

TMS320x2834x Delfino Boot ROM

Reference Guide

Literature Number: SPRUFN5B
March 2009 – Revised February 2011

© 2009–2011, Texas Instruments Incorporated

2 SPRUFN5B– March 2009 – Revised February 2011
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Preface ... 6
1 Boot ROM Memory Map .. 9

1.1 On-Chip Boot ROM IQmath Tables ... 10
1.2 CPU Vector Table .. 12

2 Bootloader Features .. 14
2.1 Bootloader Functional Operation ... 14
2.2 Bootloader Device Configuration ... 15
2.3 PLL Multiplier and DIVSEL Selection .. 16
2.4 Watchdog Module .. 16
2.5 Taking an ITRAP Interrupt ... 16
2.6 Internal Pullup Resisters .. 17
2.7 PIE Configuration .. 17
2.8 Reserved Memory ... 17
2.9 Bootloader Modes ... 17
2.10 Bootloader Data Stream Structure ... 20
2.11 Basic Transfer Procedure .. 24
2.12 InitBoot Assembly Routine ... 25
2.13 SelectBootMode Function .. 26
2.14 CopyData Function .. 28
2.15 McBSP_Boot Function ... 29
2.16 SCI_Boot Function .. 30
2.17 Parallel_Boot Function (GPIO) .. 32
2.18 XINTF_Parallel_Boot Function .. 39
2.19 SPI_Boot Function ... 46
2.20 I2C Boot Function .. 49
2.21 eCAN Boot Function .. 52
2.22 ExitBoot Assembly Routine ... 54

3 Building the Boot Table .. 55
3.1 The C2000 Hex Utility .. 55
3.2 Example: Preparing a COFF File For eCAN Bootloading .. 56

4 Bootloader Code Overview ... 59
4.1 Boot ROM Version and Checksum Information ... 59
4.2 Bootloader Code Revision History ... 59

Appendix A Revision History ... 60

SPRUFN5B– March 2009 – Revised February 2011 Table of Contents 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

List of Figures

www.ti.com

1 Memory Map of On-Chip ROM ... 9
2 Vector Table Map ... 12
3 Bootloader Flow Diagram ... 15
4 Boot ROM Stack ... 17
5 Boot ROM Function Overview .. 18
6 Flow Diagram of Jump to M0 SARAM .. 19
7 Flow Diagram of Jump to XINTF x16 ... 19
8 Bootloader Basic Transfer Procedure .. 25
9 Overview of InitBoot Assembly Function .. 26
10 Overview of the SelectBootMode Function .. 27
11 Overview of CopyData Function ... 28
12 Overview of SCI Bootloader Operation .. 30
13 Overview of SCI_Boot Function ... 31
14 Overview of SCI_GetWordData Function ... 32
15 Overview of Parallel GPIO bootloader Operation ... 32
16 Parallel GPIO Boot Loader Handshake Protocol .. 34
17 Parallel GPIO Mode Overview ... 35
18 Parallel GPIO Mode - Host Transfer Flow .. 36
19 16-Bit Parallel GetWord Function ... 37
20 8-Bit Parallel GetWord Function ... 38
21 Overview of the Parallel XINTF Boot Loader Operation ... 39
22 XINTF_Parallel Boot Loader Handshake Protocol ... 41
23 XINTF Parallel Mode Overview .. 42
24 XINTF Parallel Mode - Host Transfer Flow .. 43
25 16-Bit Parallel GetWord Function ... 44
26 8-Bit Parallel GetWord Function ... 45
27 SPI Loader ... 46
28 Data Transfer From EEPROM Flow ... 48
29 Overview of SPIA_GetWordData Function ... 48
30 EEPROM Device at Address 0x50 ... 49
31 Overview of I2C_Boot Function .. 50
32 Random Read .. 51
33 Sequential Read ... 52
34 Overview of eCAN-A bootloader Operation .. 52
35 ExitBoot Procedure Flow .. 54

4 List of Figures SPRUFN5B– March 2009 – Revised February 2011
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

www.ti.com

List of Tables

1 Vector Locations ... 13
2 Configuration for Device Modes ... 15
3 Boot Mode Selection .. 17
4 General Structure Of Source Program Data Stream In 16-Bit Mode .. 21
5 LSB/MSB Loading Sequence in 8-Bit Data Stream .. 23
6 Pins Used by the McBSP Loader ... 29
7 Bit-Rate Values for Different XCLKIN Values ... 29
8 McBSP 16-Bit Data Stream .. 29
9 Parallel GPIO Boot 16-Bit Data Stream ... 33
10 Parallel GPIO Boot 8-Bit Data Stream ... 33
11 XINTF Parallel Boot 16-Bit Data Stream .. 40
12 XINTF Parallel Boot 8-Bit Data Stream .. 41
13 SPI 8-Bit Data Stream .. 46
14 I2C 8-Bit Data Stream .. 51
15 Bit-Rate Values for Different XCLKIN Values ... 52
16 eCAN 8-Bit Data Stream .. 53
17 CPU Register Restored Values .. 55
18 Boot Loader Options .. 56
19 Bootloader Revision and Checksum Information ... 59
20 Bootloader Revision Per Device ... 59
21 Additions, Deletions, and Changes .. 60

SPRUFN5B– March 2009 – Revised February 2011 List of Tables 5
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Preface
SPRUFN5B– March 2009 – Revised February 2011

 Read This First

This reference guide is applicable for the code and data stored in the on-chip boot ROM on the
TMS320C2834x Delfino™ processors. This includes all devices within this family.
The boot ROM is factory programmed with boot-loading software. Boot-mode signals (general purpose
I/Os) are used to tell the bootloader software which mode to use on power up. The boot ROM also
contains standard math tables, such as SIN/COS waveforms, for use in IQ math related algorithms found
in the C28x™ IQMath Library - A Virtual Floating Point Engine (literature number SPRC087). Floating-
point tables for SIN/COS are also included for use with the Texas Instruments™ C28x FPU Fast RTS
Library (SPRC664).
This guide describes the purpose and features of the bootloader. It also describes other contents of the
device on-chip boot ROM and identifies where all of the information is located within that memory. Project
collateral discussed in this reference guide can be downloaded from http://www.ti.com/lit/zip/SPRUFN5.

Notational Conventions
This document uses the following conventions.
• Hexadecimal numbers are shown with the suffix h or with a leading 0x. For example, the following

number is 40 hexadecimal (decimal 64): 40h or 0x40.
• Registers in this document are shown in figures and described in tables.

– Each register figure shows a rectangle divided into fields that represent the fields of the register.
Each field is labeled with its bit name, its beginning and ending bit numbers above, and its
read/write properties below. A legend explains the notation used for the properties.

– Reserved bits in a register figure designate a bit that is used for future device expansion.

Related Documentation From Texas Instruments
The following documents describe the related devices and related support tools. Copies of these
documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the search box
provided at www.ti.com.
Data Manual—
SPRS516 — TMS320C28346, TMS320C28345, TMS320C28344, TMS320C28343, TMS320C28342,

TMS320C28341 Delfino Microcontrollers Data Manual. This document contains the pinout,
signal descriptions, as well as electrical and timing specifications for the C2834x devices.

SPRZ267 — TMS320C2834x Delfino MCU Silicon Errata. This document describes the advisories and
usage notes for different versions of silicon.

CPU User's Guides—
SPRU430 — TMS320C28x CPU and Instruction Set Reference Guide. This document describes the

central processing unit (CPU) and the assembly language instructions of the TMS320C28x
fixed-point digital signal processors (DSPs). It also describes emulation features available on these
DSPs.

SPRUEO2 — TMS320C28x Floating Point Unit and Instruction Set Reference Guide. This document
describes the floating-point unit and includes the instructions for the FPU.

Peripheral Guides—

SPRU566 — TMS320x28xx, 28xxx DSP Peripheral Reference Guide. This document describes the
peripheral reference guides of the 28x digital signal processors (DSPs).

6 Preface SPRUFN5B– March 2009 – Revised February 2011

http://www-s.ti.com/sc/techlit/sprc087.zip
http://www-s.ti.com/sc/techlit/sprc664.zip
http://www.ti.com/lit/zip/SPRUFN5
http://www.ti.com/
http://www.ti.com/
http://www.ti.com/lit/pdf/SPRS516
http://www.ti.com/lit/pdf/SPRZ267
http://www.ti.com/lit/pdf/SPRU430
http://www.ti.com/lit/pdf/SPRUEO2
http://www.ti.com/lit/pdf/SPRU566

© 2009–2011, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

www.ti.com Related Documentation From Texas Instruments

SPRUFN1 — TMS320x2834x Delfino System Control and Interrupts Reference Guide. This document
describes the various interrupts and system control features of the x2834x microcontroller (MCUs).

SPRUFN4 — TMS320x2834x Delfino External Interface (XINTF) Reference Guide. This document
describes the XINTF, which is a nonmultiplexed asynchronous bus, as it is used on the x2834x
device.

SPRUFN5 — TMS320x2834x Delfino Boot ROM Reference Guide. This document describes the
purpose and features of the bootloader (factory-programmed boot-loading software) and provides
examples of code. It also describes other contents of the device on-chip boot ROM and identifies
where all of the information is located within that memory.

SPRUG80 — TMS320x2834x Delfino Multichannel Buffered Serial Port (McBSP) Reference Guide.
This document describes the McBSP available on the x2834x devices. The McBSPs allow direct
interface between a microcontroller (MCU) and other devices in a system.

SPRUG78 — TMS320x2834x Delfino Direct Memory Access (DMA) Reference Guide. This document
describes the DMA on the x2834x microcontroller (MCUs).

SPRUFZ6 — TMS320x2834x Delfino Enhanced Pulse Width Modulator (ePWM) Module Reference
Guide. This document describes the main areas of the enhanced pulse width modulator that
include digital motor control, switch mode power supply control, UPS (uninterruptible power
supplies), and other forms of power conversion.

SPRUG77 — TMS320x2834x Delfino High-Resolution Pulse Width Modulator (HRPWM) Reference
Guide. This document describes the operation of the high-resolution extension to the pulse width
modulator (HRPWM).

SPRUG79 — TMS320x2834x Delfino Enhanced Capture (eCAP) Module Reference Guide. This
document describes the enhanced capture module. It includes the module description and
registers.

SPRUG74 — TMS320x2834x Delfino Enhanced Quadrature Encoder Pulse (eQEP) Module
Reference Guide. This document describes the eQEP module, which is used for interfacing with a
linear or rotary incremental encoder to get position, direction, and speed information from a rotating
machine in high performance motion and position control systems. It includes the module
description and registers.

SPRUEU4 — TMS320x2834x Delfino Enhanced Controller Area Network (eCAN) Reference Guide.
This document describes the eCAN that uses established protocol to communicate serially with
other controllers in electrically noisy environments.

SPRUG75 — TMS320x2834x Delfino Serial Communication Interface (SCI) Reference Guide. This
document describes the SCI, which is a two-wire asynchronous serial port, commonly known as a
UART. The SCI modules support digital communications between the CPU and other asynchronous
peripherals that use the standard non-return-to-zero (NRZ) format.

SPRUG73 — TMS320x2834x Delfino Serial Peripheral Interface (SPI) Reference Guide. This
document describes the SPI - a high-speed synchronous serial input/output (I/O) port - that allows a
serial bit stream of programmed length (one to sixteen bits) to be shifted into and out of the device
at a programmed bit-transfer rate.

SPRUG76 — TMS320x2834x Delfino Inter-Integrated Circuit (I2C) Reference Guide. This document
describes the features and operation of the inter-integrated circuit (I2C) module.

Tools Guides—
SPRU513 — TMS320C28x Assembly Language Tools v5.0.0 User's Guide. This document describes

the assembly language tools (assembler and other tools used to develop assembly language code),
assembler directives, macros, common object file format, and symbolic debugging directives for the
TMS320C28x device.

SPRUFN5B– March 2009 – Revised February 2011 Read This First 7
Submit Documentation Feedback

http://www.ti.com/
http://www.ti.com/lit/pdf/SPRUFN1
http://www.ti.com/lit/pdf/SPRUFN4
http://www.ti.com/lit/pdf/SPRUFN5
http://www.ti.com/lit/pdf/SPRUG80
http://www.ti.com/lit/pdf/SPRUG78
http://www.ti.com/lit/pdf/SPRUFZ6
http://www.ti.com/lit/pdf/SPRUG77
http://www.ti.com/lit/pdf/SPRUG79
http://www.ti.com/lit/pdf/SPRUG74
http://www.ti.com/lit/pdf/SPRUEU4
http://www.ti.com/lit/pdf/SPRUG75
http://www.ti.com/lit/pdf/SPRUG73
http://www.ti.com/lit/pdf/SPRUG76
http://www.ti.com/lit/pdf/SPRU513
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Related Documentation From Texas Instruments www.ti.com

SPRU514 — TMS320C28x Optimizing C/C++ Compiler v5.0.0 User's Guide. This document describes
the TMS320C28x™ C/C++ compiler. This compiler accepts ANSI standard C/C++ source code and
produces TMS320 DSP assembly language source code for the TMS320C28x device.

SPRU608 — TMS320C28x Instruction Set Simulator Technical Overview. This document describes
the simulator, available within the Code Composer Studio for TMS320C2000 IDE, that simulates
the instruction set of the C28x™ core.

SPRU625 — TMS320C28x DSP/BIOS 5.32 Application Programming Interface (API) Reference
Guide. This document describes development using DSP/BIOS.

Application Reports—

SPRAB26 — TMS320x2833x/2823x to TMS320x2834x Delfino Migration Overview. This application
report describes differences between the Texas Instruments TMS320x2833x/2823x and the
TMS320x2834x devices to assist in application migration.

Delfino, TMS320C28x, C28x, 28x, 27x, C2xLP are trademarks of Texas Instruments.

8 Read This First SPRUFN5B– March 2009 – Revised February 2011
Submit Documentation Feedback

http://www.ti.com/
http://www.ti.com/lit/pdf/SPRU514
http://www.ti.com/lit/pdf/SPRU608
http://www.ti.com/lit/pdf/SPRU625
http://www.ti.com/lit/pdf/SPRAB26
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Reference Guide
 SPRUFN5B– March 2009 – Revised February 2011

Delfino Boot ROM

1 Boot ROM Memory Map
The boot ROM is an 8K x 16 block of read-only memory located at addresses 0x3F E000 - 0x3F FFFF.
The on-chip boot ROM is factory programmed with boot-load routines and math tables. These are for use
with the C28x™ IQMath Library - A Virtual Floating Point Engine (SPRC087) and the C28x FPU Fast RTS
Library (SPRC664). This document describes the following items:
• Bootloader functions
• Version number, release date and checksum
• Reset vector
• Illegal trap vector (ITRAP)
• CPU vector table (Used for test purposes only)
• IQmath Tables
• Floating-point unit (FPU) math tables
Figure 1 shows the memory map of the on-chip boot ROM. The memory block is 8Kx16 in size and is
located at 0x3F E000 - 0x3F FFFF in both program and data space.

Figure 1. Memory Map of On-Chip ROM

3F E000

3F EBDC

3F F27C

3F F34C

3F F9EE

3F FFB9

3F FFC0

3F FFFF

SPRUFN5B– March 2009 – Revised February 2011 Delfino Boot ROM 9
Submit Documentation Feedback

Data space Program space

IQ math tables

FPU math tables

Reserved

Boot loader functions

Reserved

ROM version
ROM checksum

Reset vector
CPU vector table

http://www-s.ti.com/sc/techlit/sprc087.zip
http://www-s.ti.com/sc/techlit/sprc664.zip
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Boot ROM Memory Map www.ti.com

MEMORY
{

PAGE 0 :
...
FPUTABLES : origin = 0x3FEBDC, length = 0x0006A0
...

}
SECTIONS

{
...
FPUmathTables : > FPUTABLES, PAGE = 0, TYPE = NOLOAD
...

}

1.1 On-Chip Boot ROM IQmath Tables
Approximately 4K of the boot ROM is reserved for floating-point and IQmath tables. These tables are
provided to help improve performance and save SARAM space.
The floating-point math tables included in the boot ROM are used by the Texas Instruments™ C28x FPU
Fast RTS Library (SPRC664). The C28x Fast RTS Library is a collection of optimized floating-point math
functions for C programmers of the C28x with floating-point unit. Designers of computationally intensive
real-time applications can achieve execution speeds considerably faster than what are currently available
without having to rewrite existing code. The functions listed in the features section are specifically
optimized for the C28x + FPU controllers. The Fast RTS library accesses the floating-point tables through
the FPUmathTables memory section. If you do not wish to load a copy of these tables into the device, use
the boot ROM memory addresses and label the section as “NOLOAD” as shown in Example 1. This
facilitates referencing the look-up tables without actually loading the section to the target.
The following floating-point math tables are included in the Boot ROM:
• Sine/Cosine Table, Single-precision Floating-point

– Table size: 1282 words
– Contents: 32-bit floating-point samples for one and a quarter period sine wave

• Normalized Arctan Table, Single-Precision Floating Point
– Table Size: 388 words
– Contents: 32-bit second order coefficients for line of best fit.

• Exp Coefficient Table, Single-Precision Floating Point
– Table size: 20 words
– Contents: 32-bit coefficients for calculating exp (X) using a taylor series

Example 1. Linker Command File to Access FPU Tables

The fixed-point math tables included in the boot ROM are used by the Texas Instruments™ C28x™
IQMath Library - A Virtual Floating Point Engine (SPRC087). The 28x IQmath Library is a collection of
highly optimized and high precision mathematical functions for C/C++ programmers to seamlessly port a
floating-point algorithm into fixed-point code on TMS320C28x devices.
These routines are typically used in computational-intensive real-time applications where optimal
execution speed and high accuracy is critical. By using these routines you can achieve execution speeds
that are considerably faster than equivalent code written in standard ANSI C language. In addition, by
providing ready-to-use high precision functions, the TI IQmath Library can shorten significantly your DSP
application development time.
IQmath library accesses the tables through the IQmathTables and the IQmathTablesRam linker sections.
The IQmathTables section is completely included in the boot ROM. From the IQmathTablesRam section
only the IQexp table is included and the remainder must be loaded into the device if used. If you do not
wish to load a copy of these tables already included in the ROM into the device, use the boot ROM
memory addresses and label the sections as “NOLOAD” as shown in Example 2 . This facilitates
referencing the look-up tables without actually loading the section to the target.

10 Delfino Boot ROM SPRUFN5B– March 2009 – Revised February 2011
Submit Documentation Feedback

http://www.ti.com/
http://www-s.ti.com/sc/techlit/sprc664.zip
http://www-s.ti.com/sc/techlit/sprc087.zip
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Boot ROM Memory Map www.ti.com

MEMORY
{

PAGE 0 :
...

IQTABLES : origin = 0x3FE000, length = 0x000b50
IQTABLES2 : origin = 0x3FEB50, length = 0x00008c
...

}
SECTIONS
{

...
IQmathTables : load = IQTABLES, type = NOLOAD, PAGE = 0
IQmathTables2 > IQTABLES2, type = NOLOAD, PAGE = 0
{

IQmath.lib<IQNexpTable.obj> (IQmathTablesRam)
}
IQmathTablesRam : load = DRAML1, PAGE = 1
...

}

Example 2. Linker Command File to Access IQ Tables

The following math tables are included in the Boot ROM:
• Sine/Cosine Table, IQ Math Table

– Table size: 1282 words
– Q format: Q30
– Contents: 32-bit samples for one and a quarter period sine wave
This is useful for accurate sine wave generation and 32-bit FFTs. This can also be used for 16-bit
math, just skip over every second value.

• Normalized Inverse Table, IQ Math Table
– Table size: 528 words
– Q format: Q29
– Contents: 32-bit normalized inverse samples plus saturation limits
This table is used as an initial estimate in the Newton-Raphson inverse algorithm. By using a more
accurate estimate the convergence is quicker and hence cycle time is faster.

• Normalized Square Root Table, IQ Math Table
– Table size: 274 words
– Q format: Q30
– Contents: 32-bit normalized inverse square root samples plus saturation
This table is used as an initial estimate in the Newton-Raphson square-root algorithm. By using a more
accurate estimate the convergence is quicker and hence cycle time is faster.

• Normalized Arctan Table, IQ Math Table
– Table size: 452 words
– Q format: Q30
– Contents 32-bit second order coefficients for line of best fit plus normalization table
This table is used as an initial estimate in the Arctan iterative algorithm. By using a more accurate
estimate the convergence is quicker and hence cycle time is faster.

• Rounding and Saturation Table, IQ Math Table
– Table size: 360 words
– Q format: Q30
– Contents: 32-bit rounding and saturation limits for various Q values

• Exp Min/Max Table, IQMath Table
– Table size: 120 words
– Q format: Q1 - Q30
– Contents: 32-bit Min and Max values for each Q value

SPRUFN5B– March 2009 – Revised February 2011 Delfino Boot ROM 11
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Boot ROM Memory Map www.ti.com

• Exp Coefficient Table, IQMath Table
– Table size: 20 words
– Q format: Q31
– Contents: 32-bit coefficients for calculating exp (X) using a taylor series

1.2 CPU Vector Table

A CPU vector table resides in boot ROM memory from address 0x3F E000 - 0x3F FFFF. This vector table
is active after reset when VMAP = 1, ENPIE = 0 (PIE vector table disabled).

Figure 2. Vector Table Map

0x3F E000

64 x 16

0x3F FFC0

0x3F FFFF

Reset fetched from here when
VMAP=1
Other vectors fetched from here when
VMAP=1, ENPIE=0

A The VMAP bit is located in Status Register 1 (ST1). VMAP is always 1 on reset. It can be changed after reset by
software, however the normal operating mode will be to leave VMAP = 1.

B The ENPIE bit is located in the PIECTRL register. The default state of this bit at reset is 0, which disables the
Peripheral Interrupt Expansion block (PIE).

The only vector that will normally be handled from the internal boot ROM memory is the reset vector
located at 0x3F FFC0. The reset vector is factory programmed to point to the InitBoot function stored in
the boot ROM. This function starts the boot load process. A series of checking operations is performed on
General-Purpose I/O (GPIO I/O) pins to determine which boot mode to use. This boot mode selection is
described in Section 2.9 of this document.
The remaining vectors in the boot ROM are not used during normal operation. After the boot process is
complete, you should initialize the Peripheral Interrupt Expansion (PIE) vector table and enable the PIE
block. From that point on, all vectors, except reset, will be fetched from the PIE module and not the CPU
vector table shown in Table 1.

For TI silicon debug and test purposes the vectors located in the boot ROM memory point to locations in
the M0 SARAM block as described in Table 1. During silicon debug, you can program the specified
locations in M0 with branch instructions to catch any vectors fetched from boot ROM. This is not required
for normal device operation.

12 Delfino Boot ROM SPRUFN5B– March 2009 – Revised February 2011
Submit Documentation Feedback

Math tables
and functions

Bootloader
functions

Reset vector
CPU vector table

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Boot ROM Memory Map www.ti.com

Table 1. Vector Locations

Vector

Location in
Boot ROM

Contents
(i.e., points to)

Vector

Location in
Boot ROM

Contents
(i.e., points to)

RESET 0x3F FFC0 InitBoot RTOSINT 0x3F FFE0 0x00 0060
INT1 0x3F FFC2 0x00 0042 Reserved 0x3F FFE2 0x00 0062
INT2 0x3F FFC4 0x00 0044 NMI 0x3F FFE4 0x00 0064
INT3 0x3F FFC6 0x00 0046 ILLEGAL 0x3F FFE6 ITRAPIsr
INT4 0x3F FFC8 0x00 0048 USER1 0x3F FFE8 0x00 0068
INT5 0x3F FFCA 0x00 004A USER2 0x3F FFEA 0x00 006A
INT6 0x3F FFCC 0x00 004C USER3 0x3F FFEC 0x00 006C
INT7 0x3F FFCE 0x00 004E USER4 0x3F FFEE 0x00 006E
INT8 0x3F FFD0 0x00 0050 USER5 0x3F FFF0 0x00 0070
INT9 0x3F FFD2 0x00 0052 USER6 0x3F FFF2 0x00 0072
INT10 0x3F FFD4 0x00 0054 USER7 0x3F FFF4 0x00 0074
INT11 0x3F FFD6 0x00 0056 USER8 0x3F FFF6 0x00 0076
INT12 0x3F FFD8 0x00 0058 USER9 0x3F FFF8 0x00 0078
INT13 0x3F FFDA 0x00 005A USER10 0x3F FFFA 0x00 007A
INT14 0x3F FFDC 0x00 005C USER11 0x3F FFFC 0x00 007C
DLOGINT 0x3F FFDE 0x00 005E USER12 0x3F FFFE 0x00 007E

SPRUFN5B– March 2009 – Revised February 2011 Delfino Boot ROM 13
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

2 Bootloader Features
This section describes in detail the boot mode selection process, as well as the specifics of the bootloader
operation.

2.1 Bootloader Functional Operation

The bootloader is the program located in the on-chip boot ROM that is executed following a reset.
The bootloader is used to transfer code from an external source into internal memory following power up.
This allows code to reside in slow non-volatile memory externally, and be transferred to high-speed
memory to be executed.
The bootloader provides a variety of different ways to download code to accommodate different system
requirements. The bootloader uses various GPIO signals to determine which boot mode to use. The boot
mode selection process as well as the specifics of each bootloader are described in the remainder of this
document. Figure 3 shows the basic bootloader flow.

14 Delfino Boot ROM SPRUFN5B– March 2009 – Revised February 2011
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

Reset
(power-on reset or warm reset)

Silicon sets the following:
PIE disabled (ENPIE−0)

VMAP=1
OBJMODE=0

AMODE=0
MOM1MAP=1

SelectBootMode function
PLLSTS[DIVSEL] = 2

Boot determined by the state of I/O pins

Begin execution at Entry Point as
determined by selected boot mode

Figure 3. Bootloader Flow Diagram

The reset vector in boot ROM redirects program execution to the InitBoot function. After performing device
initialization the bootloader will check the state of GPIO pins to determine which boot mode you want to
execute. Options include: jump to SARAM, jump to XINTF, or call one of the on-chip boot loading routines.
After the selection process and if the required boot loading is complete, the processor will continue
execution at an entry point determined by the boot mode selected. If a bootloader was called, then the
input stream loaded by the peripheral determines this entry address. This data stream is described in
Section 2.10. If, instead, you choose to boot directly to XINTF or SARAM, the entry address is predefined
for each of these memory blocks.
The following sections discuss in detail the different boot modes available and the process used for
loading data code into the device.

2.2 Bootloader Device Configuration

At reset, any 28x™ CPU-based device is in 27x™ object-compatible mode. It is up to the application to
place the device in the proper operating mode before execution proceeds.
On the 28x devices, when booting from the internal boot ROM, the device is configured for 28x operating
mode by the boot ROM software. You are responsible for any additional configuration required.
For example, if your application includes C2xLP™ source, then you are responsible for configuring the
device for C2xLP source compatibility prior to execution of code generated from C2xLP source.
The configuration required for each operating mode is summarized in Table 2.

Table 2. Configuration for Device Modes

C27x Mode (Reset)

28x Mode
C2xLP Source

Compatible Mode
OBJMODE 0 1 1
AMODE 0 0 1

SPRUFN5B– March 2009 – Revised February 2011 Delfino Boot ROM 15
Submit Documentation Feedback

Boot ROM
Reset vector fetched from boot ROM

address 0x3F FFC0
Jump to InitBoot function to start

boot process

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

Table 2. Configuration for Device Modes (continued)

C27x Mode (Reset)

28x Mode

C2xLP Source
Compatible Mode

PAGE0 0 0 0
M0M1MAP(1) 1 1 1
Other Settings SXM = 1, C = 1, SPM = 0

(1) Normally for C27x compatibility, the M0M1MAP would be 0. On these devices, however, it is tied off
high internally; therefore, at reset, M0M1MAP is always configured for 28x mode.

2.3 PLL Multiplier and DIVSEL Selection

The Boot ROM changes the PLL multiplier (PLLCR) and divider (PLLSTS[DIVSEL]) bits as follows:
• XINTF parallel loader:

PLLCR and PLLSTS[DIVSEL] are specified by the user as part of the incoming data stream.
• eCAN Timing 1 loader:

PLLCR is not modified. PLLSTS[DIVSEL] is set to 3 for SYSCLKOUT = CLKIN/1. Refer to Section 2.21
for details.

• All other boot modes:
PLLCR is not modified. PLLSTS[DIVSEL] is set to 2 for SYSCLKOUT = CLKIN/2 . This increases the
speed of the loaders.

NOTE: The PLL multiplier (PLLSTS) and divider (PLLSTS[DIVSEL]) are not affected by a reset
from the debugger. Therefore, a boot that is initialized from a reset from Code Composer
Studio™ may be at a different speed than booting by pulling the external reset line (XRS)
low.

NOTE: The reset value of PLLSTS[DIVSEL] is 0. This configures the device for SYSCLKOUT =
CLKIN/8. The boot ROM will change this to SYSCLKOUT = CLKIN/2 or CLKIN/1 to improve
performance of the loaders. PLLSTS[DIVSEL] is left in this state when the boot ROM exits
and it is up to the application to change it before configuring the PLLCR register.

NOTE: The eCAN Timing 1 loader leaves PLLSTS[DIVSEL] in the CLKIN/1 state when the boot
ROM exits. This is not a valid configuration if the PLL is used. Thus the application must
change it before configuring the PLLCR register.

2.4 Watchdog Module

When branching directly to M0 single-access RAM (SARAM) or external interface (XINTF) the watchdog is
not touched. In the other boot modes, the watchdog is disabled before booting and then re-enabled and
cleared before branching to the final destination address. In the case of a reserved boot mode being
selected, or an incorrect key value passed to the loader, the watchdog will be enabled and the device
reset.

2.5 Taking an ITRAP Interrupt

If an illegal opcode is fetched, the 28x will take an ITRAP (illegal trap) interrupt. During the boot process,
the interrupt vector used by the ITRAP is within the CPU vector table of the boot ROM. The ITRAP vector
points to an interrupt service routine (ISR) within the boot ROM named ITRAPIsr(). This interrupt service
routine attempts to enable the watchdog and then loops forever until the processor is reset. This ISR will
be used for any ITRAP until the user's application initializes and enables the peripheral interrupt
expansion (PIE) block. Once the PIE is enabled, the ITRAP vector located within the PIE vector table will
be used.

16 Delfino Boot ROM SPRUFN5B– March 2009 – Revised February 2011
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

2.6 Internal Pullup Resisters
Each GPIO pin has an internal pullup resistor that can be enabled or disabled in software. The pins that
are read by the boot mode selection code to determine the boot mode selection have pull-ups enabled
after reset by default. In noisy conditions it is still recommended that you configure each of the boot mode
selection pins externally.
The peripheral bootloaders all enable the pullup resistors for the pins that are used for control and data
transfer. The bootloader leaves the resistors enabled for these pins when it exits. For example, the SCI-A
bootloader enables the pullup resistors on the SCITXA and SCIRXA pins. It is your responsibility to
disable them, if desired, after the bootloader exits.

2.7 PIE Configuration

The boot modes do not enable the PIE. It is left in its default state, which is disabled.

2.8 Reserved Memory

The M0 memory block address range 0x0002 - 0x004E is reserved for the stack and .ebss code sections
during the boot-load process. If code is bootloaded into this region there is no error checking to prevent it
from corrupting the boot ROM stack. Address 0x0000-0x0001 is the boot to M0 entry point. This should be
loaded with a branch instruction to the start of the main application when using "boot to SARAM" mode.

Figure 4. Boot ROM Stack

0x004E

0x0002

0x0000

Boot ROM loaders on older C28x devices had the stack in M1 memory. This is a change for this boot loader.

NOTE: If code or data is bootloaded into the address range address range 0x0002 - 0x004E there
is no error checking to prevent it from corrupting the boot ROM stack.

2.9 Bootloader Modes
To accommodate different system requirements, the boot ROM offers a variety of boot modes. This
section describes the different boot modes and gives brief summary of their functional operation. The
states of four GPIO pins are used to determine the desired boot mode as shown in Table 3. In the case of
I2C and eCAN, there are two timing options in order to accommodate different input clock frequencies.
Each of the timing options is evoked by selecting a different boot mode.

Table 3. Boot Mode Selection

MODE GPIO87/XA15 GPIO86/XA14 GPIO85/XA13 GPIO84/XA12 MODE (1)

F 1 1 1 1 Secure Boot(2)
E 1 1 1 0 SCI-A boot
D 1 1 0 1 SPI-A boot
C 1 1 0 0 I2C-A boot Timing 1
B 1 0 1 1 eCAN-A boot Timing 1
A 1 0 1 0 McBSP-A boot
9 1 0 0 1 Jump to XINTF x16

(1) All four GPIO pins have an internal pullup.
(2) This mode is available on secure devices only. Refer to the data manual or contact support@ti.com for more information.

SPRUFN5B– March 2009 – Revised February 2011 Delfino Boot ROM 17
Submit Documentation Feedback

Boot ROM Stack

Boot to M0 entry point

http://www.ti.com/
mailto:support@ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

 Call
Boot Loader

?

Yes

No

EntryPoint determined
directly from state of

I/O pins

Read
EntryPoint
and load

data/code

Call
boot loader,
SCI, SPI,

I2C, eCAN, or
parallel I/O

MODE GPIO87/XA15 GPIO86/XA14 GPIO85/XA13 GPIO84/XA12 MODE (1)
8 1 0 0 0 TI Test Only
7 0 1 1 1 eCAN-A boot Timing 2
6 0 1 1 0 Parallel GPIO I/O boot
5 0 1 0 1 Parallel XINTF boot
4 0 1 0 0 Jump to SARAM
3 0 0 1 1 Branch to check boot mode
2 0 0 1 0 I2C-A boot Timing 2
1 0 0 0 1 Reserved
0 0 0 0 0 TI Test Only

Figure 5 shows an overview of the boot process. Each step is described in greater detail in following
sections.

Figure 5. Boot ROM Function Overview

InitBoot

Call
SelectBootMode

Read the state
of I/O pins to

determine what
boot mode is

desired

18 Delfino Boot ROM SPRUFN5B– March 2009 – Revised February 2011
Submit Documentation Feedback

Begin execution
at EntryPoint

Call
ExitBoot

Reset

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

The following boot mode is used for debug purposes:
• Branch to check boot mode

When initially debugging a device the emulator takes some time to take control of the CPU. During this
time, the CPU will start running and may execute some portion of the application. During debug this
may not be desirable. Two solutions to this problem exist:
– The first is to use the Wait-In-Reset emulation mode, which will hold the device in reset until the

emulator takes control. The emulator must support this mode for this option.
– The second option is to use the “Branch to check boot mode” boot option. This will sit in a loop and

continuously poll the boot mode select pins. The user can select this boot mode and then exit this
mode once the emulator is connected by re-mapping the PC to another address or by changing the
boot mode selection pin to the desired boot mode.

The following boot modes do not call a bootloader. Instead, they jump to a predefined location in memory:
• Jump to M0 SARAM

In this mode, the boot ROM software configures the device for 28x operation and branches directly to
0x00 0000. This is the first address in the M0 SARAM memory block.

Figure 6. Flow Diagram of Jump to M0 SARAM

• Jump to XINTF Zone 6 Configured for 16-bit Data
The boot ROM configures XINTF zone 6 for 16 bit wide memory, maximum wait states, and sample
XREADY in asynchronous mode. This is the default values list after reset:
– XTIMCLK = ½ SYSCLKOUT
– XCLKOUT = 1/4 XTIMCLK
– XRDLEAD = XWRLEAD = 3
– XRDACTIVE = XWRACTIVE = 7
– XRDTRAIL = XWRACTIVE = 3
– XSIZE = 16-bit wide
– X2TIMING = 1. Timing values are 2:1.
– USEREADY = 1, READYMODE = 1 (XREADY sampled asynchronous mode)
The boot ROM will then jump to the first location within zone 6 at address 0x10 0000.

Figure 7. Flow Diagram of Jump to XINTF x16

The following boot modes call a boot load routine that loads a data stream from the peripheral into
memory:
• Standard serial boot mode (SCI-A)

In this mode, the boot ROM will load code to be executed into on-chip memory via the SCI-A port.
• SPI EEPROM or Flash boot mode (SPI-A)

In this mode, the boot ROM will load code and data into on-chip memory from an external SPI
EEPROM or SPI flash via the SPI-A port.

• I2C-A boot mode (I2C-A)
In this mode, the boot ROM will load code and data into on-chip memory from an external serial
EEPROM or flash at address 0x50 on the I2C-A bus. The EEPROM must adhere to conventional I2C
EEPROM protocol with a 16-bit base address architecture. To accommodate different input clock
frequencies, there are two timing options for the I2C loader. Each timing option is evoked by selecting

SPRUFN5B– March 2009 – Revised February 2011 Delfino Boot ROM 19
Submit Documentation Feedback

Reset InitBoot

SelectBootMode
Select jump

to M0 SARAM ExitBoot Jump to
0x00 0000

Execution
continues

Reset InitBoot
SelectBootMode
Select XINTF x16
Configure Zone6

ExitBoot Jump to
0x10 0000

Execute
Code

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

a specific boot mode.
• eCAN Boot Mode (eCAN-A)

In this mode, the eCAN-A peripheral is used to transfer data and code into the on-chip memory using
eCAN-A mailbox 1. The transfer is an 8-bit data stream with two 8-bit values being transferred during
each communication. To accommodate different input clock frequencies, there are two timing options
for the eCAN-A loader. Each timing option is evoked by selecting a specific boot mode.

• McBSP Boot Mode (McBSP-A)
Synchronously transfers code from McBSP-A to internal memory. McBSP-A is configured for slave
mode operation. i.e. it receives the frame sync and clock from the host. Upon receiving a word, the
McBSP echoes the data back to the host.

• Boot from GPIO Port (Parallel Boot from GPIO0-GPIO15)
In this mode, the boot ROM uses GPIO port A pins GPIO0-GPIO15 to load code and data from an
external source. This mode supports both 8-bit and 16-bit data streams.

• Boot From XINTF (Parallel Boot From XD[15:0])
This mode is similar to the GPIO parallel boot mode except the boot ROM uses XINTF data lines
XD[15:0] to load code and data from an external source instead of GPIO pins. This mode supports
both 8-bit and 16-bit data streams. The user can specify the PLL configuration as well as XINTF timing
through the input data stream.

2.10 Bootloader Data Stream Structure

The following two tables and associated examples show the structure of the data stream incoming to the
bootloader. The basic structure is the same for all the bootloaders and is based on the C54x source data
stream generated by the C54x hex utility. The C28x hex utility (hex2000.exe) has been updated to support
this structure. The hex2000.exe utility is included with the C2000 code generation tools. All values in the
data stream structure are in hex.
The first 16-bit word in the data stream is known as the key value. The key value is used to tell the
bootloader the width of the incoming stream: 8 or 16 bits. Note that not all bootloaders will accept both 8
and 16-bit streams. Please refer to the detailed information on each loader for the valid data stream width.
For an 8-bit data stream, the key value is 0x08AA and for a 16-bit stream it is 0x10AA. If a bootloader
receives an invalid key value, then the load is aborted. In this case, the watchdog is enabled and a device
reset is forced through software.
The next 8 words are used to initialize register values or otherwise enhance the bootloader by passing
values to it. If a bootloader does not use these values then they are reserved for future use and the
bootloader simply reads the value and then discards it. Currently only the SPI and I2C and parallel XINTF
bootloaders use these words to initialize registers.
The tenth and eleventh words comprise the 22-bit entry point address. This address is used to initialize
the PC after the boot load is complete. This address is most likely the entry point of the program
downloaded by the bootloader.
The twelfth word in the data stream is the size of the first data block to be transferred. The size of the
block is defined for both 8-bit and 16-bit data stream formats as the number of 16-bit words in the block.
For example, to transfer a block of 20 8-bit data values from an 8-bit data stream, the block size would be
0x000A to indicate 10 16-bit words.
The next two words tell the loader the destination address of the block of data. Following the size and
address will be the 16-bit words that makeup that block of data.
This pattern of block size/destination address repeats for each block of data to be transferred. Once all the
blocks have been transferred, a block size of 0x0000 signals to the loader that the transfer is complete. At
this point the loader will return the entry point address to the calling routine which in turn will cleanup and
exit. Execution will then continue at the entry point address as determined by the input data stream
contents.

20 Delfino Boot ROM SPRUFN5B– March 2009 – Revised February 2011
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

Table 4. General Structure Of Source Program Data Stream In 16-Bit Mode
Word Contents

1 10AA (KeyValue for memory width = 16bits)
2 Register initialization value or reserved for future use
3 Register initialization value or reserved for future use
4 Register initialization value or reserved for future use
5 Register initialization value or reserved for future use
6 Register initialization value or reserved for future use
7 Register initialization value or reserved for future use
8 Register initialization value or reserved for future use
9 Register initialization value or reserved for future use

10 Entry point PC[22:16]
11 Entry point PC[15:0]
12 Block size (number of words) of the first block of data to load. If the block size is 0, this indicates the end

of the source program. Otherwise another section follows.
13 Destination address of first block Addr[31:16]
14 Destination address of first block Addr[15:0]
15 First word of the first block in the source being loaded
... ...
... ...
. Last word of the first block of the source being loaded
. Block size of the 2nd block to load.
. Destination address of second block Addr[31:16]
. Destination address of second block Addr[15:0]
. First word of the second block in the source being loaded
. …
. Last word of the second block of the source being loaded
. Block size of the last block to load
. Destination address of last block Addr[31:16]
. Destination address of last block Addr[15:0]
. First word of the last block in the source being loaded

... ...

... ...
n Last word of the last block of the source being loaded

n+1 Block size of 0000h - indicates end of the source program

SPRUFN5B– March 2009 – Revised February 2011 Delfino Boot ROM 21
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

After load has completed the following memory values will have been initialized as follows:
Location Value
0x3F9010 0x0001
0x3F9011 0x0002
0x3F9012 0x0003
0x3F9013 0x0004
0x3F9014 0x0005
0x3F8000 0x7700
0x3F8001 0x7625
PC Begins execution at 0x3F8000

Example 3. Data Stream Structure 16-bit

10AA ; 0x10AA 16-bit key value
0000 0000 0000 0000 ; 8 reserved words
0000 0000 0000 0000

003F 8000 ; 0x003F8000 EntryAddr, starting point after boot load completes
0005 ; 0x0005 - First block consists of 5 16-bit words
003F 9010 ; 0x003F9010 - First block will be loaded starting at 0x3F9010
0001 0002 0003 0004 ; Data loaded = 0x0001 0x0002 0x0003 0x0004 0x0005
0005

0002 ; 0x0002 - 2nd block consists of 2 16-bit words
003F 8000 ; 0x003F8000 - 2nd block will be loaded starting at 0x3F8000
7700 7625 ; Data loaded = 0x7700 0x7625
0000 ; 0x0000 - Size of 0 indicates end of data stream

In 8-bit mode, the least significant byte (LSB) of the word is sent first followed by the most significant byte
(MSB). For 32-bit values, such as a destination address, the most significant word (MSW) is loaded first,
followed by the least significant word (LSW). The bootloaders take this into account when loading an 8-bit
data stream.

22 Delfino Boot ROM SPRUFN5B– March 2009 – Revised February 2011
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

Table 5. LSB/MSB Loading Sequence in 8-Bit Data Stream
Byte Contents

LSB (First Byte of 2) MSB (Second Byte of 2)
1 2 LSB: AA (KeyValue for memory width = 8 bits) MSB: 08h (KeyValue for memory width = 8 bits)
3 4 LSB: Register initialization value or reserved MSB: Register initialization value or reserved
5 6 LSB: Register initialization value or reserved MSB: Register initialization value or reserved
7 8 LSB: Register initialization value or reserved MSB: Register initialization value or reserved
...
...
17 18 LSB: Register initialization value or reserved MSB: Register initialization value or reserved
19 20 LSB: Upper half of Entry point PC[23:16] MSB: Upper half of entry point PC[31:24] (Always 0x00)
21 22 LSB: Lower half of Entry point PC[7:0] MSB: Lower half of Entry point PC[15:8]
23 24 LSB: Block size in words of the first block to load. If the MSB: block size

block size is 0, this indicates the end of the source
program. Otherwise another block follows. For example, a
block size of 0x000A would indicate 10 words or 20 bytes
in the block.

25 26 LSB: MSW destination address, first block Addr[23:16] MSB: MSW destination address, first block Addr[31:24]
27 28 LSB: LSW destination address, first block Addr[7:0] MSB: LSW destination address, first block Addr[15:8]
29 30 LSB: First word of the first block being loaded MSB: First word of the first block being loaded
...
...
. . LSB: Last word of the first block to load MSB: Last word of the first block to load
. . LSB: Block size of the second block MSB: Block size of the second block
. . LSB: MSW destination address, second block Addr[23:16] MSB: MSW destination address, second block

Addr[31:24]
. . LSB: LSW destination address, second block Addr[7:0] MSB: LSW destination address, second block Addr[15:8]
. . LSB: First word of the second block being loaded MSB: First word of the second block being loaded

...

...
. . LSB: Last word of the second block MSB: Last word of the second block
. . LSB: Block size of the last block MSB: Block size of the last block
. . LSB: MSW of destination address of last block Addr[23:16] MSB: MSW destination address, last block Addr[31:24]
. . LSB: LSW destination address, last block Addr[7:0] MSB: LSW destination address, last block Addr[15:8]
. . LSB: First word of the last block being loaded MSB: First word of the last block being loaded

...

...
. . LSB: Last word of the last block MSB: Last word of the last block
n n+1 LSB: 00h MSB: 00h - indicates the end of the source

SPRUFN5B– March 2009 – Revised February 2011 Delfino Boot ROM 23
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

After load has completed the following memory values will have been initialized as follows:

Location Value
0x3F9010 0x0001
0x3F9011 0x0002
0x3F9012 0x0003
0x3F9013 0x0004
0x3F9014 0x0005
0x3F8000 0x7700
0x3F8001 0x7625
PC Begins execution at 0x3F8000

Example 4. Data Stream Structure 8-bit

AA 08 ; 0x08AA 8-bit key value
00 00 00 00 ; 8 reserved words
00 00 00 00

00 00 00 00

00 00 00 00

3F 00 00 80 ; 0x003F8000 EntryAddr, starting point after boot load completes
05 00 ; 0x0005 - First block consists of 5 16-bit words
3F 00 10 90 ; 0x003F9010 - First block will be loaded starting at 0x3F9010
01 00 ; Data loaded = 0x0001 0x0002 0x0003 0x0004 0x0005
02 00

03 00

04 00

05 00

02 00 ; 0x0002 - 2nd block consists of 2 16-bit words
3F 00 00 80 ; 0x003F8000 - 2nd block will be loaded starting at 0x3F8000
00 77 ; Data loaded = 0x7700 0x7625
25 76

00 00 ; 0x0000 - Size of 0 indicates end of data stream

2.11 Basic Transfer Procedure

Figure 8 illustrates the basic process a bootloader uses to determine whether 8-bit or 16-bit data stream
has been selected, transfer that data, and start program execution. This process occurs after the
bootloader finds the valid boot mode selected by the state of GPIO pins.
The loader first compares the first value sent by the host against the 16-bit key value of 0x10AA. If the
value fetched does not match then the loader will read a second value. This value will be combined with
the first value to form a word. This will then be checked against the 8-bit key value of 0x08AA. If the
loader finds that the header does not match either the 8-bit or 16-bit key value, or if the value is not valid
for the given boot mode then the load will abort. In this case the loader will enable the watchdog and force
a device reset through software.

24 Delfino Boot ROM SPRUFN5B– March 2009 – Revised February 2011
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

W1=
0x10AA

?

Read first word (W1)

Return
EntryPoint

 Yes

16-bit data size

No Data format error
Enable Watchdog

and force reset

Figure 8. Bootloader Basic Transfer Procedure

No Read second word
(W2) and discard

upper 8-bits

Read BlockSize (R)

Yes
R=0

?

No

Read BlockAddress

 Transfer R words of
data from source to

destination

8-bit and 16-bit transfers are not valid for all boot modes. If only one mode is valid, then this decision tree is skipped
and the key value is only checked for correctness. See the info specific to a particular bootloader for any limitations.
In 8-bit mode, the LSB of the 16-bit word is read first followed by the MSB.

2.12 InitBoot Assembly Routine

The first routine called after reset is the InitBoot assembly routine. This routine initializes the device for
operation in C28x object mode. InitBoot also performs a dummy read of the Code Security Module (CSM)
password locations. The 128-bit password locations on these devices will always read back 0xFFFF. To
preserve compatibility with other C28x designs with code security, the password locations must be read
after a device reset; otherwise, certain memory locations will be inaccessible. The Boot ROM code
performs this read during startup. If during debug the Boot ROM is bypassed, then it is the responsibility of
the application software to read the password locations after a reset.
After the dummy read of the CSM password locations, the InitBoot routine calls the SelectBootMode
function. This function determines the type of boot mode desired by the state of certain GPIO pins. This
process is described in Section 2.13. Once the boot is complete, the SelectBootMode function passes
back the entry point address (EntryAddr) to the InitBoot function. EntryAddr is the location where code
execution will begin after the bootloader exits. InitBoot then calls the ExitBoot routine that then restores
CPU registers to their reset state and exits to the EntryAddr that was determined by the boot mode.

SPRUFN5B– March 2009 – Revised February 2011 Delfino Boot ROM 25
Submit Documentation Feedback

Read EntryPoint address

W2:W1=
0x08AA

?

Yes 8-bit
DataSize

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

Figure 9. Overview of InitBoot Assembly Function

2.13 SelectBootMode Function

To determine the desired boot mode, the SelectBootMode function examines the state of 3 GPIO pins as
shown in Table 3.
For a boot mode to be selected, the pins corresponding to the desired boot mode have to be pulled low or
high until the selection process completes. Note that the state of the selection pins is not latched at reset;
they are sampled some cycles later in the SelectBootMode function. The internal pullup resistors are
enabled at reset for the boot mode selection pins. It is still suggested that the boot mode configuration be
made externally to avoid the effect of any noise on these pins.

NOTE: The SelectBootMode routine disables the watchdog before calling the SCI, I2C , eCAN, SPI
, McBSP, or parallel bootloaders. The bootloaders do not service the watchdog and assume
that it is disabled. Before exiting, the SelectBootMode routine will re-enable the watchdog
and reset its timer.

If a bootloader is not going to be called, then the watchdog is left untouched.

When selecting a boot mode, the pins should be pulled high or low through a weak pulldown or weak
pull-up such that the device can drive them to a new state when required.

26 Delfino Boot ROM SPRUFN5B– March 2009 – Revised February 2011
Submit Documentation Feedback

Init Boot

Dummy read of
CSM password

locations

Call

SelectBootMode

Call

ExitBoot

Initialize device
OBJMODE=1
AMODE = 0

MOM1MAP=1
DP = 0

OVM = 0
SPM= 0

SP = 0x400

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

Yes Loop to
Check Mode?

mode 3

No

M0 Boot?
modes 4, 1

Yes Return
M0_ENTRY_POINT
EntryAddr: 0x0000

No

XINTF x16?
mode 9

Yes Configure Zone 6
Return EntryAddr

0x10 0000

No

Read boot mode

Configure boot pins
as inputs

A

Enable
Watchdog
and Reset

Figure 10. Overview of the SelectBootMode Function

SCI Boot?
modes E, 0

Yes
Call SCI_Boot

No

SPI Boot?
mode D

No

McBSP Boot?
mode A

No

I2C Boot?
mode C, 2

No

eCAN Boot?
mode B, 7

No

Parallel I/O?
mode 6

No

Parallel
XINTF?
mode 5

Yes

Call SPI_Boot

Yes

Call McBSP_Boot

Yes

Call I2C_Boot

Yes

Call eCAN_Boot

Yes

Call Parallel_Boot

No

Yes

Call XINTF_Boot

SPRUFN5B– March 2009 – Revised February 2011 Delfino Boot ROM 27
Submit Documentation Feedback

A

Call
WatchDogDisable

Return EntryAddr as
determined by boot

loader called

Call
WatchDogEnable

SelectBootMode

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

CopyData

BlockSize=
0x0000

?

Yes
Return

Transfer
BlockHeader.BlockSize

words of data from
port to memory

starting at DestAddr

Call peripheral-specific
GetWordData to read

BlockHeader.BlockSize

2.14 CopyData Function
Each of the bootloaders uses the same function to copy data from the port to the DSP SARAM. This
function is the CopyData() function. This function uses a pointer to a GetWordData function that is
initialized by each of the loaders to properly read data from that port. For example, when the SPI loader is
evoked, the GetWordData function pointer is initialized to point to the SPI-specific SPI_GetWordData
function. Thus when the CopyData() function is called, the correct port is accessed. The flow of the
CopyData function is shown in Figure 11.

Figure 11. Overview of CopyData Function

 No

Call GetLongData
to read

BlockHeader.DestAddr

28 Delfino Boot ROM SPRUFN5B– March 2009 – Revised February 2011
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

2.15 McBSP_Boot Function
The McBSP bootloader synchronously transfers code from McBSP-A to internal memory. McBSP-A is
configured for slave mode operation. i.e., it receives the frame sync and clock from the host. Upon
receiving a word, the McBSP echoes the data back to the host. The host could use this feature to ensure
that the previous word was received and copied by the McBSP before transmitting the next word. The host
can download a kernel to reconfigure the McBSP if higher data throughput is desired. This can be done by
choosing a faster PLL multiplier and also by choosing the /1 divider for the PLL output.
The McBSP-A loader uses pins shown in Table 6.

Table 6. Pins Used by the McBSP Loader

C28x Slave Device Pin Number Host Signal

MDXA GPIO20 MDR
MDRA GPIO21 MDX

MCLKXA GPIO22 CLKX
MFSXA GPIO23 FSR

MCLKRA GPIO7 CLKX
MFSXA GPIO5 FSXA

The bit rates achieved for different XCLKIN values as shown in Table 7. The SYSCLKOUT values shown
are for the default PLLCR of 0 and PLLSTS[DIVSEL] set to 2.

Table 7. Bit-Rate Values for Different XCLKIN Values

XCLKIN SYSCLKOUT LSPCLK CLKG
30 MHz 15 MHz 3.75 MHz 1.875 MHz
15 MHz 7.5 MHz 1.875 MHz 937.5 KHz

The host should transmit MSB first and LSB next. For example, to transmit the word 0x10AA to the
device, transmit 10 first, followed by AA. The program flow of the McBSP bootloader is identical to the SCI
bootloader, with the exception that 16-bit data is used. The data sequence for the McBSP bootloader
follows the 16-bit data stream and is shown in Table 8

Table 8. McBSP 16-Bit Data Stream

Word Contents Description
1 10AA 10AA (KeyValue for memory width = 16bits)
2 0000 8 reserved words (words 2-9)
...
9 0000 Last reserved word

10 AABB Entry point PC[22:16]
11 CCDD Entry point PC[15:0] (PC = 0xAABBCCDD)
12 MMNN Block size (number of words) of the first block of data to load = 0xMMNN words
13 AABB Destination address of first block Addr[31:16]
14 CCDD Destination address of first block Addr[15:0] (Addr = 0xAABBCCDD)
15 XXXX First word of the first block in the source being loaded
...
...

 ...
... Data for this section.

. XXXX Last word of the first block of the source being loaded

. MMNN Block size of the 2nd block to load = 0xMMNN words

. AABB Destination address of second block Addr[31:16]

. CCDD Destination address of second block Addr[15:0]

. XXXX First word of the second block in the source being loaded

. …
n XXXX Last word of the last block of the source being loaded

SPRUFN5B– March 2009 – Revised February 2011 Delfino Boot ROM 29
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

Table 8. McBSP 16-Bit Data Stream (continued)

Word Contents Description
n+1 0000 Block size of 0000h - indicates end of the source program

2.16 SCI_Boot Function

The SCI boot mode asynchronously transfers code from SCI-A to internal memory. This boot mode only
supports an incoming 8-bit data stream and follows the same data flow as outlined in Example 4.

Figure 12. Overview of SCI Bootloader Operation

DSP

SCIRXDA
Host

(Data and program
source)

SCITXDA

The SCI-A loader uses following pins:
• SCIRXDA on GPIO28
• SCITXDA on GPIO29
The 28x device communicates with the external host device by communication through the SCI-A
Peripheral. The autobaud feature of the SCI port is used to lock baud rates with the host. For this reason
the SCI loader is very flexible and you can use a number of different baud rates to communicate with the
device.
After each data transfer, the 28x will echo back the 8-bit character received to the host. In this manner, the
host can perform checks that each character was received by the 28x.
At higher baud rates, the slew rate of the incoming data bits can be effected by transceiver and connector
performance. While normal serial communications may work well, this slew rate may limit reliable
auto-baud detection at higher baud rates (typically beyond 100kbaud) and cause the auto-baud lock
feature to fail. To avoid this, the following is recommended:
1. Achieve a baud-lock between the host and 28x SCI bootloader using a lower baud rate.
2. Load the incoming 28x application or custom loader at this lower baud rate.
3. The host may then handshake with the loaded 28x application to set the SCI baud rate register to the

desired high baud rate.

30 Delfino Boot ROM SPRUFN5B– March 2009 – Revised February 2011
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

Enable the SCI-A clock
set the LSPCLK to /4

Enable the SCIA TX and RX pin
functionality and pullups on

TX and RX

Read KeyValue

Setup SCI-A for
1 stop, 8-bit character,

no parity, use internal
SC clock, no loopback,
disable Rx/Tx interrupts

Valid
KeyValue
(0x08AA)

?

No Enable Watchdog

and force reset

Disable SCI FIFOs

Prime SCI-A baud register Read EntryPoint address

No Autobaud
lock

?

Yes
Return

EntryPoint

Enable autobaud detection

Echo autobaud character

Figure 13. Overview of SCI_Boot Function

Set GetWord function pointer
to SCIA_GetWordData

 Yes

Read and discard 8
reserved words

Call CopyData

SPRUFN5B– March 2009 – Revised February 2011 Delfino Boot ROM 31
Submit Documentation Feedback

SCI_Boot

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

Figure 14. Overview of SCI_GetWordData Function

2.17 Parallel_Boot Function (GPIO)

The parallel general purpose I/O (GPIO) boot mode asynchronously transfers code from GPIO0 -GPIO15
to internal memory. Each value can be 16 bits or 8 bits long and follows the same data flow as outlined in
Section 2.10.

Figure 15. Overview of Parallel GPIO bootloader Operation

Data GP I/O port GPIO[15:0]

The parallel GPIO loader uses following pins:
• Data on GPIO[15:0] or
• 28x Control on GPIO26
• Host Control on GPIO27
The 28x communicates with the external host device by polling/driving the GPIO27 and GPIO26 lines. The
handshake protocol shown in Figure 16 must be used to successfully transfer each word via GPIO [15:0].
This protocol is very robust and allows for a slower or faster host to communicate with the DSP .
If the 8-bit mode is selected, t wo consecutive 8-bit words are read to form a single 16-bit word. The most
significant byte (MSB) is read first followed by the least significant byte (LSB). In this case, data is read
from the lower eight lines of GPIO[7:0] ignoring the higher byte .
The 16-bit data stream is shown in Table 9 and the 8-bit data stream is shown in Table 10.

32 Delfino Boot ROM SPRUFN5B– March 2009 – Revised February 2011
Submit Documentation Feedback

Data
Received

?

No

Yes

Echoback LSB
to host

Read LSB

Read MSB

Return MSB:LSB Echoback MSB
to host

SCIA_GetWordData
Data

Received
?

No

Yes

DSP

DSP control − GPIO26
Host

(Data and program
source)

Host control − GPIO27

16

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

Table 9. Parallel GPIO Boot 16-Bit Data Stream

Word GPIO[15:0] Description
1 10AA 10AA (KeyValue for memory width = 16bits)
2 0000 8 reserved words (words 2 - 9)
...
9 0000 Last reserved word

10 AABB Entry point PC[22:16]
11 CCDD Entry point PC[15:0] (PC = 0xAABBCCDD)
12 MMNN Block size (number of words) of the first block of data to load = 0xMMNN words
13 AABB Destination address of first block Addr[31:16]
14 CCDD Destination address of first block Addr[15:0] (Addr = 0xAABBCCDD)
15 XXXX First word of the first block in the source being loaded
...
...

 ...
Data for this section.
...

. XXXX Last word of the first block of the source being loaded

. MMNN Block size of the 2nd block to load = 0xMMNN words

. AABB Destination address of second block Addr[31:16]

. CCDD Destination address of second block Addr[15:0]

. XXXX First word of the second block in the source being loaded

. …
n XXXX Last word of the last block of the source being loaded

(More sections if required)
n+1 0000 Block size of 0000h - indicates end of the source program

Table 10. Parallel GPIO Boot 8-Bit Data Stream

Bytes GPIO[7 :0]
(Byte 1 of 2)

GPIO[7 :0]
(Byte 2 of 2)

Description

1 2 AA 08 0x08AA (KeyValue for memory width = 16bits)
3 4 00 00 8 reserved words (words 2 - 9)
...
17 18 00 00 Last reserved word
19 20 BB 00 Entry point PC[22:16]
21 22 DD CC Entry point PC[15:0] (PC = 0x00BBCCDD)
23 24 NN MM Block size of the first block of data to load = 0xMMNN words
25 26 BB AA Destination address of first block Addr[31:16]
27 28 DD CC Destination address of first block Addr[15:0] (Addr = 0xAABBCCDD)
29 30 BB AA First word of the first block in the source being loaded = 0xAABB
...
...

 ...
Data for this section.
...

. BB AA Last word of the first block of the source being loaded = 0xAABB

. NN MM Block size of the 2nd block to load = 0xMMNN words

. BB AA Destination address of second block Addr[31:16]

. DD CC Destination address of second block Addr[15:0]

. BB AA First word of the second block in the source being loaded

. …
n n+1 BB AA Last word of the last block of the source being loaded

(More sections if required)
n+2 n+3 00 00 Block size of 0000h - indicates end of the source program

SPRUFN5B– March 2009 – Revised February 2011 Delfino Boot ROM 33
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

The 28x device first signals the host that it is ready to begin data transfer by pulling the GPIO26 pin low.
The host load then initiates the data transfer by pulling the GPIO27 pin low. The complete protocol is
shown in the diagram below:

Figure 16. Parallel GPIO Boot Loader Handshake Protocol

Host control
GPIO27

DSP control

GPIO26

1. The 28x device indicates it is ready to start receiving data by pulling the GPIO26 pin low.
2. The bootloader waits until the host puts data on GPIO [15:0]. The host signals to the 28x device that

data is ready by pulling the GPIO27 pin low.
3. The 28x device reads the data and signals the host that the read is complete by pulling GPIO26 high.
4. The bootloader waits until the host acknowledges the 28x by pulling GPIO27 high.
5. The 28x device again indicates it is ready for more data by pulling the GPIO26 pin low.
This process is repeated for each data value to be sent.
Figure 17 shows an overview of the Parallel GPIO bootloader flow.

34 Delfino Boot ROM SPRUFN5B– March 2009 – Revised February 2011
Submit Documentation Feedback

1 2 3 4 5 6

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

Figure 17. Parallel GPIO Mode Overview

Enable Watchdog No

and force reset

Valid
KeyValue

(0x08AA or
0x10AA)

?
Yes

Figure 18 shows the transfer flow from the host side. The operating speed of the CPU and host are not
critical in this mode as the host will wait for the 28x and the 28x will in turn wait for the host. In this manner
the protocol will work with both a host running faster and a host running slower than the 28x.

SPRUFN5B– March 2009 – Revised February 2011 Delfino Boot ROM 35
Submit Documentation Feedback

Parallel_Boot

Initialize GP I/O MUX
and Dir registers

GPIO[15:0] = input
GPIO27 = input
GPIO26=output

Enable pullups on
GPIO[15:0], GPIO26,

and GPIO27

Read KeyValue to
determine DataSize

and assign appropriate
GetWordData function

 Read and discard 8
reserved words

Read EntryPoint
address

Call
CopyData

Return
EntryPoint

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

Figure 18. Parallel GPIO Mode - Host Transfer Flow

Figure 19 and Figure 20 show the flow used to read a single word of data from the parallel port. The
loader uses the method shown in Figure 8 to read the key value and to determine if the incoming data
stream width is 8-bit or 16-bit. A different GetWordData function is used by the parallel loader depending
on the data size of the incoming data stream.
• 16-bit data stream

For an 16-bit data stream, the function Parallel_GetWordData16bit is used. This function reads all
16-bits at a time. The flow of this function is shown in Figure 19.

• 8-bit data stream
The 8-bit routine, shown in Figure 20, discards the upper 8 bits of the first read from the port and treats
the lower 8 bits as the least significant byte (LSB) of the word to be fetched. The routine will then
perform a second read to fetch the most significant byte (MSB). It then combines the MSB and LSB
into a single 16-bit value to be passed back to the calling routine.

36 Delfino Boot ROM SPRUFN5B– March 2009 – Revised February 2011
Submit Documentation Feedback

Start transfer

No DSP ready
(GPIO26=0)

?

Yes No DSP ack
(GPIO26=1)

?

Yes

More
data

?

Yes

No

End transfer

Acknowledge DSP
(GPIO27=1)

Signal that data
is ready

(GPIO27=0)

Load GPIO[15:0] with data

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

Figure 19. 16-Bit Parallel GetWord Function

(GPIO27 = 1)
?

Yes

Return WordData

DSP ack read complete
(GPIO26 = 1)

No

Host
ack

SPRUFN5B– March 2009 – Revised February 2011 Delfino Boot ROM 37
Submit Documentation Feedback

Data
ready

(GPIO27 = 0)
?

No

Yes

Read word of data from
GPIO[15:0]

Parallel_GetWordData16bit

Signal host that DSP is ready
(GPIO26 = 0)

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

Figure 20. 8-Bit Parallel GetWord Function

(GPIO27 = 1)
?

Yes

A

(GPIO27 = 1)
?

Yes

(GPIO27 = 0)
?

Yes

Read word from
GPIO[15:0], discard

the upper 8 bits, MSB
of data = lower 8 bits

DSP ack read complete
(GPIO26 = 1)

No

Host
ack

DSP ack read complete
(GPIO26 = 1)

No

Host
ack

38 Delfino Boot ROM SPRUFN5B– March 2009 – Revised February 2011
Submit Documentation Feedback

Signal host that DSP
is ready to read MSB

(GPIO26 = 0)

No

Data

ready

Data
ready

(GPIO27 = 0)
?

No

Yes

Read word of data
from GPIO 15:0

Return WordData

WordData = MSB:LSB

Parallel_GetWordData
8 bit

Signal host that DSP is ready

(GPIO26 = 0)

A

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

2.18 XINTF_Parallel_Boot Function
The parallel general purpose I/O (GPIO) boot mode asynchronously transfers code from XD[15:0] to
internal memory. Each value can be 16 bits or 8 bits long and follows the same data flow as outlined in
Section 2.10. The each word or byte of data is read from address 0x100000 in XINTF zone 6.

NOTE: This mode loads a stream of data into the SARAM of the device using XINTF resources. If
you instead want to configure and jump to the XINTF then use the "Jump to XINTF x16" boot
mode.

The parallel XINTF loader uses following pins:
• Data on XD[15:0] or XD[7:0]
• 28x Control on GPIO13
• Host Control on GPIO12
The 28x communicates with the external host device by polling/driving the GPIO13 and GPIO12 lines. The
handshake protocol shown in Figure 16 must be used to successfully transfer each word via XD[15:0].
This protocol is very robust and allows for a slower or faster host to communicate with the DSP.
If the 8-bit mode is selected, two consecutive 8-bit words are read to form a single 16-bit word. The most
significant byte (MSB) is read first followed by the least significant byte (LSB). In this case, data is read
from the lower eight lines of XD[7:0] ignoring the higher byte.
The DSP first signals the host that the DSP is ready to begin data transfer by pulling the GPIO12 pin low.
The host load then initiates the data transfer by pulling the GPIO13 pin low. The complete protocol is
shown in Figure 21.

Figure 21. Overview of the Parallel XINTF Boot Loader Operation

The DSP communicates with the external host device by polling/driving the GPIO13 and GPIO12 lines.
The handshake protocol shown below must be used to successfully transfer each word via the first
address location within XINTF zone 6. This protocol is very robust and allows for a slower or faster host to
communicate with the DSP.
If the 8-bit mode is selected, two consecutive 8-bit words are read to form a single 16-bit word. The most
significant byte (MSB) is read first followed by the least significant byte (LSB). In this case, data is read
from the lower eight lines of XD[7:0] ignoring the higher byte.
To begin the transfer, the DSP will use the default XINTF timing for zone 6. This is the maximum wait
states, slowest XINTF timing available. That is:
1. XTIMCLK = ½ SYSCLKOUT
2. XCLKOUT = 1/4 XTIMCLK
3. XRDLEAD = XWRLEAD = 3
4. XRDACTIVE = XWRACTIVE = 7
5. XRDTRAIL = XWRACTIVE = 3
6. XSIZE = 3 for 16-bit wide
7. X2TIMING = 1. Timing values are 2:1.
8. USEREADY = 1, READYMODE = 1 (XREADY sampled asynchronous mode)

SPRUFN5B– March 2009 – Revised February 2011 Delfino Boot ROM 39
Submit Documentation Feedback

Host Control - GPIO13

XA
XRD

Data - XD[15:0]
XZCS6

16

DSP Control - GPIO12

Host
(Data and
Program
Source)

DSP

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

The first 7 words of the data stream are read at this slow timing. Words 2 – 7 include configuration
information that will be used to adjust the PLLCR/PLLSTS and XINTF XTIMING6. The rest of the data
stream is read using the new configuration.
The 16-bit data stream is shown in Table 11 and the 8-bit data stream is shown in Table 12.

Table 11. XINTF Parallel Boot 16-Bit Data Stream

Word XD[15:0] Description
1 10AA 10AA (KeyValue for memory width = 16bits)
2 AABB PLLCR register = 0xAABB
3 000B PLLSTS[DIVSEL] bits = 0xB
4 AABB XTIMING6[31:16]
5 CCDD XTIMING6[15:0] (XTIMING6 = 0xAABBCCDD)
6 EEFF XINTCNF2[31:16]
7 GGHH XINTCNF2[15:0] (XINTCNF2 = 0xEEFFGGHH)
8 0000 reserved
9 0000 reserved

10 AABB Entry point PC[22:16]
11 CCDD Entry point PC[15:0] (PC = 0xAABBCCDD)
12 MMNN Block size (number of words) of the first block of data to load = 0xMMNN words
13 AABB Destination address of first block Addr[31:16]
14 CCDD Destination address of first block Addr[15:0] (Addr = 0xAABBCCDD)
15 XXXX First word of the first block in the source being loaded
...
...

 ...
Data for this section.
...

. XXXX Last word of the first block of the source being loaded

. MMNN Block size of the 2nd block to load = 0xMMNN words

. AABB Destination address of second block Addr[31:16]

. CCDD Destination address of second block Addr[15:0]

. XXXX First word of the second block in the source being loaded

. …
n XXXX Last word of the last block of the source being loaded

(More sections if required)
n+1 0000 Block size of 0000h - indicates end of the source program

40 Delfino Boot ROM SPRUFN5B– March 2009 – Revised February 2011
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

Table 12. XINTF Parallel Boot 8-Bit Data Stream

Bytes XD[7:0]
(Byte 1 of 2)

XD[7:0]
(Byte 2 of 2)

Description

1 2 AA 08 0x08AA (KeyValue for memory width = 8bits)
3 4 BB AA PLLCR register = 0xAABB
5 6 0B 00 PLLSTS[DIVSEL] bits = 0xB
7 8 BB AA XTIMING6[31:16]
9 10 DD CC XTIMING6[15:0] (XTIMING6 = 0xAABBCCDD)

11 12 FF EE XINTCNF2[31:16]
13 14 HH GG XINTCNF2[15:0] (XINTCNF2 = 0xEEFFGGHH)
15 16 00 00 reserved
17 18 00 00 reserved
19 20 BB 00 Entry point PC[22:16]
21 22 DD CC Entry point PC[15:0] (PC = 0x00BBCCDD)
23 24 NN MM Block size of the first block of data to load = 0xMMNN words
25 26 BB AA Destination address of first block Addr[31:16]
27 28 DD CC Destination address of first block Addr[15:0] (Addr = 0xAABBCCDD)
29 30 BB AA First word of the first block in the source being loaded = 0xAABB
...
...

 ...
Data for this section.
...

. BB AA Last word of the first block of the source being loaded = 0xAABB

. NN MM Block size of the 2nd block to load = 0xMMNN words

. BB AA Destination address of second block Addr[31:16]

. DD CC Destination address of second block Addr[15:0]

. BB AA First word of the second block in the source being loaded

. …
n n+1 BB AA Last word of the last block of the source being loaded

(More sections if required)
n+2 n+3 00 00 Block size of 0000h - indicates end of the source program

Figure 22 shows an overview of the Parallel XINTF bootloader flow.

Figure 22. XINTF_Parallel Boot Loader Handshake Protocol

Host control
GPIO13

DSP control
GPIO12

1. The 28x device indicates it is ready to start receiving data by pulling the GPIO12 pin low.
2. The bootloader waits until the host puts data on XD[15:0]. The host signals to the 28x device that data

is ready by pulling the GPIO13 pin low.
3. The 28x device reads the data and signals the host that the read is complete by pulling GPIO12 high.
4. The bootloader waits until the host acknowledges the 28x by pulling GPIO13 high.
5. The 28x device again indicates it is ready for more data by pulling the GPIO12 pin low.
This process is repeated for each data value to be sent.
Figure 17 shows an overview of the XINTF Parallel bootloader flow.

SPRUFN5B– March 2009 – Revised February 2011 Delfino Boot ROM 41
Submit Documentation Feedback

1 2 3 4 5 6

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

Figure 23. XINTF Parallel Mode Overview

Figure 18 shows the transfer flow from the host side. The operating speed of the CPU and host are not
critical in this mode as the host will wait for the 28x and the 28x will in turn wait for the host. In this manner
the protocol will work with both a host running faster and a host running slower then the 28x device.

42 Delfino Boot ROM SPRUFN5B– March 2009 – Revised February 2011
Submit Documentation Feedback

XINTF_Parallel_Boot

Enable Watchdog
and force reset

No
Valid

KeyValue
(0x08AA or
0x10AA)

?

Yes
Return EntryPoint

Call
CopyData

Read EntryPoint
address

Read remaining
reserved words

Read key value to
determine DataSize

and assign appropriate
GetWordData function

Configure PLL
Configure XINTF

Read PLLCR and
DIVSEL values

Read XINTF zone 6
timing values

Initialize GPIO MUX
for x16 XINTF

on zone 6
GPIO13 = input

GPIO12 = output
Configure default
timing for XINTF

zone 6

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

Figure 24. XINTF Parallel Mode - Host Transfer Flow

Figure 19 and Figure 20 show the flow used to read a single word of data from the parallel port. The
loader uses the method shown in Figure 8 to read the key value and to determine if the incoming data
stream width is 8-bit or 16-bit. A different GetWordData function is used by the parallel loader depending
on the data size of the incoming data stream.
• 16-bit data stream

For an 16-bit data stream, the function XINTF_Parallel_GetWordData16bit is used. This function reads
all 16-bits at a time. The flow of this function is shown in Figure 19.

• 8-bit data stream
For an 8-bit data stream, the function XINTF_Parallel_GetWordData8bit is used. The 8-bit routine,
shown in Figure 20, discards the upper 8 bits of the first read from the port and treats the lower 8 bits
as the least significant byte (LSB) of the word to be fetched. The routine will then perform a second
read to fetch the most significant byte (MSB). It then combines the MSB and LSB into a single 16-bit
value to be passed back to the calling routine.

SPRUFN5B– March 2009 – Revised February 2011 Delfino Boot ROM 43
Submit Documentation Feedback

Start transfer

No DSP ready
(GPIO12=0)

?

Yes No DSP ack
(GPIO12 = 1)

?

Yes

More
data

?

Yes

No

End transfer

Acknowledge DSP
(GPIO13 = 1)

Signal that data
is ready

(GPIO13 = 0)

Load XD[15:0] with data

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

Figure 25. 16-Bit Parallel GetWord Function

(GPIO13 = 1)
?

Yes

Return WordData

DSP ack read complete
(GPIO12 = 1)

No

Host
ack

44 Delfino Boot ROM SPRUFN5B– March 2009 – Revised February 2011
Submit Documentation Feedback

Data
ready

(GPIO13 = 0)
?

No

Yes

Read word of data from
XD[15:0]

XINTF_Parallel_GetWordData
16 bit

Signal host that DSP is ready
(GPIO12 = 0)

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

Figure 26. 8-Bit Parallel GetWord Function

(GPIO13 = 0)
?

Yes

Read word of data
from XD[15:0]

(GPIO13 = 1)
?

Yes

A

(GPIO12 = 1)
?

Yes

(GPIO12 = 0)
?

Yes

Read word from
XD[15:0], discard

the upper 8 bits, MSB
of data = lower 8 bits

DSP ack read complete
(GPIO12 = 1)

No

Host
ack

DSP ack read complete
(GPIO13 = 1)

No

Host
ack

SPRUFN5B– March 2009 – Revised February 2011 Delfino Boot ROM 45
Submit Documentation Feedback

Signal host that DSP
is ready to read MSB

(GPIO13 = 0)

No

Data

ready

Signal host that DSP is ready

(GPIO12 = 0)

No

Data
ready

Return WordData

WordData = MSB:LSB

XINTF_Parallel_GetWordData
8 bit

A

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

2.19 SPI_Boot Function
The SPI loader expects an SPI-compatible 16-bit or 24-bit addressable serial EEPROM or serial flash
device to be present on the SPI-A pins as indicated in Figure 27. The SPI bootloader supports an 8-bit
data stream. It does not support a 16-bit data stream.

Figure 27. SPI Loader

The SPI-A loader uses following pins:
• SPISIMOA on GPIO16
• SPISOMIA on GPIO17
• SPICLKA on GPIO18
• SPISTEA on GPIO19
The SPI boot ROM loader initializes the SPI module to interface to a serial SPI EEPROM or flash. Devices
of this type include, but are not limited to, the Xicor X25320 (4Kx8) and Xicor X25256 (32Kx8) SPI serial
SPI EEPROMs and the Atmel AT25F1024A serial flash.
The SPI boot ROM loader initializes the SPI with the following settings: FIFO enabled, 8-bit character,
internal SPICLK master mode and talk mode, clock phase = 1, polarity = 0, using the slowest baud rate.
If the download is to be performed from an SPI port on another device, then that device must be setup to
operate in the slave mode and mimic a serial SPI EEPROM. Immediately after entering the SPI_Boot
function, the pin functions for the SPI pins are set to primary and the SPI is initialized. The initialization is
done at the slowest speed possible. Once the SPI is initialized and the key value read, you could specify a
change in baud rate or low speed peripheral clock.

Table 13. SPI 8-Bit Data Stream

Byte Contents

1 LSB: AA (KeyValue for memory width = 8-bits)
2 MSB: 08h (KeyValue for memory width = 8-bits)
3 LSB: LOSPCP
4 MSB: SPIBRR
5 LSB: reserved for future use
6 MSB: reserved for future use
... ...
... Data for this section.

...
17 LSB: reserved for future use
18 MSB: reserved for future use
19 LSB: Upper half (MSW) of Entry point PC[23:16]
20 MSB: Upper half (MSW) of Entry point PC[31:24] (Note: Always 0x00)
21 LSB: Lower half (LSW) of Entry point PC[7:0]
22 MSB: Lower half (LSW) of Entry point PC[15:8]
...
... Data for this section.

...
... Blocks of data in the format size/destination address/data as shown in the generic

data stream description

46 Delfino Boot ROM SPRUFN5B– March 2009 – Revised February 2011

Submit Documentation Feedback

SPISIMOA

SPIESTEA
SPICLKA
SPISOMIA

Serial SPI
EEPROM

DIN
DOUT
CLK
CS

28x

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

Table 13. SPI 8-Bit Data Stream (continued)
Byte Contents

... ...

... Data for this section.
...

n LSB: 00h
n+1 MSB: 00h - indicates the end of the source

The data transfer is done in "burst" mode from the serial SPI EEPROM. The transfer is carried out entirely
in byte mode (SPI at 8 bits/character). A step-by-step description of the sequence follows:

Step 1. The SPI-A port is initialized
Step 2. The GPIO19 (SPISTE) pin is used as a chip-select for the serial SPI EEPROM or flash
Step 3. The SPI-A outputs a read command for the serial SPI EEPROM or flash
Step 4. The SPI-A sends the serial SPI EEPROM an address 0x0000; that is, the host requires that

the EEPROM or flash must have the downloadable packet starting at address 0x0000 in the
EEPROM or flash. The loader is compatible with both 16-bit addresses and 24-bit addresses.

Step 5. The next word fetched must match the key value for an 8-bit data stream (0x08AA). The least
significant byte of this word is the byte read first and the most significant byte is the next byte
fetched. This is true of all word transfers on the SPI. If the key value does not match, then the
load is aborted and boot loader will enable the watchdog and force a device reset through
software.

Step 6. The next 2 bytes fetched can be used to change the value of the low speed peripheral clock
register (LOSPCP) and the SPI baud rate register (SPIBRR). The first byte read is the
LOSPCP value and the second byte read is the SPIBRR value. The next 7 words are
reserved for future enhancements. The SPI bootloader reads these 7 words and discards
them.

Step 7. The next 2 words makeup the 32-bit entry point address where execution will continue after
the boot load process is complete. This is typically the entry point for the program being
downloaded through the SPI port.

Step 8. Multiple blocks of code and data are then copied into memory from the external serial SPI
EEPROM through the SPI port. The blocks of code are organized in the standard data stream
structure presented earlier. This is done until a block size of 0x0000 is encountered. At that
point in time the entry point address is returned to the calling routine that then exits the
bootloader and resumes execution at the address specified.

SPRUFN5B– March 2009 – Revised February 2011 Delfino Boot ROM 47
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

Data
Received

?

No

Yes

Figure 28. Data Transfer From EEPROM Flow

 No

Enable Watchdog
and force reset

Figure 29. Overview of SPIA_GetWordData Function

 Yes

Read LSB

Send dummy
character

48 Delfino Boot ROM SPRUFN5B– March 2009 – Revised February 2011
Submit Documentation Feedback

Change LOSPCP Read LOSPCP value

Read EntryPoint
address

Return
EntryPoint Call CopyData

SPIA_GetWordData Send dummy
character

Return MSB:LSB

Read MSB

SPI_Boot

Valid

KeyValue
(0x08AA)

?

Yes

Read and discard 7
reserved words

Change SPIBRR Read SPIBRR value

Data
Received

?

No

Enable the SPI-A clock
Set the LSPCLK to 4

Enable SPISIMOA,
SPISOMI and SPICLKA

pin functionality and enable
pullups on those pins

Set up SPI-A for
8-bit character,

Use internal SPI clock,
master mode

Use slowest baud rate (0x7F)
Relinquish SPI-A from reset

Set chip enable high
(GPIO19)

Enable EEPROM
Send read command and
start at EEPROM address

0x0000

Read KeyValue

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

2.20 I2C Boot Function
The I2C bootloader expects an 8-bit wide I2C-compatible EEPROM device to be present at address 0x50
on the I2C-A bus as indicated in Figure 30. The EEPROM must adhere to conventional I2C EEPROM
protocol, as described in this section, with a 16-bit base address architecture.

Figure 30. EEPROM Device at Address 0x50

SDA SCL

The I2C loader uses following pins:
• SDAA on GPIO 32
• SCLA on GPIO 33
If the download is to be performed from a device other than an EEPROM, then that device must be set up
to operate in the slave mode and mimic the I2C EEPROM. Immediately after entering the I2C boot
function, the GPIO pins are configured for I2C-A operation and the I2C is initialized. The following
requirements must be met when booting from the I2C module:
• The input frequency to the device must be in the appropriate range.
• The EEPROM must be at slave address 0x50.

SPRUFN5B– March 2009 – Revised February 2011 Delfino Boot ROM 49
Submit Documentation Feedback

Slave Address
0x50

I2C
EEPROM SDA

SCL

SCLA

SDAA
28x

Master

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

Figure 31. Overview of I2C_Boot Function

There are two timing options for the I2C-A bootloader as shown in Table 3. Depending on the input clock
to the system, choose the appropriate loader. The timing differences are:
• I2C TIMING1 loader (boot mode C)

When using TIMING1, the input frequency to the device must be between 28 MHz and 48 MHz. In this
case, the bootloader will set the I2CPSC prescale value to 1 so that the I2C clock will be divided down
from SYSCLKOUT to create a 7 MHz to 12 MHz system clock.

• I2C TIMING2 loader (boot mode 2)
When using TIMING2, the input frequency to the device must be between 14 MHz and 24 MHz. In this
case the bootloader will set the I2CPSC prescale value to 0 so that the I2C clock is between 7 MHz to
12 MHz system clock.

The bit-period prescalers (I2CCLKH and I2CCLKL) are configured by the bootloader to run the I2C at a 50
percent duty cycle at 100-kHz bit rate (standard I2C mode) when the system clock is 12 MHz. These
registers can be modified after receiving the first few bytes from the EEPROM. This allows the
communication to be increased up to a 400-kHz bit rate (fast I2C mode) during the remaining data reads.

50 Delfino Boot ROM SPRUFN5B– March 2009 – Revised February 2011

Submit Documentation Feedback

I2C_Boot

Set CopyWord function
pointer to

I2C_CopyWord
NACK

received
?

Yes Enable Watchdog
and force reset

Enable SDAA and
SCLA pins

Enable pullups on
SDAA and SCLA

No

Enable I2C-A clock

Set slave address 0x50
I2C prescaler I2CPSC = 1or 0

Valid
KeyValue
(0x08AA)

?

No Enable Watchdog

 and force reset

100-kHz bit rate
Yes

Enable TX/RX FIFOs to
receive 2 bytes.

Read and discard 5
reserved words

Read I2CPSC value
Read I2CCLKH value
Read 12CCLKL value

Put 12c-A in Reset
Set I2CPSC value
Set I2CCLKH value
Set I2CCLKL value

Bring I2C-A out of Reset

Place I2C in master
transmitter mode

Set EEPROM address
pointer to 0x0000

Read EntryPoint
address

Read KeyValue

Return

EntryPoint

Call CopyData

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

Arbitration, bus busy, and slave signals are not checked. Therefore, no other master is allowed to control
the bus during this initialization phase. If the application requires another master during I2C boot mode,
that master must be configured to hold off sending any I2C messages until the application software
signals that it is past the bootloader portion of initialization.
The nonacknowledgment bit is checked only during the first message sent to initialize the EEPROM base
address. This is to make sure that an EEPROM is present at address 0x50 before continuing. If an
EEPROM is not present, code will enable the watchdog and force a device reset through software. The
nonacknowledgment bit is not checked during the address phase of the data read messages (I2C_Get
Word). If a non acknowledgment is received during the data read messages, the I2C bus will hang.
Table 14 shows the 8-bit data stream used by the I2C.

Table 14. I2C 8-Bit Data Stream

Byte Contents

1 LSB: AA (KeyValue for memory width = 8 bits)
2 MSB: 08h (KeyValue for memory width = 8 bits)
3 LSB: I2CPSC[7:0]
4 reserved
5 LSB: I2CCLKH[7:0]
6 MSB: I2CCLKH[15:8]
7 LSB: I2CCLKL[7:0]
8 MSB: I2CCLKL[15:8]
... ...
... Data for this section.

...
17 LSB: Reserved for future use
18 MSB: Reserved for future use
19 LSB: Upper half of entry point PC
20 MSB: Upper half of entry point PC[22:16] (Note: Always 0x00)
21 LSB: Lower half of entry point PC[15:8]
22 MSB: Lower half of entry point PC[7:0]
... ...
... Data for this section.

...
Blocks of data in the format size/destination address/data as shown in the generic data stream
description.

... ...

... Data for this section.
...

n LSB: 00h
n+1 MSB: 00h - indicates the end of the source

The I2C EEPROM protocol required by the I2C bootloader is shown in Figure 32 and Figure 33. The first
communication, which sets the EEPROM address pointer to 0x0000 and reads the KeyValue (0x08AA)
from it, is shown in Figure 32. All subsequent reads are shown in Figure 33 and are read two bytes at a
time.

Figure 32. Random Read

SDA LINE

Device
Address

Address
Pointer, MSB

Address
Pointer, LSB

Device
Address

DATA BYTE 1 DATA BYTE 2

SPRUFN5B– March 2009 – Revised February 2011 Delfino Boot ROM 51
Submit Documentation Feedback

1 0 10 00 1 0 1 0 0 0 0 1 0

ST
AR

T

M
SB

LS
B

W
R

IT
E

AC
K

AC
K

AC
K

R
ES

TA
R

T

M
SB

LS
B

R
EA

D

AC
K

AC
K

N
O

 A
C

K

ST
O

P

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

28x

CAN
host

28x

Figure 33. Sequential Read

SDA LINE

Device
Address

DATA BYTE n DATA BYTE n+1

2.21 eCAN Boot Function
The eCAN bootloader asynchronously transfers code from eCAN-A to internal memory. The host can be
any CAN node. The communication is first done with 11-bit standard identifiers (with a MSGID of 0x1)
using two bytes per data frame. The host can download a kernel to reconfigure the eCAN if higher data
throughput is desired.
The eCAN-A loader uses following pins:
• CANRXA on GPIO30
• CANTXA on GPIO31

Figure 34. Overview of eCAN-A bootloader Operation

There are two timing options for the eCAN bootloader as shown in Table 3 Depending on the input clock
to the system, choose the appropriate loader. Table 15 shows what the bit rate will be depending on the
input clock.

Table 15. Bit-Rate Values for Different XCLKIN Values

Boot Mode Bit Time XCLKIN SYSCLKOUT (1) CAN Clock Bit Rate
Timing 1 15 30 MHz 30 MHz 7.5 MHz 500 kbps
Timing 2 10 20 MHz 10 MHz 2.5 MHz 250 kbps

(1) For timing 1, the bootloader sets the input clock divider to /1. For timing 2, the bootloader sets the input
clock divider to /2.

The SYSCLKOUT values shown are the reset values with the default PLL setting. The BRP is hard coded
to 1 for both timing 1 and timing 2 modes. The bit-time values are hard coded to 15 for timing 1 mode and
10 for timing 2 mode respectively.
Mailbox 1 is programmed with a standard MSGID of 0x1 for boot-loader communication. The CAN host
should transmit only 2 bytes at a time, LSB first and MSB next. For example, to transmit the word 0x08AA
to the device, transmit AA first, followed by 08. The program flow of the CAN bootloader is identical to the
SCI bootloader. The data sequence for the CAN bootloader is shown in Table 16:

52 Delfino Boot ROM SPRUFN5B– March 2009 – Revised February 2011

Submit Documentation Feedback

1 0 1 0 0 0 0 1 0

ST
AR

T

R
EA

D

AC
K

C
AN

 b
us

AC
K

N
O

 A
C

K

ST
O

P

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

Table 16. eCAN 8-Bit Data Stream

Bytes Byte 1 of 2 Byte 2 of 2 Description
1 2 AA 08 0x08AA (KeyValue for memory width = 16bits)
3 4 00 00 reserved
5 6 00 00 reserved
7 8 00 00 reserved
9 10 00 00 reserved

11 12 00 00 reserved
13 14 00 00 reserved
15 16 00 00 reserved
17 18 00 00 reserved
19 20 BB 00 Entry point PC[22:16]
21 22 DD CC Entry point PC[15:0] (PC = 0xAABBCCDD)
23 24 NN MM Block size of the first block of data to load = 0xMMNN words
25 26 BB AA Destination address of first block Addr[31:16]
27 28 DD CC Destination address of first block Addr[15:0] (Addr = 0xAABBCCDD)
29 30 BB AA First word of the first block in the source being loaded = 0xAABB
...
...

Data for this section.
...

. BB AA Last word of the first block of the source being loaded = 0xAABB

. NN MM Block size of the 2nd block to load = 0xMMNN words

. BB AA Destination address of second block Addr[31:16]

. DD CC Destination address of second block Addr[15:0]

. BB AA First word of the second block in the source being loaded

. …
n n+1 BB AA Last word of the last block of the source being loaded

(More sections if required)
n+2 n+3 00 00 Block size of 0000h - indicates end of the source program

SPRUFN5B– March 2009 – Revised February 2011 Delfino Boot ROM 53
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Features www.ti.com

2.22 ExitBoot Assembly Routine
The Boot ROM includes an ExitBoot routine that restores the CPU registers to their default state at reset.
This is performed on all registers with one exception. The OBJMODE bit in ST1 is left set so that the
device remains configured for C28x operation. This flow is detailed in the following diagram:

Figure 35. ExitBoot Procedure Flow

The following CPU registers are restored to their default values:
• ACC = 0x0000 0000
• RPC = 0x0000 0000
• P = 0x0000 0000
• XT = 0x0000 0000
• ST0 = 0x0000
• ST1 = 0x0A0B
• XAR0 = XAR7 = 0x0000 0000
After the ExitBoot routine completes and the program flow is redirected to the entry point address, the
CPU registers will have the following values:

54 Delfino Boot ROM SPRUFN5B– March 2009 – Revised February 2011
Submit Documentation Feedback

Reset

InitBoot

Call
BootLoader

?

No

Yes

Call ExitBoot

Call Boot Loader

Call
SelectBootMode

Cleanup CPU
registers to default
value after reset*

Deallocate stack
(SP=0x400)

Begin execution

at EntryPoint

Branch to EntryPoint

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Building the Boot Table www.ti.com

Table 17. CPU Register Restored Values

Register Value Register Value
ACC 0x0000 0000 P 0x0000 0000
XT 0x0000 0000 RPC 0x00 0000
XAR0-XAR7 0x0000 0000 DP 0x0000
ST0 0x0000 15:10 OVC = 0 ST1 0x0A0B 15:13 ARP = 0

 9:7 PM = 0 12 XF = 0
 6 V = 0 11 M0M1MAP = 1
 5 N = 0 10 reserved
 4 Z = 0 9 OBJMODE = 1
 3 C = 0 8 AMODE = 0
 2 TC = 0 7 IDLESTAT = 0
 1 OVM = 0 6 EALLOW = 0
 0 SXM = 0 5 LOOP = 0
 4 SPA = 0
 3 VMAP = 1
 2 PAGE0 = 0
 1 DBGM = 1
 0 INTM = 1

3 Building the Boot Table

This chapter explains how to generate the data stream and boot table required for the bootloader.

3.1 The C2000 Hex Utility

To use the features of the bootloader, you must generate a data stream and boot table as described in
Section 2.10. The hex conversion utility tool, included with the 28x code generation tools, can generate
the required data stream including the required boot table. This section describes the hex2000 utility. An
example of a file conversion performed by hex2000 is described in Section 3.2.
The hex utility supports creation of the boot table required for the SCI, SPI, I2C, eCAN, and parallel I/O
loaders. That is, the hex utility adds the required information to the file such as the key value, reserved
bits, entry point, address, block start address, block length and terminating value. The contents of the boot
table vary slightly depending on the boot mode and the options selected when running the hex conversion
utility. The actual file format required by the host (ASCII, binary, hex, etc.) will differ from one specific
application to another and some additional conversion may be required.
To build the boot table, follow these steps:
1. Assemble or compile the code.

This creates the object files that will then be used by the linker to create a single output file.
2. Link the file.

The linker combines all of the object files into a single output file in common object file format (COFF).
The specified linker command file is used by the linker to allocate the code sections to different
memory blocks. Each block of the boot table data corresponds to an initialized section in the COFF file.
Uninitialized sections are not converted by the hex conversion utility. The following options may be
useful:
The linker -m option can be used to generate a map file. This map file will show all of the sections that
were created, their location in memory and their length. It can be useful to check this file to make sure
that the initialized sections are where you expect them to be.
The linker -w option is also very useful. This option will tell you if the linker has assigned a section to a
memory region on its own. For example, if you have a section in your code called ramfuncs.

3. Run the hex conversion utility.
Choose the appropriate options for the desired boot mode and run the hex conversion utility to convert
the COFF file produced by the linker to a boot table.

SPRUFN5B– March 2009 – Revised February 2011 Delfino Boot ROM 55
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Building the Boot Table www.ti.com

See the TMS320C28x Assembly Language Tools User's Guide (SPRU513) and the TMS320C28x
Optimizing C/C++ Compiler User's Guide (SPRU514) for more information on the compiling and linking
process.
Table 18 summarizes the hex conversion utility options available for the bootloader. See the TMS320C28x
Assembly Language Tools User's Guide (SPRU513) for a detailed description of the hex2000 operations
used to generate a boot table. Updates will be made to support the I2C boot. See the Codegen release
notes for the latest information.

Option Description

Table 18. Boot Loader Options

-boot Convert all sections into bootable form (use instead of a SECTIONS directive)
-sci8 Specify the source of the bootloader table as the SCI-A port, 8-bit mode
-spi8 Specify the source of the bootloader table as the SPI-A port, 8-bit mode
-gpio8 Specify the source of the bootloader table as the GPIO port, 8-bit mode
-gpio16 Specify the source of the bootloader table as the GPIO port, 16-bit mode
-bootorg value Specify the source address of the bootloader table
-lospcp value Specify the initial value for the LOSPCP register. This value is used only for the spi8 boot table format

and ignored for all other formats. If the value is greater than 0x7F, the value is truncated to 0x7F.
-spibrr value Specify the initial value for the SPIBRR register. This value is used only for the spi8 boot table format and

ignored for all other formats. If the value is greater than 0x7F, the value is truncated to 0x7F.
-e value Specify the entry point at which to begin execution after boot loading. The value can be an address or a

global symbol. This value is optional. The entry point can be defined at compile time using the linker -e
option to assign the entry point to a global symbol. The entry point for a C program is normally _c_int00
unless defined otherwise by the -e linker option.

-i2c8 Specify the source of the bootloader table as the I2C-A port, 8-bit
-i2cpsc value Specify the value for the I2CPSC register. This value will be loaded and take effect after all I2C options

are loaded, prior to reading data from the EEPROM. This value will be truncated to the least significant
eight bits and should be set to maintain an I2C module clock of 7-12 MHz.

-i2cclkh value Specify the value for the I2CCLKH register. This value will be loaded and take effect after all I2C options
are loaded, prior to reading data from the EEPROM.

-i2cclkl value Specify the value for the I2CCLKL register. This value will be loaded and take effect after all I2C options
are loaded, prior to reading data from the EEPROM.

3.2 Example: Preparing a COFF File For eCAN Bootloading

This section shows how to convert a COFF file into a format suitable for CAN based bootloading. This
example assumes that the host sending the data stream is capable of reading an ASCII hex format file. An
example COFF file named GPIO34TOG.out has been used for the conversion.
Build the project and link using the -m linker option to generate a map file. Examine the .map file produced
by the linker. The information shown in Example 5 has been copied from the example map file
(GPIO34TOG.map). This shows the section allocation map for the code. The map file includes the
following information:
• Output Section

This is the name of the output section specified with the SECTIONS directive in the linker command
file.

• Origin
The first origin listed for each output section is the starting address of that entire output section. The
following origin values are the starting address of that portion of the output section.

• Length
The first length listed for each output section is the length for that entire output section. The following
length values are the lengths associated with that portion of the output section.

• Attributes/input sections
This lists the input files that are part of the section or any value associated with an output section.

See the TMS320C28x Assembly Language Tools User's Guide (SPRU513) for detailed information on
generating a linker command file and a memory map.

56 Delfino Boot ROM SPRUFN5B– March 2009 – Revised February 2011
Submit Documentation Feedback

http://www.ti.com/
http://www.ti.com/lit/pdf/spru513
http://www.ti.com/lit/pdf/spru514
http://www.ti.com/lit/pdf/SPRU513
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Building the Boot Table www.ti.com

All sections shown in Example 5 that are initialized need to be loaded into the DSP in order for the code to
execute properly. In this case, the codestart, ramfuncs, .cinit, myreset and .text sections need to be
loaded. The other sections are uninitialized and will not be included in the loading process. The map file
also indicates the size of each section and the starting address. For example, the .text section has 0x155
words and starts at 0x3FA000.

Example 5. GPIO34TOG Map File

output
section

page

origin

length

attributes/
input sections

codestart

0

00000000

00000002

 00000000 00000002 DSP280x_CodeStartBranch.obj (codestart)
.pinit 0 00000002 00000000

.switch 0 00000002 00000000 UNINITIALIZED

ramfuncs 0 00000002 00000016
 00000002 00000016 DSP280x_SysCtrl.obj (ramfuncs)

.cinit 0 00000018 00000019
 00000018 0000000e rts2800_ml.lib : exit.obj (.cinit)
 00000026 0000000a : _lock.obj (.cinit)
 00000030 00000001 --HOLE-- [fill = 0]

myreset 0 00000032 00000002
 00000032 00000002 DSP280x_CodeStartBranch.obj (myreset)

IQmath 0 003fa000 00000000 UNINITIALIZED

.text 0 003fa000 00000155
 003fa000 00000046 rts2800_ml.lib : boot.obj (.text)

To load the code using the CAN bootloader, the host must send the data in the format that the bootloader
understands. That is, the data must be sent as blocks of data with a size, starting address followed by the
data. A block size of 0 indicates the end of the data. The HEX2000.exe utility can be used to convert the
COFF file into a format that includes this boot information. The following command syntax has been used
to convert the application into an ASCII hex format file that includes all of the required information for the
bootloader:

Example 6. HEX2000.exe Command Syntax

The command line shown in Example 6 will generate an ASCII-Hex output file called GPIO34TOG.a00,
whose contents are explained in Example 7. This example assumes that the host will be able to read an
ASCII hex format file. The format may differ for your application. . Each section of data loaded can be tied
back to the map file described in Example 5. After the data stream is loaded, the boot ROM will jump to
the Entrypoint address that was read as part of the data stream. In this case, execution will begin at
0x3FA0000.

SPRUFN5B– March 2009 – Revised February 2011 Delfino Boot ROM 57
Submit Documentation Feedback

C: HEX2000 GPIO34TOG.OUT -boot -gpio8 -a

Where:
- boot Convert all sections into bootable form.
- gpio8 Use the GPIO in 8-bit mode data format. The eCAN

uses the same data format as the GPIO in 8-bit mode.
- a Select ASCII-Hex as the output format.

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Building the Boot Table www.ti.com

Example 7. GPIO34TOG Data Stream

58 Delfino Boot ROM SPRUFN5B– March 2009 – Revised February 2011
Submit Documentation Feedback

;Entrypoint 0x003FA000
;Load 2 words - codestart section
;Load block starting at 0x000000
;Data block 0x007F, 0xA09A
;Load 0x0016 words - ramfuncs section
;Load block starting at 0x000002
;Data = 0x7522, 0x761F etc...

;Load 0x0155 words - .text section
;Load block starting at 0x003FA000
;Data = 0x28AD, 0x4000 etc...

;Load block starting at 0x000018
;Data = 0xFFFF, 0xB000 etc...

;Load 0x0002 words - myreset section
;Load block starting at 0x000032
;Data = 0x0000, 0x0000
;Block size of 0 - end of data

;Keyvalue
;8 reserved words

AA 08
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
3F 00 00 A0
02 00
00 00 00 00
7F 00 9A A0
16 00
00 00 02 00
22 76 1F 76 2A 00 00 1A 01 00 06 CC F0
FF 05 50 06 96 06 CC FF F0 A9 1A 00 05
06 96 04 1A FF 00 05 1A FF 00 1A 76 07
F6 00 77 06 00
55 01
3F 00 00 A0
AD 28 00 04 69 FF 1F 56 16 56 1A 56 40
29 1F 76 00 00 02 29 1B 76 22 76 A9 28
18 00 A8 28 00 00 01 09 1D 61 C0 76 18
00 04 29 0F 6F 00 9B A9 24 01 DF 04 6C
04 29 A8 24 01 DF A6 1E A1 F7 86 24 A7
06
..
..
FC 63 E6 6F
19 00 ;Load 0x0019 words - .cinit section
00 00 18 00
FF FF 00 B0 3F 00 00 00 FE FF 02 B0 3F
00 00 00 00 00 FE FF 04 B0 3F 00 00 00
00 00 FE FF
..
3F 00 00 00
02 00
00 00 32 00
00 00 00 00
00 00

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

Bootloader Code Overview www.ti.com

4 Bootloader Code Overview
This chapter contains information on the Boot ROM version, checksum, and code.

4.1 Boot ROM Version and Checksum Information

The boot ROM contains its own version number located at address 0x3F FFBA. This version number
starts at 1 and will be incremented any time the boot ROM code is modified. The next address, 0x3F
FFBB contains the month and year (MM/YY in decimal) that the boot code was released. The next four
memory locations contain a checksum value for the boot ROM. Taking a 64-bit summation of all
addresses within the ROM, except for the checksum locations, generates this checksum.

Table 19. Bootloader Revision and Checksum Information

Address Contents

0x3F FFB9 Reserved
0x3F FFBA Boot ROM Version Number
0x3F FFBB MM/YY of release (in decimal)
0x3F FFBC Least significant word of checksum
0x3F FFBD . . .
0x3F FFBE . . .
0x3F FFBF Most significant word of checksum

Table 20 shows the boot ROM revision per device. A revision history and code listing for the latest boot
ROM code can be found in Section 4. In addition, a .zip file with each revision of the boot ROM code can
be downloaded at http://www-s.ti.com/sc/techlit/sprufn5.zip

Table 20. Bootloader Revision Per Device

Device(s) Silicon REVID Boot ROM Revision

 (Address 0x883)
2834x 0 (First silicon) Version 1b

4.2 Bootloader Code Revision History

The associated boot ROM source code can be downloaded at http://www-s.ti.com/sc/techlit/sprufn5.zip.
• Version: 1b, Released: June 2008:

The initial release of the boot ROM.
Known issues:
– Boot to XINTF x32

This mode has been removed with no plans to implement it at a later date. The boot ROM
incorrectly configures GPBMUX2 for peripheral operation instead of XD[31:16].

• Version: 1, 1a, Not Released
TI internal testing only.

SPRUFN5B– March 2009 – Revised February 2011 Delfino Boot ROM 59
Submit Documentation Feedback

http://www.ti.com/
http://www-s.ti.com/sc/techlit/sprufn5.zip
http://www-s.ti.com/sc/techlit/sprufn5.zip
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

© 2009–2011, Texas Instruments Incorporated

www.ti.com

Appendix A Revision History

This doc has been revised to include the following technical change(s).

Table 21. Additions, Deletions, and Changes

Location Description
Table 12 Changed KeyValue for memory width = 16bits to KeyValue for memory width = 8bits

60 Revision History SPRUFN5B– March 2009 – Revised February 2011
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN5B

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	Preface
	Data Manual—
	SPRS516 — TMS320C28346, TMS320C28345, TMS320C28344, TMS320C28343, TMS320C28342,
	CPU User's Guides—
	Peripheral Guides—
	SPRUEU4 — TMS320x2834x Delfino Enhanced Controller Area Network (eCAN) Reference Guide.
	Tools Guides—
	Application Reports—
	Figure 1. Memory Map of On-Chip ROM
	1.1 On-Chip Boot ROM IQmath Tables
	• Sine/Cosine Table, Single-precision Floating-point
	• Normalized Arctan Table, Single-Precision Floating Point
	• Exp Coefficient Table, Single-Precision Floating Point
	Example 1. Linker Command File to Access FPU Tables
	Example 2. Linker Command File to Access IQ Tables

	• Sine/Cosine Table, IQ Math Table
	• Normalized Inverse Table, IQ Math Table
	• Normalized Square Root Table, IQ Math Table
	• Normalized Arctan Table, IQ Math Table
	• Rounding and Saturation Table, IQ Math Table
	• Exp Min/Max Table, IQMath Table
	• Exp Coefficient Table, IQMath Table

	1.2 CPU Vector Table
	Figure 2. Vector Table Map
	Table 1. Vector Locations

	2.1 Bootloader Functional Operation
	Figure 3. Bootloader Flow Diagram

	2.2 Bootloader Device Configuration
	Table 2. Configuration for Device Modes
	Table 2. Configuration for Device Modes (continued)

	2.3 PLL Multiplier and DIVSEL Selection
	• XINTF parallel loader:
	• eCAN Timing 1 loader:
	• All other boot modes:

	2.4 Watchdog Module
	2.5 Taking an ITRAP Interrupt
	2.6 Internal Pullup Resisters
	2.7 PIE Configuration
	2.8 Reserved Memory
	Figure 4. Boot ROM Stack

	2.9 Bootloader Modes
	Table 3. Boot Mode Selection
	Figure 5. Boot ROM Function Overview
	• Branch to check boot mode
	• Jump to M0 SARAM
	Figure 6. Flow Diagram of Jump to M0 SARAM
	• Jump to XINTF Zone 6 Configured for 16-bit Data
	Figure 7. Flow Diagram of Jump to XINTF x16
	• Standard serial boot mode (SCI-A)
	• SPI EEPROM or Flash boot mode (SPI-A)
	• I2C-A boot mode (I2C-A)
	• eCAN Boot Mode (eCAN-A)
	• McBSP Boot Mode (McBSP-A)
	• Boot from GPIO Port (Parallel Boot from GPIO0-GPIO15)
	• Boot From XINTF (Parallel Boot From XD[15:0])

	2.10 Bootloader Data Stream Structure
	Table 4. General Structure Of Source Program Data Stream In 16-Bit Mode
	Example 3. Data Stream Structure 16-bit

	Table 5. LSB/MSB Loading Sequence in 8-Bit Data Stream
	Example 4. Data Stream Structure 8-bit

	2.11 Basic Transfer Procedure
	Figure 8. Bootloader Basic Transfer Procedure

	2.12 InitBoot Assembly Routine
	Figure 9. Overview of InitBoot Assembly Function

	2.13 SelectBootMode Function
	Figure 10. Overview of the SelectBootMode Function

	2.14 CopyData Function
	Figure 11. Overview of CopyData Function

	2.15 McBSP_Boot Function
	Table 6. Pins Used by the McBSP Loader
	Table 7. Bit-Rate Values for Different XCLKIN Values
	Table 8. McBSP 16-Bit Data Stream
	Table 8. McBSP 16-Bit Data Stream (continued)

	2.16 SCI_Boot Function
	Figure 12. Overview of SCI Bootloader Operation
	Figure 13. Overview of SCI_Boot Function
	Figure 14. Overview of SCI_GetWordData Function

	2.17 Parallel_Boot Function (GPIO)
	Figure 15. Overview of Parallel GPIO bootloader Operation
	Table 9. Parallel GPIO Boot 16-Bit Data Stream
	Table 10. Parallel GPIO Boot 8-Bit Data Stream
	Figure 16. Parallel GPIO Boot Loader Handshake Protocol
	Figure 17. Parallel GPIO Mode Overview
	Figure 18. Parallel GPIO Mode - Host Transfer Flow
	• 16-bit data stream
	• 8-bit data stream

	2.18 XINTF_Parallel_Boot Function
	Figure 21. Overview of the Parallel XINTF Boot Loader Operation
	Table 11. XINTF Parallel Boot 16-Bit Data Stream
	Table 12. XINTF Parallel Boot 8-Bit Data Stream
	Figure 22. XINTF_Parallel Boot Loader Handshake Protocol
	Figure 23. XINTF Parallel Mode Overview
	Figure 24. XINTF Parallel Mode - Host Transfer Flow
	• 16-bit data stream
	• 8-bit data stream

	2.19 SPI_Boot Function
	Figure 27. SPI Loader
	Table 13. SPI 8-Bit Data Stream
	Table 13. SPI 8-Bit Data Stream (continued)
	Figure 28. Data Transfer From EEPROM Flow
	Figure 29. Overview of SPIA_GetWordData Function

	2.20 I2C Boot Function
	Figure 30. EEPROM Device at Address 0x50
	Figure 31. Overview of I2C_Boot Function
	• I2C TIMING1 loader (boot mode C)
	• I2C TIMING2 loader (boot mode 2)
	Table 14. I2C 8-Bit Data Stream
	Figure 32. Random Read
	Figure 33. Sequential Read

	2.21 eCAN Boot Function
	Figure 34. Overview of eCAN-A bootloader Operation
	Table 15. Bit-Rate Values for Different XCLKIN Values
	Table 16. eCAN 8-Bit Data Stream

	2.22 ExitBoot Assembly Routine
	Figure 35. ExitBoot Procedure Flow
	Table 17. CPU Register Restored Values

	3.1 The C2000 Hex Utility
	1. Assemble or compile the code.
	2. Link the file.
	3. Run the hex conversion utility.
	Table 18. Boot Loader Options

	3.2 Example: Preparing a COFF File For eCAN Bootloading
	• Output Section
	• Origin
	• Length
	• Attributes/input sections
	Example 5. GPIO34TOG Map File
	Example 6. HEX2000.exe Command Syntax
	Example 7. GPIO34TOG Data Stream

	4.1 Boot ROM Version and Checksum Information
	Table 19. Bootloader Revision and Checksum Information
	Table 20. Bootloader Revision Per Device

	4.2 Bootloader Code Revision History
	• Version: 1, 1a, Not Released
	Table 21. Additions, Deletions, and Changes
	IMPORTANT NOTICE

