this bit after loading a data packet into the FIFO. It is cleared automatically when the
data packet has been transmitted. An interrupt is generated (if enabled) when the bit is
cleared.

0 RXPKTRDY 0-1 This bit is set when a data packet has been received. An interrupt is generated when this
bit is set. This bit is cleared by setting the SERV_RXPKTRDY bit.

96 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3.36 Control Status Register for Peripheral Transmit Endpoint (PERI_TXCSR)

The control status register for peripheral transmit endpoint (PERI_TXCSR) is shown in Figure 73 and
described in Table 74.

Figure 73. Control Status Register for Peripheral Transmit Endpoint (PERI_TXCSR)

15 14 13 12 11 10 9 7

AUTOSET ISO MODE DMAEN FRCDATATOG DMAMODE Reserved

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0

6 5 4 3 2 1 0

CLRDATATOG SENTSTALL SENDSTALL FLUSHFIFO UNDERRUN FIFONOTEMPTY TXPKTRDY

W-0 R/W-0 R/W-0 W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset

Table 74. Control Status Register for Peripheral Transmit Endpoint (PERI_TXCSR)
Field Descriptions

Bit Field Value Description

15 AUTOSET 0 DMA Mode: The CPU needs to set the AUTOSET bit prior to enabling the Tx DMA.

1 CPU Mode: If the CPU sets the AUTOSET bit, the TXPKTRDY bit will be automatically set when
data of the maximum packet size (value in TXMAXP) is loaded into the Tx FIFO. If a packet of less
than the maximum packet size is loaded, then the TXPKTRDY bit will have to be set manually.

14 ISO 0-1 Set this bit to enable the Tx endpoint for Isochronous transfers, and clear it to enable the Tx
endpoint for Bulk or Interrupt transfers.

13 MODE 0-1 Set this bit to enable the endpoint direction as Tx, and clear the bit to enable it as Rx.

Note: This bit has any effect only where the same endpoint FIFO is used for both Transmit and
Receive transactions.

12 DMAEN 0-1 Set this bit to enable the DMA request for the Tx endpoint.

11 FRCDATATOG 0-1 Set this bit to force the endpoint data toggle to switch and the data packet to be cleared from the
FIFO, regardless of whether an ACK was received. This can be used by Interrupt Tx endpoints that
are used to communicate rate feedback for Isochronous endpoints.

10 DMAMODE 0-1 Set to 1 when DMA is enabled and EP interrupt is not needed for each packet transmission.

9-7 Reserved 0 Reserved.

6 CLRDATATOG 0-1 Write a 1 to this bit to reset the endpoint data toggle to 0.

5 SENTSTALL 0-1 This bit is set automatically when a STALL handshake is transmitted. The FIFO is flushed and the
TXPKTRDY bit is cleared. You should clear this bit.

4 SENDSTALL 0-1 Write a 1 to this bit to issue a STALL handshake to an IN token. Clear this bit to terminate the stall
condition.

Note: This bit has no effect where the endpoint is being used for Isochronous transfers.

3 FLUSHFIFO 0-1 Write a 1 to this bit to flush the next packet to be transmitted from the endpoint Tx FIFO. The FIFO
pointer is reset and the TXPKTRDY bit is cleared.

Note: FlushFIFO has no effect unless the TXPKTRDY bit is set. Also note that, if the FIFO is
double-buffered, FlushFIFO may need to be set twice to completely clear the FIFO.

2 UNDERRUN 0-1 This bit is set automatically if an IN token is received when TXPKTRDY is not set. You should clear
this bit.

1 FIFONOTEMPTY 0-1 This bit is set when there is at least 1 packet in the Tx FIFO. You should clear this bit.

0 TXPKTRDY 0-1 Set this bit after loading a data packet into the FIFO. It is cleared automatically when a data packet
has been transmitted. An interrupt is generated (if enabled) when the bit is cleared.

97SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.37 Maximum Packet Size for Peripheral Receive Endpoint (RXMAXP)

The maximum packet size for peripheral receive endpoint (RXMAXP) is shown in Figure 74 and described
in Table 75.

Figure 74. Maximum Packet Size for Peripheral Receive Endpoint (RXMAXP)

15 11 10 0

Reserved MAXPAYLOAD

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 75. Maximum Packet Size for Peripheral Receive Endpoint (RXMAXP) Field Descriptions

Bit Field Value Description

15-11 Reserved 0 Reserved.

10-0 MAXPAYLOAD 0-FFh Defines the maximum amount of data that can be transferred through the selected Receive
endpoint in a single frame/microframe (high-speed transfers). The value set can be up to 1024
bytes, but is subject to the constraints placed by the USB Specification on packet sizes for Bulk,
Interrupt, and Isochronous transfers in full-speed and high-speed operations. The value written to
this register should match the wMaxPacketSize field of the Standard Endpoint Descriptor for the
associated endpoint. A mismatch could cause unexpected results.

98 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3.38 Control Status Register for Peripheral Receive Endpoint (PERI_RXCSR)

The control status register for peripheral receive endpoint (PERI_RXCSR) is shown in Figure 75 and
described in Table 76.

Figure 75. Control Status Register for Peripheral Receive Endpoint (PERI_RXCSR)

15 14 13 12 11 10 8

AUTOCLEAR ISO DMAEN DISNYET DMAMODE Reserved

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0

7 6 5 4 3 2 1 0

CLRDATATOG SENTSTALL SENDSTALL FLUSHFIFO DATAERROR OVERRUN FIFOFULL RXPKTRDY

W-0 R/W-0 R/W-0 W-0 R-0 R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset

Table 76. Control Status Register for Peripheral Receive Endpoint (PERI_RXCSR)
Field Descriptions

Bit Field Value Description

15 AUTOCLEAR 0 DMA Mode: The CPU sets the AUTOCLEAR bit prior to enabling the Rx DMA.

1 CPU Mode: If the CPU sets the AUTOCLEAR bit, then the RXPKTRDY bit will be automatically
cleared when a packet of RXMAXP bytes has been unloaded from the Receive FIFO. When
packets of less than the maximum packet size are unloaded, RXPKTRDY will have to be cleared
manually.

14 ISO 0-1 Set this bit to enable the Receive endpoint for Isochronous transfers, and clear it to enable the
Receive endpoint for Bulk/Interrupt transfers.

13 DMAEN 0-1 Set this bit to enable the DMA request for the Receive endpoints.

12 DISNYET 0 DISNYET: Applies only for Bulk/Interrupt Transactions: The CPU sets this bit to disable the sending
of NYET handshakes. When set, all successfully received Rx packets are ACK'd including at the
point at which the FIFO becomes full.

Note: This bit only has any effect in high-speed mode, in which mode it should be set for all
Interrupt endpoints.

1 PID_ERROR: Applies only for ISO Transactions: The core sets this bit to indicate a PID error in the
received packet.

11 DMAMODE 0-1 The CPU clears the DMAMODE bit prior to enabling the Rx DMA.

10-8 Reserved 0 Reserved.

7 CLRDATATOG 0-1 Write a 1 to this bit to reset the endpoint data toggle to 0.

6 SENTSTALL 0-1 This bit is set when a STALL handshake is transmitted. The FIFO is flushed and the TXPKTRDY bit
is cleared. You should clear this bit.

5 SENDSTALL 0-1 Write a 1 to this bit to issue a STALL handshake. Clear this bit to terminate the stall condition.

Note: This bit has no effect where the endpoint is being used for Isochronous transfers.

4 FLUSHFIFO 0-1 Write a 1 to this bit to flush the next packet to be read from the endpoint Receive FIFO. The FIFO
pointer is reset and the RXPKTRDY bit is cleared.

Note: FLUSHFIFO has no effect unless RXPKTRDY is set. Also note that, if the FIFO is
double-buffered, FLUSHFIFO may need to be set twice to completely clear the FIFO.

3 DATAERROR 0-1 This bit is set when RXPKTRDY is set if the data packet has a CRC or bit-stuff error. It is cleared
when RXPKTRDY is cleared.

Note: This bit is only valid when the endpoint is operating in ISO mode. In Bulk mode, it always
returns zero.

2 OVERRUN 0-1 This bit is set if an OUT packet cannot be loaded into the Receive FIFO. You should clear this bit.

Note: This bit is only valid when the endpoint is operating in ISO mode. In Bulk mode, it always
returns zero.

1 FIFOFULL 0-1 This bit is set when no more packets can be loaded into the Receive FIFO.

0 RXPKTRDY 0-1 This bit is set when a data packet has been received. You should clear this bit when the packet has
been unloaded from the Receive FIFO. An interrupt is generated when the bit is set.

99SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.39 Count 0 Register (COUNT0)

The count 0 register (COUNT0) is shown in Figure 76 and described in Table 77.

Figure 76. Count 0 Register (COUNT0)

15 7 6 0

Reserved EP0RXCOUNT

R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 77. Count 0 Register (COUNT0) Field Descriptions

Bit Field Value Description

15-7 Reserved 0 Reserved.

6-0 EP0RXCOUNT 0-7Fh Indicates the number of received data bytes in the Endpoint 0 FIFO. The value returned changes as
the contents of the FIFO change and is only valid while RXPKTRDY of PERI_CSR0 is set.

3.40 Receive Count Register (RXCOUNT)

The receive count register (RXCOUNT) is shown in Figure 77 and described in Table 78.

Figure 77. Receive Count Register (RXCOUNT)

15 13 12 0

Reserved EPRXCOUNT

R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 78. Receive Count Register (RXCOUNT) Field Descriptions

Bit Field Value Description

15-13 Reserved 0 Reserved.

12-0 EPRXCOUNT 0-1FFFh Holds the number of received data bytes in the packet in the Receive FIFO. The value
returned changes as the contents of the FIFO change and is only valid while RXPKTRDY of
PERI_RXCSR or HOST_RXCSR is set.

100 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3.41 Configuration Data Register (CONFIGDATA)

The configuration data register (CONFIGDATA) is shown in Figure 78 and described in Table 79.

Figure 78. Configuration Data Register (CONFIGDATA)

7 6 5 4 3 2 1 0

MPRXE MPTXE BIGENDIAN HBRXE HBTXE DYNFIFO SOFTCONE UTMIDATAWIDTH

R-0 R-0 R-0 R-0 R-0 R-1 R-1 R-0

LEGEND: R = Read only; -n = value after reset

Table 79. Configuration Data Register (CONFIGDATA) Field Descriptions

Bit Field Value Description

7 MPRXE Indicates automatic amalgamation of bulk packets.

0 Automatic amalgamation of bulk packets is not selected.

1 Automatic amalgamation of bulk packets is selected.

6 MPTXE Indicates automatic splitting of bulk packets.

0 Automatic splitting of bulk packets is not selected.

1 Automatic splitting of bulk packets is selected.

5 BIGENDIAN Indicates endian ordering.

0 Little-endian ordering is selected.

1 Big-endian ordering is selected.

4 HBRXE Indicates high-bandwidth Rx ISO endpoint support.

0 High-bandwidth Rx ISO endpoint support is not selected.

1 High-bandwidth Rx ISO endpoint support is selected.

3 HBTXE Indicates high-bandwidth Tx ISO endpoint support.

0 High-bandwidth Tx ISO endpoint support is not selected.

1 High-bandwidth Tx ISO endpoint support is selected.

2 DYNFIFO Indicates dynamic FIFO sizing.

0 Dynamic FIFO sizing option is not selected.

1 Dynamic FIFO sizing option is selected.

1 SOFTCONE Indicates soft connect/disconnect.

0 Soft connect/disconnect option is not selected.

1 Soft connect/disconnect option is selected.

0 UTMIDATAWIDTH Indicates selected UTMI data width.

0 8 bits.

1 16 bits.

101SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.42 Transmit and Receive FIFO Registers for Endpoint 0 (FIFO0R1 and FIFO0R2)

The transmit and receive FIFO register 1 for endpoint 0 (FIFO0R1) is shown in Figure 79 and described in
Table 80. The transmit and receive FIFO register 2 for endpoint 0 (FIFO0R2) is shown in Figure 80 and
described in Table 81.

Figure 79. Transmit and Receive FIFO Register 1 for Endpoint 0 (FIFO0R1)

15 0

DATA

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 80. Transmit and Receive FIFO Register 2 for Endpoint 0 (FIFO0R2)

15 0

DATA

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 80. Transmit and Receive FIFO Register 1 for Endpoint 0 (FIFO0R1) Field Descriptions

Bit Field Value Description

15-0 DATA 0-FFFFh Writing to this address loads data into the Transmit FIFO for the corresponding endpoint.

Reading from these addresses unloads data from the Receive FIFO for the corresponding endpoint.

Table 81. Transmit and Receive FIFO Register 2 for Endpoint 0 (FIFO0R2) Field Descriptions

Bit Field Value Description

15-0 DATA 0-FFFFh Writing to this address loads data into the Transmit FIFO for the corresponding endpoint.

Reading from these addresses unloads data from the Receive FIFO for the corresponding endpoint.

102 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3.43 Transmit and Receive FIFO Registers for Endpoint 1 (FIFO1R1 and FIFO1R2)

The transmit and receive FIFO register 1 for endpoint 1 (FIFO1R1) is shown in Figure 81 and described in
Table 82. The transmit and receive FIFO register 2 for endpoint 1 (FIFO1R2) is shown in Figure 82 and
described in Table 83.

Figure 81. Transmit and Receive FIFO Register 1 for Endpoint 1 (FIFO1R1)

15 0

DATA

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 82. Transmit and Receive FIFO Register 2 for Endpoint 1 (FIFO1R2)

15 0

DATA

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 82. Transmit and Receive FIFO Register 1 for Endpoint 1 (FIFO1R1) Field Descriptions

Bit Field Value Description

15-0 DATA 0-FFFFh Writing to these addresses loads data into the Transmit FIFO for the corresponding endpoint.

Reading from these addresses unloads data from the Receive FIFO for the corresponding endpoint.

Table 83. Transmit and Receive FIFO Register 2 for Endpoint 1 (FIFO1R2) Field Descriptions

Bit Field Value Description

15-0 DATA 0-FFFFh Writing to these addresses loads data into the Transmit FIFO for the corresponding endpoint.

Reading from these addresses unloads data from the Receive FIFO for the corresponding endpoint.

103SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.44 Transmit and Receive FIFO Registers for Endpoint 2 (FIFO2R1 and FIFO2R2)

The transmit and receive FIFO register 1 for endpoint 2 (FIFO2R1) is shown in Figure 83 and described in
Table 84. The transmit and receive FIFO register 2 for endpoint 2 (FIFO2R2) is shown in Figure 84 and
described in Table 85.

Figure 83. Transmit and Receive FIFO Register 1 for Endpoint 2 (FIFO2R1)

15 0

DATA

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 84. Transmit and Receive FIFO Register 2 for Endpoint 2 (FIFO2R2)

15 0

DATA

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 84. Transmit and Receive FIFO Register 1 for Endpoint 2 (FIFO2R1) Field Descriptions

Bit Field Value Description

15-0 DATA 0-FFFFh Writing to these addresses loads data into the Transmit FIFO for the corresponding endpoint.

Reading from these addresses unloads data from the Receive FIFO for the corresponding endpoint.

Table 85. Transmit and Receive FIFO Register 2 for Endpoint 2 (FIFO2R2) Field Descriptions

Bit Field Value Description

15-0 DATA 0-FFFFh Writing to these addresses loads data into the Transmit FIFO for the corresponding endpoint.

Reading from these addresses unloads data from the Receive FIFO for the corresponding endpoint.

104 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3.45 Transmit and Receive FIFO Registers for Endpoint 3 (FIFO3R1 and FIFO3R2)

The transmit and receive FIFO register 1 for endpoint 3 (FIFO3R1) is shown in Figure 85 and described in
Table 86. The transmit and receive FIFO register 2 for endpoint 3 (FIFO3R2) is shown in Figure 86 and
described in Table 87.

Figure 85. Transmit and Receive FIFO Register 1 for Endpoint 3 (FIFO3R1)

15 0

DATA

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 86. Transmit and Receive FIFO Register 2 for Endpoint 3 (FIFO3R2)

15 0

DATA

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 86. Transmit and Receive FIFO Register 1 for Endpoint 3 (FIFO3R1) Field Descriptions

Bit Field Value Description

15-0 DATA 0-FFFFh Writing to these addresses loads data into the Transmit FIFO for the corresponding endpoint.

Reading from these addresses unloads data from the Receive FIFO for the corresponding endpoint.

Table 87. Transmit and Receive FIFO Register 2 for Endpoint 3 (FIFO3R2) Field Descriptions

Bit Field Value Description

15-0 DATA 0-FFFFh Writing to these addresses loads data into the Transmit FIFO for the corresponding endpoint.

Reading from these addresses unloads data from the Receive FIFO for the corresponding endpoint.

105SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.46 Transmit and Receive FIFO Registers for Endpoint 4 (FIFO4R1 and FIFO4R2)

The transmit and receive FIFO register 1 for endpoint 4 (FIFO4R1) is shown in Figure 87 and described in
Table 88. The transmit and receive FIFO register 2 for endpoint 4 (FIFO4R2) is shown in Figure 88 and
described in Table 89.

Figure 87. Transmit and Receive FIFO Register 1 for Endpoint 4 (FIFO4R1)

15 0

DATA

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 88. Transmit and Receive FIFO Register 2 for Endpoint 4 (FIFO4R2)

15 0

DATA

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 88. Transmit and Receive FIFO Register 1 for Endpoint 4 (FIFO4R1) Field Descriptions

Bit Field Value Description

15-0 DATA 0-FFFFh Writing to these addresses loads data into the Transmit FIFO for the corresponding endpoint.

Reading from these addresses unloads data from the Receive FIFO for the corresponding endpoint.

Table 89. Transmit and Receive FIFO Register 2 for Endpoint 4 (FIFO4R2) Field Descriptions

Bit Field Value Description

15-0 DATA 0-FFFFh Writing to these addresses loads data into the Transmit FIFO for the corresponding endpoint.

Reading from these addresses unloads data from the Receive FIFO for the corresponding endpoint.

106 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3.47 Device Control Register (DEVCTL)

The device control register (DEVCTL) is shown in Figure 89 and described in Table 90.

Figure 89. Device Control Register (DEVCTL)

7 6 5 4 3 2 1 0

BDEVICE FSDEV LSDEV VBUS HOSTMODE Reserved SESSION

R-0 R-0 R-0 R-0 R-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 90. Device Control Register (DEVCTL) Field Descriptions

Bit Field Value Description

7 BDEVICE This read-only bit indicates whether the USB controller is operating as the 'A' device or the 'B'
device.

0 A device.

1 B device.

Only valid while a session is in progress.

6 FSDEV 0-1 This read-only bit is set when a full-speed or high-speed device has been detected being connected
to the port (high-speed devices are distinguished from full-speed by checking for high-speed chirps
when the device is reset). Only valid in Host mode. Host mode is not supported on the C5505.

5 LSDEV 0-1 This read-only bit is set when a low-speed device has been detected being connected to the port.
Only valid in Host mode. Host mode is not supported on the C5505.

VBUS 0-3h These read-only bits encode the current VBus level as follows:

0 Below Session End.

1 h Above Session End, below AValid.

2h Above AValid, below VBusValid.

3h Above VBusValid.

2 HOSTMODE 0-1 This read-only bit is set when the USB controller is acting as a Host. Host mode is not supported on
the C5505.

1 Reserved 0 Reserved.

0 SESSION 0-1 When operating as an 'A' device, you must set or clear this bit start or end a session. When
operating as a 'B' device, this bit is set/cleared by the USB controller when a session starts/ends.
You must also set this bit to initiate the Session Request Protocol. When the USB controller is in
Suspend mode, you may clear the bit to perform a software disconnect.
A special software routine is required to perform SRP. Details will be made available in a later
document version.

107SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.48 Transmit Endpoint FIFO Size (TXFIFOSZ)

Section 2.7 describes dynamically setting endpoint FIFO sizes. The option of dynamically setting endpoint
FIFO sizes only applies to Endpoints 1-4. The Endpoint 0 FIFO has a fixed size (64 bytes) and a fixed
location (start address 0). It is the responsibility of the firmware to ensure that all the Tx and Rx endpoints
that are active in the current USB configuration have a block of RAM assigned exclusively to that
endpoint. The RAM must be at least as large as the maximum packet size set for that endpoint.

The transmit endpoint FIFO size (TXFIFOSZ) is shown in Figure 90 and described in Table 91.

Figure 90. Transmit Endpoint FIFO Size (TXFIFOSZ)

7 5 4 3 0

Reserved DPB SZ

R-0 R/W-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 91. Transmit Endpoint FIFO Size (TXFIFOSZ) Field Descriptions

Bit Field Value Description

7-5 Reserved 0 Reserved.

4 DPB Double packet buffering enable.

0 Single packet buffering is supported.

1 Double packet buffering is enabled.

3-0 SZ 0-Fh Maximum packet size to be allowed (before any splitting within the FIFO of Bulk packets prior to
transmission). If m = SZ, the FIFO size is calculated as 2(m+3) for single packet buffering and 2(m+4)

for dual packet buffering.

3.49 Receive Endpoint FIFO Size (RXFIFOSZ)

Section 2.7 describes dynamically setting endpoint FIFO sizes. The option of dynamically setting endpoint
FIFO sizes only applies to Endpoints 1-4. The Endpoint 0 FIFO has a fixed size (64 bytes) and a fixed
location (start address 0). It is the responsibility of the firmware to ensure that all the Tx and Rx endpoints
that are active in the current USB configuration have a block of RAM assigned exclusively to that
endpoint. The RAM must be at least as large as the maximum packet size set for that endpoint.

The receive endpoint FIFO size (RXFIFOSZ) is shown in Figure 91 and described in Table 92.

Figure 91. Receive Endpoint FIFO Size (RXFIFOSZ)

7 5 4 3 0

Reserved DPB SZ

R-0 R/W-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 92. Receive Endpoint FIFO Size (RXFIFOSZ) Field Descriptions

Bit Field Value Description

7-5 Reserved 0 Reserved.

4 DPB Double packet buffering enable.

0 Single packet buffering is supported.

1 Double packet buffering is enabled.

3-0 SZ 0-Fh Maximum packet size to be allowed (before any splitting within the FIFO of Bulk packets prior to
transmission). If m = SZ, the FIFO size is calculated as 2(m+3) for single packet buffering and 2(m+4)

for dual packet buffering.

108 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3.50 Transmit Endpoint FIFO Address (TXFIFOADDR)

The transmit endpoint FIFO address (TXFIFOADDR) is shown in Figure 92 and described in Table 93.

Figure 92. Transmit Endpoint FIFO Address (TXFIFOADDR)

15 13 12 0

Reserved ADDR

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 93. Transmit Endpoint FIFO Address (TXFIFOADDR) Field Descriptions

Bit Field Value Description

15-13 Reserved 0 Reserved.

12-0 ADDR 0-1FFFh Start Address of endpoint FIFO in units of 8 bytes.

If m = ADDR, then the start address is 8 × m.

3.51 Hardware Version Register (HWVERS)

The hardware version register (HWVERS) contains the RTL major and minor version numbers for the USB
2.0 controller module. The RTL version number is REVMAJ.REVMIN. The HWVERS is shown in
Figure 93 and described in Table 94.

Figure 93. Hardware Version Register (HWVERS)

15 14 10 9 0

RC REVMAJ REVMIN

R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 94. Hardware Version Register (HWVERS) Field Descriptions

Bit Field Value Description

15 RC 0-1 Set to 1 if RTL is used from a Release Candidate, rather than from a full release of the
core.

14-10 REVMAJ 0-1Fh Major version of RTL. Range is 0-3.1.

9-0 REVMIN 0-3E7h Minor version of RTL. Range is 0-999.

109SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.52 Receive Endpoint FIFO Address (RXFIFOADDR)

The receive endpoint FIFO address (RXFIFOADDR) is shown in Figure 94 and described in Table 95.

Figure 94. Receive Endpoint FIFO Address (RXFIFOADDR)

15 13 12 0

Reserved ADDR

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 95. Receive Endpoint FIFO Address (RXFIFOADDR) Field Descriptions

Bit Field Value Description

15-13 Reserved 0 Reserved.

12-0 ADDR 0-1FFFh Start Address of endpoint FIFO in units of 8 bytes.

If m = ADDR, then the start address is 8 × m.

3.53 CDMA Revision Identification Registers (DMAREVID1 and DMAREVID2)

The CDMA revision identification registers (DMAREVID1 and DMAREVID2) contain the revision for the
module. The DMAREVID1 is shown in Figure 95 and described in Table 96. The DMAREVID2 is shown in
Figure 96 and described in Table 97.

Figure 95. CDMA Revision Identification Register 1 (DMAREVID1)

15 0

REV_LSB

R-1900h

LEGEND: R = Read only; -n = value after reset

Figure 96. CDMA Revision Identification Register 2 (DMAREVID2)

15 0

REV_MSB

R-0053h

LEGEND: R = Read only; -n = value after reset

Table 96. CDMA Revision Identification Register 1 (DMAREVID1) Field Descriptions

Bit Field Value Description

15-0 REV_LSB 0-FFFFh Revision ID of the CPPI DMA (CDMA) module. Least significant bits.

Table 97. CDMA Revision Identification Register 2 (DMAREVID2) Field Descriptions

Bit Field Value Description

15-0 REV_MSB 0-FFFFh Revision ID of the CPPI DMA (CDMA) module. Most significant bits.

3.54 CDMA Teardown Free Descriptor Queue Control Register (TDFDQ)

The CDMA teardown free descriptor queue control register (TDFDQ) is used to inform the DMA of the
location in memory or descriptor array which is to be used for signaling of a teardown complete for each
transmit and receive channel. The CDMA teardown free descriptor queue control register (TDFDQ) is
shown in Figure 97 and described in Table 98.

110 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

Figure 97. CDMA Teardown Free Descriptor Queue Control Register (TDFDQ)

15 14 13 12 11 0

Reserved TD_DESC_QMGR TD_DESC_QNUM

R-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 98. CDMA Teardown Free Descriptor Queue Control Register (TDFDQ) Field Descriptions

Bit Field Value Description

15-14 Reserved 0 Reserved.

13-12 TD_DESC_QMGR 0-3h Controls which of the four queue managers the DMA accesses to allocate a
channel teardown descriptor from the teardown descriptor queue.

11-0 TD_DESC_QNUM 0-FFFh Controls which of the 2K queues in the indicated queue manager should be read to
allocate the channel teardown descriptors.

3.55 CDMA Emulation Control Register (DMAEMU)

The CDMA emulation controls the behavior of the DMA when an emulation suspend signal is asserted.
The CDMA emulation control register (DMAEMU) is shown in Figure 98 and described in Table 99.

Figure 98. CDMA Emulation Control Register (DMAEMU)

15 2 1 0

Reserved SOFT FREE

R-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 99. CDMA Emulation Control Register (DMAEMU) Field Descriptions

Bit Field Value Description

15-2 Reserved 0 Reserved.

1 SOFT 0-1

0 FREE 0-1

111SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.56 CDMA Transmit Channel n Global Configuration Registers (TXGCR1[n] and
TXGCR2[n])

The transmit channel n configuration registers (TXGCR2[n] and TXGCR1[n]) initialize the behavior of each
of the transmit DMA channels. There are four configuration register pairs, one for each transmit DMA
channel.

The transmit channel n configuration registers TXGCR1[n]) and (TXGCR2[n] are shown in Figure 99 and
Figure 100and described in Table 100 and Table 101. .

Figure 99. CDMA Transmit Channel n Global Configuration Register 1 (TXGCR1[n])

15 14 13 12 11 0

Reserved TX_DEFAULT_QMGR TX_DEFAULT_QNUM

R-0 W-0 W-0

LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset

Figure 100. CDMA Transmit Channel n Global Configuration Register 2 (TXGCR2[n])

15 14 13 0

TX_ENABLE TX_TEARDOWN Reserved

R/W-0 R/W-0 R-0

LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset

Table 100. CDMA Transmit Channel n Global Configuration Register 1 (TXGCR1[n]) Field
Descriptions

Bit Field Value Description

15-14 Reserved 0 Reserved.

13-12 TX_DEFAULT_QMGR 0-3h Controls the default queue manager number that is used to queue teardown descriptors
back to the host.

11-0 TX_DEFAULT_QNUM 0-FFFh Controls the default queue number within the selected queue manager onto which
teardown descriptors are queued back to the host.

Table 101. CDMA Transmit Channel n Global Configuration Register 2 (TXGCR2[n]) Field
Descriptions

Bit Field Value Description

15 TX_ENABLE Channel control. The TX_ENABLE field is cleared after a channel teardown is complete.

0 Disables channel.

1 Enables channel.

14 TX_TEARDOWN 0-1 Setting this bit requests the channel to be torn down. The TX_TEARDOWN field remains
set after a channel teardown is complete.

13-0 Reserved 0 Reserved.

112 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3.57 CDMA Receive Channel n Global Configuration Registers (RXGCR1[n] and
RXGCR2[n])

The receive channel n global configuration registers (RXGCR1[n] and RXGCR2[n]) initialize the global
(non-descriptor-type specific) behavior of each of the receive DMA channels. There are four configuration
register pairs, one for each receive DMA channel. If the enable bit is being set, the receive channel n
global configuration register should only be written after all of the other receive configuration registers
have been initialized.

The receive channel n global configuration registers (RXGCR1[n] and RXGCR2[n]) are shown in
Figure 101 and Figure 102 and are described in Table 102 and Table 103.

Figure 101. CDMA Receive Channel n Global Configuration Register 1 (RXGCR1[n])

15 14 13 12 11 0

RX_DEFAULT_DESC_TYPE RX_DEFAULT_RQ_QMGR RX_DEFAULT_RQ_QNUM

R-0 W-0 W-0

LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset

Figure 102. CDMA Receive Channel n Global Configuration Register 2 (RXGCR2[n])

15 14 13 9 8 7 0

RX_ENABLE RX_TEARDOWN Reserved RX_ERROR_HANDLING RX_SOP_OFFSET

R/W-0 R/W-0 R-0 W-0 W-0

LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset

Table 102. CDMA Receive Channel n Global Configuration Register 1 (RXGCR1[n]) Field
Descriptions

Bit Field Value Description

15-14 RX_DEFAULT_DESC_TYPE 0-3h Indicates the default descriptor type to use. The actual descriptor type that is used
for reception can be overridden by information provided in the CPPI FIFO data
block.

0 Reserved.

1h Host.

2h-3h Reserved.

13-12 RX_DEFAULT_RQ_QMGR 0-3h Indicates the default receive queue manager that this channel should use. The
actual receive queue manager index can be overridden by information provided in
the CPPI FIFO data block.

11-0 RX_DEFAULT_RQ_QNUM 0-FFFh Indicates the default receive queue that this channel should use. The actual
receive queue that is used for reception can be overridden by information provided
in the CPPI FIFO data block.

Table 103. CDMA Receive Channel n Global Configuration Register 2 (RXGCR2[n]) Field
Descriptions

Bit Field Value Description

15 RX_ENABLE Channel control. Field is cleared after a channel teardown is complete.

0 Disables channel.

1 Enables channel.

14 RX_TEARDOWN 0-1 Indicates whether a receive operation is complete. Field should be cleared when a
channel is initialized. Field is set after a channel teardown is complete.

13-9 Reserved 0 Reserved.

113SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

Table 103. CDMA Receive Channel n Global Configuration Register 2 (RXGCR2[n]) Field Descriptions
(continued)

Bit Field Value Description

8 RX_ERROR_HANDLING Controls the error handling mode for the channel and is only used when channel
errors (i.e. descriptor or buffer starvation occur):

0 Starvation errors result in dropping packet and reclaiming any used descriptor or
buffer resources back to the original queues/pools they were allocated to.

1 Starvation errors result in subsequent retry of the descriptor allocation operation. In
this mode, the DMA will return to the IDLE state without saving its internal
operational state back to the internal state RAM and without issuing an advance
operation on the FIFO interface. This results in the DMA re-initiating the FIFO
block transfer at a later time with the intention that additional free buffers and/or
descriptors will have been added.

7-0 RX_SOP_OFFSET 0–FFh Specifies the number of bytes that are to be skipped in the SOP buffer before
beginning to write the payload. This value must be less than the minimum size of a
buffer in the system.

114 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3.58 CDMA Receive Channel n Host Packet Configuration Registers A (RXHPCR1A[n] and
RXHPCR2A[n])

The receive channel n host packet configuration registers A (RXHPCR1A[n] and RXHPCR2A[n]) initialize
the behavior of each of the receive DMA channels for reception of host type packets. There are four
configuration A registers, one for each receive DMA channel.

The receive channel n host packet configuration register 1 A (RXHPCR1A[n]) are shown in Figure 103
and described in Table 104. The receive channel n host packet configuration register 2 A (RXHPCR2A[n])
is shown in Figure 104 and described in Table 105.

Figure 103. Receive Channel n Host Packet Configuration Register 1 A (RXHPCR1A[n])

15 14 13 12 11 0

Reserved RX_HOST_FDQ0_QMGR RX_HOST_FDQ0_QNUM

R-0 W-0 W-0

LEGEND: R = Read only; W = Write only; -n = value after reset

Figure 104. Receive Channel n Host Packet Configuration Register 2 A (RXHPCR2A[n])

15 14 13 12 11 0

Reserved RX_HOST_FDQ1_QMGR RX_HOST_FDQ1_QNUM

R-0 W-0 W-0

LEGEND: R = Read only; W = Write only; -n = value after reset

Table 104. Receive Channel n Host Packet Configuration Register 1 A (RXHPCR1A[n])
Field Descriptions

Bit Field Value Description

15-14 Reserved 0 Reserved.

13-12 RX_HOST_FDQ0_QMGR 0-3h Specifies which buffer manager should be used for the first receive buffer in a host
type packet.

11-0 RX_HOST_FDQ0_QNUM 0-FFFh Specifies which free descriptor/buffer pool should be used for the first receive
buffer in a host type packet.

Table 105. Receive Channel n Host Packet Configuration Register 2 A (RXHPCR2A[n])
Field Descriptions

Bit Field Value Description

15-14 Reserved 0 Reserved.

13-12 RX_HOST_FDQ1_QMGR 0-3h Specifies which buffer manager should be used for the second receive buffer in a
host type packet.

11-0 RX_HOST_FDQ1_QNUM 0-FFFh Specifies which free descriptor/buffer pool should be used for the second receive
buffer in a host type packet.

115SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.59 CDMA Receive Channel n Host Packet Configuration Registers B (RXHPCR1B[n] and
RXHPCR2B[n])

The receive channel n host packet configuration registers B (RXHPCR1B[n] and RXHPCR2B[n]) initialize
the behavior of each of the receive DMA channels for reception of host type packets. There are four
configuration B register pairs, one for each receive DMA channel.

The receive channel n host packet configuration register 1 B (RXHPCR1B[n]) is shown in Figure 105 and
described in Table 106. The receive channel n host packet configuration register 2 B (RXHPCR2B[n]) is
shown in Figure 106 and described in Table 107.

Figure 105. Receive Channel n Host Packet Configuration Register 1 B (RXHPCR1B[n])

15 14 13 12 11 0

Reserved RX_HOST_FDQ2_QMGR RX_HOST_FDQ2_QNUM

R-0 W-0 W-0

LEGEND: R = Read only; W = Write only; -n = value after reset

Figure 106. Receive Channel n Host Packet Configuration Register 2 B (RXHPCR2B[n])

15 14 13 12 11 0

Reserved RX_HOST_FDQ3_QMGR RX_HOST_FDQ3_QNUM

R-0 W-0 W-0

LEGEND: R = Read only; W = Write only; -n = value after reset

Table 106. Receive Channel n Host Packet Configuration Register 1 B (RXHPCR1B[n])
Field Descriptions

Bit Field Value Description

15-14 Reserved 0 Reserved.

13-12 RX_HOST_FDQ2_QMGR 0-3h Specifies which buffer manager should be used for the third receive buffer in a host
type packet.

11-0 RX_HOST_FDQ2_QNUM 0-FFFh Specifies which free descriptor/buffer pool should be used for the third receive
buffer in a host type packet.

Table 107. Receive Channel n Host Packet Configuration Register 2 B (RXHPCR2B[n])
Field Descriptions

Bit Field Value Description

15-14 Reserved 0 Reserved.

13-12 RX_HOST_FDQ3_QMGR 0-3h Specifies which buffer manager should be used for the fourth or later receive buffer
in a host type packet.

11-0 RX_HOST_FDQ3_QNUM 0-FFFh Specifies which free descriptor/buffer pool should be used for the fourth or later
receive buffer in a host type packet.

116 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3.60 CDMA Scheduler Control Register (DMA_SCHED_CTRL1 and DMA_SCHED_CTRL2)

The CDMA scheduler control registers (DMA_SCHED_CTRL1 and DMA_SCHED_CTRL2) enable the
scheduler and indicate the last entry in the scheduler table. The CDMA scheduler control register 1
(DMA_SCHED_CTRL1) is shown in Figure 107 and described in Table 108. The CDMA scheduler control
register 2 (DMA_SCHED_CTRL2) is shown in Figure 108 and described in Table 109.

Figure 107. CDMA Scheduler Control Register 1 (DMA_SCHED_CTRL1)

15 8 7 0

Reserved LAST_ENTRY

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 108. CDMA Scheduler Control Register 2 (DMA_SCHED_CTRL2)

15 14 0

ENABLE Reserved

R/W-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 108. CDMA Scheduler Control Register 1 (DMA_SCHED_CTRL1) Field Descriptions

Bit Field Value Description

15-8 Reserved 0 Reserved.

7-0 LAST_ENTRY 0-FFh Indicates the last valid entry in the scheduler table. There are 64 words in the table and there are 4
entries in each word. The table can be programmed with any integer number of entries from 1 to
256. The corresponding encoding for this field is as follows:

0 1 entry.

1h 2 entries.

2h-FFh 3 entries to 256 entries.

Table 109. CDMA Scheduler Control Register 2 (DMA_SCHED_CTRL2) Field Descriptions

Bit Field Value Description

15 ENABLE This is the enable bit for the scheduler and is encoded as follows:

0 Scheduler is disabled and will no longer fetch entries from the scheduler table or pass credits to the
DMA controller.

1 Scheduler is enabled. This bit should only be set after the table has been initialized.

14-0 Reserved 0 Reserved.

117SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.61 CDMA Scheduler Table Word n Registers (ENTRYLSW[n]-ENTRYMSW[n])

The CDMA scheduler table word n registers (ENTRYLSW[n]-ENTRYMSW[n]) provide information about
the scheduler. The CDMA scheduler table word n registers (ENTRYLSW[n]) are shown in Figure 109 and
described in Table 110. The CDMA scheduler table word n registers (ENTRYMSW[n]) are shown in
Figure 110 and described in Table 111.

Figure 109. CDMA Scheduler Table Word n Registers (ENTRYLSW[n])

15 14 12 11 8 7 6 4 3 0

ENTRY1_RXTX Reserved ENTRY1_CHANNEL ENTRY0_RXTX Reserved ENTRY0_CHANNEL

W-0 R-0 W-0 W-0 R-0 W-0

LEGEND: R = Read only; W = Write only; -n = value after reset

Figure 110. CDMA Scheduler Table Word n Registers (ENTRYMSW[n])

15 14 12 11 8 7 6 4 3 0

ENTRY3_RXTX Reserved ENTRY3_CHANNEL ENTRY2_RXTX Reserved ENTRY2_CHANNEL

W-0 R-0 W-0 W-0 R-0 W-0

LEGEND: R = Read only; W = Write only; -n = value after reset

Table 110. CDMA Scheduler Table Word n Registers (ENTRYLSW[n]) Field Descriptions

Bit Field Value Description

15 ENTRY1_RXTX This entry is for a transmit or a receive channel.

0 Transmit channel

1 Receive channel

14-12 Reserved 0 Reserved

11-8 ENTRY1_CHANNEL 0-Fh Indicates the channel number that is to be given an opportunity to transfer data. If this is a
transmit entry, the DMA will be presented with a scheduling credit for that exact transmit
channel. If this is a receive entry, the DMA will be presented with a scheduling credit for the
receive FIFO that is associated with this channel. For receive FIFOs which carry traffic for
more than one receive DMA channel, the exact channel number that is given in the receive
credit will actually be the channel number which is currently on the head element of that Rx
FIFO, which is not necessarily the channel number given in the scheduler table entry.

7 ENTRY0_RXTX This entry is for a transmit or a receive channel.

0 Transmit channel

1 Receive channel

6-4 Reserved 0 Reserved

3-0 ENTRY0_CHANNEL 0-Fh Indicates the channel number that is to be given an opportunity to transfer data. If this is a
transmit entry, the DMA will be presented with a scheduling credit for that exact transmit
channel. If this is a receive entry, the DMA will be presented with a scheduling credit for the
receive FIFO that is associated with this channel. For receive FIFOs which carry traffic for
more than one receive DMA channel, the exact channel number that is given in the receive
credit will actually be the channel number which is currently on the head element of that Rx
FIFO, which is not necessarily the channel number given in the scheduler table entry.

Table 111. CDMA Scheduler Table Word n Registers (ENTRYMSW[n]) Field Descriptions

Bit Field Value Description

15 ENTRY3_RXTX This entry is for a transmit or a receive channel.

0 Transmit channel

1 Receive channel

14-12 Reserved 0 Reserved

118 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

Table 111. CDMA Scheduler Table Word n Registers (ENTRYMSW[n]) Field Descriptions (continued)

Bit Field Value Description

11-8 ENTRY3_CHANNEL 0-Fh Indicates the channel number that is to be given an opportunity to transfer data. If this is a
transmit entry, the DMA will be presented with a scheduling credit for that exact transmit
channel. If this is a receive entry, the DMA will be presented with a scheduling credit for the
receive FIFO that is associated with this channel. For receive FIFOs which carry traffic for
more than one receive DMA channel, the exact channel number that is given in the receive
credit will actually be the channel number which is currently on the head element of that Rx
FIFO, which is not necessarily the channel number given in the scheduler table entry.

7 ENTRY2_RXTX This entry is for a transmit or a receive channel.

0 Transmit channel

1 Receive channel

6-4 Reserved 0 Reserved

3-0 ENTRY2_CHANNEL 0-Fh Indicates the channel number that is to be given an opportunity to transfer data. If this is a
transmit entry, the DMA will be presented with a scheduling credit for that exact transmit
channel. If this is a receive entry, the DMA will be presented with a scheduling credit for the
receive FIFO that is associated with this channel. For receive FIFOs which carry traffic for
more than one receive DMA channel, the exact channel number that is given in the receive
credit will actually be the channel number which is currently on the head element of that Rx
FIFO, which is not necessarily the channel number given in the scheduler table entry.

3.62 Queue Manager Revision Identification Registers (QMGRREVID1 and QMGRREVID2)

The queue manager revision identification registers (QMGRREVID1 and QMGRREVID2) contain the
major and minor revisions for the module. The QMGRREVID1 is shown in Figure 111 and described in
Table 112. The QMGRREVID2 is shown in Figure 112 and described in Table 113.

Figure 111. Queue Manager Revision Identification Register 1 (QMGRREVID1)

15 0

REV_LSB

R-1200h

LEGEND: R = Read only; -n = value after reset

Figure 112. Queue Manager Revision Identification Register 2 (QMGRREVID2)

15 0

REV_MSB

R-0052h

LEGEND: R = Read only; -n = value after reset

Table 112. Queue Manager Revision Identification Register 1 (QMGRREVID1) Field Descriptions

Bit Field Value Description

15-0 REV_LSB 0-FFFFh Revision ID of the queue manager. Least-significant bits.

Table 113. Queue Manager Revision Identification Register 2 (QMGRREVID2) Field Descriptions

Bit Field Value Description

15-0 REV_MSB 0-FFFFh Revision ID of the queue manager. Most-significant bits.

119SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.63 Queue Manager Queue Diversion Registers (DIVERSION1 and DIVERSION2)

The queue manager queue diversion registers (DIVERSION1 and DIVERSION2) are used to transfer the
contents of one queue onto another queue. It does not support byte accesses. The queue manager queue
diversion register 1 (DIVERSION1) is shown in Figure 113 and described in Table 114. The queue
manager queue diversion register 2 (DIVERSION2) is shown in Figure 114 and described in Table 115.

Figure 113. Queue Manager Queue Diversion Register 1 (DIVERSION1)

15 14 13 0

Reserved SOURCE_QNUM

R-0 W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 114. Queue Manager Queue Diversion Register 2 (DIVERSION2)

15 14 13 0

HEAD_TAIL Reserved DEST_QNUM

W-0 R-0 W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 114. Queue Manager Queue Diversion Register 1 (DIVERSION1) Field Descriptions

Bit Field Value Description

15-14 Reserved 0 Reserved.

13-0 SOURCE_QNUM 0-3FFFh Source Queue Number.

Table 115. Queue Manager Queue Diversion Register 2 (DIVERSION2 Field Descriptions

Bit Field Value Description

15 HEAD_TAIL Indicates whether queue contents should be merged on to the head or tail of the destination
queue.

0 Head.

1 Tail.

14 Reserved 0 Reserved.

13-0 DEST_QNUM 0-3FFFh Destination Queue Number.

120 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3.64 Queue Manager Free Descriptor/Buffer Starvation Count Register 0 (FDBSC0)

The free descriptor/buffer queue starvation count register (FDBSC0) provides statistics about how many
starvation events are occurring on the receive free descriptor/buffer queues. These registers do not
support byte accesses. The free descriptor/buffer queue starvation count register (FDBSC0) is shown in
Figure 115 and described in Table 116.

Figure 115. Queue Manager Free Descriptor/Buffer Starvation Count Register 0 (FDBSC0)

15 8 7 0

FDBQ1_STARVE_CNT FDBQ0_STARVE_CNT

RC-0 RC-0

LEGEND: RC = Cleared on read; -n = value after reset

Table 116. Queue Manager Free Descriptor/Buffer Starvation Count Register 0 (FDBSC0)
Field Descriptions

Bit Field Value Description

15-8 FDBQ1_STARVE_CNT 0-FFh This field increments each time the Free Descriptor/Buffer Queue 1 is read while it is
empty. This field is cleared when read by CPU.

7-0 FDBQ0_STARVE_CNT 0-FFh This field increments each time the Free Descriptor/Buffer Queue 0 is read while it is
empty. This field is cleared when read by CPU.

3.65 Queue Manager Free Descriptor/Buffer Starvation Count Register 1 (FDBSC1)

The free descriptor/buffer queue starvation count register (FDBSC1) provides statistics about how many
starvation events are occurring on the receive free descriptor/buffer queues. These registers do not
support byte accesses. The free descriptor/buffer queue starvation count register (FDBSC1) is shown in
Figure 116 and described in Table 117.

Figure 116. Queue Manager Free Descriptor/Buffer Starvation Count Register 1 (FDBSC1)

15 8 7 0

FDBQ3_STARVE_CNT FDBQ2_STARVE_CNT

RC-0 RC-0

LEGEND: RC = Cleared on read; -n = value after reset

Table 117. Queue Manager Free Descriptor/Buffer Starvation Count Register 1 (FDBSC1)
Field Descriptions

Bit Field Value Description

15-8 FDBQ3_STARVE_CNT 0-FFh This field increments each time the Free Descriptor/Buffer Queue 3 is read while it is
empty. This field is cleared when readby CPU.

7-0 FDBQ2_STARVE_CNT 0-FFh This field increments each time the Free Descriptor/Buffer Queue 2 is read while it is
empty. This field is cleared when readby CPU.

121SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.66 Queue Manager Free Descriptor/Buffer Starvation Count Register 2 (FDBSC2)

The free descriptor/buffer queue starvation count register 2 (FDBSC2) provides statistics about how many
starvation events are occurring on the receive free descriptor/buffer queues. These registers do not
support byte accesses. The free descriptor/buffer queue starvation count register 2 (FDBSC2) is shown in
Figure 117 and described in Table 118.

Figure 117. Queue Manager Free Descriptor/Buffer Starvation Count Register 2 (FDBSC2)

15 8 7 0

FDBQ5_STARVE_CNT FDBQ4_STARVE_CNT

RC-0 RC-0

LEGEND: RC = Cleared on read; -n = value after reset

Table 118. Queue Manager Free Descriptor/Buffer Starvation Count Register 2 (FDBSC2)
Field Descriptions

Bit Field Value Description

15-8 FDBQ5_STARVE_CNT 0-FFh This field increments each time the Free Descriptor/Buffer Queue 5 is read while it is
empty. This field is cleared when read by CPU.

7-0 FDBQ4_STARVE_CNT 0-FFh This field increments each time the Free Descriptor/Buffer Queue 4 is read while it is
empty. This field is cleared when read by CPU.

3.67 Queue Manager Free Descriptor/Buffer Starvation Count Register 3 (FDBSC3)

The free descriptor/buffer queue starvation count register 3 (FDBSC3) provides statistics about how many
starvation events are occurring on the receive free descriptor/buffer queues. These registers do not
support byte accesses. The free descriptor/buffer queue starvation count register 3 (FDBSC3) is shown in
Figure 118 and described in Table 119.

Figure 118. Queue Manager Free Descriptor/Buffer Starvation Count Register 3 (FDBSC3)

15 8 7 0

FDBQ7_STARVE_CNT FDBQ6_STARVE_CNT

RC-0 RC-0

LEGEND: RC = Cleared on read; -n = value after reset

Table 119. Queue Manager Free Descriptor/Buffer Starvation Count Register 3 (FDBSC3)
Field Descriptions

Bit Field Value Description

15-8 FDBQ7_STARVE_CNT 0-FFh This field increments each time the Free Descriptor/Buffer Queue 7 is read while it is
empty. This field is cleared when read by CPU.

7-0 FDBQ6_STARVE_CNT 0-FFh This field increments each time the Free Descriptor/Buffer Queue 6 is read while it is
empty. This field is cleared when read by CPU.

122 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3.68 Queue Manager Free Descriptor/Buffer Starvation Count Register 4 (FDBSC4)

The free descriptor/buffer queue starvation count register 4 (FDBSC4) provides statistics about how many
starvation events are occurring on the receive free descriptor/buffer queues. These registers do not
support byte accesses. The free descriptor/buffer queue starvation count register 4 (FDBSC4) is shown in
Figure 119 and described in Table 120.

Figure 119. Queue Manager Free Descriptor/Buffer Starvation Count Register 4 (FDBSC4)

15 8 7 0

FDBQ9_STARVE_CNT FDBQ8_STARVE_CNT

RC-0 RC-0

LEGEND: RC = Cleared on read; -n = value after reset

Table 120. Queue Manager Free Descriptor/Buffer Starvation Count Register 4 (FDBSC4)
Field Descriptions

Bit Field Value Description

15-8 FDBQ9_STARVE_CNT 0-FFh This field increments each time the Free Descriptor/Buffer Queue 9 is read while it is
empty. This field is cleared when read by CPU.

7-0 FDBQ8_STARVE_CNT 0-FFh This field increments each time the Free Descriptor/Buffer Queue 8 is read while it is
empty. This field is cleared when read by CPU.

3.69 Queue Manager Free Descriptor/Buffer Starvation Count Register 5 (FDBSC5)

The free descriptor/buffer queue starvation count register 5 (FDBSC5) provides statistics about how many
starvation events are occurring on the receive free descriptor/buffer queues. These registers do not
support byte accesses. The free descriptor/buffer queue starvation count register 5 (FDBSC5) is shown in
Figure 120 and described in Figure 120.

Figure 120. Queue Manager Free Descriptor/Buffer Starvation Count Register 5 (FDBSC5)

15 8 7 0

FDBQ11_STARVE_CNT FDB10_STARVE_CNT

RC-0 RC-0

LEGEND: RC = Cleared on read; -n = value after reset

Table 121. Queue Manager Free Descriptor/Buffer Starvation Count Register 5 (FDBSC5)
Field Descriptions

Bit Field Value Description

15-8 FDBQ11_STARVE_CNT 0-FFh This field increments each time the Free Descriptor/Buffer Queue 11 is read while it is
empty. This field is cleared when read by CPU.

7-0 FDBQ10_STARVE_CNT 0-FFh This field increments each time the Free Descriptor/Buffer Queue 10 is read while it is
empty. This field is cleared when read by CPU.

123SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.70 Queue Manager Free Descriptor/Buffer Starvation Count Register 6 (FDBSC6)

The free descriptor/buffer queue starvation count register 6 (FDBSC6) provides statistics about how many
starvation events are occurring on the receive free descriptor/buffer queues. These registers do not
support byte accesses. The free descriptor/buffer queue starvation count register 6 (FDBSC6) is shown in
Figure 121 and described in Table 122.

Figure 121. Queue Manager Free Descriptor/Buffer Starvation Count Register 6 (FDBSC6)

15 8 7 0

FDBQ13_STARVE_CNT FDBQ12_STARVE_CNT

RC-0 RC-0

LEGEND: RC = Cleared on read; -n = value after reset

Table 122. Queue Manager Free Descriptor/Buffer Starvation Count Register 6 (FDBSC6)
Field Descriptions

Bit Field Value Description

15-8 FDBQ13_STARVE_CNT 0-FFh This field increments each time the Free Descriptor/Buffer Queue 13 is read while it is
empty. This field is cleared when read by CPU.

7-0 FDBQ12_STARVE_CNT 0-FFh This field increments each time the Free Descriptor/Buffer Queue 12 is read while it is
empty. This field is cleared when read by CPU.

3.71 Queue Manager Free Descriptor/Buffer Starvation Count Register 7 (FDBSC7)

The free descriptor/buffer queue starvation count register 7 (FDBSC7) provides statistics about how many
starvation events are occurring on the receive free descriptor/buffer queues. The registers do not support
byte accesses. The free descriptor/buffer queue starvation count register 7 (FDBSC7) is shown in
Figure 122 and described in Table 123.

Figure 122. Queue Manager Free Descriptor/Buffer Starvation Count Register 7 (FDBSC7)

15 8 7 0

FDBQ15_STARVE_CNT FDB14_STARVE_CNT

RC-0 RC-0

LEGEND: RC = Cleared on read; -n = value after reset

Table 123. Queue Manager Free Descriptor/Buffer Starvation Count Register 7 (FDBSC7)
Field Descriptions

Bit Field Value Description

15-8 FDBQ15_STARVE_CNT 0-FFh This field increments each time the Free Descriptor/Buffer Queue 15 is read while it is
empty. This field is cleared when read by CPU.

7-0 FDBQ14_STARVE_CNT 0-FFh This field increments each time the Free Descriptor/Buffer Queue 14 is read while it is
empty. This field is cleared when read by CPU.

124 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3.72 Queue Manager Linking RAM Region 0 Base Address Registers (LRAM0BASE1 and
LRAM0BASE2)

The queue manager linking RAM region 0 base address registers (LRAM0BASE1 and LRAM0BASE2) set
the base address for the first portion of the Linking RAM. This address must be 32-bit aligned. It is used
by the Queue Manager to calculate the 32-bit linking address for a given descriptor index. These registers
do not support byte accesses.

The queue manager linking RAM region 0 base address register 1 (LRAM0BASE1) is shown in Figure 123
and described in Table 124. The queue manager linking RAM region 0 base address register 2
(LRAM0BASE2) is shown in Figure 124 and described in Table 125.

Figure 123. Queue Manager Linking RAM Region 0 Base Address Register 1 (LRAM0BASE1)

15 0

REGION0_BASE_LSB

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 124. Queue Manager Linking RAM Region 0 Base Address Register 2 (LRAM0BASE2)

15 0

REGION0_BASE_MSB

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 124. Queue Manager Linking RAM Region 0 Base Address Register 1 (LRAM0BASE1)
Field Descriptions

Bit Field Value Description

15-0 REGION0_BASE_LSB 0-FFFFh This field stores the 16 least significant bits of the base address for the first region
of the linking RAM. This may be anywhere in 32-bit address space but would be
typically located in on-chip memory.

Table 125. Queue Manager Linking RAM Region 0 Base Address Register 2 (LRAM0BASE2)
Field Descriptions

Bit Field Value Description

15-0 REGION0_BASE_MSB 0-FFFFh This field stores the 16 most significant bits of the base address for the first region
of the linking RAM. This may be anywhere in 32-bit address space but would be
typically located in on-chip memory.

125SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.73 Queue Manager Linking RAM Region 0 Size Register (LRAM0SIZE)

The queue manager linking RAM region 0 size register (LRAM0SIZE) sets the size of the array of linking
pointers that are located in Region 0 of Linking RAM. The size specified the number of descriptors for
which linking information is stored in this region. It does not support byte accesses. The queue manager
linking RAM region 0 size register (LRAM0SIZE) is shown in Figure 125 and described in Table 126.

Figure 125. Queue Manager Linking RAM Region 0 Size Register (LRAM0SIZE)

15 14 13 0

Reserved REGION0_SIZE

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 126. Queue Manager Linking RAM Region 0 Size Register (LRAM0SIZE)
Field Descriptions

Bit Field Value Description

15-14 Reserved 0 Reserved.

13-0 REGION0_SIZE 0-3FFh This field indicates the number of entries that are contained in the linking RAM region 0. A
descriptor with index less than region0_size value has its linking location in region 0. A descriptor
with index greater than region0_size has its linking location in region 1. The queue manager will
add the index (left shifted by 2 bits) to the appropriate regionX_base_addr to get the absolute 32-bit
address to the linking location for a descriptor.

126 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3.74 Queue Manager Linking RAM Region 1 Base Address Registers (LRAM1BASE1 and
LRAM1BASE2)

The queue manager linking RAM region 1 base address registers (LRAM1BASE1 and LRAM1BASE2) are
used to set the base address for the first portion of the Linking RAM. This address must be 32-bit aligned.
These registers are used by the Queue Manager to calculate the 32-bit linking address for a given
descriptor index. These registers do not support byte accesses.

The queue manager linking RAM region 1 base address register (LRAM1BASE1) is shown in Figure 126
and described in Table 127. The queue manager linking RAM region 1 base address register
(LRAM1BASE2) is shown in Figure 127 and described in Table 128.

Figure 126. Queue Manager Linking RAM Region 1 Base Address Register 1 (LRAM1BASE1)

15 0

REGION1_BASE_LSB

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 127. Queue Manager Linking RAM Region 1 Base Address Register 2 (LRAM1BASE2)

15 0

REGION1_BASE_MSB

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 127. Queue Manager Linking RAM Region 1 Base Address Register 1 (LRAM1BASE1)
Field Descriptions

Bit Field Value Description

15-0 REGION1_BASE_LSB 0-FFFFh This field stores the least significant bits of the base address for the second region
of the linking RAM. This may be anywhere in 32-bit address space but would be
typically located in off-chip memory.

Table 128. Queue Manager Linking RAM Region 1 Base Address Register (LRAM1BASE2)
Field Descriptions

Bit Field Value Description

15-0 REGION1_BASE_MSB 0-FFFFh This field stores the most significant bits of the base address for the second region
of the linking RAM. This may be anywhere in 32-bit address space but would be
typically located in off-chip memory.

127SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.75 Queue Manager Queue Pending Register 0 (PEND0)

The queue pending register 0 (PEND0) can be read to find the pending status for queues 15 to 0. It does
not support byte accesses. The queue pending register 0 (PEND0) is shown in Figure 128 and described
in Table 129.

Figure 128. Queue Manager Queue Pending Register 0 (PEND0)

15 0

QPEND0

R-0

LEGEND: R = Read only; -n = value after reset

Table 129. Queue Manager Queue Pending Register 0 (PEND0) Field Descriptions

Bit Field Value Description

15-0 QPEND0 0-FFFFh This field indicates the queue pending status for queues 15-0.

3.76 Queue Manager Queue Pending Register 1 (PEND1)

The queue pending register 1 (PEND1) can be read to find the pending status for queues 31 to 16. It does
not support byte accesses. The queue pending register 1 (PEND1) is shown in Figure 129 and described
in Table 130.

Figure 129. Queue Manager Queue Pending Register 1 (PEND1)

15 0

QPEND1

R-0

LEGEND: R = Read only; -n = value after reset

Table 130. Queue Manager Queue Pending Register 1 (PEND1) Field Descriptions

Bit Field Value Description

15-0 QPEND1 0-FFFFh This field indicates the queue pending status for queues 31-16.

128 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3.77 Queue Manager Queue Pending Register 2 (PEND2)

The queue pending register 2 (PEND2) can be read to find the pending status for queues 47 to 32. It does
not support byte accesses. The queue pending register 2 (PEND2) is shown in Figure 130 and described
in Table 131.

Figure 130. Queue Manager Queue Pending Register 2 (PEND2)

15 0

QPEND2

R-0

LEGEND: R = Read only; -n = value after reset

Table 131. Queue Manager Queue Pending Register 2 (PEND2) Field Descriptions

Bit Field Value Description

15-0 QPEND2 0-FFFFh This field indicates the queue pending status for queues 47-32.

3.78 Queue Manager Queue Pending Register 3 (PEND3)

The queue pending register 3 (PEND3) can be read to find the pending status for queues 63 to 48. It does
not support byte accesses. The queue pending register 3 (PEND3) is shown in Figure 131 and described
in Table 132.

Figure 131. Queue Manager Queue Pending Register 3 (PEND3)

15 0

QPEND3

R-0

LEGEND: R = Read only; -n = value after reset

Table 132. Queue Manager Queue Pending Register 3 (PEND3) Field Descriptions

Bit Field Value Description

15-0 QPEND3 0-FFFFh This field indicates the queue pending status for queues 63-48.

129SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.79 Queue Manager Queue Pending Register 4 (PEND4)

The queue pending register 4 (PEND4) can be read to find the pending status for queues 79 to 64. It does
not support byte accesses. The queue pending register 4 (PEND4) is shown in Figure 132 and described
in Table 133.

Figure 132. Queue Manager Queue Pending Register 4 (PEND4)

15 0

QPEND4

R-0

LEGEND: R = Read only; -n = value after reset

Table 133. Queue Manager Queue Pending Register 4 (PEND4) Field Descriptions

Bit Field Value Description

15-0 QPEND4 0-FFFFh This field indicates the queue pending status for queues 79-64.

3.80 Queue Manager Queue Pending Register 5 (PEND5)

The queue pending register 5 (PEND5) can be read to find the pending status for queues 95 to 80. It does
not support byte accesses. The queue pending register 5 (PEND5) is shown in Figure 133 and described
in Table 134.

Figure 133. Queue Manager Queue Pending Register 5 (PEND5)

15 0

QPEND5

R-0

LEGEND: R = Read only; -n = value after reset

Table 134. Queue Manager Queue Pending Register 5 (PEND5) Field Descriptions

Bit Field Value Description

15-0 QPEND5 0-FFFFh This field indicates the queue pending status for queues 95-80.

130 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

3.81 Queue Manager Memory Region R Base Address Registers (QMEMRBASE1[R] and
QMEMRBASE2[R])

The memory region R base address registers (QMEMRBASE1[R] and QMEMRBASE2[R]) are written by
the host to set the base address of memory region R, where R is 0-15. This memory region will store a
number of descriptors of a particular size as determined by the memory region R control register. These
registers do not support byte accesses.

The memory region R base address register (QMEMRBASE1[R]) is shown in Figure 134 and described in
Table 135. The memory region R base address register (QMEMRBASE2[R]) is shown in Figure 135 and
described in Table 136.

Figure 134. Queue Manager Memory Region R Base Address Register 1 (QMEMRBASE1[R])

15 0

REG_LSB

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 135. Queue Manager Memory Region R Base Address Register 2 (QMEMRBASE2[R])

15 0

REG_MSB

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 135. Queue Manager Memory Region R Base Address Register 1 (QMEMRBASE1[R])
Field Descriptions

Bit Field Value Description

15-0 REG_LSB 0-FFFFh This field contains the least-significant bits of the base address of the memory region R.

Table 136. Queue Manager Memory Region R Base Address Register 2 (QMEMRBASE2[R])
Field Descriptions

Bit Field Value Description

15-0 REG_MSB 0-FFFFh This field contains the most-significant bits of the base address of the memory region R.

131SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.82 Queue Manager Memory Region R Control Registers
(QMEMRCTRL1[R] and QMEMRCTRL2[R])

The memory region R control registers (QMEMRCTRL1[R] and QMEMRCTRL2[R]) are written by the host
to configure various parameters of memory region R, where R is 0-15. These registers do not support byte
accesses.

The memory region R control register (QMEMRCTRL1[R])) is shown in Figure 136 and described in
Table 137. The memory region R control register (QMEMRCTRL2[R])) is shown in Figure 137 and
described in Table 138.

Figure 136. Queue Manager Memory Region R Control Register 1 (QMEMRCTRL1[R])

15 12 11 8 7 3 2 0

Reserved DESC_SIZE Reserved REG_SIZE

R-0 R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 137. Queue Manager Memory Region R Control Register 2 (QMEMRCTRL2[R])

15 14 13 0

Reserved START_INDEX

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 137. Queue Manager Memory Region R Control Register 1 (QMEMRCTRL1[R])
Field Descriptions

Bit Field Value Description

15-12 Reserved 0 Reserved.

11-8 DESC_SIZE 0-Fh This field indicates the size of each descriptor in this memory region.

0 32.

1h 64.

2h 128.

3h 256.

4h 512.

5h 1K.

6h 2K.

7h 4K.

8h 8K.

9h-Fh Reserved.

7-3 Reserved 0 Reserved.

2-0 REG_SIZE 0-7h This field indicates the size of the memory region (in terms of number of descriptors).

0 32.

1h 64.

2h 128.

3h 256.

4h 512.

5h 1K.

6h 2K.

7h 4K.

132 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

Table 138. Queue Manager Memory Region R Control Register 2 (QMEMRCTRL2[R])
Field Descriptions

Bit Field Value Description

15-14 Reserved 0 Reserved.

13-0 START_INDEX 0-3FFFh This field indicates where in linking RAM the descriptor linking information corresponding
to memory region R starts.

3.83 Queue Manager Queue N Control Register D (CTRL1D[N] and CTRL2D[N])

The queue manager queue N control registers D (CTRL1D[N] and CTRL2D[N]) are written to add a packet
to the queue and read to pop a packets off a queue. The packet is only pushed or popped to/from the
queue when the queue manager queue N control register D is written. These registers do not support byte
accesses.

The queue manager queue N control register 1 D (CTRL1D[N]) is shown in Figure 138 and described in
Table 139. The queue manager queue N control register 2 D (CTRL2D[N]) is shown in Figure 139 and
described in Table 140.

Figure 138. Queue Manager Queue N Control Register 1 D (CTRL1D[N])

15 5 4 0

DESC_PTR_LSB DESC_SIZE

R/W-0 R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 139. Queue Manager Queue N Control Register 2 D (CTRL2D[N])

15 0

DESC_PTR_MSB

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 139. Queue Manager Queue N Control Register 1 D (CTRL1D[N]) Field Descriptions

Bit Field Value Description

15-5 DESC_PTR_LSB Descriptor Pointer (Least significant bits).

0 Queue is empty.

1 Indicates a 32-bit aligned address that points to a descriptor.

4-0 DESC_SIZE 0-1Fh The descriptor size is encoded in 4-byte increments. This field returns a 0 when an
empty queue is read.

0 24 bytes.

1h 28 bytes.

2h 32 bytes.

3h-1Fh 36 bytes to 148 bytes.

Table 140. Queue Manager Queue N Control Register 2 D (CTRL2D[N]) Field Descriptions

Bit Field Value Description

15-0 DESC_PTR_MSB Descriptor Pointer (Most significant bits).

0 Queue is empty.

1 Indicates a 32-bit aligned address that points to a descriptor.

133SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

Registers www.ti.com

3.84 Queue Manager Queue N Status Register A (QSTATA[N])

The queue manager queue N status register A (QSTATA[N]) is an optional register that is only
implemented for a queue if the queue supports entry/byte count feature. The entry count feature provides
a count of the number of entries that are currently valid in the queue. It does not support byte accesses.
The queue manager queue N status register A (QSTATA[N]) is shown in Figure 140 and described in
Table 141.

Figure 140. Queue Manager Queue N Status Register A (QSTATA[N])

15 14 13 0

Reserved QUEUE_ENTRY_COUNT

R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 141. Queue Manager Queue N Status Register A (QSTATA[N]) Field Descriptions

Bit Field Value Description

15-14 Reserved 0 Reserved.

13-0 QUEUE_ENTRY_COUNT 0-3FFFh This field indicates how many packets are currently queued on the queue.

3.85 Queue Manager Queue N Status Registers B (QSTAT1B[N] and QSTAT2B[N])

The queue manager queue N status registers B (QSTAT1B[N] and QSTAT2B[N]) are optional registers
that are only implemented for a queue if the queue supports a total byte count feature. The total byte
count feature provides a count of the total number of bytes in all of the packets that are currently valid in
the queue. The registers do not support byte accesses.

The queue manager queue N status register 1 B (QSTAT1B[N]) is shown in Figure 141 and described in
Table 142. The queue manager queue N status register 2 B (QSTAT2B[N]) is shown in Figure 142 and
described in Table 143.

Figure 141. Queue Manager Queue N Status Register 1 B (QSTAT1B[N])

15 0

QUEUE_BYTE_COUNT_LSB

R-0

LEGEND: R = Read only; -n = value after reset

Figure 142. Queue Manager Queue N Status Register 2 B (QSTAT2B[N])

15 12 11 0

Reserved QUEUE_BYTE_COUNT_MSB

LEGEND: R = Read only; -n = value after reset

Table 142. Queue Manager Queue N Status Register 1 B (QSTAT1B[N]) Field Descriptions

Bit Field Value Description

15-0 QUEUE_BYTE_COUNT_LSB 0-FFFFh Together, QUEUE_BYTE_COUNT_MSB and QUEUE_BYTE_COUNT_LSB
indicate how many bytes total are contained in all of the packets which are
currently queued on this queue.

134 Universal Serial Bus (USB) Controller SPRUFO0–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

www.ti.com Registers

Table 143. Queue Manager Queue N Status Register 2 B (QSTAT2B[N]) Field Descriptions

Bit Field Value Description

15-12 Reserved 0 Reserved.

11-0 QUEUE_BYTE_COUNT_MSB 0-FFFh Together, QUEUE_BYTE_COUNT_MSB and QUEUE_BYTE_COUNT_LSB
indicate how many bytes total are contained in all of the packets which are
currently queued on this queue.

3.86 Queue Manager Queue N Status Register C (QSTATC[N])

The queue manager queue N status register C (QSTATC[N]) specifies the packet size for the head
element of a queue. It does not support byte accesses. The queue manager queue N status register C
(QSTATC[N]) is shown in Figure 143 and described in Table 144.

Figure 143. Queue Manager Queue N Status Register C (QSTATC[N])

15 14 13 0

Reserved PACKET_SIZE

R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 144. Queue Manager Queue N Status Register C (QSTATC[N]) Field Descriptions

Bit Field Value Description

15-14 Reserved 0 Reserved.

13-0 PACKET_SIZE 0-3FFFh This field indicates how many packets are currently queued on the queue.

135SPRUFO0–September 2009 Universal Serial Bus (USB) Controller
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFO0

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DLP® Products www.dlp.com Broadband www.ti.com/broadband
DSP dsp.ti.com Digital Control www.ti.com/digitalcontrol
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Military www.ti.com/military
Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork
Power Mgmt power.ti.com Security www.ti.com/security
Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony
RFID www.ti-rfid.com Video & Imaging www.ti.com/video
RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/broadband
http://dsp.ti.com
http://www.ti.com/digitalcontrol
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/military
http://logic.ti.com
http://www.ti.com/opticalnetwork
http://power.ti.com
http://www.ti.com/security
http://microcontroller.ti.com
http://www.ti.com/telephony
http://www.ti-rfid.com
http://www.ti.com/video
http://www.ti.com/lprf
http://www.ti.com/wireless

	TMS320VC5505/5504 DSPUniversal Serial Bus 2.0 (USB) Controller
	Table of Contents
	Preface
	1 Introduction
	1.1 Purpose of the Peripheral
	1.2 Features
	1.3 Functional Block Diagram
	1.4 Industry Standard(s) Compliance Statement

	2 Architecture
	2.1 Clock Control
	2.2 Signal Descriptions
	2.3 Memory Map
	2.4 USB_DP/USB_DM Polarity Inversion
	2.5 Indexed and Non-Indexed Registers
	2.6 USB PHY Initialization
	2.6.1 USB System Control Register (USBSCR)

	2.7 Dynamic FIFO Sizing
	2.8 USB Controller Peripheral Mode Operation
	2.8.1 USB Interrupts
	2.8.2 Connect, Suspend Mode, and Reset Signaling
	2.8.2.1 Soft Connect
	2.8.2.2 Suspend Mode
	2.8.2.3 Reset Signaling

	2.8.3 Control Transactions
	2.8.3.1 Zero Data Requests
	2.8.3.2  Write Requests
	2.8.3.3 Read Requests
	2.8.3.4 Endpoint 0 States
	2.8.3.5 Endpoint 0 Service Routine

	2.8.4  Bulk Transactions
	2.8.4.1  Bulk In Transactions
	2.8.4.2 Bulk OUT Transactions

	2.8.5 Interrupt Transactions
	2.8.6 Isochronous Transactions
	2.8.6.1 Isochronous IN Transactions
	2.8.6.2 Isochronous OUT Transactions

	2.9 Communications Port Programming Interface (CPPI) 4.1 DMA Overview
	2.9.1 CPPI Terminology
	2.9.2 Host Packet Descriptor (SOP Descriptor)
	2.9.3 Host Buffer Descriptor (Non-SOP Descriptor)
	2.9.4 Teardown Descriptor
	2.9.5 Queues
	2.9.5.1 Queuing Packets
	2.9.5.2 De-Queuing Packets
	2.9.5.3 Type of Queues

	2.9.6 Memory Regions and Linking RAM
	2.9.7 Zero Length Packets
	2.9.8 CPPI DMA Scheduler
	2.9.8.1 CPPI DMA Scheduler Initialization
	2.9.8.2 Scheduler Operation

	2.9.9 CPPI DMA Transfer Interrupt Handling
	2.9.10 DMA State Registers
	2.9.10.1 Transmit DMA State Registers
	2.9.10.2 Receive DMA State Registers

	2.9.11 USB DMA Protocols Supported
	2.9.11.1 Transparent DMA
	2.9.11.2 RNDIS
	2.9.11.3 Generic RNDIS
	2.9.11.4 Linux CDC

	2.9.12 USB Data Flow Using DMA
	2.9.12.1 Transmit USB Data Flow Using DMA
	2.9.12.2 Receive USB Data Flow Using DMA

	2.9.13 Interrupt Handling
	2.9.13.1 USB Core Interrupts

	2.10 BYTEMODE Bits of the USB System Control Register
	2.11 Reset Considerations
	2.11.1 Software Reset Considerations
	2.11.2 Hardware Reset Considerations

	2.12 Interrupt Support
	2.13 DMA Event Support
	2.14 Power Management

	3 Registers
	3.1 USB Controller Register Summary
	3.1.1 Universal Serial Bus (USB) Controller Registers
	3.1.2 Mentor USB2.0 Core Registers
	3.1.2.1 Common USB Registers
	3.1.2.2 Indexed Registers
	3.1.2.3 FIFO Registers
	3.1.2.4 Dynamic FIFO Control Registers
	3.1.2.5 Control and Status Registers for Endpoints 0-4

	3.1.3 Communications Port Programming Interface (CPPI) 4.1 DMA Registers
	3.1.3.1 CPPI DMA (CMDA) Registers
	3.1.3.2 Queue Manager (QMGR) Registers

	3.2 Revision Identification Registers (REVID1 and REVID2)
	3.3 Control Register (CTRLR)
	3.4 Status Register (STATR)
	3.5 Emulation Register (EMUR)
	3.6 Mode Registers (MODE1 and MODE2)
	3.7 Auto Request Register (AUTOREQ)
	3.8 SRP Fix Time Registers (SRPFIXTIME1 and SRPFIXTIME2)
	3.9 Teardown Registers (TEARDOWN1 and TEARDOWN2)
	3.10 USB Interrupt Source Registers (INTSRCR1 and INTSRCR2)
	3.11 USB Interrupt Source Set Registers (INTSETR1 and INTSETR2)
	3.12 USB Interrupt Source Clear Registers (INTCLRR1 and INTCLRR2)
	3.13 USB Interrupt Mask Registers (INTMSKR1 and INTMSKR2)
	3.14 USB Interrupt Mask Set Registers (INTMSKSETR1 and INTMSKSETR2)
	3.15 USB Interrupt Mask Clear Registers (INTMSKCLRR1 and INTMSKCLRR2)
	3.16 USB Interrupt Source Masked Registers (INTMASKEDR1 and INTMASKEDR2)
	3.17 USB End of Interrupt Register (EOIR)
	3.18 USB Interrupt Vector Registers (INTVECTR1 and INTVECTR2)
	3.19 Generic RNDIS EP1 Size Registers (GREP1SZR1 and GREP1SZR2)
	3.20 Generic RNDIS EP2 Size Registers (GREP2SZR1 and GREP2SZR2)
	3.21 Generic RNDIS EP3 Size Registers (GREP3SZR1 and GREP3SZR2)
	3.22 Generic RNDIS EP4 Size Registers (GREP4SZR1 and GREP4SZR2)
	3.23 Function Address Register (FADDR)
	3.24 Power Management Register (POWER)
	3.25 Interrupt Register for Endpoint 0 Plus Transmit Endpoints 1 to 4 (INTRTX)
	3.26 Interrupt Register for Receive Endpoints 1 to 4 (INTRRX)
	3.27 Interrupt Enable Register for INTRTX (INTRTXE)
	3.28 Interrupt Enable Register for INTRRX (INTRRXE)
	3.29 Interrupt Register for Common USB Interrupts (INTRUSB)
	3.30 Interrupt Enable Register for INTRUSB (INTRUSBE)
	3.31 Frame Number Register (FRAME)
	3.32 Index Register for Selecting the Endpoint Status and Control Registers (INDEX)
	3.33 Register to Enable the USB 2.0 Test Modes (TESTMODE)
	3.34 Maximum Packet Size for Peripheral/Host Transmit Endpoint (TXMAXP)
	3.35 Control Status Register for Peripheral Endpoint 0 (PERI_CSR0)
	3.36 Control Status Register for Peripheral Transmit Endpoint (PERI_TXCSR)
	3.37 Maximum Packet Size for Peripheral Receive Endpoint (RXMAXP)
	3.38 Control Status Register for Peripheral Receive Endpoint (PERI_RXCSR)
	3.39 Count 0 Register (COUNT0)
	3.40 Receive Count Register (RXCOUNT)
	3.41 Configuration Data Register (CONFIGDATA)
	3.42 Transmit and Receive FIFO Registers for Endpoint 0 (FIFO0R1 and FIFO0R2)
	3.43 Transmit and Receive FIFO Registers for Endpoint 1 (FIFO1R1 and FIFO1R2)
	3.44 Transmit and Receive FIFO Registers for Endpoint 2 (FIFO2R1 and FIFO2R2)
	3.45 Transmit and Receive FIFO Registers for Endpoint 3 (FIFO3R1 and FIFO3R2)
	3.46 Transmit and Receive FIFO Registers for Endpoint 4 (FIFO4R1 and FIFO4R2)
	3.47 Device Control Register (DEVCTL)
	3.48 Transmit Endpoint FIFO Size (TXFIFOSZ)
	3.49 Receive Endpoint FIFO Size (RXFIFOSZ)
	3.50 Transmit Endpoint FIFO Address (TXFIFOADDR)
	3.51 Hardware Version Register (HWVERS)
	3.52 Receive Endpoint FIFO Address (RXFIFOADDR)
	3.53 CDMA Revision Identification Registers (DMAREVID1 and DMAREVID2)
	3.54 CDMA Teardown Free Descriptor Queue Control Register (TDFDQ)
	3.55 CDMA Emulation Control Register (DMAEMU)
	3.56 CDMA Transmit Channel n Global Configuration Registers (TXGCR1[n] and TXGCR2[n])
	3.57 CDMA Receive Channel n Global Configuration Registers (RXGCR1[n] and RXGCR2[n])
	3.58 CDMA Receive Channel n Host Packet Configuration Registers A (RXHPCR1A[n] and RXHPCR2A[n])
	3.59 CDMA Receive Channel n Host Packet Configuration Registers B (RXHPCR1B[n] and RXHPCR2B[n])
	3.60 CDMA Scheduler Control Register (DMA_SCHED_CTRL1 and DMA_SCHED_CTRL2)
	3.61 CDMA Scheduler Table Word n Registers (ENTRYLSW[n]-ENTRYMSW[n])
	3.62 Queue Manager Revision Identification Registers (QMGRREVID1 and QMGRREVID2)
	3.63 Queue Manager Queue Diversion Registers (DIVERSION1 and DIVERSION2)
	3.64 Queue Manager Free Descriptor/Buffer Starvation Count Register 0 (FDBSC0)
	3.65 Queue Manager Free Descriptor/Buffer Starvation Count Register 1 (FDBSC1)
	3.66 Queue Manager Free Descriptor/Buffer Starvation Count Register 2 (FDBSC2)
	3.67 Queue Manager Free Descriptor/Buffer Starvation Count Register 3 (FDBSC3)
	3.68 Queue Manager Free Descriptor/Buffer Starvation Count Register 4 (FDBSC4)
	3.69 Queue Manager Free Descriptor/Buffer Starvation Count Register 5 (FDBSC5)
	3.70 Queue Manager Free Descriptor/Buffer Starvation Count Register 6 (FDBSC6)
	3.71 Queue Manager Free Descriptor/Buffer Starvation Count Register 7 (FDBSC7)
	3.72 Queue Manager Linking RAM Region 0 Base Address Registers (LRAM0BASE1 and LRAM0BASE2)
	3.73 Queue Manager Linking RAM Region 0 Size Register (LRAM0SIZE)
	3.74 Queue Manager Linking RAM Region 1 Base Address Registers (LRAM1BASE1 and LRAM1BASE2)
	3.75 Queue Manager Queue Pending Register 0 (PEND0)
	3.76 Queue Manager Queue Pending Register 1 (PEND1)
	3.77 Queue Manager Queue Pending Register 2 (PEND2)
	3.78 Queue Manager Queue Pending Register 3 (PEND3)
	3.79 Queue Manager Queue Pending Register 4 (PEND4)
	3.80 Queue Manager Queue Pending Register 5 (PEND5)
	3.81 Queue Manager Memory Region R Base Address Registers (QMEMRBASE1[R] and QMEMRBASE2[R])
	3.82 Queue Manager Memory Region R Control Registers (QMEMRCTRL1[R] and QMEMRCTRL2[R])
	3.83 Queue Manager Queue N Control Register D (CTRL1D[N] and CTRL2D[N])
	3.84 Queue Manager Queue N Status Register A (QSTATA[N])
	3.85 Queue Manager Queue N Status Registers B (QSTAT1B[N] and QSTAT2B[N])
	3.86 Queue Manager Queue N Status Register C (QSTATC[N])

