
TMS320C64x+ DSP Image/Video Processing
Library (v2.0.1)

Programmer's Guide

Literature Number: SPRUF30A
October 2007–Revised May 2008

2 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

Contents

Preface .. 7
1 Introduction to the TI C64x+ IMGLIB... 8

1.1 Features and Benefits .. 8
1.1.1 Software Routines .. 8

2 Installing and Using IMGLIB .. 8
2.1 Installing IMGLIB .. 9
2.2 Using IMGLIB2 .. 9

2.2.1 Calling an IMGLIB2 Function From C ... 9
2.2.2 Calling an IMGLIB2 Function From VC++ ... 10
2.2.3 Calling an IMGLIB Function From Assembly.. 10
2.2.4 IMGLIB Testing - Allowable Error... 10
2.2.5 IMGLIB Overflow and Scaling Issues .. 10
2.2.6 Interrupt Behavior of IMGLIB Functions ... 10

2.3 Rebuilding IMGLIB .. 10
2.4 IMGLIB2 Test Suite ... 11
2.5 Building the Test Suite .. 11

3 IMGLIB2 Function Descriptions.. 11
3.1 IMGLIB2 Functions Overview .. 11
3.2 Notational Conventions ... 11
3.3 IMGLIB Image Analysis Functions Overview .. 12

3.3.1 Boundary and Perimeter Functions... 12
3.3.2 Dilation and Erosion Operation Functions ... 12
3.3.3 Edge Detection Function... 12
3.3.4 Histogram Function ... 13
3.3.5 Image Threshold Function ... 13

3.4 IMGLIB Picture Filtering Functions Overview.. 13
3.4.1 Color Space Conversion Functions... 13
3.4.2 Convolution Function ... 13
3.4.3 Correlation Functions... 14
3.4.4 Error Diffusion Function .. 14
3.4.5 Median Filtering Function .. 14
3.4.6 Pixel Expand Functions .. 15

3.5 Compression/Decompression Functions Overview ... 15
3.5.1 Forward and Inverse DCT Functions... 15
3.5.2 High Performance Motion Estimation Functions .. 15
3.5.3 MPEG-2 Variable Length Decoding Functions.. 15
3.5.4 Quantization Function .. 16
3.5.5 Wavelet Processing Functions .. 16

4 IMGLIB Function Tables .. 16
5 IMGLIB Image Analysis Functions .. 20

5.1 IMG_boundary_8 .. 20

SPRUF30A–October 2007–Revised May 2008 Table of Contents 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com

5.2 IMG_boundary_16s ... 21
5.3 IMG_clipping_16s ... 22
5.4 IMG_dilate_bin ... 23
5.5 IMG_erode_bin .. 24
5.6 IMG_errdif_bin_8 .. 25
5.7 IMG_errdif_bin_16... 28
5.8 IMG_histogram_8.. 30
5.9 IMG_histogram_16 .. 32
5.10 IMG_median_3x3_8... 34
5.11 IMG_perimeter_8 .. 35
5.12 IMG_perimeter_16... 37
5.13 IMG_pix_expand... 39
5.14 IMG_pix_sat .. 40
5.15 IMG_sobel_3x3_8 ... 41
5.16 IMG_sobel_3x3_16s .. 43
5.17 IMG_sobel_3x3_16.. 45
5.18 IMG_sobel_5x5_16s .. 48
5.19 IMG_sobel_7x7_16s .. 50
5.20 IMG_thr_gt2max_8 .. 53
5.21 IMG_thr_gt2max_16 .. 54
5.22 IMG_thr_gt2thr_8 .. 56
5.23 IMG_thr_gt2thr_16 .. 57
5.24 IMG_thr_le2min_8 ... 59
5.25 IMG_thr_le2min_16 ... 60
5.26 IMG_thr_le2thr_8 .. 62
5.27 IMG_thr_le2thr_16... 63
5.28 IMG_thr_le2thr ... 65
5.29 IMG_yc_demux_be16_8.. 66
5.30 IMG_yc_demux_le16_8... 68
5.31 IMG_ycbcr422p_rgb565 .. 70

6 IMGLIB2 Picture Filtering Functions ... 74
6.1 IMG_conv_3x3_i8_c8s.. 74
6.2 IMG_conv_3x3_i16s_c16s ... 76
6.3 IMG_conv_3x3_i16_c16s... 78
6.4 IMG_conv_5x5_i8_c8s.. 80
6.5 IMG_conv_5x5_i16s_c16s ... 82
6.6 IMG_conv_5x5_i8_c16s .. 84
6.7 IMG_conv_7x7_i8_c8s.. 86
6.8 IMG_conv_7x7_i16s_c16s ... 88
6.9 IMG_conv_7x7_i8_c16s .. 90
6.10 IMG_conv_11x11_i8_c8s... 92
6.11 IMG_conv_11x11_i16s_c16s .. 94
6.12 IMG_corr_3x3_i8_c16s ... 96
6.13 IMG_corr_3x3_i16s_c16s .. 98
6.14 IMG_corr_3x3_i8_c8... 100
6.15 IMG_corr_3x3_i16_c16s .. 102
6.16 IMG_corr_5x5_i16s_c16s ... 104
6.17 IMG_corr_11x11_i16s_c16s .. 106
6.18 IMG_corr_11x11_i8_c16s... 108

4 Contents SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com

6.19 IMG_corr_gen_i16s_c16s .. 110
6.20 IMG_corr_gen_iq... 112
6.21 IMG_median_3x3_16s .. 114
6.22 IMG_median_3x3_16.. 115
6.23 IMG_yc_demux_be16_16... 116
6.24 IMG_yc_demux_le16_16.. 117

7 Compression/Decompression IMGLIB2 Reference .. 118
7.1 IMG_fdct_8x8... 118
7.2 IMG_idct_8x8_12q4 ... 120
7.3 IMG_mad_8x8 .. 122
7.4 IMG_mad_16x16 ... 124
7.5 IMG_mpeg2_vld_intra ... 126
7.6 IMG_mpeg2_vld_inter ... 129
7.7 IMG_quantize... 131
7.8 IMG_sad_8x8... 133
7.9 IMG_sad_16x16.. 134
7.10 IMG_wave_horz .. 135
7.11 IMG_wave_vert... 138

Appendix A Low Level Kernels .. 141
A.1 IMG_mulS_16s ... 142
A.2 IMG_mulS_8.. 143
A.3 IMG_addS_16s... 144
A.4 IMG_addS_8.. 145
A.5 IMG_subS_16s ... 146
A.6 IMG_subS_8.. 147
A.7 IMG_not_16... 148
A.8 IMG_not_8 .. 149
A.9 IMG_andS_16 .. 150
A.10 IMG_andS_8.. 151
A.11 IMG_orS_16 .. 152
A.12 IMG_orS_8.. 153
A.13 IMG_and_16 .. 154
A.14 IMG_and_8 ... 155
A.15 IMG_or_16 .. 156
A.16 IMG_or_8.. 157
A.17 IMG_mul_16s... 158
A.18 IMG_mul_8.. 159
A.19 IMG_add_16s... 160
A.20 IMG_add_8 ... 161
A.21 IMG_sub_16s... 162
A.22 IMG_sub_8.. 163

Appendix B Benchmarks .. 164
B.1 Benchmarks for Image Analysis Functions ... 164
B.2 Benchmarks for Picture Filtering / Format Conversion Functions ... 166
B.3 Benchmarks for Compression/Decompression Functions .. 168

Appendix C Revision History ... 169

SPRUF30A–October 2007–Revised May 2008 Contents 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com

List of Tables
1 Conventions Used for Naming Functions ... 12
2 IMGLIB2 Image Analysis Functions ... 16
3 IMGLIB2 Picture Filtering Functions ... 18
4 Compression/Decompression Functions .. 19
A-1 Table 4. Low-level kernels and Their Performance .. 141
B-1 Benchmarks for Image Analysis Functions.. 164
B-2 Benchmarks for Picture Filtering Functions ... 166
B-3 Benchmarks for Compression/Decompression Functions... 168
C-1 Additions, Deletes .. 169

6 List of Tables SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

Preface
SPRUF30A–October 2007–Revised May 2008

Read This First

About This Manual
This document describes the TMS320C64x+ Image/Video Library 2 (IMGLIB2).

Notational Conventions
This document uses the following conventions.
• Hexadecimal numbers are shown with the suffix h. For example, the following number is 40

hexadecimal (decimal 64): 40h.
• Registers in this document are shown in figures and described in tables.

– Each register figure shows a rectangle divided into fields that represent the fields of the register.
Each field is labeled with its bit name, its beginning and ending bit numbers above, and its
read/write properties below. A legend explains the notation used for the properties.

– Reserved bits in a register figure designate a bit that is used for future device expansion.

Related Documentation From Texas Instruments
The following documents describe the TMS320C6000™ digital signal processor (DSP) devices and
related support tools. Copies of these documents are available on the Internet at www.ti.com. Tip: Enter
the literature number in the search box provided at www.ti.com.

TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732)
describes the CPU architecture, pipeline, instruction set, and interrupts for the TMS320C64x™ and
TMS320C64x+ DSPs of the TMS320C6000 DSP family. The C64x/C64x+ DSP generation comprises
fixed-point devices in the C6000 DSP platform. The C64x+ DSP is an enhancement of the C64x DSP with
added functionality and an expanded instruction set.

TMS320C64x to TMS320C64x+ CPU Migration Guide (literature number SPRAA84) describes migrating
from the Texas Instruments TMS320C64x digital signal processor (DSP) to the TMS320C64x+ DSP. The
objective of this document is to indicate differences between the two cores. Functionality in the devices
that is identical is not included.

Trademarks
TMS320C6000, TMS320C64x are trademarks of Texas Instruments.

SPRUF30A–October 2007–Revised May 2008 Preface 7
Submit Documentation Feedback

www.ti.com
http://www-s.ti.com/sc/techlit/SPRU732
http://www-s.ti.com/sc/techlit/SPRAA84
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

1 Introduction to the TI C64x+ IMGLIB

1.1 Features and Benefits

1.1.1 Software Routines

2 Installing and Using IMGLIB

Programmer's Guide
SPRUF30A–October 2007–Revised May 2008

DSPImage/Video Processing Library

The Texas Instruments C64x+ IMGLIB is an optimized Image/Video Processing Functions Library for C
programmers using TMS320C64x+ devices. It includes many C-callable, assembly-optimized,
general-purpose image/video processing routines. These routines are typically used in computationally
intensive real-time applications where optimal execution speed is critical. Using these routines assures
execution speeds considerably faster than equivalent code written in standard ANSI C language. In
addition, by providing ready-to-use DSP functions, TI IMGLIB can significantly shorten image/video
processing application development time.

The TI C64x+ IMGLIB contains commonly used image/video processing routines, as well as source code
that allows you to modify functions to match your specific needs.

IMGLIB features include:
• Optimized assembly code routines
• C and linear assembly source code
• C-callable routines fully compatible with the TI C6x compiler
• Host library to enable PC based development and testing
• CCS/VC++ projects to rebuild library
• Benchmarks (cycles)
• Tested against reference C model
• Test bench with reference input and output vectors

The rich set of software routines included in the IMGLIB is organized into three different functional
categories as follows:
• Compression and decompression
• Image analysis
• Picture filtering/format conversions

In addition, a set of 22 low-level kernels have been included in Appendix A. These functions perform
simple image operations such as addition, substraction, multiplication, etc and are intended to be used as
a starting point for developing more complex kernels.

This section provides the information needed to install the correct directory structure, and the proper steps
to follow to use IMGLIB2.

8 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

2.1 Installing IMGLIB

2.2 Using IMGLIB2

2.2.1 Calling an IMGLIB2 Function From C

2.2.1.1 Code Composer Studio Users

www.ti.com Installing and Using IMGLIB

IMGLIB is provided as a self-installing executable, imglibc64plus-2.x.x-Setup.exe. Upon installation, it
produces the following directory structure:
IMGLIB2

|
+--build project files to builds host/target lib
| |
| +--host
| +--target
|
+--docs library documentation
|
+--include Required include files
|
+--kernels Kernel sources
| |
| +-- asm
| +-- c
| +-- intrinsics
| +-- serial_asm
|
+--lib host and target library
| |
| +--host
| +--target
|
+--test_drivers test bench with reference input/output vectors
| |
| +--drivers
| |
| +--set of test-cases
|
+--README.txt Top-level README file
|
+--TI_license.pdf License Agreement file

The default location for installing IMGLIB is C:\CCStudio_v3.3\c64plus. The user can modify the install
directory to any location of choice.

In addition to correctly installing the IMGLIB software, these steps must be followed to include an IMGLIB2
function in your code:
• Include the function header file corresponding to the IMGLIB function
• Link your code with imglib2.l64P
• Use the correct linker command file for your platform. Note that most functions in imglib2.l64P are

written assuming little endian mode of operation.

For example, if you want to call the IMG_fdct_8x8 IMGLIB2 function, you would add:
#include <IMG_boundary_8.h>

in your C file, and compile and link using:
cl6x main.c -z -o IMG_boundary_drv.out -lrts64plus.lib
-limglib2.l64P
Note: The natural c version of the library is also provided. This can be used for debugging code.
#include <IMG_boundary_8_c.h>
cl6x main.c -z -o IMG_boundary_drv.out -lrts64plus.lib -limglib2_cn.l64P

If you set up a project with Code Composer Studio, you can add IMGLIB by selecting Add Files to Project
from the Project menu, and choosing imglib2.l64P from the list of libraries under the c64plus\imglib_v2xx
folder. Also, ensure that you have linked to the correct runtime support library (rts64plus.lib). An alternate

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 9
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

2.2.2 Calling an IMGLIB2 Function From VC++

2.2.3 Calling an IMGLIB Function From Assembly

2.2.4 IMGLIB Testing - Allowable Error

2.2.5 IMGLIB Overflow and Scaling Issues

2.2.6 Interrupt Behavior of IMGLIB Functions

2.3 Rebuilding IMGLIB

Installing and Using IMGLIB www.ti.com

to include the above two libraries in your project is to add the following lines in your linker command file:
-lrts64plus.lib
-limglib2.l64P
The include directory contains the header files necessary to be included in the C code when you call an
IMGLIB2 function from C code, and should be added to the "include path" in CCS build options.

The procedure remains the same as Section 2.2.1. The only diffrence is that imglib2_host.lib should be
included in the corresponding VC project. The VC++ library uses the 'natural c' functions as its source.

The C64x+ IMGLIB functions were written to be used from C. Calling the functions from assembly
language source code is possible as long as the calling function conforms to the Texas Instruments
C6000 C-compiler calling conventions. See Runtime Environment, TMS320C6000 Optimizing Compiler v
6.0 Beta User's Guide (SPRU187).

IMGLIB is tested under the Code Composer Studio environment against a reference C implementation.
Test routines that deal with fixed-point type results expect identical results between Reference C
implementation and its assembly implementation. The test routines that deal with floating-point results
typically allow an error margin of 0.000001 when comparing the results of reference C code and IMGLIB
assembly code.

The IMGLIB functions implement the exact functionality of the reference C code. You must conform to the
range requirements specified in the function API, as well as restricting the input range so that the outputs
do not overflow. Overflows or validity of input parameters is not checked in the functions.

All of the functions in this library are designed to be used in systems with interrupts. That is, it is not
necessary to disable interrupts when calling any of these functions. The functions in the library will disable
interrupts as needed to protect the execution of code in tight loops and so on. Functions in this library fall
into three categories:
• Fully-interruptible: These functions do not disable interrupts. Interrupts are blocked by at most, 5 to 10

cycles at a time (not counting stalls) by branch delay slots.
• Partially-interruptible: These functions disable interrupts for long periods of time, with small windows of

time when they can be interrupted. Examples include a function with a nested loop, where the inner
loop is non-interruptible and the outer loop permits interrupts between executions of the inner loop.

• Non-interruptible: These functions disable interrupts for nearly their entire duration. Interrupts may
happen for a short time during their setup and exit sequence.

Note that all three function categories tolerate interrupts. That is, an interrupt can occur at any time without
affecting the functions' correctness. The function's ability to be interrupted only determines how long the
kernel might delay the processing of the interrupt.

The interrupt handling behavior can be changed for the intrinsic and natural c functions in the library by
appropriately modifying the build options. However, this change will not have any effect on the assembly
functions in the library.

If you would like to rebuild IMGLIB (for example, because you modified the source file contained in the
archive, or to obtain a library with different compile options, or for debugging, etc.), you can use the
corresponding CCS/VC++ projects in <install_dir>/build/target/ and <install_dir>/build/host/ .

10 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRU187
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

2.4 IMGLIB2 Test Suite

2.5 Building the Test Suite

3 IMGLIB2 Function Descriptions

3.1 IMGLIB2 Functions Overview

3.2 Notational Conventions

www.ti.com IMGLIB2 Function Descriptions

A test suite for most of the functions is included. This test bench is comprised of a driver file, and
reference input and output test vectors.

The test suite for each kernel is comprised of three files:
• <kernel_name>_d.c: This is the driver file which call the kernel and checks the output for correctness
• <kernel_name>_idat.c: The reference in put data file
• <kernel_name>_odat.c: The reference output data file

The driver file feeds the input dta to the kernel. The output from the kernel is tested against the refernce
output data.

A Cygwin-based build setup is provided with the release. The following steps must be followed to build the
test suite:
• Set the path for C6x compile tools
• Go to <Install_dir>/test_drivers/common/
• Execute build_all.sh

These steps will build all available test applications. The test covers natural c as well as optimized code.
The test applications can be cleaned by the command
$>build_all.sh clean

This section provides a brief description the functions within the IMGLIB2, organized in three categories:
image analysis, picture filtering, and compression/decompression. It also provides examples of the
function's application.

The C64x+ IMGLIB2 provides a collection of C-callable high-performance routines that can serve as key
enablers for a wide range of image/video processing applications. These functions are representative of
the high performance capabilities of the C64x+ DSPs. The following sections describe some of the
functions and their applications. These are only representative examples; there are many alternate uses
as well.

All functions in the IMGLIB have been developed for the little-endian memory model. A few may work in
the big-endian memory model. However, their functionality is not guaranteed.

Following are the conventions used for naming the functions. A suffix is placed after each function name
based on the type of inputs it accepts. The various suffixes used are divided into four categories as
described below.
• For all the Correlation and Convolution functions which do not involve the q-point math, the suffix will

consist of the data length and sign of the input and masks/coefficients in the order ‘_ids_cds’ where:
– _ids denotes input (i), data length (d), and sign (s). For example, _i8s denotes that input consists of

8-bit signed data. For unsigned data, (s) will be omitted. For example, _i8 denotes that input
consists of 8-bit unsigned data.

– _cds denotes coefficients/masks (c), data length (d), and signed (s). For example, _c8s denotes
that coefficients/masks are 8-bit signed. For unsigned coefficients/masks, (s) will be omitted. For
example, _c8 denotes that coefficients/masks are 8-bit unsigned.

• For all the functions involving Q-point math, the suffix will be _iq. These functions operate on 32-bit
input data and result in 32-bit output data which may be signed or unsigned according to the API

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

3.3 IMGLIB Image Analysis Functions Overview

3.3.1 Boundary and Perimeter Functions

3.3.2 Dilation and Erosion Operation Functions

3.3.3 Edge Detection Function

IMGLIB2 Function Descriptions www.ti.com

definition. For example, IMG_corr_gen_iq, works on 32-bit input data and result in 32-bit output data.
• For all the functions with two inputs of same data length and sign, the suffix will be _ds. For example,

_8s denotes inputs which are 8-bit signed. For unsigned coefficients/masks, (s) will be omitted. For
example, _8 denotes inputs which are 8-bit unsigned.

• For all the functions which have a single input of a particular data length and sign, the suffix will be
_ds. For example, _8s denotes input consists of 8-bit signed data. For an unsigned data input 's' will
be omitted. For example, _8 denotes input consists of 8-bit unsigned data

A few examples for the four categories of suffixes are represented in the table below

Table 1. Conventions Used for Naming Functions
Suffix Suffix Suffix Description ExampleCategory Notation Example

1 _ids_cds _i8_c16s 8-bit unsigned input and 16-bit signed masks/coefficients. IMG_conv_5x5_i8_c16s
No IQ format used for both the inputs

2 _iq _iq Input/Output in Q-point format IMG_corr_gen_iq
3 _ds _32s 32-bit signed or unsigned inputs. No IQ format used for IMG_vecsum_32s

both the inputs
4 _ds _16s 16-bit signed input. No IQ format used for the input IMG_boundary_16s

This section provides a description of the functions that are applicable to image analysis.

• IMG_boundary_8
• IMG_boundary_16s
• IMG_perimeter_8
• IMG_perimeter_16

Boundary and perimeter computation functions IMG_boundary and IMG_perimeter, are provided. These
are commonly-used structural operators in vision applications.

• IMG_dilate_bin
• IMG_erode_bin

The IMG_dilate_bin and IMG_erode_bin functions are morphological operators that are used to perform
Dilation and Erosion operations on binary images. Dilation and erosion are the fundamental building
blocks of various morphological operations such as Opening or Closing that can be created from
combinations of dilation and erosion. These functions are useful in machine vision and medical imaging
applications.

• IMG_sobel_3x3_8
• IMG_sobel_3x3_16s
• IMG_sobel_3x3_16
• IMG_sobel_5x5_16s
• IMG_sobel_7x7_16s

Edge detection is a commonly-used operation in vision systems. Many algorithms exist for edge detection,
and one of the most commonly used ones is Sobel edge detection. The above functions provide an
optimized implementation of the Sobel operator with different mask sizes.

DSPImage/Video Processing Library12 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

3.3.4 Histogram Function

3.3.5 Image Threshold Function

3.4 IMGLIB Picture Filtering Functions Overview

3.4.1 Color Space Conversion Functions

3.4.2 Convolution Function

www.ti.com IMGLIB2 Function Descriptions

• IMG_histogram_8
• IMG_histogram_16

The histogram routine provides the ability to generate an image histogram. An image histogram is
basically a count of the intensity levels (or some other statistic) in an image. For example, for a grayscale
image with 8-bit pixel intensity values, the histogram will consist of 256 bins corresponding to the 256
possible pixel intensities. Each bin contains a count of the number of pixels in the image that have that
particular intensity value. Histogram processing (such as histogram equalization or modification) is used in
areas such as vision systems and image/video content generation systems. The 16-bit version can
operate on images with data resolution from 8 to 16 bits.

• IMG_clipping_16s
• IMG_thr_gt2max_8
• IMG_thr_gt2thr_8
• IMG_thr_le2min_8
• IMG_thr_le2thr_8
• IMG_thr_gt2max_16
• IMG_thr_gt2thr_16
• IMG_thr_le2min_16
• IMG_thr_le2thr_16

Different forms of image thresholding operations are used for various reasons in image/video processing
systems. For example, one form of thresholding may be used to convert grayscale image data to binary
image data for input to binary morphological processing. Another form of thresholding may be used to clip
image data levels into a desired range, and yet another form of thresholding may be used to zero out
low-level perturbations in image data due to sensor noise. Thresholding is also used for simple
segmentation in machine vision applications.

This section provides a description of the functions that are applicable to picture filtering and format
conversions.

• IMG_ycbcr422p_rgb565

Color space conversion from YCbCr to RGB enables the display of digital video data generated, for
instance, by an MPEG or JPEG decoder system on RGB displays.

• IMG_yc_demux_be16_8
• IMG_yc_demux_le16_8
• IMG_yc_demux_be16_16
• IMG_yc_demux_le16_16

These routines take a packed YCrYCb color buffer in big-endian or little-endian format and expands the
constituent color elements into separate buffers in little-endian byte ordering.

The convolution functions are used to apply generic filters to the input image. Filter sizes of 3x3, 5x5, 7x7,
and 11x11 are supported. Typical applications include, but are not restricted to, image smoothing and
sharpening.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 13
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

3.4.3 Correlation Functions

3.4.4 Error Diffusion Function

3.4.5 Median Filtering Function

IMGLIB2 Function Descriptions www.ti.com

The following functions operate on 16-bit image data:
• IMG_conv_3x3_i16s_c16s
• IMG_conv_3x3_i16_c16s
• IMG_conv_5x5_i16s_c16s
• IMG_conv_7x7_i16s_c16s
• IMG_conv_11x11_i16s_c16s

The following functions operate on 8-bit image data:
• IMG_conv_3x3_i8_c8s
• IMG_conv_5x5_i8_c8s
• IMG_conv_5x5_i8_c16s
• IMG_conv_7x7_i8_c8s
• IMG_conv_7x7_i8_c16s
• IMG_conv_11x11_i8_c8s

Correlation functions are provided to enable image matching. Image matching is useful in applications
such as machine vision, medical imaging, and security/defense. The following functions implement highly
optimized corrrelation for commonly-used filter sizes such as 3x3, 5x5, and 11x11.
• IMG_corr_3x3_i8_c8
• IMG_corr_3x3_i8_c16s
• IMG_corr_3x3_i16s_c16s
• IMG_corr_3x3_i16_c16s
• IMG_corr_5x5_i16s_c16s
• IMG_corr_11x11_i8_c16s
• IMG_corr_11x11_i16s_c16s

The functions below are more generic and can implement correlation for user-specified pixel neighborhood
dimensions within documented constraints. The IMG_corr_gen_iq function handles 32-bit Q-point data.
• IMG_corr_gen_i16s_c16s
• IMG_corr_gen_iq

• IMG_errdif_bin_16

Error diffusion with binary valued output is useful in printing applications. The most widely-used error
diffusion algorithm is the Floyd-Steinberg algorithm. This function provides an optimized implementation of
this algorithm.

• IMG_median_3x3_8
• IMG_median_3x3_16s
• IMG_median_3x3_16

Median filtering is used in image restoration, to minimize the effects of impulsive noise in imagery.
Applications can cover almost any area where impulsive noise may be a problem, including
security/defense, machine vision, and video compression systems. Optimized implementation of median
filter for 3x3 pixel neighborhood is provided in the above routines.

DSPImage/Video Processing Library14 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

3.4.6 Pixel Expand Functions

3.5 Compression/Decompression Functions Overview

3.5.1 Forward and Inverse DCT Functions

3.5.2 High Performance Motion Estimation Functions

3.5.3 MPEG-2 Variable Length Decoding Functions

www.ti.com IMGLIB2 Function Descriptions

• IMG_pix_expand
• IMG_pix_sat

The routines IMG_pix_expand and IMG_pix_sat, respectively, expand 8-bit pixels to 16-bit quantities by
zero extension, and saturate 16-bit signed numbers to 8-bit unsigned numbers. They can be used to
prepare input and output data for other routines such as the horizontal and vertical scaling routines.

This section describes the applicable functions for compression/decompression standards such as JPEG,
MPEG video, and H.26x.

The IMGLIB provides forward and inverse DCT (Discrete Cosine Transform) functions:
• IMG_fdct_8x8
• IMG_idct_8x8_12q4

These functions are applicable for a wide range of compression standards such as JPEG Encode/Decode,
MPEG Video Encode/Decode, and H.26x Encode/Decode. These compression standards are used in
diverse end-applications:
• JPEG is used in printing, photography, security systems, etc.
• MPEG video standards are used in digital TV, DVD players, set-top boxes, video-on-demand systems,

video disc applications, multimedia/streaming media applications, etc.
• H.26x standards are used in video telephony and some streaming media applications.

Note that the inverse DCT function performs an IEEE 1180-1990 compliant inverse DCT, including
rounding and saturation to signed 9-bit quantities. The forward DCT rounds the output values for improved
accuracy. These factors can have significant effect on the final result in terms of picture quality, and are
important to consider when implementing DCT-based systems or comparing the performance of different
DCT-based implementations.

The following functions are provided to enable high performance motion estimation algorithms that are
used in applications such as MPEG Video Encode or H.26x Encode.
• IMG_mad_8x8
• IMG_mad_16x16
• IMG_sad_8x8
• IMG_sad_16x16

Video encoding is useful in video-on-demand systems, streaming media systems, video telephony, etc.
Motion estimation is typically one of the most computation-intensive operations in video encoding systems;
the provided functions enable high performance, which can significantly improve such systems.

• IMG_mpeg2_vld_intra
• IMG_mpeg2_vld_inter

The MPEG-2 variable length decoding functions provide a highly integrated and efficient solution for
performing variable length decoding, run-length expansion, inverse scan, dequantization, saturation and
mismatch control of MPEG-2 coded intra and non-intra macroblocks. The performance of any MPEG-2
video decoder system relies heavily on the efficient implementation of these decoding steps.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 15
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

3.5.4 Quantization Function

3.5.5 Wavelet Processing Functions

4 IMGLIB Function Tables

IMGLIB Function Tables www.ti.com

• IMG_quantize

Quantization is an integral step in many image/video compression systems, including those based on
widely used variations of DCT-based compression such as JPEG, MPEG, and H.26x. The routine
IMG_quantize function can be used in such systems to perform the quantization step.

• IMG_wave_horz
• IMG_wave_vert

Wavelet processing is used in emerging standards such as JPEG2000 and MPEG-4, where it is typically
used to provide highly efficient still picture compression. Various proprietary image compression systems
are also wavelets-based. This release includes the utilities IMG_wave_horz and IMG_wave_vert for
computing horizontal and vertical wavelet transforms. Together, they can compute 2-D wavelet transforms
for image data. The routines are flexible enough, within documented constraints, to accommodate a wide
range of specific wavelets and image dimensions.

This section provides tables containing all IMGLIB functions, a brief description of each, and a page
reference for more detailed information.

Table 2. IMGLIB2 Image Analysis Functions
Function Description Page
void IMG_boundary_8 (unsigned char *in_data, int rows, int Boundary Structural Operator Section 5.1
cols, int *out_coord, int *out_gray)
void IMG_boundary_16s(const short *restrict i_data, int Boundary Structural Operator for 16-bit input Section 5.2
rows, int cols, unsigned int *restrict o_coord, short *restrict
o_grey)
void IMG_clipping_16s(const short *restrict x, short rows, Image Clipping Operator for 16-bit input Section 5.3
short cols, short *restrict r, short THRES_MAX, short
THRES_MIN)
void IMG_yc_demux_be16_8(int n, unsigned char *yc, short YCbCr Demultiplexing (big endian source) Section 5.29
*y, short *cr, short *cb)
void IMG_yc_demux_le16_8(int n, unsigned char *yc, short YCbCr Demultiplexing (little endian source) Section 5.30
*y, short *cr, short *cb)
void IMG_dilate_bin (unsigned char *in_data, unsigned char 3x3 Binary Dilation Section 5.4
*out_data, char *mask, int cols)
void IMG_erode_bin(unsigned char *in_data, unsigned char 3x3 Binary Erosion Section 5.5
*out_data, char *mask, int cols)
void IMG_errdif_bin_8(unsigned char errdif_data[], int cols, Error Diffusion, Binary Output Section 5.6
int rows, short err_buf[], unsigned char thresh)
void IMG_errdif_bin_16(unsigned short *restrict errdif_data, Error Diffusion, binary output Section 5.7
int cols, int rows, short *restrict err_buf, unsigned short
thresh)
void IMG_histogram_8(unsigned char *in_data, int n, int Histogram Computation Section 5.8
accumulate, unsigned short *t_hist, unsigned short *hist)
void IMG_histogram_16(unsigned short *restrict in, short Histogram Computation for 16-bit input Section 5.9
*restrict hist, short *restrict t_hist, int n, int accumulate, int
img_bits)
void IMG_median_3x3_8(unsigned char *in_data, int cols, 3x3 Median Filter Section 5.10
unsigned char *out_data)
void IMG_perimeter_8(unsigned char *in_data, int cols, Perimeter Structural Operator Section 5.11
unsigned char *out_data)
int IMG_perimeter_16 (const unsigned short *restrict in, int Perimeter Structural Operator for 16-bit input Section 5.12
cols, unsigned short *restrict out)

16 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMGLIB Function Tables

Table 2. IMGLIB2 Image Analysis Functions (continued)
Function Description Page
void IMG_pix_expand(int n, unsigned char *in_data, short Pixel Expand Section 5.13
*out_data)
void IMG_pix_sat(int n, short *in_data, unsigned char Pixel Saturation Section 5.14
*out_data)
void IMG_sobel_3x3_8(const unsigned char *in_data, Sobel Edge Detection Section 5.15
unsigned char *out_data, short cols, short rows)
void IMG_sobel_3x3_16s (constant short *restrict in, short 3x3 Sobel Edge Detection for 16-bit input Section 5.16
*restrict out, short cols, short rows)
void IMG_sobel_3x3_16 (constant unsigned short *restrict 3x3 Sobel Edge Detection for 16-bit unsigned input Section 5.17
in, unsigned short *restrict out, short cols, short rows)
void IMG_sobel_5x5_16s (const short *restrict in, short 5x5 Sobel Edge Detection for 16-bit input Section 5.18
*restrict out, short cols, short rows)
void IMG_sobel_7x7_16s (const short *restrict in, short 7x7 Sobel Edge Detection for 16-bit input Section 5.19
*restrict out, short cols, short rows)
void IMG_thr_gt2max_8(unsigned char *in_data, unsigned Thresholding - Clamp to 255 Section 5.20
char *out_data, short cols, short rows, unsigned char
threshold)
void IMG_thr_gt2max_16(const unsigned short *in_data, Thresholding – Clamp to 255 Section 5.21
unsigned short *restrict out_data, short cols, short rows,
unsigned short threshold)
void IMG_thr_gt2thr_8(unsigned char *in_data, unsigned Thresholding - Clip above threshold Section 5.22
char *out_data, short cols, short rows, unsigned char
threshold)
void IMG_thr_gt2thr_16(const unsigned short *in_data, Thresholding – Clip above threshold Section 5.23
unsigned short *restrict out_data, short cols, short rows,
unsigned short threshold)
void IMG_thr_le2min_8 (unsigned char *in_data, unsigned Thresholding - Clamp to zero Section 5.24
char *out_data, short cols, short rows, unsigned char
threshold)
void IMG_thr_le2min_16(const unsigned short *in_data, Thresholding – Clamp to zero Section 5.25
unsigned short *restrict out_data, short cols, short rows,
unsigned short threshold)
void IMG_thr_le2thr_8 (unsigned char *in_data, unsigned Thresholding - Clip above threshold Section 5.26
char *out_data, short cols, short rows, unsigned char
threshold)
void IMG_thr_le2thr_16(const unsigned short *in_data, Thresholding – Clip above threshold Section 5.27
unsigned short *restrict out_data, short cols, short rows,
unsigned short threshold)
void IMG_ycbcr422p_rgb565(short coeff[5], unsigned char Planarized YCbCr 4:2:2/4:2:0 to RGB 5:6:5 color Section 5.31
*y_data, unsigned char *cb_data, unsigned char *cr_data, space conversion
unsigned short *rgb_data, unsigned num_pixels)

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 17
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

IMGLIB Function Tables www.ti.com

Table 3. IMGLIB2 Picture Filtering Functions
Function Description Page
void IMG_conv_3x3_i8_c8s(unsigned char *in_data, 3x3 Convolution Section 6.1
unsigned char *out_data, int cols, char *mask, int shift)
void IMG_conv_3x3_i16s_c16s(const short *restrict 3x3 convolution for 16-bit inputs Section 6.2
imgin_ptr, short *restrict imgout_ptr, short width, short pitch,
const short *restrict mask_ptr, short shift)

void IMG_conv_3x3_i16_c16s(const unsigned short *restrict 3x3 convolution for unsigned 16-bit inputs Section 6.3
imgin_ptr, unsigned short *restrict imgout_ptr, short width,
const short *restrict mask_ptr, short shift)
void IMG_conv_5x5_i8_c8s(const unsigned char *restrict 5x5 convolution for 8-bit inputs Section 6.4
imgin_ptr, unsigned char *restrict imgout_ptr, short width,
short pitch, const char *restrict mask_ptr, short shift)
void IMG_conv_5x5_i16s_c16s(const short *restrict 5x5 convolution for 16-bit inputs Section 6.5
imgin_ptr, short *restrict imgout_ptr, short width, short pitch,
const short *restrict mask_ptr, short shift)
void IMG_conv_5x5_i8_c16s(const unsigned char *restrict 5x5 convolution for 8-bit input and 16-bit masks Section 6.6
imgin_ptr, unsigned char *restrict imgout_ptr, short width,
short pitch, const short *restrict mask_ptr, short shift)
void IMG_conv_7x7_i8_c8s(const unsigned char *restrict 7x7 convolution for 8-bit inputs Section 6.7
imgin_ptr, unsigned char *restrict imgout_ptr, short width,
short pitch, const char *restrict mask_ptr, short shift)
void IMG_conv_7x7_i16s_c16s(const short *restrict 7x7 convolution for 16-bit inputs Section 6.8
imgin_ptr, short *restrict imgout_ptr, short width, short pitch,
const short *restrict mask_ptr, short shift)
void IMG_conv_7x7_i8_c16s(const unsigned char *restrict 7x7 convolution for 8-bit input and 16-bit masks Section 6.9
imgin_ptr, unsigned char *restrict imgout_ptr, short width,
short pitch, const short *restrict mask_ptr, short shift)
void IMG_conv_11x11_i8_c8s(const unsigned char *restrict 11x11 convolution for 8-bit inputs Section 6.10
imgin_ptr, unsigned char *restrict imgout_ptr, short width,
short pitch, const char *restrict mask_ptr, short shift)
void IMG_conv_11x11_i16s_c16s(const short *restrict 11x11 convolution for 16-bit inputs Section 6.11
imgin_ptr, short *restrict imgout_ptr, short width, short pitch,
const short *restrict mask_ptr, short shift)
void IMG_corr_3x3_i8_c16s(const unsigned char *restrict 3x3 correlation for 8-bit input and 16-bit masks Section 6.12
imgin_ptr, int *restrict imgout_ptr, short width, short pitch,
const short *restrict mask_ptr)
void IMG_corr_3x3_i16s_c16s(const short *restrict 3x3 correlation for 16-bit inputs Section 6.13
imgin_ptr, int *restrict imgout_ptr, short width, short pitch,
const short *restrict mask_ptr, int round)
void IMG_corr_3x3_i8_c8(const unsigned char *restrict inptr, 3x3 Correlation for unsigned 8-bit inputs Section 6.14
unsigned char *restrict outptr, int x_dim, const unsigned char
*restrict mask_ptr, short shift, short round)
void IMG_corr_3x3_i16_c16s(const unsigned short *restrict 3x3 correlation for unsigned 16-bit inputs Section 6.15
imgin_ptr, long *restrict imgout_ptr, const short *restrict
mask_ptr, short pitch, short width
void IMG_corr_5x5_i16s_c16s(const short *restrict 5x5 correlation for 16-bit inputs Section 6.16
imgin_ptr, int *restrict imgout_ptr, short width, short pitch,
const short *restrict mask_ptr, int round)
void IMG_corr_11x11_i16s_c16s(const short *restrict 11x11 correlation for 16-bit inputs Section 6.17
imgin_ptr, int *restrict imgout_ptr, short width, short pitch,
const short *restrict mask_ptr, int round)
void IMG_corr_11x11_i8_c16s(const unsigned char *restrict 11x11 correlation for 8-bit input and 16-bit masks Section 6.18
imgin_ptr, int *restrict imgout_ptr, short width, short pitch,
const short *restrict mask_ptr)
void IMG_corr_gen_i16s_c16s_(short *in_data, short *h, Generalized Correlation Section 6.19
short *out_data, int m, int cols)
void IMG_corr_gen_iq(const int *restrict x, const short Generalized Correlation with q-point math Section 6.20
*restrict h, int *restrict y, int m, int x_dim, int x_qpt, int h_qpt,
int y_qpt)

18 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMGLIB Function Tables

Table 3. IMGLIB2 Picture Filtering Functions (continued)
Function Description Page
void IMG_median_3x3_16s (const short *restrict i_data, int 3x3 Median Filtering for 16-bit input Section 6.21
n, short *restrict o_data)
void IMG_median_3x3_16 (const short *restrict i_data, int n, 3x3 Median Filtering for unsigned 16-bit input Section 6.22
short *restrict o_data)
void IMG_yc_demux_be16_16(int n, const unsigned short YCbCr Demultiplexing (big endian source) Section 6.23
*yc, short *restrict y, short *restrict cr, short *restrict cb)
void IMG_yc_demux_le16_16(int n, const unsigned short YCbCr Demultiplexing (little endian source) Section 6.24
*yc, short *restrict y, short *restrict cr, short *restrict cb)

Table 4. Compression/Decompression Functions
Function Description
void IMG_fdct_8x8 (short *fdct_data, unsigned num_fdcts) Forward Discrete Cosine Transform (FDCT) Section 7.1
void IMG_idct_8x8_12q4 (short *idct_data, unsigned Inverse Discrete Cosine Transform (IDCT) Section 7.2
num_idcts)
void IMG_mad_8x8 (unsigned char *ref_data, unsigned char 8x8 Minimum Absolute Difference Section 7.3
*src_data, int pitch, int sx, int sy, unsigned int *match)
void IMG_mad_16x16 (unsigned char *ref_data, unsigned 16x16 Minimum Absolute Difference Section 7.4
char *src_data, int pitch, int sx, int sy, unsigned int *match)
void IMG_mpeg2_vld_intra (short *Wptr, short *outi, MPEG-2 Variable Length Decoding of Intra MBs Section 7.5
unsigned int *Mpeg2v, int dc_pred[3])
void IMG_mpeg2_vld_inter (short *Wptr, short *outi, void IMG_mpeg2_vld_inter(short *Wptr, short *outi, Section 7.6
unsigned int *Mpeg2v) unsigned int *Mpeg2v)
void IMG_quantize (short *data, int num_blks, int blk_sz, Matrix Quantization with Rounding Section 7.7
const short *recip_tbl, int q_pt)
unsigned IMG_sad_8x8 (unsigned char *srclmg, unsigned Sum of Absolute Differences on Single 8x8 block Section 7.8
char *reflmg, int pitch)
unsigned IMG_sad_16x16 (unsigned char *srclmg, unsigned Sum of Absolute Differences on Single 16x16 block Section 7.9
char *reflmg, int pitch)
void IMG_wave_horz (short *in_data, short *qmf, short Horizontal Wavelet Transform Section 7.10
*mqmf, short *out_data, int cols)
void IMG_wave_vert (short *in_data[], short *qmf,short Vertical Wavelet Transform Section 7.11
*mqmf,short *out_ldata,short *out_hdata,int cols)

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 19
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5 IMGLIB Image Analysis Functions

5.1 IMG_boundary_8

IMGLIB Image Analysis Functions www.ti.com

IMG_boundary_8 Boundary Structural Operator

Syntax void IMG_boundary_8(const unsigned char * restrict in_data, int rows, int cols, int *
restrict out_coord, int * restrict out_gray)

Arguments

in_data[] Input image of size rows * cols. Must be word aligned.
rows Number of input rows.
cols Number of input columns. Must be multiple of 4.
out_coord[] Output array of packed coordinates. Must be word aligned.
out_gray[] Output array of corresponding gray levels. Must be word aligned.

Description This routine scans an image for non-zero pixels. The locations of those pixels are stored
to the array out_coord[] as packed Y/X pairs, with Y in the upper half, and X in the lower
half. The gray levels of those pixels are stored in the out_gray[] array.

Algorithm Behavioral C code for the routine is provided below:
void IMG_boundary_8
(

const unsigned char in_data,
int rows, int cols,
int out_coord,
int out_gray

)
{

int x, y, p;

for (y = 0; y < rows; y++)
for (x = 0; x < cols; x++)

if ((p = in_data[x + y*cols] != 0)
{

*out_coord++ = ((y & 0xFFFF) << 16)
| (x & 0xFFFF);

*out_gray++ = p;
}

}

Special Requirements
• Array in_data[] must be word aligned.
• cols must be a multiple of 4.
• At least one row is being processed.
• Output buffers out_coord and out_gray should start in different banks and must be

word aligned.
• No more than 32764 rows or 32764 columns are being processed.

Notes
• Bank Conflicts: No bank conflicts occur as long as out_coord and out_gray start in

different banks. If they start in the same bank, every access to each array causes a
bank conflict.

• Endian: The code is LITTLE ENDIAN.
• Interruptibility: The code is interrupt-tolerant but not interruptible.
• Outer and inner loops are collapsed together.
• Inner loop is unrolled to process four pixels per iteration.

DSPImage/Video Processing Library20 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.2 IMG_boundary_16s
www.ti.com IMG_boundary_16s — Boundary structural operator for 16-bit input

IMG_boundary_16s Boundary structural operator for 16-bit input

Syntax void IMG_boundary_16s(const short *restrict i_data, int rows, int cols, unsigned int
*restrict o_coord, short *restrict o_grey)

Arguments

i_data[] Input image of size rows x cols
rows Number of rows in input image
cols Number of columns in input image
o_coor[] Output array of packed coordinate
o_grey[] Output array of corresponding grey levels

Description This function scans an image for non-zero pixels. The locations of these pixels are
stored to the array o_coord[] as packed Y-X co-ordinate pairs, with Y in the upper half,
and X in the lower half. The grey levels of those pixels are stored in the o_grey[] array.

Algorithm This is the C code implementation without any restrictions. However intrinsic code has
restrictions as listed in the special requirements.
void IMG_boundary_16s
(
const short *restrict i_data,

int rows,
int cols,

unsigned int *restrict o_coord,
short *restrict o_grey

)
{
int x, y, p;
for (y = 0; y < rows; y++)

for (x = 0; x < cols; x++)
if ((p = i_data[x + y * cols]) != 0)
{

*o_coord++ = ((y) << 16) | (x);
*o_grey++ = p;

}
}

Special Requirements
• rows should be minimum of 1 and maximum of 32767
• cols should be a multiple of 4,minimum of 4, and maximum of 32764
• Input array must be double-word aligned
• No alignment restrictions on output arrays
• Input and Output arrays should not overlap

Implementation Notes
• Outer and Inner loops are merged and four pixels are calculated per iteration
• Endian: The code is LITTLE ENDIAN.

Compatibility Compatible for both C64x+ and C64x.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 21
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.3 IMG_clipping_16s
IMG_clipping_16s — Image Cipping Operator for 16-bit Input www.ti.com

IMG_clipping_16s Image Cipping Operator for 16-bit Input

Syntax void IMG_clipping_16s(const short *restrict x, short rows, short cols, short *restrict r,
short THRES_MAX, short THRES_MIN)

Arguments

X Input image of size rows x cols
rows Number of rows in input image
cols Number of columns in input image
r Output image of size rows x cols
THRES_MAX Maximum threshold level
THRES_MIN Minimum threshold level

Description The function truncates elements of a matrix to the maximum and minimum values
defined by the user. Each element is 16-bit signed and the size of the matrix is user
determined dimensions. The output matrix has the same size as that of the input matrix
and each value will be truncated to minimum or maximum value defined by user based
on whether it is less than the minimum value (THRES_MIN)or greater than the maximum
value (THRES_MAX) respectively.

Algorithm This is the C code implementation without any restrictions. However intrinsic code has
restrictions as listed in the special requirements.
void IMG_clipping_16s
(

const short *restrict x, /* Input Matrix Pointer */
short rows, /* Height of input matrix */
short cols, /* Width of input matrix */
short *restrict r, /* Output Matrix Pointer */
short THRES_MAX, /* Maximum Threshold Value */
short THRES_MIN /* Minimum Threshold Value */

)
{

int i;
for (i = 0; i < (rows * cols); i++)
{

r[i] = (x[i] > THRES_MAX) ? THRES_MAX : x[i];
r[i] = (r[i] < THRES_MIN) ? THRES_MIN : r[i];

}
}

Special Requirements
• (rows * cols) >= 8 and should be a multiples of 8.
• THRES_MAX >= THRES_MIN.
• Input and output arrays must be double word aligned.
• Input and Output arrays should not overlap.

Implementation Notes
• Outer and Inner loops are merged and eight pixels are calculated per iteration.
• Endian: The code is LITTLE ENDIAN.

Compatibility
• Compatible for both C64x+ and C64x.

DSPImage/Video Processing Library22 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.4 IMG_dilate_bin
www.ti.com IMG_dilate_bin — 3x3 Binary Dilation

IMG_dilate_bin 3x3 Binary Dilation

Syntax void IMG_dilate_bin(const unsigned char * restrict in_data, unsigned char * restrict
out_data, const char * restrict mask, int cols)

Arguments

in_data[] Binary input image (8 pixels per byte).
out_data[] Filtered binary output image.
mask[3][3] 3x3 filter mask.
cols Number of columns / 8. cols must be a multiple of 8.

Description This routine dilate_bin() implements 3x3 binary dilation. The input image consists of
binary valued pixels (0s or 1s). The dilation operator generates output pixels by ORing
the pixels under the input mask together to generate the output pixel. The input mask
specifies whether one or more pixels from the input are to be ignored.

Algorithm The routine computes output for a target pixel as follows:
result = 0;
if (mask[0][0] != DONT_CARE) result |= input[y + 0][x + 0];
if (mask[0][1] != DONT_CARE) result |= input[y + 1][x + 1];
if (mask[0][2] != DONT_CARE) result |= input[y + 2][x + 2];
if (mask[1][0] != DONT_CARE) result |= input[y + 0][x + 0];
if (mask[1][1] != DONT_CARE) result |= input[y + 1][x + 1];
if (mask[1][2] != DONT_CARE) result |= input[y + 2][x + 2];
if (mask[2][0] != DONT_CARE) result |= input[y + 0][x + 0];
if (mask[2][1] != DONT_CARE) result |= input[y + 1][x + 1];
if (mask[2][2] != DONT_CARE) result |= input[y + 2][x + 2];
output[y][x] = result;

For this code, DONT_CARE is specified by a negative value in the input mask.
Non-negative values in the mask cause the corresponding pixel to be included in the
dilation operation.

Special Requirements
• Pixels are organized within each byte such that the pixel with the smallest index is in

the LSB position, and the pixel with the largest index is in the MSB position. (That is,
the code assumes a LITTLE ENDIAN bit ordering.)

• Negative values in the mask specify DONT_CARE, and non-negative values specify
that pixels are included in the dilation operation.

• The input image needs to have a multiple of 64 pixels (bits) per row. Therefore, cols
must be a multiple of 8.

Notes
• Bank Conflicts: No bank conflicts occur in this function.
• Endian: The code is LITTLE ENDIAN.
• Interruptibility: The code is fully interruptible.
• The 3×3 dilation mask is applied to 32 output pixels simultaneously. This is done with

32-bit-wide bit-wise operators in the register file. To do this, the code reads in a
34-bit-wide input window, and 40-bit operations are used to manipulate the pixels
initially. Because the code reads a 34-bit context for each 32-bits of output, the input
needs to be one byte longer than the output to make the rightmost two pixels
well-defined.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 23
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.5 IMG_erode_bin
IMG_erode_bin — 3x3 Binary Erosion www.ti.com

IMG_erode_bin 3x3 Binary Erosion

Syntax void IMG_erode_bin(const unsigned char * restrict in_data, unsigned char * restrict
out_data, const char * restrict mask, int cols)

Arguments

in_data[] Binary input image (8 pixels per byte).
out_data[] Filtered binary output image.
mask[3][3] 3x3 filter mask.
cols Number of columns / 8. cols must be a multiple of 8.

Description This routine implements 3×3 binary erosion. The input image consists of binary valued
pixels (0s or 1s). The erosion operator generates output pixels by ANDing the pixels
under the input mask together to generate the output pixel. The input mask specifies
whether one or more pixels from the input are to be ignored.

Algorithm The routine computes output for a target pixel as follows:
result = 1;
if (mask[0][0] != DONT_CARE) result &= input[y + 0][x + 0];
if (mask[0][1] != DONT_CARE) result &= input[y + 1][x + 1];
if (mask[0][2] != DONT_CARE) result &= input[y + 2][x + 2];
if (mask[1][0] != DONT_CARE) result &= input[y + 0][x + 0];
if (mask[1][1] != DONT_CARE) result &= input[y + 1][x + 1];
if (mask[1][2] != DONT_CARE) result &= input[y + 2][x + 2];
if (mask[2][0] != DONT_CARE) result &= input[y + 0][x + 0];
if (mask[2][1] != DONT_CARE) result &= input[y + 1][x + 1];
if (mask[2][2] != DONT_CARE) result &= input[y + 2][x + 2];
output[y][x] = result;

For this code, DONT_CARE is specified by a negative value in the input mask.
Non-negative values in the mask cause the corresponding pixel to be included in the
erosion operation.

Special Requirements
• Pixels are organized within each byte such that the pixel with the smallest index is in

the LSB position, and the pixel with the largest index is in the MSB position. (That is,
the code assumes a LITTLE ENDIAN bit ordering.)

• Negative values in the mask specify DONT_CARE, and non-negative values specify
that pixels are included in the erosion operation.

• The input image needs to have a multiple of 64 pixels (bits) per row. Therefore, cols
must be a multiple of 8.

Notes
• Bank Conflicts: No bank conflicts occur in this function.
• Endian: The code is LITTLE ENDIAN.
• Interruptibility: The code is fully interruptible.
• The 3×3 erosion mask is applied to 32 output pixels simultaneously. This is done with

32-bit-wide bit-wise operators in the register file. To do this, the code reads in a
34-bit-wide input window, and 40-bit operations are used to manipulate the pixels
initially. Because the code reads a 34-bit context for each 32-bits of output, the input
needs to be one byte longer than the output to make the rightmost two pixels
well-defined.

DSPImage/Video Processing Library24 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.6 IMG_errdif_bin_8
www.ti.com IMG_errdif_bin_8 — Error Diffusion, Binary Output

IMG_errdif_bin_8 Error Diffusion, Binary Output

Syntax void IMG_errdif_bin_8(unsigned char * restrict errdif_data, int cols, int rows, short *
restrict err_buf, unsigned char thresh)

Arguments

errdif_data[] Input/output image data.
cols Number of columns in the image. Must be ≥ 2.
rows Number of rows in the image.
err_buf[] Buffer of size cols+1, where one row of error values is saved. Must

be initialized to zeros prior to first call.
thresh Threshold value in the range [0, 255].

Description This routine implements the Floyd-Steinberg error diffusion filter with binary output.

Pixels are processed from left-to-right, top-to-bottom in an image. Each pixel is
compared against a user-defined threshold. Pixels that are larger than the threshold are
set to 255, and pixels that are smaller or equal to the threshold are set to 0. The error
value for the pixel (e.g., the difference between the thresholded pixel and its original gray
level) is propagated to the neighboring pixels using the Floyd-Steinberg filter (see
below). This error propagation diffuses the error over a larger area, hence the term error
diffusion.

The Floyd-Steinberg filter propagates fractions of the error value at pixel location X to
four of its neighboring pixels. The fractional values used are:

X 7/16
3/16 5/16 1/16

Algorithm When a given pixel at location (x, y) is processed, it has already received error terms
from four neighboring pixels. Three of these pixels are on the previous row at locations
(x-1, y-1), (x, y-1), and (x+1, y-1), and one is immediately to the left of the current pixel
at (x-1, y). To reduce the loop-carry path that results from propagating these errors, this
implementation uses an error buffer to accumulate errors that are being propagated from
the previous row. The result is an inverted filter, as shown below:

1/16 5/16 3/16
7/16 Y

where Y is the current pixel location and the numerical values represent fractional
contributions of the error values from the locations indicated that are diffused into the
pixel at location Y location.

This modified operation requires the first row of pixels to be processed separately, since
this row has no error inputs from the previous row. The previous row’s error contributions
in this case are essentially zero. One way to achieve this is with a special loop that
avoids the extra calculation involved with injecting the previous row’s errors. Another is
to pre-zero the error buffer before processing the first row. This function supports the
latter approach.

Behavioral C code for the routine is provided below:
void IMG_errdif_bin
(

unsigned char *errdif_data, /* Input/Output image ptr */
int cols, /* Number of columns (Width) */
int rows, /* Number of rows (Height) */
short err_buf, /* row-to-row error buffer. */

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 25
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

IMG_errdif_bin_8 — Error Diffusion, Binary Output www.ti.com

unsigned char thresh /* Threshold from [0x00, 0xFF] */
)
{

int x, i, y; /* Loop counters */
int F; /* Current pixel value at [x,y] */
int errA; /* Error value at [x-1, y-1] */
int errB; /* Error value at [x, y-1] */
int errC; /* Error value at [x+1, y-1] */
int errE; /* Error value at [x-1, y] */
int errF; /* Error value at [x, y] */

/* --- */
/* Step through rows of pixels. */
/* --- */
for (y = 0, i = 0; y < rows; y++)
{

/* -- */
/* Start off with our initial errors set to zero at */
/* the start of the line since we do not have any */
/* pixels to the left of the row. These error terms */
/* are maintained within the inner loop. */
/* -- */
errA = 0; errE = 0;
errB = err_buf[0];

/* -- */
/* Step through pixels in each row. */
/* -- */
for (x = 0; x < cols; x++, i++)
{

/* --- */
/* Load the error being propagated from pixel ’C’ */
/* from our error buffer. This was calculated */
/* during the previous line. */
/* --- */
errC = err_buf[x+1];

/* --- */
/* Load our pixel value to quantize. */
/* --- */
F = errdif_data[i];

/* --- */
/* Calculate our resulting pixel. If we assume */
/* that this pixel will be set to zero, this also */
/* doubles as our error term. */
/* --- */
errF = F + ((errE*7 + errA + errB*5 + errC*3) >> 4);

/* --- */
/* Set pixels that are larger than the threshold to */
/* 255, and pixels that are smaller than the */
/* threshold to 0. */
/* --- */
if (errF > thresh) errdif_data[i] = 0xFF;
else errdif_data[i] = 0;

/* --- */
/* If the pixel was larger than the threshold, then */
/* we need subtract 255 from our error. In any */
/* case, store the error to the error buffer. */
/* --- */
if (errF > thresh) err_buf[x] = errF = errF - 0xFF;
else err_buf[x] = errF;

/* --- */
/* Propagate error terms for the next pixel. */
/* --- */
errE = errF;
errA = errB;
errB = errC;

}
}

}

26 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_errdif_bin_8 — Error Diffusion, Binary Output

Special Requirements
• The number of columns must be at least 2.
• err_buf[] must be initialized to zeros for the first call and the returned err_buf []

should be provided for the next call.
• errdif_data[] is used for both input and output.
• The size of err_buf[] should be cols+1.

Notes
• Bank Conflicts: No bank conflicts occur.
• Endian: The code is ENDIAN NEUTRAL.
• Interruptibility: This function is interruptible. Maximum interrupt delay is 4*cols + 9

cycles.
• The outer loop has been interleaved with the prolog and epilog of the inner loop.
• Constants 7, 5, 3, 1 for filter-tap multiplications are shifted left 12 to avoid SHR 4

operation in the critical path.
• The inner loop is software-pipelined.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 27
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.7 IMG_errdif_bin_16
IMG_errdif_bin_16 — Floyd-Steinberg Error Dffusion for 16-bit data www.ti.com

IMG_errdif_bin_16 Floyd-Steinberg Error Dffusion for 16-bit data

Syntax void IMG_errdif_bin_16(unsigned short *restrict errdif_data, int cols, int rows, short
*restrict err_buf, unsigned short thresh)

Arguments

errdif_data Input/output image ptr
cols Number of columns (width)
rows Number of rows (height)
err_buf[cols+1] Buffer where one row of errors is to be saved
thresh Threshold in the range [0x00, 0xFF]

Description The code implements the Binary Floyd-Steinberg error diffusion filter. The following filter
kernel is used:

+---+
P | 7 |

+---+---+---+
| 3 | 5 | 1 |
+---+---+---+

Pixels are processed from left-to-right, top-to-bottom. Each pixel is compared against a
user-defined threshold. Pixels that are larger than the threshold are set to 0xFFFF, and
pixels that are smaller or equal to the threshold are set to 0. The error value for the pixel
(e.g., the difference between the thresholded pixel and its original grey level) is
propagated to the neighboring pixels according to the filter above. This error propagation
diffuses the error over a larger area; hence, the term "error diffusion."

Algorithm The optimized code is based on the following C model:
void IMG_errdif_bin_16_c
(

unsigned short *restrict errdif_data, /* Input/Output image ptr */
int cols, /* Number of columns (width) */
int rows, /* Number of rows (height) */
short *restrict err_buf, /* row-to-row error buffer. */
unsigned short thresh /* Threshold from [0x00, 0xFF] */

)
{

int x, i, y; /* Loop counters */
int F; /* Current pixel value at [x,y] */
int errA; /* Error value at [x-1, y-1] */
int errB; /* Error value at [x, y-1] */
int errC; /* Error value at [x+1, y-1] */
int errE; /* Error value at [x-1, y] */
int errF; /* Error value at [x, y] */

/* --- */
/* Step through rows of pixels. */
/* --- */
for (y = 0, i = 0; y < rows; y++)
{

/* --- */
/* Start off with the initial errors set to zero at the */
/* start of the line since there are no pixels to the */
/* left of the row. These error terms are maintained */
/* within the inner loop. */
/* --- */
errA = 0; errE = 0;
errB = err_buf[0];

/* --- */
/* Step through pixels in each row. */
/* --- */

28 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_errdif_bin_16 — Floyd-Steinberg Error Dffusion for 16-bit data

for (x = 0; x < cols; x++, i++)
{

/* --- */
/* Load the error being propagated from pixel 'C' */
/* from the error buffer. This was calculated */
/* during the previous line. */
/* --- */
errC = err_buf[x+1];

/* --- */
/* Load the pixel value to quantize. */
/* --- */
F = errdif_data[i];

/* --- */
/* Calculate the resulting pixel. If we assume */
/* that this pixel will be set to zero, this also */
/* doubles as the error term. */
/* --- */
errF = F + ((errE*7 + errA + errB*5 + errC*3) >> 4);

/* --- */
/* Set pixels that are larger than the threshold to */
/* 255, and pixels that are smaller than the */
/* threshold to 0. */
/* --- */
if (errF > thresh) errdif_data[i] = 0xFFFF;
else errdif_data[i] = 0;

/* --- */
/* If the pixel was larger than the threshold, then */
/* subtract 255 from the error. In any case, store */
/* the error to the error buffer. */
/* --- */
if (errF > thresh) err_buf[x] = errF = errF - 0xFFFF;
else err_buf[x] = errF;

/* --- */
/* Propagate error terms for the next pixel. */
/* --- */
errE = errF;
errA = errB;
errB = errC;

}
}

}

The processing of the filter itself is inverted so that the errors from previous pixels
propagate into a given pixel at the time the pixel is processed, rather than accumulate
into a pixel as its neighbors are processed. This allows us to maintain the image at 16-bit
and reduces the number of accesses to the image array. The inverted filter kernel
performs identically to the kernel's original form. In this form, the weights specify the
weighting assigned to the errors coming from the neighboring pixels.

+---+---+---+
| 1 | 5 | 3 |
+---+---+---+
| 7 | P
+---+

Special Requirements
• Input and output buffers do not alias. 'cols should be even
• err_buf[] must be initialized to zeros for the first call and the returned err_buf should

be provided for the subsequent calls

Memory Notes
• This kernel places no restrictions on the alignment of its input.
• No bank conflicts occur.
• The code is LITTLE ENDIAN.

Compatibility This code is compatible for both C64x and C64x+.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 29
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.8 IMG_histogram_8

IMG_histogram_8 — Histogram Computation www.ti.com

IMG_histogram_8 Histogram Computation

Syntax void IMG_histogram_8 (const unsigned char * restrict in_data, int n, short accumulate,
unsigned short * restrict t_hist, unsigned short * restrict hist)

Arguments

in_data[n] Input image. Must be word aligned.
n Number of pixels in input image. Must be multiple of 8.
accumulate 1: Add to existing histogram in hist[]

-1: Subtract from existing histogram in hist[]
t_hist[1024] Array of temporary histogram bins. Must be initialized to zero.
hist[256] Array of updated histogram bins.

Description This routine computes the histogram of the array in_data[] which contains n 8-bit
elements. It returns a histogram in the array hist[] with 256 bins at 16-bit precision. It
can either add or subtract to an existing histogram, using the accumulate control. It
requires temporary storage for four temporary histograms, t_hist[], which are later
summed together.

Algorithm Behavioral C code for the function is provided below:
void IMG_histogram (unsigned char *in_data, int n, int accumulate, unsigned short
*t_hist,
unsigned short * hist)
{

int pixel, j;
for (j = 0; j < n; j++)
{

pixel = (int) in_data[j];
hist[pixel] += accumulate;

}
}

Special Requirements
• The temporary array of data, t_hist[], must be initialized to zero.
• The input array of data, in_data[], must be word-aligned.
• n must be a multiple of 8.
• The maximum number of pixels that can be profiled in each bin is 65535 in the main

histogram.

Notes
• This code operates on four interleaved histogram bins. The loop is divided into two

halves. The even half operates on even words full of pixels and the odd half operates
on odd words. Each half processes 4 pixels at a time, and both halves operate on the
same four sets of histogram bins. This introduces a memory dependency on the
histogram bins which ordinarily would degrade performance. To break the memory
dependencies, the two halves forward their results to each other via the register file,
bypassing memory. Exact memory access ordering obviates the need to predicate
stores.

• The algorithm is ordered as follows:
1. Load from histogram for even half.
2. Store odd_bin to histogram for odd half (previous iteration).
3. If data_even = previous data_odd, increment even_bin by 2, else increment

even_bin by 1, forward to odd.
4. Load from histogram for odd half (current iteration).

30 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_histogram_8 — Histogram Computation

5. Store even_bin to histogram for even half.
6. If data_odd = previous data_even increment odd_bin by 2, else increment

odd_bin by 1, forward to even.
7. Go to 1.

• With this particular ordering, forwarding is necessary between even/odd halves when
pixels in adjacent halves need to be placed in the same bin. The store is never
predicated and occurs speculatively as it will be overwritten by the next value
containing the extra forwarded value.

• The four histograms are interleaved with each bin spaced four half-words apart and
each histogram starting in a different memory bank. This allows the four histogram
accesses to proceed in any order without worrying about bank conflicts. The diagram
below illustrates this (addresses are half-word offsets):

0 1 2 3 4 5
hst0 hst1 hst2 hst3 hst0 hst1
bin0 bin0 bin0 bin0 bin1 bin1

• Bank Conflicts: No bank conflicts occur in this function.
• Endian: The code is LITTLE ENDIAN.
• Interruptibility: The code is interrupt-tolerant, but not interruptible.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 31
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.9 IMG_histogram_16
IMG_histogram_16 — Histogram Computation for 16-bit Input www.ti.com

IMG_histogram_16 Histogram Computation for 16-bit Input

Syntax void IMG_histogram_16(unsigned short *restrict in, short *restrict hist, short *restrict
t_hist, int n, int accumulate, int img_bits)

Arguments

in Input image of size n
hist Array of updated histogram bins
t_hist Array of temporary histogram bins
n Nunber of pixels in input image
accumulate 1: add to existing histogram in hist[]

-1: subtract from existing histogram in hist[]
img_bits Number of valid data bits in a pixel

Description This code takes a histogram of an array (of type short) with n number of pixels, with
img_bits being the number of valid data bits in a pixel. It returns the histogram of
corresponding number of bins at img_bits bits precision. It can either add or subtract to
an existing histogram, using the accumulate control. It requires some temporary storage
for four temporary histograms, which are later summed together. The length of the hist
and the t_hist arrays depends on the value of img_bits. The length of the hist array is
2(img_bits) and that of t_hist is 4 * 2(img_bits) as there are no pixel values greater than
or equal to 2(img_bits) in the given image.

Algorithm This is the C code implementation without any restrictions. However, intrinsic code has
restrictions as listed in the special requirements.
void IMG_histogram_16
(

unsigned short *restrict in,
short *restrict hist,
short *restrict t_hist,

int n,
int accumulate,
int img_bits

)
{

int p0, p1, p2;
int p3, i, length;

/* --- */
/* this loop is unrolled four times, producing four */
/* interleaved histograms into a temporary buffer. */
/* --- */
for (i = 0; i < n; i += 4)
{

p0 = in[i] * 4;
p1 = in[i + 1] * 4 + 1;
p2 = in[i + 2] * 4 + 2;
p3 = in[i + 3] * 4 + 3;

t_hist[p0]++;
t_hist[p1]++;
t_hist[p2]++;
t_hist[p3]++;

}

/* -- */
/* Calculate the length of the histogram array */
/* -- */
length = 1 << img_bits;

32 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_histogram_16 — Histogram Computation for 16-bit Input

for (i = 0; i < length; i++)
{

hist[i] += (t_hist[i * 4 + 0] +
t_hist[i * 4 + 1] +
t_hist[i * 4 + 2] +
t_hist[i * 4 + 3]) * accumulate;

}
}

Special Requirements
• n must be a multiple of 8 and greater than or equal to 8.
• The elements of arrays of data, t_hist are initialized to zero.
• in and t_hist arrays must be double-word aligned.
• hist array must be word-aligned
• Input and output arrays do not overlap
• img_bits must be at least 1

Implementation Notes
• This code operates on four interleaved histogram bins. The loop is divided into two

halves. The even half operates on even double words full of pixels and the odd half
operates on odd double words. Each half processes four pixels at a time, and both
halves operate on the same four sets of histogram bins. This introduces a memory
dependency on the histogram bins which ordinarily would degrade performance. To
break the memory dependencies, the two halves forward their results to each other
via the register file, bypassing memory. Exact memory access ordering obviates the
need to predicate stores.

• The code is LITTLE ENDIAN.

Compatibility Compatible for both C64x+ and C64x.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 33
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.10 IMG_median_3x3_8
IMG_median_3x3_8 — 3x3 Median Filter www.ti.com

IMG_median_3x3_8 3x3 Median Filter

Syntax void IMG_median_3x3_8(const unsigned char * restrict in_data, int cols, unsigned char *
restrict out_data)

Arguments

in_data Pointer to input image data. No alignment is required.
cols Number of columns in input (or output). Must be multiple of 4.
out_data Pointer to output image data. No alignment is required.

Description This routine performs a 3×3 median filtering algorithm. The gray level at each pixel is
replaced by the median of the nine neighborhood values. The function processes three
lines of input data pointed to by in_data, where each line is cols’ pixels wide, and writes
one line of output data to out_data. For the first output pixel, two columns of input data
outside the input image are assumed to be all 127.

The median of a set of nine numbers is the middle element, so that half of the elements
in the list are larger and half are smaller. A median filter removes the effect of extreme
values from data. It is a commonly used operation for reducing impulsive noise in
images.

Algorithm The algorithm processes a 3×3 region as three 3-element columns, incrementing through
the columns in the image. Each column of data is first sorted into MAX, MED, and MIN
values, resulting in the following arrangement:

I00 I01 I02 MAX
I10 I11 I12 MED
I20 I21 I22 MIN

Where I00 is the MAX of the first column, I10 is the MED of the first column, I20 is the
MIN of the first column and so on.

The three MAX values I00, I01, I02 are then compared and their minimum value is
retained, call it MIN0.

The three MAX values I00, I01, I02 are then compared and their minimum value is
retained, call it MIN0.

The three MIN values I20, I21, I22 are compared and their maximum value is retained,
call it MAX2.

The three values MIN0, MED1, MAX2 are then sorted and their median is the median
value for the nine original elements.

After this output is produced, a new set of column data is read in, say I03, I13, I23. This
data is sorted as a column and processed along with I01, I11, I21, and I02, I12, I22 as
explained above. Since these two sets of data are already sorted, they can be re-used
as is.

Special Requirements
• cols must be a multiple of 4.
• No alignment is required.

Implementation Notes
• Bank Conflicts: No bank conflicts occur.
• Endian: The code is LITTLE ENDIAN.
• Interruptibility:The code is fully interruptible.

DSPImage/Video Processing Library34 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.11 IMG_perimeter_8
www.ti.com IMG_perimeter_8 — Perimeter Structural Operator

IMG_perimeter_8 Perimeter Structural Operator

Syntax void IMG_perimeter_8 (const unsigned char * restrict in_data, int cols, unsigned char *
restrict out_data)

Arguments

in_data[] Input image data. Must be double-word aligned.
cols Number of input columns. Must be multiple of 16.
out_data[] Output boundary image data.

Description This routine produces the boundary of an object in a binary image. It echoes the
boundary pixels with a value of 0xFF and sets the other pixels to 0x00. Detection of the
boundary of an object in a binary image is a segmentation problem and is done by
examining spatial locality of the neighboring pixels. This is done by using the four
connectivity algorithm:

pix_top
pix_lft pix_cent pix_rgt

pix_bot

The output pixel at location pix_cent is echoed as a boundary pixel if pix_cent is
non-zero and any one of its four neighbors is zero. The four neighbors are as shown
above.

Algorithm Behavioral C code for the routine is provided below:
void IMG_perimeter (unsigned char *in_data, int cols, unsigned char *out_data)
{

Int icols, count = 0;
unsigned char pix_lft, pix_rgt, pix_top;
unsigned char pix_bot, pix_cent;

for(icols = 1; icols < (cols-1); icols++)
{

pix_lft = in_data[icols - 1];
pix_cent = in_data[icols + 0];
pix_rgt = in_data[icols + 1];
pix_top = in_data[icols - cols];
pix_bot = in_data[icols + cols];
if (((pix_lft==0)||(pix_rgt==0)||(pix_top==0)||(pix_bot==0))
&& (pix_cent > 0))
{

out_data[icols] = pix_cent;
count++;

}
else
{

out_data[icols] = 0;
}

}
return(count);

}

Special Requirements
• Array in_data[] must be double-word aligned.
• cols must be a multiple of 16.
• This code expects three input lines each of width cols pixels and produces one

output line of width (cols – 1) pixels.

Notes
• Double word wide loads are used to bring in pixels from three consecutive lines.
• The instructions CMPEQ4/CMPGTU4 are used to compare if pixels are greater than

or equal to zero. Comparison results are re-used between adjacent comparisons.
• Multiplies replace some of the conditional operations to reduce the bottleneck on the

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 35
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

IMG_perimeter_8 — Perimeter Structural Operator www.ti.com

predication registers as well as on the .L, .S, and .D units.
• XPND4 and BITC4 are used to perform expansion and bit count.
• The loop is unrolled once and computes 16 output pixels per iteration.
• Bank Conflicts: No bank conflicts occur.
• Endian: This code is LITTLE ENDIAN.
• Interruptibility: The code is interrupt-tolerant but not interruptible.

DSPImage/Video Processing Library36 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.12 IMG_perimeter_16
www.ti.com IMG_perimeter_16 — Perimeter structural operator for 16-bit input

IMG_perimeter_16 Perimeter structural operator for 16-bit input

Syntax void IMG_perimeter_16 (const unsigned short*restrict in, int cols, unsigned short
*restrict out)

Arguments

in Pointer to input image 16-bit unsigned
cols Number of columns in the input image
out Pointer to output image 16-bit unsigned

Description This function computes and returns the boundary of an object in a binary image. It
echoes the boundary pixels with a value of 0xFFFF and sets the other pixels to 0x0000.
Detection of the boundary of an object in a binary image is a segmentation problem and
is done by examining spatial locality of the neighboring pixels, using the four connectivity
algorithm:
pix_up
pix_lft pix_cent pix_rgt
pix_dn

The output pixel at location pix_cent is echoed as a boundary pixel, if pix_cent is
non-zero and any one of its four neighbors (shown above) is zero. Perimeter pixels
retain their original grey level in the output. Non-perimeter pixels are set to zero in the
output. Pixels on the far left and right edges of a row are defined as *not* being on the
perimeter, and are always forced to zero.

Algorithm This is the C code implementation without any restrictions. However, intrinsic code has
restrictions as listed in the special requirements:
int IMG_perimeter_16
(

const unsigned short *restrict in,
int cols,

unsigned short *restrict out
)
{

int i, count;
unsigned short pix_lft, pix_rgt, pix_top;
unsigned short pix_bot, pix_mid;
count = 0;
for(i = 0; i < cols; i++)
{

pix_lft = in[i - 1];
pix_mid = in[i];
pix_rgt = in[i + 1];
pix_top = in[i - cols];
pix_bot = in[i + cols];

if (((pix_lft == 0) || (pix_rgt == 0) ||
(pix_top == 0) || (pix_bot == 0)) && (pix_mid > 0))

{
out[i] = pix_mid;
count++;

}
else
{

out[i] = 0;
}

}
if (out[cols - 1]) count--;
if (out[0]) count--;
out[0] = out[cols - 1] = 0;
return count;

}

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 37
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

IMG_perimeter_16 — Perimeter structural operator for 16-bit input www.ti.com

Special Requirements
• cols must be a multiple of 8
• Input and output arrays must be double-word aligned
• Input and output arrays should not overlap

Implementation Notes
• Eight output pixels are calculated per iteration
• Each function call calculates one new row of output for three rows of input
• The code is LITTLE ENDIAN.

Compatibility Compatible for both C64x+ and C64x.

DSPImage/Video Processing Library38 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.13 IMG_pix_expand
www.ti.com IMG_pix_expand — Pixel Expand

IMG_pix_expand Pixel Expand

Syntax void IMG_pix_expand(int n, const unsigned char * restrict in_data, short * restrict
out_data)

Arguments

n Number of samples to process. Must be multiple of 16.
in_data Pointer to input array (unsigned chars). Must be double-word aligned.
out_data Pointer to output array (shorts). Must be double-word aligned.

Description This routine takes an array of unsigned chars (8-bit pixels), and zero-extends them to
signed 16-bit values (shorts).

Algorithm Behavioral C code for the routine is provided below:
void IMG_pix_expand (int n, unsigned char *in_data, short *out_data)

{
int j;
for (j = 0; j < n; j++)

out_data[j] = (short) in_data[j];
}

Special Requirements
• in_data and out_data must be double-word aligned.
• n must be a multiple of 16.

Notes
• Bank Conflicts: No bank conflicts occur.
• Endian: The code is LITTLE ENDIAN.
• Interruptibility: The code is interrupt-tolerant, but not interruptible
• The loop is unrolled 16 times, loading bytes with LDDW. It uses UNPKHU4 and

UNPKLU4 to unpack the data and store the results with STDW.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 39
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.14 IMG_pix_sat
IMG_pix_sat — Pixel Saturate www.ti.com

IMG_pix_sat Pixel Saturate

Syntax void IMG_pix_sat(int n, const short * restrict in_data, unsigned char * restrict out_data)

Arguments

n Number of samples to process. Must be multiple of 32.
in_data Pointer to input data (shorts).
out_data Pointer to output data (unsigned chars).

Description This routine performs the saturation of 16-bit signed numbers to 8-bit unsigned numbers.
If the data is over 255, it is clamped to 255. If it is less than 0, it is clamped to 0.

Algorithm Behavioral C code for the routine is provided below:
void IMG_pix_sat_cn
(

int n,
const short in_data,
unsigned char out_data

)
{

int i, pixel;
for (i = 0; i < n; i++)
{

pixel = in_data[i];
if (pixel > 0xFF)
{

out_data[i] = 0xFF;
} else if (pixel < 0x00)
{

out_data[i] = 0x00;
} else
{

out_data[i] = pixel;
}

}
}

Special Requirements
• The input size n must be a multiple of 32. The code behaves correctly if n is zero.

Notes
• Bank Conflicts: No bank conflicts occur.
• Endian: The code is LITTLE ENDIAN.
• Interruptibility: The code is fully interruptible.
• The inner loop has been unrolled to fill a 6 cycle loop. This allows the code to be

interruptible.
• The prolog and epilog have been collapsed into the kernel.

DSPImage/Video Processing Library40 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.15 IMG_sobel_3x3_8
www.ti.com IMG_sobel_3x3_8 — Sobel Edge Detection

IMG_sobel_3x3_8 Sobel Edge Detection

Syntax void IMG_sobel_3x3_8(const unsigned char *in_data, unsigned char *out_data, short
cols, short rows)

Arguments

in_data[] Input image of size cols * rows.
out_data[] Output image of size cols * (rows-2).
cols Number of columns in the input image. Must be multiple of 2.
rows Number of rows in the input image. cols * (rows-2) must be multiple

of 8.

Description This routine applies horizontal and vertical Sobel edge detection masks to the input
image and produces an output image which is two rows shorter than the input image.
Within each row of the output, the first and the last pixel will not contain meaningful
results.

Algorithm The Sobel edge-detection masks shown below are applied to the input image separately.
The absolute values of the mask results are then added together. If the resulting value is
larger than 255, it is clamped to 255. The result is then written to the output image.

Horizontal Mask Vertical Mask
-1 -2 -1 -1 0 1
0 0 0 -2 0 2
1 2 1 -1 0 1

This is a C model of the Sobel implementation. This C code is functionally equivalent to
the assembly code without restrictions. The assembly code may impose additional
restrictions.
void IMG_sobel
(

const unsigned char *in, /* Input image data */
unsigned char *out, /* Output image data */
short cols, short rows /* Image dimensions */

)
{

int H, O, V, i;
int i00, i01, i02;
int i10, i12;
int i20, i21, i22;
int w = cols;

/* -- */
/* Iterate over entire image as a single, continuous raster line. */
/* -- */
for (i = 0; i < cols*(rows-2) - 2; i++)
{

/* -- */
/* Read in the required 3x3 region from the input. */
/* -- */
i00=in[i]; i01=in[i +1]; i02=in[i +2];
i10=in[i+ w]; i12=in[i+ w+2];
i20=in[i+2*w]; i21=in[i+2*w+1]; i22=in[i+2*w+2];

/* -- */
/* Apply horizontal and vertical filter masks. The final filter */
/* output is the sum of the absolute values of these filters. */
/* -- */

H = - i00 - 2*i01 - i02 +

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 41
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

IMG_sobel_3x3_8 — Sobel Edge Detection www.ti.com

+ i20 + 2*i21 + i22;

V = - i00 + i02
- 2*i10 + 2*i12
- i20 + i22;

O = abs(H) + abs(V);

/* -- */
/* Clamp to 8-bit range. The output is always positive due to */
/* the absolute value, so we only need to check for overflow. */
/* -- */
if (O > 255) O = 255;

/* -- */
/* Store it. */
/* -- */
out[i + 1] = O;

}
}

Special Requirements
• cols must be a multiple of 2.
• At least eight output pixels must be processed; i.e., cols * (rows-2) must be a multiple

of 8.

Notes
• Bank Conflicts: No bank conflicts occur.
• Endian: The code is LITTLE ENDIAN.
• Interruptibility: The code is interrupt-tolerant, but not interruptible.
• The values of the left-most and right-most pixels on each line of the output are not

computed.
• Eight output pixels are computed per iteration using loop unrolling and packed

operations.
• The last stage of the epilog is kept to accommodate for the exception of storing only

6 outputs in the last iteration.

DSPImage/Video Processing Library42 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.16 IMG_sobel_3x3_16s
www.ti.com IMG_sobel_3x3_16s — 3x3 Sobel Edge Detection for 16-bit Input

IMG_sobel_3x3_16s 3x3 Sobel Edge Detection for 16-bit Input

Syntax void IMG_sobel_3x3_16s (const short *restrict in, const short *restrict out, short cols,
short rows))

Arguments

in[] Image input of size rows x cols
out[] Image output of size (rows - 2) x cols
cols Number of columns in the input image
rows Number of rows in the input image

Description This function applies horizontal and vertical Sobel edge detection masks to the input
image and produces an output image which is two rows shorter than the input image.
Within each row of the output, the first and the last pixel will not contain meaningful
results.

Algorithm The Sobel edge-detection masks shown below are applied to the input image separately.
The absolute values of the mask results are then added together. If the resulting value is
larger than 32767, it is clamped to 32767. The result is then written to the output image.

Horizontal Mask
-1 -2 -1
0 0 0
1 2 1

Vertical Mask
-1 0 1
-2 0 2
-1 0 1

This is the C code implementation without any restrictions. However intrinsic code has
restrictions as listed in the special requirements.
void IMG_sobel_3x3_16s
(

const short *restrict in, /* Input image data */
short *restrict out, /* Output image data */
short cols, /* image columns */
short rows /* Image rows */

)
{

int H, O, V;
int i;
int i00, i01, i02;
int i10, i12;
int i20, i21, i22;

/* -- */
/* Iterate over entire image as a single, continuous raster line*/
/* -- */

for (i = 0; i < (cols * (rows - 2) - 2); i++)
{

/* --- */
/* Read in the required 3x3 region from the input. */
/* --- */

i00 = in[i];
i01 = in[i + 1];

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 43
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

IMG_sobel_3x3_16s — 3x3 Sobel Edge Detection for 16-bit Input www.ti.com

i02 = in[i + 2];
i10 = in[i + cols];
i12 = in[i + cols + 2];
i20 = in[i + 2 * cols];
i21 = in[i + 2 * cols + 1];
i22 = in[i + 2 * cols + 2];

/* --- */
/* Apply horizontal and vertical filter masks. The final */

/* filter output is the sum of the absolute values of */
/* these filters. */
/* --- */

H = - i00 - 2 * i01 - i02
+ i20 + 2 * i21 + i22;

V = - i00 + i02
- 2 * i10 + 2 * i12
- i20 + i22;

O = abs(H) + abs(V);

/* --- */
/* Clamp to 16-bit range. The output is always positive */
/* due to the absolute value, so we only need to check */
/* for overflow */
/* --- */

O = (O > 32767) ? 32767 : O;

/* --- */
/* Store the output result */
/* --- */

out[i + 1] = O;
}

}

Special Requirements
• cols must be a multiple of 2 and greater than 3
• rows must be greater than or equal to 3
• Input and output arrays have no alignment requirements
• Input and output arrays should not overlap

Implementation Notes
• The values of the left-most and right-most pixels on each line of the output are not

well defined
• Loop is unrolled by two manually, and further unroll by two is performed by the

compiler to calculate four output samples per iteration
• The code is LITTLE ENDIAN.

Compatibility Compatible for C64x+.

DSPImage/Video Processing Library44 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.17 IMG_sobel_3x3_16
www.ti.com IMG_sobel_3x3_16 — 3x3 Sobel Edge Detection for Unsigned 16-bit input

IMG_sobel_3x3_16 3x3 Sobel Edge Detection for Unsigned 16-bit input

Syntax void IMG_sobel_3x3_16 (const unsigned short *restrict in, unsigned short *restrict out,
short cols, short rows))

Arguments

in[] Image input of size rows x cols
out[] Image output of size (rows - 2) x cols
cols Number of columns in the input image
rows Number of rows in the input image

Description The IMG_sobel filter is applied to the input image. The input image dimensions are given
by the arguments 'cols' and 'rows'. The output image is 'cols' pixels wide and 'rows - 2'
pixels tall.

To see how the implementation is going to work on the input buffer, imagine the
following input buffer.

yyyyyyyyyyyyyyyy
yxxxxxxxxxxxxxxy
yxxxxxxxxxxxxxxy
yxxxxxxxxxxxxxxy
yxxxxxxxxxxxxxxy
yyyyyyyyyyyyyyyy

The output buffer would be:
tXXXXXXXXXXXXXXz
zXXXXXXXXXXXXXXz
zXXXXXXXXXXXXXXz
zXXXXXXXXXXXXXXt

Where:

X = IMG_sobel(x) The algorithm is applied to that pixel. The correct output is obtained;
the data around the pixels that are worked on is used.

t = Whatever was in the output buffer in that position is kept there.

z = IMG_sobel(y) The algorithm is applied to that pixel. The output is not meaningful,
because the necessary data to process the pixel is not available. This is because for
each output pixel, input pixels from the right and from the left of the output pixel are
needed; however, this data doesn't exist.

This means that only (rows-2) lines will be processed, and then all the pixels inside each
line will be processed Even though the results for the first and last pixels in each line will
not be relevant, it makes the control much simpler and ends up saving cycles. Also, the
first pixel in the first processed line and the last pixel in the last processed line will not be
computed. It is not necessary, since the results would not be valid. The following
horizontal and vertical masks that are applied to the input buffer to obtain one output
pixel.

Horizontal Vertical
-1 -2 -1 -1 0 1
0 0 0 -2 0 2
1 2 1 -1 0 1

Algorithm This is a C model of the Sobel implementation..
void IMG_sobel_3x3_16
(

const unsigned short *in, /* Input image data */
unsigned short *out, /* Output image data */
short cols, short rows /* Image dimensions */

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 45
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

IMG_sobel_3x3_16 — 3x3 Sobel Edge Detection for Unsigned 16-bit input www.ti.com

)
{

/* -- */
/* Intermediate values. */
/* -- */
int H; /* Horizontal mask result */
int V; /* Vertical mask result */
int O; /* Sum of horizontal and vertical masks */
int i; /* Input pixel offset */
int o; /* Output pixel offset. */
int xy; /* Loop counter. */

/* -- */
/* Input values. */
/* -- */
int i00, i01, i02;
int i10, i12;
int i20, i21, i22;

/* -- */
/* Step through the entire image. We step */
/* through 'rows - 2' rows in the output image, */
/* since those are the only rows that are fully */
/* defined for our filter. */
/* -- */
for (xy = 0, i = cols + 1, o = 1;

xy < cols*(rows-2) - 2;
xy++, i++, o++)

{

/* -- */
/* Read necessary data to process an input */
/* pixel. The following instructions are */
/* written to reflect the position of the */
/* input pixels in reference to the pixel */
/* being processed, which would correspond */
/* to the blank space left in the middle. */
/* -- */
i00=in[i-cols-1]; i01=in[i-cols]; i02=in[i-cols+1];
i10=in[i -1]; i12=in[i +1];
i20=in[i+cols-1]; i21=in[i+cols]; i22=in[i+cols+1];

/* -- */
/* Apply the horizontal mask. */
/* -- */
H = -i00 - 2*i01 - i02 + i20 + 2*i21 + i22;

/* -- */
/* Apply the vertical mask. */
/* -- */
V = -i00 + i02 - 2*i10 + 2*i12 - i20 + i22;

O = abs(H) + abs(V);

/* -- */
/* If the result is over 65535 (largest valid */
/* pixel value), saturate (clamp) to 65535. */
/* -- */
if (O > 0xFFFF) O = 0xFFFF;

/* -- */
/* Store the result. */
/* -- */
out[o] = O;

}
}

Four output pixels are computed per iteration using loop unrolling and packed
operations.

Special Requirements At least four output pixels must be processed. The input image width must be even (eg.
'cols' must be even). rows >= 3

46 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_sobel_3x3_16 — 3x3 Sobel Edge Detection for Unsigned 16-bit input

Implementation Notes
• No bank conflicts occur
• No bank conflicts occur
• The values of the left-most and right-most pixels on each line of the output are not

well-defined
• The code is LITTLE ENDIAN

Compatibility Compatible for C64x+ and C64x.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 47
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.18 IMG_sobel_5x5_16s
IMG_sobel_5x5_16s — 5x5 Sobel Edge Detection for 16-bit Input www.ti.com

IMG_sobel_5x5_16s 5x5 Sobel Edge Detection for 16-bit Input

Syntax void IMG_sobel_5x5_16s (const short *restrict in, short *restrict out, short cols, short
rows)

Arguments

in[] Image input of size rows x cols
out[] Image output of size (rows - 4) x cols
cols Number of columns in the input image
rows Number of rows in the input image

Description This function applies horizontal and vertical Sobel edge detection masks to the input
image and produces an output image which is four rows shorter than the input image.
Within each row of the output, the first two and the last two pixels will not contain
meaningful results.

Algorithm The Sobel edge-detection masks shown below are applied to the input image separately.
The absolute values of the mask results are then added together. If the resulting value is
larger than 32767, it is clamped to 32767. The result is then written to the output image.

Horizontal Mask Vertical Mask
-1 -4 -6 -4 -1 1 2 0 -2 -1
-2 -8 -12 -8 -2 4 8 0 -8 -4
0 0 0 0 0 6 12 0 -12 -6
2 8 12 8 2 4 8 0 -8 -4
1 4 6 4 1 1 2 0 -2 -1

This is the C code implementation without any restrictions. However intrinsic code has
restrictions as listed in the special requirements.
void IMG_sobel_5x5_16s
(

const short *restrict in, /* Input image data */
short *restrict out, /* Output image data */
short cols, /* image columns */
short rows /* Image rows */

)
{

int H, O, V;
int i;

int i00, i01, i02;
int i03, i04, i10;
int i11, i12, i13;
int i14, i20, i21;
int i23, i24, i30;
int i31, i32, i33;
int i34, i40, i41;
int i42, i43, i44;

for (i = 0; i < cols * (rows - 4) - 4; i++)
{

i00 = in[i];
i01 = in[i + 1];
i02 = in[i + 2];
i03 = in[i + 3];
i04 = in[i + 4];

i10 = in[i + cols];
i11 = in[i + cols + 1];

48 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_sobel_5x5_16s — 5x5 Sobel Edge Detection for 16-bit Input

i12 = in[i + cols + 2];
i13 = in[i + cols + 3];
i14 = in[i + cols + 4];

i20 = in[i + 2 * cols];
i21 = in[i + 2 * cols + 1];
i23 = in[i + 2 * cols + 3];
i24 = in[i + 2 * cols + 4];

i30 = in[i + 3 * cols];
i31 = in[i + 3 * cols + 1];
i32 = in[i + 3 * cols + 2];
i33 = in[i + 3 * cols + 3];
i34 = in[i + 3 * cols + 4];

i40 = in[i + 4 * cols];
i41 = in[i + 4 * cols + 1];
i42 = in[i + 4 * cols + 2];
i43 = in[i + 4 * cols + 3];
i44 = in[i + 4 * cols + 4];

H = - i00 - 4 * i01 - 6 * i02 - 4 * i03 - i04
- 2 * i10 - 8 * i11 -12 * i12 - 8 * i13 - 2 * i14
+ 2 * i30 + 8 * i31 +12 * i32 + 8 * i33 + 2 * i34
+ i40 + 4 * i41 + 6 * i42 + 4 * i43 + i44;

V = + i00 + 2 * i01 - 2 * i03 - i04
+ 4 * i10 + 8 * i11 - 8 * i13 - 4 * i14
+ 6 * i20 +12 * i21 -12 * i23 - 6 * i24
+ 4 * i30 + 8 * i31 - 8 * i33 - 4 * i34
+ i40 + 2 * i41 - 2 * i43 - i44;

O = abs(H) + abs(V);
O = (O > 32767) ? 32767 : O;

out[i + 2]= O;
}

}

Special Requirements
• cols must be a multiple of 2 and greater than 5
• rows must be greater than or equal to 5
• cols x (rows-4)-4>=2
• Input and output arrays should be half-word aligned
• Input and output arrays do not overlap

Implementation Notes
• The values of the left-most and right-most pixels on each line of the output are not

well defined
• The loop computes two output pixels per iteration
• The code is LITTLE ENDIAN.

Compatibility Compatible for C64x+.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 49
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.19 IMG_sobel_7x7_16s
IMG_sobel_7x7_16s — 7x7 Sobel Edge Detection for 16-bit Input www.ti.com

IMG_sobel_7x7_16s 7x7 Sobel Edge Detection for 16-bit Input

Syntax void IMG_sobel_7x7_16s (const short *restrict in, short *restrict out, short cols, short
rows)

Arguments

in[] Image input of size rows x cols
out[] Image output of size (rows - 6) x cols
cols Number of columns in the input image
rows Number of rows in the input image

Description This function applies horizontal and vertical sobel edge detection masks to the input
image and produces an output image which is six rows shorter than the input image.
Within each row of the output, the first three and the last three pixels will not contain
meaningful results.

Algorithm The Sobel edge-detection masks shown below are applied to the input image separately.
The absolute values of the mask results are then added together. If the resulting value is
larger than 32767, it is clamped to 32767. The result is then written to the output image.

Horizontal Mask Vertical Mask
-1 -1 -1 -2 -1 -1 -1 -1 -1 -1 0 1 1 1
-1 -1 -1 -2 -1 -1 -1 -1 -1 -1 0 1 1 1
-1 -1 -1 -2 -1 -1 -1 -1 -1 -1 0 1 1 1
0 0 0 0 0 0 0 -2 -2 -2 0 2 2 2
1 1 1 2 1 1 1 -1 -1 -1 0 1 1 1
1 1 1 2 1 1 1 -1 -1 -1 0 1 1 1
1 1 1 2 1 1 1 -1 -1 -1 0 1 1 1

This is the C code implementation without any restrictions. However intrinsic code has
restrictions as listed in the special requirements.
void IMG_sobel_7x7_16s
(

const short *restrict in, /* Input image data */
short *restrict out, /* Output image data */
short cols, /* image columns */
short rows /* Image rows */

)
{

int H, O, V;
int i;
int i00, i01, i02;
int i03, i04, i05;
int i06, i10, i11;
int i12, i13, i14;
int i15, i16, i20;
int i21, i22, i23;
int i24, i25, i26;
int i30, i31, i32;
int i34, i35, i36;
int i40, i41, i42;
int i43, i44, i45;
int i46, i50, i51;
int i52, i53, i54;
int i55, i56, i60;
int i61, i62, i63;
int i64, i65, i66;

for (i = 0; i < (cols * (rows - 6) - 6); i++)

50 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_sobel_7x7_16s — 7x7 Sobel Edge Detection for 16-bit Input

{
/* -- */
/* Read in the required 7x7 region from the input. */
/* -- */
i00 = in[i]; i01 = in[i + 1]; i02 = in[i + 2];
i03 = in[i + 3]; i04 = in[i + 4]; i05 = in[i + 5];
i06 = in[i + 6];

i10 = in[i + cols]; i11 = in[i + cols + 1];
i12 = in[i + cols + 2]; i13 = in[i + cols + 3];
i14 = in[i + cols + 4]; i15 = in[i + cols + 5];
i16 = in[i + cols + 6];

i20 = in[i + 2 * cols]; i21 = in[i + 2 * cols + 1];
i22 = in[i + 2 * cols + 2]; i23 = in[i + 2 * cols + 3];
i24 = in[i + 2 * cols + 4]; i25 = in[i + 2 * cols + 5];
i26 = in[i + 2 * cols + 6];

i30 = in[i + 3 * cols]; i31 = in[i + 3 * cols + 1];
i32 = in[i + 3 * cols + 2]; i34 = in[i + 3 * cols + 4];
i35 = in[i + 3 * cols + 5]; i36 = in[i + 3 * cols + 6];

i40 = in[i + 4 * cols]; i41 = in[i + 4 * cols + 1];
i42 = in[i + 4 * cols + 2]; i43 = in[i + 4 * cols + 3];
i44 = in[i + 4 * cols + 4]; i45 = in[i + 4 * cols + 5];
i46 = in[i + 4 * cols + 6];

i50 = in[i + 5 * cols]; i51 = in[i + 5 * cols + 1];
i52 = in[i + 5 * cols + 2]; i53 = in[i + 5 * cols + 3];
i54 = in[i + 5 * cols + 4]; i55 = in[i + 5 * cols + 5];
i56 = in[i + 5 * cols + 6];

i60 = in[i + 6 * cols];
i61 = in[i + 6 * cols + 1]; i62 = in[i + 6 * cols + 2];
i63 = in[i + 6 * cols + 3]; i64 = in[i + 6 * cols + 4];
i65 = in[i + 6 * cols + 5]; i66 = in[i + 6 * cols + 6];

/* --- */
/* Apply horizontal and vertical filter masks. The final */
/* filter output is the sum of the absolute values of */
/* these filters. */

/* --- */

H = - i00 - i01 - i02 - 2 * i03 - i04 - i05 - i06
- i10 - i11 - i12 - 2 * i13 - i14 - i15 - i16
- i20 - i21 - i22 - 2 * i23 - i24 - i25 - i26
+ i40 + i41 + i42 + 2 * i43 + i44 + i45 + i46
+ i50 + i51 + i52 + 2 * i53 + i54 + i55 + i56
+ i60 + i61 + i62 + 2 * i63 + i64 + i65 + i66;

V = - i00 - i01 - i02 + i04 + i05 + i06
- i10 - i11 - i12 + i14 + i15 + i16
- i20 - i21 - i22 + i24 + i25 + i26
- 2 * i30 - 2 * i31 - 2 * i32 + 2 * i34 + 2 * i35
+ 2 * i36
- i40 - i41 - i42 + i44 + i45
+ i46

- i50 - i51 - i52 + i54 + i55
+ i56
- i60 - i61 - i62 + i64 + i65
+ i66;

O = abs(H) + abs(V);

/* -- */
/* Clamp to 16-bit range. The output is always positive */
/* due to the absolute value, so we only need to check */
/* overflow. */
/* -- */
O = (O > 32767) ? 32767 : O;

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 51
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

IMG_sobel_7x7_16s — 7x7 Sobel Edge Detection for 16-bit Input www.ti.com

/* -- */
/* Store it. */
/* -- */
out[i + 3] = O;

}
}

Special Requirements
• cols must be a multiple of 2 and greater than 7
• rows must be greater than or equal to 7
• cols x (rows-6)-6>=2
• Input and output arrays should be half-word aligned
• Input and output arrays do not overlap

Implementation Notes
• The values of the three left-most and three right-most pixels on each line of the

output are not well defined
• The loop computes two output pixels per iteration
• The code is LITTLE ENDIAN.

Compatibility Compatible for C64x+.

DSPImage/Video Processing Library52 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.20 IMG_thr_gt2max_8
www.ti.com IMG_thr_gt2max_8 — Thresholding - Clamp to 255

IMG_thr_gt2max_8 Thresholding - Clamp to 255

Syntax void IMG_thr_gt2max_8(const unsigned char * restrict in_data, unsigned char * restrict
out_data, short cols, short rows, unsigned char threshold)

Arguments

in_data[] Pointer to input image data. Must be double–word aligned.
out_data[] Pointer to output image data. Must be double–word aligned.
cols Number of image columns.
rows Number of image rows. (col*rows) must be multiple of 16.
threshold Threshold value.

Description This routine performs a thresholding operation on an input image in in_data[] whose
dimensions are given by the arguments cols and rows. The thresholded pixels are
written to the output image pointed to by out_data[]. The input and output have exactly
the same dimensions.

Pixels that are below or equal to the threshold value are written to the output unmodified.
Pixels that are greater than the threshold are set to 255 in the output image.

See the functions IMG_thr_le2min, IMG_thr_le2thr and IMG_thr_gt2thr for other
thresholding functions.

Algorithm Behavioral C code for this routine is provided below:
void IMG_thr_gt2max(const unsigned char *in_data, unsigned char *out_data, short
cols, short rows, unsigned char threshold)
{

int i;

for (i = 0; i < rows * cols; i++)
out_data[i] = in_data[i] > threshold ? 255 : in_data[i];

}

Special Requirements
• Input and output buffers do not alias.
• Input and output buffers must be double-word aligned.
• rows* cols must be a multiple of 16.

Notes
• Bank Conflicts: No bank conflicts occur in this function.
• Endian: This code is LITTLE ENDIAN.
• Interruptibility: The code is interrup-tolerant but not interruptible.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 53
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.21 IMG_thr_gt2max_16
IMG_thr_gt2max_16 — Thresholding - Clamp to 65535 www.ti.com

IMG_thr_gt2max_16 Thresholding - Clamp to 65535

Syntax void IMG_thr_gt2max_16(const unsigned short *restrict in_data, unsigned short *restrict
out_data, short cols, short rows, unsigned short threshold)

Arguments

in_data[] Pointer to input image data. Must be double-word aligned.
out_data[] Number of IDCTs to perform.
cols Number of columns in input image.
rows Number of rows in input image.
threshold Threshold value.

Description This routine performs thresholding operation on an input image pointed to by in_data[].
The dimensions of the input image are given by the arguments cols and rows. The
thresholded pixels are written to the output image pointed to by out_data[]. The input
and output images are exactly of the same dimensions.

Pixels that are below the threshold value are written to the output unmodified. Pixels that
are greater than the threshold are set to 65535 in the output image.

The exact thresholding function performed is described by the following transfer function
diagram:

65535_| _________
| |
| |

O | |
U | |
T th _|.|
P | /.
U | / .
T | / .

| / .
0_|/________.__________
| | |
0 th 65535

INPUT

See the IMGLIB functions IMG_thr_le2thr_16, IMG_thr_gt2thr_16 and
IMG_thr_le2min_16 for other thresholding operations.

Algorithm This is the C code implementation without any restrictions. However, intrinsic code has
restrictions as listed in the special requirements:
void IMG_thr_gt2max_16_c (const unsigned short *restrict in_data, unsigned
short *restrict out_data, short cols, short rows, unsigned
short threshold)
{

int i, pixels = rows * cols;

/* -- */
/* Step through input image copying pixels to the output. If the */
/* pixels are above our threshold, set them to the threshold value. */
/* -- */
#pragma UNROLL(16)

for (i = 0; i < pixels; i++)
out_data[i] = in_data[i] > threshold ? 0xffff : in_data[i];

}

Special Requirements
• The input and output buffers do not alias.
• The input and output buffers must be double-word aligned.

54 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_thr_gt2max_16 — Thresholding - Clamp to 65535

• The total number of pixels rows*cols must be at least 16 and a multiple of 16

Implementation Notes
• The loop is unrolled 16x. Packed-data processing techniques allow us to process all

16 pixels in parallel.
• CMPGT2 is used for comparison, but the unsigned value must be changed to signed

value first, using XOR instructions.

Memory Note
• This code is ENDIAN NEUTRAL.
• The input and output arrays must be double-word aligned
• No bank conflicts occur, regardless of the relative alignment of in_data[] and

out_data[].

Compatibility This code is compatible for C64x+ and C64x.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 55
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.22 IMG_thr_gt2thr_8
IMG_thr_gt2thr_8 — Thresholding - Clip Above Threshold www.ti.com

IMG_thr_gt2thr_8 Thresholding - Clip Above Threshold

Syntax void IMG_thr_gt2thr_8(const unsigned char * restrict in_data, unsigned char * restrict
out_data, short cols, short rows, unsigned char threshold)

Arguments

in_data[] Pointer to input image data. Must be double-word aligned.
out_data[] Pointer to output image data. Must be double-word aligned.
cols Number of image columns.
rows Number of image rows. (cols*rows) must be multiple of 16.
threshold Threshold value.

Description This routine performs a thresholding operation on an input image in in_data[] whose
dimensions are given by the arguments cols and rows. The thresholded pixels are
written to the output image pointed to by out_data[]. The input and output have exactly
the same dimensions.

Pixels that are below or equal to the threshold value are written to the output unmodified.
Pixels that are greater than the threshold are set to the threshold value in the output
image.

See the functions IMG_thr_le2min, IMG_thr_le2thr and IMG_thr_gt2max for other
thresholding functions.

Algorithm Behavioral C code for this routine is provided below:
void IMG_thr_gt2thr(const unsigned char *in_data, unsigned char *out_data, short
cols, short rows, unsigned char threshold)
{

int i;

for (i = 0; i < rows * cols; i++)
out_data[i] = in_data[i] > threshold ? thr : in_data[i];

}

Special Requirements
• Input and output buffers do not alias.
• Input and output buffers must be double-word aligned.
• rows* cols must be a multiple of 16.

Notes
• Bank Conflicts: No bank conflicts occur in this function.
• Endian: This code is ENDIAN NEUTRAL.
• Interruptibility: The code is interrupt-tolerant but not interruptible.

DSPImage/Video Processing Library56 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.23 IMG_thr_gt2thr_16
www.ti.com IMG_thr_gt2thr_16 — Unsigned 16-bit Thresholding - Clip Above Threshold

IMG_thr_gt2thr_16 Unsigned 16-bit Thresholding - Clip Above Threshold

Syntax void IMG_thr_gt2thr_16(const unsigned short *in_data, unsigned short *restrict
out_data, short cols, short rows, unsigned short threshold)

Arguments

in_data[] Pointer to input image data. Must be double-word aligned.
outdata[] Pointer to output image data. Must be double-word aligned.
cols Number of columns in input image.
rows Number of rows in input image.
threshold Threshold value

Description This routine performs a thresholding operation on an input image in in_data[] whose
dimensions are given in the arguments cols and rows. The thresholded pixels are written
to the output image pointed to by out_data[]. The input and output are exactly the same
dimensions.

Pixels that are below the threshold value are written to the output unmodified. Pixels that
are greater than the threshold are set to the threshold value in the output image.

The exact thresholding function performed is described by the following transfer function
diagram:

65535_|
|
|

O |
U |
T th _|. _________
P | /.
U | / .
T | / .

| / .
0_|/________.__________
| | |
0 th 65535

INPUT

See the IMGLIB functions IMG_thr_le2thr_16, IMG_thr_gt2max_16 and
IMG_thr_le2min_16 for other thresholding operations.

Algorithm This is the C code implementation without any restrictions. However intrinsic code has
restrictions as listed in the special requirements
void IMG_thr_gt2thr_16_c (const unsigned short *in_data, unsigned
short *restrict out_data, short cols, short rows, unsigned
short threshold)
{

int i, pixels = rows * cols;

/* -- */
/* Step through input image copying pixels to the output. If the */
/* pixels are above our threshold, set them to the threshold value. */
/* -- */
#pragma UNROLL(16)
for (i = 0; i < pixels; i++)

out_data[i] = in_data[i] > threshold ? threshold : in_data[i];
}

Special Requirements
• The input and output buffers do not alias.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 57
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

IMG_thr_gt2thr_16 — Unsigned 16-bit Thresholding - Clip Above Threshold www.ti.com

• The input and output buffers must be double-word aligned.
• The total number of pixels rows*cols must be at least 16 and a multiple of 16.

Implementation Notes
• The loop is unrolled 16x. Packed-data processing techniques allow us to process all

16 pixels in parallel.
• Compare using MIN2, but first change the unsigned values to signed values, using

XOR 0x8000.

Memory Note This code is ENDIAN NEUTRAL.

Compatibility This code is compatible for both C64x and C64x+.

DSPImage/Video Processing Library58 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.24 IMG_thr_le2min_8
www.ti.com IMG_thr_le2min_8 — Thresholding - Clamp to Zero

IMG_thr_le2min_8 Thresholding - Clamp to Zero

Syntax void IMG_thr_le2min_8(const unsigned char * restrict in_data, unsigned char * restrict
out_data, short cols, short rows, unsigned char threshold)

Arguments

in_data[] Pointer to input image data. Must be double-word aligned.
out_data[] Pointer to output image data. Must be double-word aligned.
cols Number of image columns.
rows Number of image rows. (cols*rows) must be multiple of 16.
threshold Threshold value.

Description This routine performs a thresholding operation on an input image in in_data[] whose
dimensions are given by the arguments cols and rows. The thresholded pixels are
written to the output image pointed to by out_data[]. The input and output have exactly
the same dimensions.

Pixels that are above the threshold value are written to the output unmodified. Pixels that
are less than or equal to the threshold are set to zero in the output image.

See the functions IMG_thr_gt2thr, IMG_thr_le2thr and IMG_thr_gt2max for other
thresholding functions.

Algorithm Behavioral C code for this routine is provided below:
void IMG_thr_le2min(const unsigned char *in_data, unsigned char *out_data, short
cols, short rows, unsigned char threshold)
{

int i;

for (i = 0; i < rows * cols; i++)
out_data[i] = in_data[i] <= threshold ? 0 : in_data[i];

}

Special Requirements
• Input and output buffers do not alias.
• Input and output buffers must be double-word aligned.
• rows* cols must be a multiple of 16.

Notes
• Bank Conflicts: No bank conflicts occur in this function.
• Endian: This code is ENDIAN NEUTRAL.
• Interruptibility: The code is interrupt-tolerant but not interruptible.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 59
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.25 IMG_thr_le2min_16
IMG_thr_le2min_16 — Unsigned 16-bit Thresholding - Clamp to Zero www.ti.com

IMG_thr_le2min_16 Unsigned 16-bit Thresholding - Clamp to Zero

Syntax void IMG_thr_le2min_16 (const unsigned short *in_data, unsigned short *restrict
out_data, short cols, short rows, unsigned short threshold)

Arguments

in_data[] Pointer to input image data. Must be double-word aligned.
out_data[] Pointer to output image data. Must be double-word aligned.
cols Number of columns in input image.
rows Number of rows in input image.
threshold Threshold value.

Description This routine performs a thresholding operation on an input image in in_data[] whose
dimensions are given in the arguments' cols and rows. The thresholded pixels are
written to the output image pointed to by out_data[]. The input and output are exactly
the same dimensions.

Pixels that are above the threshold value are written to the output unmodified. Pixels that
are less than or equal to the threshold are set to 0 in the output image.

The exact thresholding function performed is described by the following transfer function
diagram:

65535_|
| /
| /

O | /
U | /
T th _|. /
P | |
U | |
T | |

| |
0_|_________|__________
| | |
0 th 65535

INPUT

Algorithm This is the C code implementation without any restrictions. However intrinsic code has
restrictions as listed in the special requirements.
void IMG_thr_le2min_16_c(const unsigned short *in_data, unsigned
short *restrict out_data, short cols, short rows, unsigned
short threshold)
{

int i, pixels = rows * cols;

/* -- */
/* Step through input image copying pixels to the output. If the */
/* pixels are below or equal to our threshold, set them to 0. */
/* -- */
for (i = 0; i < pixels; i++)

out_data[i] = in_data[i] <= threshold ? 0 : in_data[i];
}

}

Special Requirements
• The input and output buffers do not alias.
• The input and output buffers must be double-word aligned.
• The total number of pixels rows*cols must be at least 16 and a multiple of 16.

60 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_thr_le2min_16 — Unsigned 16-bit Thresholding - Clamp to Zero

Implementation Notes
• The loop is unrolled 16x. Packed-data processing techniques allow us to process all

16 pixels in parallel.

Memory Note
• This code is ENDIAN NEUTRAL
• No bank conflicts occur, regardless of the relative alignment of in_data[] and

out_data[].

Compatibility This code is compatible for both C64x+ and C64x.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 61
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.26 IMG_thr_le2thr_8
IMG_thr_le2thr_8 — Thresholding - Clip Below Threshold www.ti.com

IMG_thr_le2thr_8 Thresholding - Clip Below Threshold

Syntax void IMG_thr_le2thr_8(const unsigned char * restrict in_data, unsigned char * restrict
out_data, short cols, short rows, unsigned char threshold)

Arguments

in_data[] Pointer to input image data. Must be double-word aligned.
out_data[] Pointer to output image data. Must be double-word aligned.
cols Number of image columns.
rows Number of image rows. (cols*rows) must be multiple of 16.
threshold Threshold value.

Description This routine performs a thresholding operation on an input image in in_data[] whose
dimensions are given by the arguments cols and rows. The thresholded pixels are
written to the output image pointed to by out_data[]. The input and output have exactly
the same dimensions.

Pixels that are above the threshold value are written to the output unmodified. Pixels that
are less than or equal to the threshold are set to the threshold value in the output image.

See the functions IMG_thr_gt2thr, IMG_thr_le2min and IMG_thr_gt2max for other
thresholding functions.

Algorithm Behavioral C code for this routine is provided below:
void IMG_thr_le2thr(const unsigned char *in_data, unsigned char *out_data,
short cols, short rows, unsigned char threshold)
{

int i;

for (i = 0; i < rows * cols; i++)
out_data[i] = in_data[i] <= threshold ? threshold : in_data[i];

}

Special Requirements
• Input and output buffers do not alias.
• Input and output buffers must be double-word aligned.
• rows* cols must be a multiple of 16.

Notes
• Bank Conflicts: No bank conflicts occur in this function.
• Endian: This code is ENDIAN NEUTRAL.
• Interruptibility: The code is interrupt-tolerant but not interruptible.
• The loop is unrolled 16x. Packed-data processing techniques allow the parallel

processing of all 16 pixels.

DSPImage/Video Processing Library62 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.27 IMG_thr_le2thr_16
www.ti.com IMG_thr_le2thr_16 — Unsigned 16-bit Thresholding - Clip Below Threshold

IMG_thr_le2thr_16 Unsigned 16-bit Thresholding - Clip Below Threshold

Syntax void IMG_thr_le2thr_16(constunsigned short *in_data, unsigned short *restrict out_data,
short cols, short rows, unsigned short threshold)

Arguments

in_data[] Pointer to input image data. Must be double-word aligned.
out_data Pointer tooutput image data. Must be double-word aligned.
cols Number of columns in input image.
rows Number of rows in input image.
threshold Threshold value.

Description This routine performs a thresholding operation on an input image in in_data[] whose
dimensions are given in the arguments cols and rows. The thresholded pixels are written
to the output image pointed to by out_data[]. The input and output are exactly the same
dimensions.

Pixels that are above the threshold value are written to the output unmodified. Pixels that
are less than or equal to the threshold are set to the threshold value in the output image.

The exact thresholding function performed is described by the following transfer function
diagram:

65535_|
| /
| /

O | /
U | /
T th _|_________ /
P | .
U | .
T | .

| .
0_|_________.__________
| | |
0 th 65535

INPUT

See the IMGLIB functions IMG_thr_gt2thr_16, IMG_thr_le2min_16 and
IMG_thr_gt2max_16 for other thresholding operations.

Algorithm This is the C code implementation without any restrictions. However intrinsic code has
restrictions as listed in the special requirements.
void IMG_thr_le2thr_16_c (const unsigned short *in_data, unsigned
short *restrict out_data, short cols, short rows, unsigned short threshold)
{

int i, pixels = rows * cols;

/* -- */
/* Step through input image copying pixels to the output. If the */
/* pixels are below our threshold, set them to the threshold value. */
/* -- */
for (i = 0; i < pixels; i++)

out_data[i] = in_data[i] <= threshold ? threshold : in_data[i];
}

Special Requirement
• The input and output buffers do not alias.
• The input and output buffers must be double-word aligned.
• The total number of pixels rows*cols must be at least 16 and a multiple of 16.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 63
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

IMG_thr_le2thr_16 — Unsigned 16-bit Thresholding - Clip Below Threshold www.ti.com

Implementation Notes
• The loop is unrolled 16x.
• For comparison, MAX2 command is used, but before that the unsigned values must

be changed into signed values using XOR 0x8000.

Compatibility This code is compatible for both C64x and C64x+.

DSPImage/Video Processing Library64 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.28 IMG_thr_le2thr
www.ti.com IMG_thr_le2thr — Thresholding - Clip Below Threshold

IMG_thr_le2thr Thresholding - Clip Below Threshold

Syntax void IMG_thr_le2thr(const unsigned char * restrict in_data, unsigned char * restrict
out_data, short cols, short rows, unsigned char threshold)

Arguments

in_data[] Pointer to input image data. Must be double-word aligned.
out_data[] Pointer to output image data. Must be double-word aligned.
cols Number of image columns.
rows Number of image rows. (cols*rows) must be multiple of 16.
threshold Threshold value.

Description This routine performs a thresholding operation on an input image in in_data[] whose
dimensions are given by the arguments cols and rows. The thresholded pixels are
written to the output image pointed to by out_data[]. The input and output have exactly
the same dimensions.

Pixels that are above the threshold value are written to the output unmodified. Pixels that
are less than or equal to the threshold are set to the threshold value in the output image.

See the functions IMG_thr_gt2thr, IMG_thr_le2min and IMG_thr_gt2max for other
thresholding functions.

Algorithm Behavioral C code for this routine is provided below:
void IMG_thr_le2thr(const unsigned char *in_data, unsigned char *out_data,
short cols, short rows, unsigned char threshold)
{

int i;

for (i = 0; i < rows * cols; i++)
out_data[i] = in_data[i] <= threshold ? threshold : in_data[i];

}

Special Requirements
• Input and output buffers do not alias.
• Input and output buffers must be double-word aligned.
• rows* cols must be a multiple of 16.

Notes
• Bank Conflicts: No bank conflicts occur in this function.
• Endian: This code is ENDIAN NEUTRAL.
• Interruptibility: The code is interrupt-tolerant but not interruptible.
• The loop is unrolled 16x. Packed-data processing techniques allow the parallel

processing of all 16 pixels.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 65
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.29 IMG_yc_demux_be16_8
IMG_yc_demux_be16_8 — YCbCR Demultiplexing (big endian source) www.ti.com

IMG_yc_demux_be16_8 YCbCR Demultiplexing (big endian source)

Syntax void IMG_yc_demux_be16_8(int n, const unsigned char * restrict yc, short * restrict y,
short * restrict cr, short * restrict cb)

Arguments

n Number of luma points. Must be multiple of 16.
yc Packed luma/chroma inputs. Must be double-word aligned.
y Unpacked luma data. Must be double-word aligned.
cr Unpacked chroma r data. Must be double-word aligned.
cb Unpacked chroma b data. Must be double-word aligned.

Description This routine de-interleaves a 4:2:2 BIG ENDIAN video stream into three separate
LITTLE ENDIAN 16-bit planes. The input array yc is expected to be an interleaved 4:2:2
video stream. The input is expected in BIG ENDIAN byte order within each 4-byte word.
This is consistent with reading the video stream from a word-oriented BIG ENDIAN
device, while the C6000 device is in a LITTLE ENDIAN configuration. In other words, the
expected pixel order is:

Word 0 Word 1 Word 2
Byt 0 1 2 3 4 5 6 7 8 9 10 11
e#

cb0 y1 cr0 y0 cb2 y3 cr2 y2 cb4 y5 cr4 y4

The output arrays y, cr, and cb are expected to not overlap. The de-interleaved pixels
are written as half-words in LITTLE ENDIAN order.

This function reads the byte-oriented pixel data, zero-extends it, and then writes it to the
appropriate result array. Both the luma and chroma values are expected to be unsigned.
The data is expected to be in an order consistent with reading byte oriented data from a
word-oriented peripheral that is operating in BIG ENDIAN mode, while the CPU is in
LITTLE ENDIAN mode. This function unpacks the byte-oriented data so that further
processing may proceed in LITTLE ENDIAN mode.

See the function IMB_yc_demux_le16 for code which handles input coming from a
LITTLE ENDIAN device.

Algorithm Behavioral C code for the routine is provided below:
void yc_demux_be16(int n, unsigned char *yc, short *y,

short *cr, short *cb)
{

int i;
for (i = 0; i < (n >> 1); i++)
{

y[2*i+0] = yc[4*i + 3];
y[2*i+1] = yc[4*i + 1];
cr[i] = yc[4*i + 2];
cb[i] = yc[4*i + 0];

}
}

Special Requirements
• The input and output data must be aligned to double-word boundaries.
• n must be a multiple of 16.

Notes
• Bank Conflicts: No bank conflicts occur.

66 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_yc_demux_be16_8 — YCbCR Demultiplexing (big endian source)

• Endian: The code is LITTLE ENDIAN.
• Interruptibility: This code is fully interruptible.
• The loop has been unrolled a total of 16 times to allow for processing 8 pixels in each

datapath.
• Double-word-wide loads and stores maximize memory bandwidth utilization.
• This code uses _gmpy4() to ease the L/S/D unit bottleneck on ANDs. The

_gmpy4(value, 0x00010001) is equivalent to value & 0x00FF00FF, as long as the
size field of GFPGFR is equal to 7. (The polynomial does not matter.)

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 67
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.30 IMG_yc_demux_le16_8
IMG_yc_demux_le16_8 — YCbCR Demultiplexing (little endian source) www.ti.com

IMG_yc_demux_le16_8 YCbCR Demultiplexing (little endian source)

Syntax void IMG_yc_demux_le16_8(int n, const unsigned char * restrict yc, short * restrict y,
short * restrict cr, short * restrict cb)

Arguments

n Number of luma points. Must be multiple of 16.
yc Packed luma/chroma inputs. Must be double-word aligned.
y Unpacked luma data. Must be double-word aligned.
cr Unpacked chroma r data. Must be double-word aligned.
cb Unpacked chroma b data. Must be double-word aligned.

Description This routine de-interleaves a 4:2:2 LITTLE ENDIAN video stream into three separate
LITTLE ENDIAN 16-bit planes. The input array yc is expected to be an interleaved 4:2:2
video stream. The input is expected in LITTLE ENDIAN byte order within each 4-byte
word. This is consistent with reading the video stream from a word-oriented LITTLE
ENDIAN device, while the C6000 device is in a LITTLE ENDIAN configuration. In other
words, the expected pixel order is:

Word 0 Word 1 Word 2
Byt 0 1 2 3 4 5 6 7 8 9 10 11
e#

y0 cr0 y1 cb0 y2 cr2 y3 cb2 y4 cr4 y5 cb4

The output arrays y, cr, and cb are expected to not overlap. The de-interleaved pixels
are written as half-words in LITTLE ENDIAN order.

This function reads the byte-oriented pixel data, zero-extends it, and then writes it to the
appropriate result array. Both the luma and chroma values are expected to be unsigned.
The data is expected to be in an order consistent with reading byte oriented data from a
word-oriented peripheral that is operating in LITTLE ENDIAN mode, while the CPU is in
LITTLE ENDIAN mode. This function unpacks the byte-oriented data so that further
processing may proceed in LITTLE ENDIAN mode.

See the function IMB_yc_demux_be16 for code which handles input coming from a BIG
ENDIAN device.

Algorithm Behavioral C code for the routine is provided below:
void IMG_yc_demux_le16(int n, unsigned char *yc, short *y,

short *cr, short *cb)
{

int i;
for (i = 0; i < (n >> 1); i++)
{

y[2*i+0] = yc[4*i + 0];
y[2*i+1] = yc[4*i + 2];
cr[i] = yc[4*i + 1];
cb[i] = yc[4*i + 3];

}
}

Special Requirements
• The input and output data must be aligned to double-word boundaries.
• n must be a multiple of 16.

Notes
• Bank Conflicts: No bank conflicts occur.

68 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_yc_demux_le16_8 — YCbCR Demultiplexing (little endian source)

• Endian: The code is LITTLE ENDIAN.
• Interruptibility: This code is fully interruptible.
• The loop has been unrolled a total of 16 times to allow for processing 8 pixels in each

data path.
• Double-word-wide loads and stores maximize memory bandwidth utilization.
• This code uses _gmpy4() to ease the L/S/D unit bottleneck on ANDs. The

_gmpy4(value, 0x00010001) is equivalent to value & 0x00FF00FF, as long as the
size field of GFPGFR is equal to 7. (The polynomial does not matter.)

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 69
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

5.31 IMG_ycbcr422p_rgb565
IMG_ycbcr422p_rgb565 — Planarized YCbCR 4:2:2/4:2:0 to RGB 5:6:5 Color Space Conversion www.ti.com

IMG_ycbcr422p_rgb565 Planarized YCbCR 4:2:2/4:2:0 to RGB 5:6:5 Color Space Conversion

Syntax void IMG_ycbcr422p_rgb565(const short * restrict coeff, const unsigned char * restrict
y_data, const unsigned char * restrict cb_data, const unsigned char * restrict cr_data,
unsigned short * restrict rgb_data, unsigned num_pixels)

Arguments

coeff[5] Matrix coefficients
y_data Luminence data (Y’). Must be double-word aligned.
cb_data Blue color-diff (B’-Y’). Must be word aligned.
cr_data Red color-diff (R’-Y’). Must be word aligned.
rgb_data RGB 5:6:5 packed pixel out. Must be double-word aligned.
num_pixels Number of luma pixels to process. Must be multiple of 8.

Description This kernel performs Y’CbCr to RGB conversion. The coeff[] array contains the
color-space-conversion matrix coefficients. The y_data, cb_data and cr_data pointers
point to the separate input image planes. The rgb_data pointer points to the output
image buffer, and must be word aligned. The kernel is designed to process arbitrary
amounts of 4:2:2 image data, although 4:2:0 image data may be processed as well. For
4:2:2 input data, the y_data, cb_data and cr_data arrays may hold an arbitrary amount of
image data. For 4:2:0 input data, only a single scan-line (or portion thereof) may be
processed at a time.

The coefficients in the coeff array must be in signed Q13 form.

This code can perform various flavors of Y’CbCr to RGB conversion, as long as the
offsets on Y, Cb, and Cr are -16, -128, and -128, respectively, and the coefficients match
the pattern shown. The kernel implements the following matrix form, which involves 5
unique coefficients:

coeff[] = { 0x2000, 0x2BDD, -0x0AC5, -0x1658, 0x3770 };
[1.0000 0.0000 1.3707] [Y’ - 16] [R’]
[1.0000 -0.3365 -0.6982] * [Cb - 128] = [G’]
[1.0000 1.7324 0.0000] [Cr - 128] [B’]

Below are some common coefficient sets, along with the matrix equation that they
correspond to. Coefficients are in signed Q13 notation, which gives a suitable balance
between precision and range.

Y’CbCr → RGB conversion with RGB levels that correspond to the 219-level range of Y’.
Expected ranges are [16..235] for Y’ and [16..240] for Cb and Cr.

[coeff[0] 0.0000 coeff[1]] [Y’ - 16] [R’]
[coeff[0] coeff[2] coeff[3]] * [Cb - 128] = [G’]
[coeff[0] coeff[4] 0.0000] [Cr - 128] [B’]

Y’CbCr → RGB conversion with the 219-level range of Y’ expanded to fill the full RGB
dynamic range. (The matrix has been scaled by 255/219). Expected ranges are [16..235]
for Y’ and [16..240] for Cb and Cr.

DSPImage/Video Processing Library70 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_ycbcr422p_rgb565 — Planarized YCbCR 4:2:2/4:2:0 to RGB 5:6:5 Color Space Conversion

[1.1644 0.0000 1.5960] [Y’ - 16] [R’]
[1.1644 -0.3918 -0.8130] * [Cb - 128] = [G’]
[1.1644 2.0172 0.0000] [Cr - 128] [B’]

Other scalings of the color differences (B’-Y’) and (R’-Y’) (sometimes incorrectly referred
to as U and V) are supported, as long as the color differences are unsigned values
centered around 128 rather than signed values centered around 0, as noted above.

In addition to performing plain color-space conversion, color saturation can be adjusted
by scaling coeff[1] through coeff[4]. Similarly, brightness can be adjusted by scaling
coeff[0]. However, general hue adjustment cannot be performed, due to the two zeros
hard-coded in the matrix.

Algorithm Behavioral C code for the routine is provided below:
void IMG_ycbcr422pl_to_rgb565
(

const short coeff[5], /* Matrix coefficients. */
const unsigned char *y_data, /* Luminence data (Y’) */
const unsigned char *cb_data, /* Blue color-difference (B’-Y’) */
const unsigned char *cr_data, /* Red color-difference (R’-Y’) */
unsigned short *rgb_data, /* RGB 5:6:5 packed pixel output. */
unsigned num_pixels /* # of luma pixels to process. */

)
{

int i; /* Loop counter */
int y0, y1; /* Individual Y components */
int cb, cr; /* Color difference components */
int y0t,y1t; /* Temporary Y values */
int rt, gt, bt; /* Temporary RGB values */
int r0, g0, b0; /* Individual RGB components */
int r1, g1, b1; /* Individual RGB components */
int r0t,g0t,b0t; /* Truncated RGB components */
int r1t,g1t,b1t; /* Truncated RGB components */
int r0s,g0s,b0s; /* Saturated RGB components */
int r1s,g1s,b1s; /* Saturated RGB components */
short luma = coeff[0]; /* Luma scaling coefficient. */
short r_cr = coeff[1]; /* Cr’s contribution to Red. */
short g_cb = coeff[2]; /* Cb’s contribution to Green. */
short g_cr = coeff[3]; /* Cr’s contribution to Green. */
short b_cb = coeff[4]; /* Cb’s contribution to Blue. */
unsigned short rgb0, rgb1; /* Packed RGB pixel data */
/* -- */
/* Iterate for num_pixels/2 iters, since we process pixels in pairs. */
/* -- */
i = num_pixels >> 1;
while (i-->0)
{

/* -- */
/* Read in YCbCr data from the separate data planes. */
/* */
/* The Cb and Cr channels come in biased upwards by 128, so */
/* subtract the bias here before performing the multiplies for */
/* the color space conversion itself. Also handle Y’s upward */
/* bias of 16 here. */
/* -- */
y0 = *y_data++ - 16;
y1 = *y_data++ - 16;
cb = *cb_data++ - 128;
cr = *cr_data++ - 128;
/* == */
/* Convert YCrCb data to RGB format using the following matrix: */
/* */
/* [Y’ - 16] [coeff[0] 0.0000 coeff[1]] [R’] */
/* [Cb - 128] * [coeff[0] coeff[2] coeff[3]] = [G’] */
/* [Cr - 128] [coeff[0] coeff[4] 0.0000] [B’] */
/* */
/* We use signed Q13 coefficients for the coefficients to make */
/* good use of our 16-bit multiplier. Although a larger Q-point */
/* may be used with unsigned coefficients, signed coefficients */

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 71
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

IMG_ycbcr422p_rgb565 — Planarized YCbCR 4:2:2/4:2:0 to RGB 5:6:5 Color Space Conversion www.ti.com

/* add a bit of flexibility to the kernel without significant */
/* loss of precision. */
/* == */
/* -- */
/* Calculate chroma channel’s contribution to RGB. */
/* -- */
rt = r_cr * (short)cr;
gt = g_cb * (short)cb + g_cr * (short)cr;
bt = b_cb * (short)cb;
/* -- */
/* Calculate intermediate luma values. Include bias of 16 here. */
/* -- */
y0t = luma * (short)y0;
y1t = luma * (short)y1;

/* -- */
/* Mix luma, chroma channels. */
/* -- */
r0 = y0t + rt; r1 = y1t + rt;
g0 = y0t + gt; g1 = y1t + gt;
b0 = y0t + bt; b1 = y1t + bt;
/* == */
/* At this point in the calculation, the RGB components are */
/* nominally in the format below. If the color is outside the */
/* our RGB gamut, some of the sign bits may be non-zero, */
/* triggering saturation. */
/* */
/* 3 2 2 1 1 */
/* 1 1 0 3 2 0 */
/* [SIGN | COLOR | FRACTION] */
/* */
/* This gives us an 8-bit range for each of the R, G, and B */
/* components. (The transform matrix is designed to transform */
/* 8-bit Y/C values into 8-bit R,G,B values.) To get our final */
/* 5:6:5 result, we "divide" our R, G and B components by 4, 8, */
/* and 4, respectively, by reinterpreting the numbers in the */
/* format below: */
/* */
/* Red, 3 2 2 1 1 */
/* Blue 1 1 0 6 5 0 */
/* [SIGN | COLOR | FRACTION] */
/* */
/* 3 2 2 1 1 */
/* Green 1 1 0 5 4 0 */
/* [SIGN | COLOR | FRACTION] */
/* */
/* "Divide" is in quotation marks because this step requires no */
/* actual work. The code merely treats the numbers as having a */
/* different Q-point. */
/* == */
/* -- */
/* Shift away the fractional portion, and then saturate to the */
/* RGB 5:6:5 gamut. */
/* -- */
r0t = r0 >> 16;
g0t = g0 >> 15;
b0t = b0 >> 16;
r1t = r1 >> 16;
g1t = g1 >> 15;
b1t = b1 >> 16;
r0s = r0t < 0 ? 0 : r0t > 31 ? 31 : r0t;
g0s = g0t < 0 ? 0 : g0t > 63 ? 63 : g0t;
b0s = b0t < 0 ? 0 : b0t > 31 ? 31 : b0t;
r1s = r1t < 0 ? 0 : r1t > 31 ? 31 : r1t;
g1s = g1t < 0 ? 0 : g1t > 63 ? 63 : g1t;
b1s = b1t < 0 ? 0 : b1t > 31 ? 31 : b1t;
/* -- */
/* Merge values into output pixels. */
/* -- */
rgb0 = (r0s << 11) + (g0s << 5) + (b0s << 0);
rgb1 = (r1s << 11) + (g1s << 5) + (b1s << 0);
/* -- */
/* Store resulting pixels to memory. */
/* -- */

72 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_ycbcr422p_rgb565 — Planarized YCbCR 4:2:2/4:2:0 to RGB 5:6:5 Color Space Conversion

*rgb_data++ = rgb0;
*rgb_data++ = rgb1;

}
return;

}

Special Requirements
• The number of luma samples to be processed must be a multiple of 8.
• The input Y array and the output image must be double-word aligned.
• The input Cr and Cb arrays must be word aligned.

Notes
• Bank Conflicts: No bank conflicts occur in this function.
• Endian: The code is LITTLE ENDIAN.
• Interruptibility: The code is fully interruptible.
• Pixel replication is performed implicitly on chroma data to reduce the total number of

multiplies required. The chroma portion of the matrix is calculated once for each Cb
and Cr pair, and the result is added to both Y’ samples.

• Matrix Multiplication is performed as a combination of MPY2s and DOTP2s.
Saturation to 8-bit values is performed using SPACKU4, which takes in 4 signed
16-bit values and saturates them to unsigned 8-bit values. The output of Matrix
Multiplication would ideally be in a Q13 format. However, this cannot be fed directly
to SPACKU4. This implies a shift left by 3 bits, which could increase the number of
shifts to be performed. Thus, to avoid being bottlenecked by so many shifts, the Y,
Cr, and Cb data are shifted left by 3 before multiplication. This is possible because
they are 8-bit unsigned data. Due to this, the output of Matrix Multiplication is in a
Q16 format, which can be directly fed to SPACKU4.

• Because the loop accesses four different arrays at three different strides, no memory
accesses are allowed to parallelize in the loop. No bank conflicts occur as a result.
The epilog has been completely removed, while the prolog is left as is. However,
some cycles of the prolog are performed using the kernel cycles to help reduce
code-size. The setup code is merged along with the prolog for speed.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 73
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

6 IMGLIB2 Picture Filtering Functions

6.1 IMG_conv_3x3_i8_c8s

IMGLIB2 Picture Filtering Functions www.ti.com

This section provides detailed specifications and descriptions for IMGLIB2 picture filtering functions.

IMG_conv_3x3_i8_c8s 3x3 Convolution

Syntax void IMG_conv_3×3_i8_c8s(const unsigned char * restrict in_data, unsigned char *
restrict out_data, int cols, const char * restrict mask, int shift)

Arguments

in_data[] Input image
out_data[] Output image
cols Number of columns in the input image. Must be multiple of 8
mask[3][3] 3×3 mask
shift Shift value

Description The convolution kernel accepts three rows of cols input pixels and produces one output
row of cols pixels using the input mask of 3 by 3. The user-defined shift value is used to
shift the convolution value down to the byte range. The convolution sum is also range
limited to 0.255. The shift amount is non-zero for low pass filters, and zero for high pass
and sharpening filters.

Algorithm This is the C equivalent of the assembly code without restrictions. The assembly code is
hand optimized and restrictions apply as noted.
void IMG_conv_3x3(unsigned char *in_data, unsigned char *out_data, int cols, char
*mask, int shift)
{

unsigned char *IN1,*IN2,*IN3;
unsigned char *OUT;

short pix10, pix20, pix30;
short mask10, mask20, mask30;

int sum, sum00, sum11;
int i;
int sum22, j;

IN1 = in_data;
IN2 = IN1 + x_dim;
IN3 = IN2 + x_dim;
OUT = out_data;

for (j = 0; j < cols; j++)
{

sum = 0;

for (i = 0; i < 3; i++)
{

pix10 = IN1[i];
pix20 = IN2[i];
pix30 = IN3[i];

mask10 = mask[i];
mask20 = mask[i + 3];
mask30 = mask[i + 6];

sum00 = pix10 * mask10;
sum11 = pix20 * mask20;
sum22 = pix30 * mask30;

sum += sum00 + sum11+ sum22;
}

74 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_conv_3x3_i8_c8s — 3x3 Convolution

IN1++;
IN2++;
IN3++;

sum = (sum >> shift);
if (sum < 0) sum = 0;
if (sum > 255) sum = 255;
*OUT++ = sum;

}
}

Special Requirements
• cols output pixels are produced when three lines, each with a width of cols pixels, are

given as input.
• cols must be a multiple of 8.
• The array pointed to by out_data should not alias with the array pointed to by

in_data.
• The mask to the kernel should be such that the sum for each pixel is less than or

equal to 65536. This restriction arises because of the use of the ADD2 instruction to
compute two pixels in a register.

Notes
• Bank Conflicts: No bank conflicts occur in this function.
• Endian: The code is LITTLE ENDIAN.
• Interruptibility: The code is fully interruptible.
• This code is designed to take advantage of the 8-bit multiplier capability provided by

MPYSU4/MPYUS4. The kernel uses loop unrolling and computes eight output pixels
for every iteration.

• The eight bit elements in each mask are replicated four times to fill a word by using
the PACKL4 and PACK2 instructions.

• The image data is brought in using LDNDW. The results of the multiplications are
summed using ADD2. The output values are packed using SPACK2 and stored using
STNDW, which writes eight 8-bit values at a time.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 75
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

6.2 IMG_conv_3x3_i16s_c16s
IMG_conv_3x3_i16s_c16s — 3x3 Convolution for 16-bit Input www.ti.com

IMG_conv_3x3_i16s_c16s 3x3 Convolution for 16-bit Input

Syntax void IMG_conv_3x3_i16s_c16s (const short *restrict imgin_ptr, short *restrict
imgout_ptr, short width, short pitch, const short *restrict mask_ptr, short shift)

Arguments

imgin_ptr Pointer to input image 16-bit signed
imgout_ptr Pointer to output image 16-bit signed
width Number of outputs to be calculated
pitch Number of columns in the input image
mask_ptr Pointer to 3x3 mask used-16 bit signed
shift User specified shift value

Description The convolution kernel accepts three rows of'pitch input pixels and produces one row of
width output pixels using the input mask of 3 by 3. This convolution performs a point by
point multiplication of 3 by 3 masks with the input image. The result of 9 multiplications
are then summed to produce a 32-bit convolution intermediate sum. Overflow while
accumulation is not handled. However assumptions are made on filter gain to avoid
overflow. The user-defined shift value is used to shift this convolution sum down to the
short range and store in an output array. The result being stored is also saturated to the
-32768 to 32767 inclusive. The mask is moved one column at a time, advancing the
mask over the entire image until the entire width is covered. The input, output image
pixels and the masks are provided as 16-bit signed values.

Algorithm This is the C code implementation without any restrictions. However, intrinsic code has
restrictions as listed in the special requirements:
void IMG_conv_3x3_i16s_c16s
(

const short *restrict imgin_ptr,
short *restrict imgout_ptr,
short width,
short pitch,

const short *restrict mask_ptr,
short shift

)
{

int i, j, k;
int sum;

for (i = 0; i < width; i++)
{

sum = 0;
for (j = 0; j < 3; j++)
{

for (k = 0; k < 3; k++)
sum += imgin_ptr[j * pitch + i + k] *

mask_ptr[j * 3 + k];
}
sum >>= shift ;
sum = (sum > 32767)? 32767 : (sum < -32768 ? -32768 : sum);

imgout_ptr[i] = sum;

}
}

Special Requirements
• Width must be >= 2 and multiples of 2
• Pitch should be >= width
• Internal accuracy of the computations is 32 bits. To ensure correctness on a 16 bit

76 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_conv_3x3_i16s_c16s — 3x3 Convolution for 16-bit Input

input data, the maximum permissible filter gain in terms of bits is 16-bits i.e. the
cumulative sum of the absolute values of the filter coefficients should not exceed
2^16 - 1

• Output array must be word aligned
• Input and Mask array must be half-word aligned
• The input and output arrays should not overlap

Implementation Notes
• The inner loop is unrolled completely to form a single loop
• Two output samples are calculated per iteration
• The code is LITTLE ENDIAN.

Compatibility Compatible for C64x+.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 77
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

6.3 IMG_conv_3x3_i16_c16s
IMG_conv_3x3_i16_c16s — 3x3 Convolution for Unsigned 16-bit Input www.ti.com

IMG_conv_3x3_i16_c16s 3x3 Convolution for Unsigned 16-bit Input

Syntax void IMG_conv_3x3_i16_c16s (const unsigned short *restrict inptr, unsigned short
*restrict outptr, int x_dim, const short *restrict mask, int shift)

Arguments

inptr Pointer to an input array of unsigned 16-bit pixels
outptr Pointer to an output array of 16-bit pixels
x_dim Number of output pixels
mask Pointer to 16-bit filter mask
shift User specified shift value

Description The convolution kernel accepts three rows of 'x_dim' input points and produces one
output row of 'x_dim' points using the input mask of 3 by 3. The user-defined shift value
is used to shift the convolution value, down to the 16-bit range. The convolution sum is
also range-limited to 40 bits. The shift amount is non-zero for low pass filters, and zero
for high pass and sharpening filters..

Algorithm This is the C code implementation without any restrictions. However, intrinsic code has
restrictions as listed in the special requirements:
void IMG_conv_3x3_i16_c16s_c(const unsigned short *restrict inptr,

unsigned short *restrict outptr,
int x_dim,
const short *restrict mask,
int shift)

{
const unsigned short *IN1,*IN2,*IN3;
unsigned short *OUT;

unsigned short pix10, pix20, pix30; /* rev. from short to ushort */
short mask10, mask20, mask30;

long sum; /* rev. from int to long */
long sum00, sum11, sum22;
int i, j;

/*---*/
/* Set imgcols to the width of the image and set three pointers for */
/* reading data from the three input rows. Also set the output poin- */
/* ter. */
/*---*/

IN1 = inptr;
IN2 = IN1 + x_dim;
IN3 = IN2 + x_dim;
OUT = outptr;

/*---*/
/* The j: loop iterates to produce one output pixel per iteration. */
/* The mask values and the input values are read using the i loop. */
/* The convolution sum is then computed. The convolution sum is */
/* then shifted and range limited to 0..255 */
/*---*/

for (j = 0; j < x_dim ; j++)
{

/*---*/
/* Initialize convolution sum to zero, for every iteration of */
/* outer loop. The inner loop computes convolution sum. */
/*---*/

sum = 0;

78 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_conv_3x3_i16_c16s — 3x3 Convolution for Unsigned 16-bit Input

for (i = 0; i < 3; i++)
{

pix10 = IN1[i];
pix20 = IN2[i];
pix30 = IN3[i];

mask10 = mask[i];
mask20 = mask[i + 3];
mask30 = mask[i + 6];

sum00 = (long)pix10 * mask10;
sum11 = (long)pix20 * mask20;
sum22 = (long)pix30 * mask30;

sum += sum00 + sum11+ sum22;
}

/*---*/
/* Increment input pointers and shift sum and range limit to */
/* 0...65535. */
/*---*/

IN1++;
IN2++;
IN3++;

sum = (sum >> shift);

if (sum < 0) sum = 0;
if (sum > 65535) sum = 65535;

/*--*/
/* Store output sum into the output pointer OUT */
/*--*/

*OUT++ = sum;
}

}

Special Requirements
• x_dim must be a multiple of 4.
• I/O buffers do not overlap.
• I/O and mask arrays should be half-word aligned.
• Appropriate shift is used to avoid saturation.
• Internal accuracy of the computations is 40 bits. Accuracy will not be lost in internal

computations. The final results are saturated to 16 bit.

Compatibility Compatible for both C64x and C64x+.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 79
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

6.4 IMG_conv_5x5_i8_c8s
IMG_conv_5x5_i8_c8s — 5x5 Convolution for 8-bit Input www.ti.com

IMG_conv_5x5_i8_c8s 5x5 Convolution for 8-bit Input

Syntax void IMG_conv_5x5_i8_c8s (const unsigned char *restrict imgin_ptr, unsigned char
*restrict imgout_ptr, short width, short pitch, const char *restrict mask_ptr, short shift)

Arguments

imgin_ptr Pointer to input image (8-bit signed).
imgout_ptr Pointer to output image (8-bit unsigned).
width Number of outputs to be calculated.
pitch Number of columns in the input image.
mask_ptr Pointer to 5x5 mask used (8-bit signed).
shift User-specified shift value.

Description The convolution kernel accepts five rows of pitch input pixels and produces one row of
width output pixels using the input mask of 5 by 5. This convolution performs a point by
point multiplication of 5 by 5 masks with the input image. The result of 25 multiplications
are then summed to produce a 32-bit convolution intermediate sum. The user defined
shift value is used to shift this convolution sum down to the byte range and store in an
output array. The result being stored is also saturated to the range 0 to 255 inclusive.
The mask is moved one column at a time, advancing the mask over the entire image
until the entire 'width' is covered. The input pixels are provided as 8-bit unsigned values
and the masks are provided as 8-bit signed values. Output will be in unsigned 8-bit.

Algorithm This is the C code implementation without any restrictions. However, intrinsic code has
restrictions as listed in the special requirements:
void IMG_conv_5x5_i8_c8s
(

const unsigned char *restrict imgin_ptr,
unsigned char *restrict imgout_ptr,
short width,
short pitch,

const char *restrict mask_ptr,
short shift

)
{

int i, j, k;
int sum;

for (i = 0; i < width ; i++)
sum = 0;

for (j = 0; j < 5; j++)

for (k = 0; k < 5; k++)

sum += (unsigned char)imgin_ptr[j * pitch + i + k] *
(char)mask_ptr[j * 5 + k];

sum = (sum >> shift);
sum = (sum > 255) ? 255 : (sum < 0 ? 0 : sum);
imgout_ptr[i] = sum ;

}
}

Special Requirements
• Width must be >=2 and multiples of 2.
• Pitch should be >= width.
• Output array must be word-aligned.
• No alignment restrictions for mask and input array.
• Input and output arrays should not overlap.

80 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_conv_5x5_i8_c8s — 5x5 Convolution for 8-bit Input

Implementation Notes
• The inner loop is manually unrolled completely to form a single loop and two output

samples are calculated per iteration.
• Code is LITTLE ENDIAN

Compatibility Compatible for both C64x and C64x+.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 81
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

6.5 IMG_conv_5x5_i16s_c16s
IMG_conv_5x5_i16s_c16s — 5x5 Convolution for 16-bit Input www.ti.com

IMG_conv_5x5_i16s_c16s 5x5 Convolution for 16-bit Input

Syntax void IMG_conv_5x5_i16_c16s (const short *restrict imgin_ptr, short *restrict imgout_ptr,
short width, short pitch, const short *restrict mask_ptr, short shift)

Arguments

imgin_ptr Pointer to input image (16-bit signed).
imgout_ptr Pointer to output image (16-bit unsigned).
width Number of outputs to be calculated.
pitch Number of columns in the input image.
mask_ptr Pointer to 5x5 mask used (16-bit signed).
shift User-specified shift value.

Description The convolution kernel accepts five rows of pitch input pixels and produces one row of
width output pixels using the input mask of 5 by 5. This convolution performs a point by
point multiplication of 5 by 5 masks with the input image. The result of 25 multiplications
are then summed to produce a 32-bit convolution intermediate sum. Overflow during
accumulation is not handled; however, assumptions are made on filter gain to avoid
overflow. The user defined shift value is used to shift this convolution sum down to the
short range and store in an output array. The result being stored is also saturated to the
-32768 to 32767 inclusive. The mask is moved one column at a time, advancing the
mask over the entire image until the entire width is covered. The input, output image
pixels, and the masks are provided as 16-bit signed values.

Algorithm This is the C code implementation without any restrictions. However, intrinsic code has
restrictions as listed in the special requirements:
void IMG_conv_5x5_i16s_c16s
(

const short *restrict imgin_ptr,
short *restrict imgout_ptr,
short width,
short pitch,

const short *restrict mask_ptr,
short shift

)
{

int i, j, k;
int sum;

for (i = 0; i < width; i++)
{

sum = 0;
for (j = 0; j < 5; j++)
{

for (k = 0; k < 5; k++)
sum += imgin_ptr[j * pitch + i + k] *

mask_ptr[j * 5 + k];
}
sum >>= shift ;
sum = (sum > 32767)? 32767 : (sum < -32768 ? -32768 : sum);

imgout_ptr[i] = sum;

}
}

Special Requirements
• Width must be >=2 and multiples of 2.
• Pitch should be >= width.

82 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_conv_5x5_i16s_c16s — 5x5 Convolution for 16-bit Input

• Internal accuracy of the computations is 32 bits. To ensure correctness on a 16-bit
input data, the maximum permissible filter gain in terms of bits is 16-bits (i.,e., the
cumulative sum of the absolute values of the filter coefficients should not exceed
2^16 – 1).

• Output array must be word-aligned.
• Input and output arrays should not overlap.

Implementation Notes
• The inner loop is unrolled completely to form a single loop and two output samples

are calculated per iteration.
• Code is LITTLE ENDIAN

Compatibility Compatible for C64x+.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 83
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

6.6 IMG_conv_5x5_i8_c16s
IMG_conv_5x5_i8_c16s — 5x5 Convolution for 16-bit Input and 16-bit masks www.ti.com

IMG_conv_5x5_i8_c16s 5x5 Convolution for 16-bit Input and 16-bit masks

Syntax void IMG_conv_5x5_i8_c16s (const unsigned char *restrict imgin_ptr, unsigned char
*restrict imgout_ptr, short width, short pitch, const short *restrict mask_ptr, short shift)

Arguments

imgin_ptr Pointer to input image (8-bit signed).
imgout_ptr Pointer to output image (8-bit unsigned).
width Number of outputs to be calculated.
pitch Number of columns in the input image.
mask_ptr Pointer to 5x5 mask used (16-bit signed).
shift User-specified shift value.

Description The convolution kernel accepts five rows of pitch input pixels and produces one row of
width output pixels using the input mask of 5 by 5. This convolution performs a
point-by-point multiplication of 5 by 5 masks with the input image. The result of 25
multiplications are then summed to produce a 32-bit convolution intermediate sum. The
user-defined shift value is used to shift this convolution sum down to the byte range and
store in an output array. The result being stored is also saturated to the range 0 to 255
inclusive. The mask is moved one column at a time, advancing the mask over the entire
image until the entire width is covered. The input pixels are provided as 8-bit signed
values. The masks are provided as 16-bit signed values. Output will be in unsigned 8-bit
values.

Algorithm This is the C code implementation without any restrictions. However, intrinsic code has
restrictions as listed in the special requirements:
void IMG_conv_5x5_i8_c16s
(

const unsigned char *restrict imgin_ptr,
unsigned char *restrict imgout_ptr,
short width,
short pitch,

const short *restrict mask_ptr,
short shift

)
{

int i, j, k;
int sum;

for (i = 0; i < width ; i++)
sum = 0;

for (j = 0; j < 5; j++)

for (k = 0; k < 5; k++)

sum += (unsigned char)imgin_ptr[j * pitch + i + k] *
mask_ptr[j * 5 + k];

sum = (sum >> shift);
sum = (sum > 255) ? 255 : (sum < 0 ? 0 : sum);
imgout_ptr[i] = sum ;

}
}

Special Requirements
• Width must be >=2 and multiples of 2.
• Pitch should be >= width.
• Output array must be word-aligned.
• Mask array should be half-word aligned.

84 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_conv_5x5_i8_c16s — 5x5 Convolution for 16-bit Input and 16-bit masks

• No alignment restrictions on input array.
• Input and output arrays should not overlap.

Implementation Notes
• The inner loop is manually unrolled completely to form a single loop and two output

samples are calculated per iteration.
• Code is LITTLE ENDIAN

Compatibility Compatible for C64x+.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 85
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

6.7 IMG_conv_7x7_i8_c8s
IMG_conv_7x7_i8_c8s — 7x7 Convolution for 8-bit Input www.ti.com

IMG_conv_7x7_i8_c8s 7x7 Convolution for 8-bit Input

Syntax void IMG_conv_7x7_i8_c8s (const unsigned char *restrict imgin_ptr, unsigned char
*restrict imgout_ptr, short width, short pitch, const char *restrict mask_ptr, short shift)

Arguments

imgin_ptr Pointer to input image (8-bit signed).
imgout_ptr Pointer to output image (8-bit unsigned).
width Number of outputs to be calculated.
pitch Number of columns in the input image.
mask_ptr Pointer to 7x7 mask used (8-bit signed).
shift User-specified shift value.

Description The convolution kernel accepts seven rows of pitch input pixels and produces one row of
width output pixels using the input mask of 7 by 7. This convolution performs a
point-by-point multiplication of 7 by 7 masks with the input image. The result of 49
multiplications are then summed to produce a 32-bit convolution intermediate sum. The
user-defined shift value is used to shift this convolution sum down to the byte range and
store in an output array. The result being stored is also saturated to the range 0 to 255
inclusive. The mask is moved one column at a time, advancing the mask over the entire
image until the entire width is covered. The input pixels are provided as 8-bit unsigned
values. The masks are provided as 8-bit signed values. Output will be in unsigned 8-bit
values.

Algorithm This is the C code implementation without any restrictions. However, intrinsic code has
restrictions as listed in the special requirements:
void IMG_conv_7x7_i8_c8s
(

const unsigned char *restrict imgin_ptr,
unsigned char *restrict imgout_ptr,
short width,
short pitch,

const char *restrict mask_ptr,
short shift

)
{

int i, j, k;
int sum;

for (i = 0; i < width ; i++)
sum = 0;

for (j = 0; j < 7; j++)

for (k = 0; k < 7; k++)

sum += (unsigned char)imgin_ptr[j * pitch + i + k] *
(char)mask_ptr[j * 7 + k];

sum = (sum >> shift);
sum = (sum > 255) ? 255 : (sum < 0 ? 0 : sum);
imgout_ptr[i] = sum ;

}
}

Special Requirements
• Width must be >=2 and multiples of 2.
• Pitch should be >= width.
• Output array must be word-aligned.

86 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_conv_7x7_i8_c8s — 7x7 Convolution for 8-bit Input

• No alignment restrictions on input or mask arrays.
• Input and output arrays should not overlap.

Implementation Notes
• The outer loop is unrolled to calculate two output samples per iteration.
• Code is LITTLE ENDIAN

Compatibility Compatible for both C64x and C64x+.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 87
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

6.8 IMG_conv_7x7_i16s_c16s
IMG_conv_7x7_i16s_c16s — 7x7 Convolution for 16-bit Input www.ti.com

IMG_conv_7x7_i16s_c16s 7x7 Convolution for 16-bit Input

Syntax void IMG_conv_7x7_i16s_c16s (const short *restrict imgin_ptr, short *restrict
imgout_ptr, short width, short pitch, const short *restrict mask_ptr, short shift)

Arguments

imgin_ptr Pointer to input image (16-bit signed).
imgout_ptr Pointer to output image (16-bit unsigned).
width Number of outputs to be calculated.
pitch Number of columns in the input image.
mask_ptr Pointer to 7x7 mask used (16-bit signed).
shift User-specified shift value.

Description The convolution kernel accepts seven rows of pitch input pixels and produces one row of
width output pixels using the input mask of 7 by 7. This convolution performs a
point-by-point multiplication of 7 by 7 masks with the input image. The result of 49
multiplications are then summed to produce a 32-bit convolution intermediate sum.
Overflow during accumulation is not handled; however, assumptions are made on filter
gain to avoid overflow. The user-defined shift value is used to shift this convolution sum
down to the short range and store in an output array. The result being stored is also
saturated to the -32768 to 32767 inclusive. The mask is moved one column at a time,
advancing the mask over the entire image until the entire width is covered. The input,
output image pixels, and the masks are provided as 16-bit signed values

Algorithm This is the C code implementation without any restrictions. However, intrinsic code has
restrictions as listed in the special requirements:
void IMG_conv_7x7_i16s_c16s
(

const short *restrict imgin_ptr,
short *restrict imgout_ptr,
short width,
short pitch,

const short *restrict mask_ptr,
short shift

)

{
int i, j, k;
int sum;

for (i = 0; i < width; i++)
{

sum = 0;
for (j = 0; j < 7; j++)
{

for (k = 0; k < 7; k++)
sum += imgin_ptr[j * pitch + i + k] *

mask_ptr[j * 7 + k];
}
sum >>= shift ;
sum = (sum > 32767)? 32767 : (sum < -32768 ? -32768 : sum);

imgout_ptr[i] = sum;

}
}

Special Requirements
• Width must be >=8 and multiples of 8.

88 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_conv_7x7_i16s_c16s — 7x7 Convolution for 16-bit Input

• Pitch should be >= width.
• Internal accuracy of the computations is 32 bits. To ensure correctness on a 16 bit

input data, the maximum permissible filter gain in terms of bits is 16-bits (i.e., the
cumulative sum of the absolute values of the filter coefficients should not exceed
2^16 – 1).

• Output and output arrays must be double-word aligned.
• Mask array should be half-word aligned.
• Input and output arrays should not overlap.

Implementation Notes
• The inner loop simultaneously operates on 8 output pixels.
• Code is LITTLE ENDIAN

Compatibility Compatible for C64x+.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 89
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

6.9 IMG_conv_7x7_i8_c16s
IMG_conv_7x7_i8_c16s — 7x7 Convolution for 8-bit Input and 16-bit Masks www.ti.com

IMG_conv_7x7_i8_c16s 7x7 Convolution for 8-bit Input and 16-bit Masks

Syntax void IMG_conv_7x7_i8_c16s (const unsigned char *restrict imgin_ptr, unsigned char
*restrict imgout_ptr, short width, short pitch, const short *restrict mask_ptr, short shift)

Arguments

imgin_ptr Pointer to input image (8-bit signed).
imgout_ptr Pointer to output image (8-bit unsigned).
width Number of outputs to be calculated.
pitch Number of columns in the input image.
mask_ptr Pointer to 7x7 mask used (16-bit signed).
shift User-specified shift value.

Description The convolution kernel accepts seven rows of'pitch input pixels and produces one row of
width output pixels using the input mask of 7 by 7. This convolution performs a
point-by-point multiplication of 7 by 7 masks with the input image. The result of 49
multiplications are then summed to produce a 32-bit convolution intermediate sum. The
user-defined shift value is used to shift this convolution sum down to the byte range and
store in an output array. The result being stored is also saturated to the range 0 to 255
inclusive. The mask is moved one column at a time, advancing the mask over the entire
image until the entire width is covered. The input pixels are provided as 8-bit unsigned
values. The masks are provided as 16-bit signed vales. Output will be in unsigned 8-bit
values.

Algorithm This is the C code implementation without any restrictions. However, intrinsic code has
restrictions as listed in the special requirements:
void IMG_conv_7x7_i8_c16s
(

const unsigned char *restrict imgin_ptr,
unsigned char *restrict imgout_ptr,
short width,
short pitch,

const short *restrict mask_ptr,
short shift

)
{

int i, j, k;
int sum;

for (i = 0; i < width ; i++)
{
sum = 0;

for (j = 0; j < 7; j++)
{

for (k = 0; k < 7; k++)
{

sum += (unsigned char)imgin_ptr[j * pitch + i + k] *
mask_ptr[j * 7 + k];

}
}

sum = (sum >> shift);
sum = (sum > 255) ? 255 : (sum < 0 ? 0 : sum);
imgout_ptr[i] = sum ;

}
}

90 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_conv_7x7_i8_c16s — 7x7 Convolution for 8-bit Input and 16-bit Masks

Special Requirements
• Width must be >=2 and multiples of 2.
• Pitch should be >= width.
• Output array must be word-aligned.
• Mask pointer should be half-word aligned.
• No restrictions on the alignment of input array.

Implementation Notes
• The outer loop is manually unrolled by two to calculate two output samples per

iteration.
• Code is LITTLE ENDIAN

Compatibility Compatible for C64x+.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 91
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

6.10 IMG_conv_11x11_i8_c8s
IMG_conv_11x11_i8_c8s — 7x7 Convolution for 8-bit Input and 8-bit Masks www.ti.com

IMG_conv_11x11_i8_c8s 7x7 Convolution for 8-bit Input and 8-bit Masks

Syntax void IMG_conv_11x11_i8_c8s (const unsigned char *restrict imgin_ptr, unsigned char
*restrict imgout_ptr, short width, short pitch, const char *restrict mask_ptr, short shift)

Arguments

imgin_ptr Pointer to input image (8-bit signed).
imgout_ptr Pointer to output image (8-bit unsigned).
width Number of outputs to be calculated.
pitch Number of columns in the input image.
mask_ptr Pointer to 11x11 mask used (8-bit signed).
shift User-specified shift value.

Description The convolution kernel accepts eleven rows of pitch input pixels and produces one row
of 'width' output pixels using the input mask of 11 by 11. This convolution performs a
point-by-point multiplication of 11 by 11 masks with the input image. The result of 121
multiplications are then summed to produce a 32-bit convolution intermediate sum. The
user-defined shift value is used to shift this convolution sum down to the byte range and
store in an output array. The result being stored is also saturated to the range 0 to 255
inclusive. The mask is moved one column at a time, advancing the mask over the entire
image until the entire width is covered. The input pixels are provided as 8-bit unsigned
values and the masks are provided as 8-bit signed values. Output will be in unsigned
8-bit values.

Algorithm This is the C code implementation without any restrictions. However, intrinsic code has
restrictions as listed in the special requirements:
void IMG_conv_11x11_i8_c8s
(

const unsigned char *restrict imgin_ptr,
unsigned char *restrict imgout_ptr,
short width,
short pitch,

const char *restrict mask_ptr,
short shift

)
{

int i, j, k;
int sum;

for (i = 0; i < width ; i++) {
sum = 0;

for (j = 0; j < 11; j++) {
for (k = 0; k < 11; k++) {

sum += (unsigned char)imgin_ptr[j * pitch + i + k] *
(char)mask_ptr[j * 11 + k];

}
sum = (sum >> shift);
sum = (sum > 255) ? 255 : (sum < 0 ? 0 : sum);
imgout_ptr[i] = sum ;

}
}

}

Special Requirements
• Width must be >=2 and multiples of 2.
• Pitch should be >= width.
• Output array must be word-aligned.

92 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_conv_11x11_i8_c8s — 7x7 Convolution for 8-bit Input and 8-bit Masks

• No alignment restrictions on input and mask arrays.
• Input and output arrays should not overlap.

Implementation Notes
• The outer loop is manually unrolled by two to calculate two output samples per

iteration.
• Code is LITTLE ENDIAN

Compatibility Compatible for both C64x and C64x+.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 93
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

6.11 IMG_conv_11x11_i16s_c16s
IMG_conv_11x11_i16s_c16s — 11x11 Convolution for 16-bit Inputs www.ti.com

IMG_conv_11x11_i16s_c16s 11x11 Convolution for 16-bit Inputs

Syntax void IMG_conv_11x11_i16s_c16s (const short *restrict imgin_ptr, short *restrict
imgout_ptr, short width, short pitch, const short *restrict mask_ptr, short shift)

Arguments

imgin_ptr Pointer to input image (16-bit signed)
imgout_ptr Pointer to output image (16-bit unsigned
width Number of outputs to be calculated
pitch Number of columns in the input image
mask_ptr Pointer to 11x11 mask used (16-bit signed)
shift User-specified shift value

Description The convolution kernel accepts eleven rows of pitch input pixels and produces one row
of width output pixels using the input mask of 11 by 11. This convolution performs a
point-by-point multiplication of 11 by 11 masks with the input image. The result of 121
multiplications are then summed to produce a 40-bit convolution intermediate sum.
Overflow while accumulation is not handled; however, assumptions are made on filter
gain to avoid overflow. The user defined shift value is used to shift this convolution sum
down to the short range and store in an output array. The result being stored is also
range limited between -32768 to 32767 and will be saturated accordingly. The mask is
moved one column at a time, advancing the mask over the entire image until the entire
width is covered. The input, output image pixels and the masks are provided as 16-bit
signed values.

Algorithm This is the C code implementation without any restrictions. However, intrinsic code has
restrictions as listed in the special requirements:
void IMG_conv_11x11_i16s_c16s
(

const short *restrict imgin_ptr,
short *restrict imgout_ptr,
short width,
short pitch,

const short *restrict mask_ptr,
short shift

)

{
int i, j, k;
long sum;

for (i = 0; i < width; i++)
{

sum = 0;
for (j = 0; j < 11; j++)
{

for (k = 0; k < 11; k++)
sum += imgin_ptr[j * pitch + i + k] *

mask_ptr[j * 11 + k];
}
sum >>= shift ;
sum = (sum > 32767)? 32767 : (sum < -32768 ? -32768 : sum);

imgout_ptr[i] = sum;

}
}

94 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_conv_11x11_i16s_c16s — 11x11 Convolution for 16-bit Inputs

Special Requirements
• Width must be >=4 and multiples of 4
• Pitch should be >= width
• Internal accuracy of the computations is 40 bits. To ensure correctness on a 16 bit

input data, the maximum permissible filter gain in terms of bits is 24-bits i.e. the
cumulative sum of the absolute values of the filter coefficients should not exceed 224

– 1
• Output array must be double-word aligned
• Input and mask arrays should be half-word aligned
• Input and output arrays should not overlap.

Implementation Notes
• The outer loop is unrolled by four to calculate four output samples per iteration.
• Code is LITTLE ENDIAN

Compatibility Compatible for C64x+.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 95
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

6.12 IMG_corr_3x3_i8_c16s
IMG_corr_3x3_i8_c16s — 3x3 Correlation for 8-bit Input and 16-bit Masks www.ti.com

IMG_corr_3x3_i8_c16s 3x3 Correlation for 8-bit Input and 16-bit Masks

Syntax void IMG_corr_3x3_i8_c16s (const unsigned char *restrict imgin_ptr, int *restrict
imgout_ptr, short width, short pitch, const short *restrict mask_ptr, int round)

Arguments

imgin_ptr Pointer to input image (8-bit signed)
imgout_ptr Pointer to output image (32-bit signed)
width Number of outputs to be calculated
pitch Number of columns in the input image
mask_ptr Pointer to 3x3 mask used (16-bit signed)

Description The correlation kernel accepts three rows of pitch input pixels and produces one row of
width output pixels using the input mask of 3x3. This correlation performs a
point-by-point multiplication of 3x3 masks with the input image. The result of the nine
multiplications are then summed to produce a 32-bit sum and then stored in an output
array. The mask is moved one column at a time, advancing the mask over the entire
image until the entire width is covered. The masks are provided as 16-bit signed values,
the input image pixels are provided as 8-bit unsigned values, and the output pixels will
be 32-bit signed. The image mask to be correlated is typically part of the input image or
another image.

Algorithm This is the C code implementation without any restrictions. However, intrinsic code has
restrictions as listed in the special requirements:
void IMG_corr_3x3_i8_c16s
(

const unsigned char *restrict imgin_ptr,
int *restrict imgout_ptr,
short width,
short pitch,

const short *restrict mask_ptr
)
{

int i, j, k;
int sum;
for (i = 0; i < width ; i++)
{

sum = 0;
for (j = 0; j < 3; j++)

for (k = 0; k < 3; k++)
sum += imgin_ptr[j * pitch + i + k] *

mask_ptr[j * 3 + k];
imgout_ptr[i] = sum;

}
}

Special Requirements
• Width must be >= 2 and multiples of 2.
• Pitch should be >= width.
• Output array must be double-word aligned.
• No alignment restrictions on input array.
• mask_ptr should be half-word aligned.
• Input and output arrays should not overlap.

96 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_corr_3x3_i8_c16s — 3x3 Correlation for 8-bit Input and 16-bit Masks

Implementation Notes
• The inner loop is manually unrolled completely to form a single loop and two output

samples are calculated per iteration.
• Code is LITTLE ENDIAN.

Compatibility Compatible for C64x+.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 97
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

6.13 IMG_corr_3x3_i16s_c16s
IMG_corr_3x3_i16s_c16s — 3x3 Correlation for 16-bit Inputs www.ti.com

IMG_corr_3x3_i16s_c16s 3x3 Correlation for 16-bit Inputs

Syntax void IMG_corr_3x3_i16s_c16s (const short *restrict imgin_ptr, int *restrict imgout_ptr,
short width, short pitch, const short *restrict mask_ptr, short shift, int round)

Arguments

imgin_ptr Pointer to input image (16-bit signed)
imgout_ptr Pointer to output image (32-bit signed)
width Number of outputs to be calculated
pitch Number of outputs to be calculated
mask_ptr Pointer to 3x3 mask used (16-bit signed)
shift User-specified shift amount
round User-specified round value

Description The correlation kernel accepts three rows of pitch input pixels and produces one row of
width output pixels using the input mask of 3x3. This correlation performs a point by
point multiplication of 3x3 masks with the input image. The result of the 9 multiplications
are then summed to produce a 40-bit sum which is added to user-specified round value,
right-shifted by the specified value, and then stored in an output array. Overflow and
saturation of the accumulated sum is not handled. However assumptions are made on
filter gain to avoid them. The mask is moved one column at a time, advancing the mask
over the entire image until the entire width is covered. The masks are provided as 16-bit
signed values and the input image pixels are provided as 16-bit signed values and the
output pixels will be 32-bit signed. The image mask to be correlated is typically part of
the input image or another image.

Algorithm This is the C code implementation without any restrictions. However, intrinsic code has
restrictions as listed in the special requirements:
void IMG_corr_3x3_i16s_c16s
(

const short *restrict imgin_ptr,
int *restrict imgout_ptr,
short width,
short pitch,

const short *restrict mask_ptr,
short shift,
int round

)
{

int i, j, k;
long sum;
for (i = 0; i < width ; i++)
{

sum = round;
for (j = 0; j < 3; j++)

for (k = 0; k < 3; k++)
sum += imgin_ptr[j * pitch + i + k] * mask_ptr[j * 3 + k];

sum = (sum >> shift);
imgout_ptr[i] = (int)sum;

}
}

Special Requirements
• Width must be >= 2 and multiples of 2
• Pitch should be >= width.
• Internal accuracy of the computations is 40 bits. To ensure correctness on a 16 bit

input data, the maximum permissible filter gain in terms of bits is 24-bits i.e. the

98 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_corr_3x3_i16s_c16s — 3x3 Correlation for 16-bit Inputs

cumulative sum of the absolute values of the filter coefficients should not exceed 224

- 1.
• Output array must be double word aligned.
• Input and mask array should be half-word aligned.
• Input and output arrays should not overlap
• Shift is appropriate to produce a 32-bit result.
• Range of filter co-efficients is -32767 to 32767.

Implementation Notes
• The inner loop is manually unrolled completely to form a single loop and two output

samples are calculated per iteration.
• Code is LITTLE ENDIAN.

Compatibility Compatible for C64x+.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 99
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

6.14 IMG_corr_3x3_i8_c8
IMG_corr_3x3_i8_c8 — 3x3 Correlation for unsigned 8-bit inputs www.ti.com

IMG_corr_3x3_i8_c8 3x3 Correlation for unsigned 8-bit inputs

Syntax void IMG_corr_3x3_i8_c8(const unsigned char *inptr, int *restrict outptr, int n_out, int
x_dim, const unsigned char *mask, const short shift, int round)

Arguments

inptr Pointer to input image (8-bit signed)
outptr Pointer to output image (32-bit signed)
n_out Number of outputs to be calculated
x_dim Number of columns in the input image
mask Pointer to 3x3 mask used 16-bit signed
shift User-specified shift amount
round User-specified round value

Description The correlation performs a point by point multiplication of the 3 by 3 mask with the input
image. The result of the nine multiplications are then summed up together to produce a
convolution sum. A rounding constant is added to the sum and shifted by user specified
amount.

The image mask to be correlated is typically part of the input image and indicates the
area of the best match between the input image and mask. The mask is moved one
column at a time, advancing the mask over the portion of the row specified by 'n_out'.
When 'n_out' is larger than 'x_dim', multiple rows will be processed.

An application may call this kernel once per row to calculate the correlation for an entire
image:
for (i = 0; i < rows; i++)
{

IMG_corr_3x3(&i_data[i * x_dim],
&o_data[i * n_out],n_out, x_dim, mask, shift, round);

}

Alternately, the kernel may be invoked for multiple rows at a time, although the two
outputs at the end of each row will have meaningless values. For example:
IMG_corr_3x3(i_data, o_data,2 * x_dim, x_dim, mask, shift, round);

This will produce two rows of outputs into o_data. The outputs at locations o_data[x_dim
- 2], o_data[x_dim - 1], o_data[2*x_dim - 2] and o_data[2*x_dim - 1] will have
meaningless values. This is harmless, although the application must account for this
when interpreting the results.

Algorithm This is the C code implementation without any restrictions. However, intrinsic code has
restrictions as listed in the special requirements.
void IMG_corr_3x3_i8_c8_cn
(

const unsigned char *restrict i_data, /* input image */
int *restrict o_data, /* output image

*/
int n_out, /* number of

outputs */
int x_dim, /* width of image
*/

const unsigned char *restrict mask, /* convolution mask */
const short shift, /* result shift

amount */
int round /* rounding

constant */
)

100 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_corr_3x3_i8_c8 — 3x3 Correlation for unsigned 8-bit inputs

{
in[t i, j, k;
for (i=0; i<n_out; i++)

{
int sum=round;

for (j=0; j<3;++)
sum+=i_data[j*x_dim+i+k]*mask[j*3+k];

}
}

Special Requirements
• The array pointed to by outptr does not alias with the array pointed to by inptr
• x_dim>=4 and is a multiple of 2
• n_out should be a multiple of 4
• This kernel is developed for LITTLE ENDIAN target

Implementation Notes
• Data for the input image pixels is reused by pre-loading them outside the loop and

issuing moves to bring them to the appropriate registers once inside the loop. this is
done to minimize the loads from nine to six within the loop, for each pair of pixels in
the present computation of the correlation. The loop is unrolled once so that eighteen
multiples for the two output pixels can schedule in 9 cycles leading to 4.5 cycles per
output pixel. In addition, the trivial loop that did the loads three at a time, per row, is
collapsed to increase parallel operations.

• The code is LITTLE ENDIAN.

Compatibility Compatible for C64x+.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 101
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

6.15 IMG_corr_3x3_i16_c16s
IMG_corr_3x3_i16_c16s — 3x3 Correlation for unsigned 16-bit Inputs www.ti.com

IMG_corr_3x3_i16_c16s 3x3 Correlation for unsigned 16-bit Inputs

Syntax void IMG_corr_3x3_i16_c16s (const unsigned short *i_data, long *restrict o_data, const
unsigned short mask[3][3], int x_dim, int n_out)

Arguments

i_data Pointer to input image (16-bit signed)
o_data Pointer to output image (40(64)-bit signed))
mask_ptr Pointer to 3x3 mask used (16-biit signed)
x_dim Number of columns in the input image
n_out Number of outputs to be calculated

Description The correlation kernel accepts three rows of x_dim input pixels and produces one row of
width output pixels using the input 3x3 mask. This correlation performs a point by point
multiplication of 3x3 masks with the input image. The result of the 9 multiplications are
then summed together to produce a 40-bit sum and stored in an output array. The mask
is moved one column at a time, advancing the mask over the entire image until the n_out
points are generated. The masks are provided as 16-bit signed values and the input
image pixels are provided as 16-bit unsigned values and the output pixels will be 40-bit
signed.

The image mask to be correlated is typically part of an input image and indicates the
area of the best match between the input image and mask.

An application may call this kernel once per row to calculate the correlation for an entire
image:
for (i = 0; i < rows; i++)

{
IMG_corr_3x3(&i_data[i * x_dim], &o_data[i * n_out],

mask, x_dim, n_out);
}

Algorithm This is the C code implementation without any restrictions. However, intrinsic code has
restrictions as listed in the special requirements:
void IMG_corr_3x3_i16_c16s
(

const unsigned short *i_data, /* input image */
long *restrict o_data, /* output correlation data */
unsigned short mask[3][3], /* correlation mask */
int x_dim, /* width of image */
int n_out /* number of outputs */

)
{

int i, j, k;

for (i = 0; i < n_out; i++)
{

long sum = 0; /* temporary var. long data type */

for (j = 0; j < 3; j++)
for (k = 0; k < 3; k++)

sum += (long) i_data[j * x_dim + i + k] * mask[j][k];

o_data[i] = sum;
}

}

Special Requirements
• Input and output buffers do not alias.

102 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_corr_3x3_i16_c16s — 3x3 Correlation for unsigned 16-bit Inputs

• n_out should be a multiple of 4.

Memory Notes
• All arrays should be half-word aligned.
• No bank conflicts occur.
• Code is LITTLE ENDIAN.

Implementation Notes
• The inner loops are unrolled completely, and the outer loop is unrolled 4 times.
• Half-word unsigned multiplication is used here.
• Non-aligned loads and stores are used to avoid alignment issues.

Compatibility Compatible for both C64x and C64x+.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 103
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

6.16 IMG_corr_5x5_i16s_c16s
IMG_corr_5x5_i16s_c16s — 5x5 Correlation for 16-bit Inputs www.ti.com

IMG_corr_5x5_i16s_c16s 5x5 Correlation for 16-bit Inputs

Syntax void IMG_corr_5x5_i16s_c16s (const short *restrict imgin_ptr, int *restrict imgout_ptr,
short width, short pitch, const short *restrict mask_ptr, short shift, int round)

Arguments

imgin_ptr Pointer to input image (16-bit signed).
imgout_ptr Pointer to output correlation result (32-bit signed).
width Number of outputs to be calculated.
pitch Number of columns in the input image.
mask_ptr Pointer to 5x5 mask used (16-bit signed).
shift User-specified shift amount.
round User-specified round value.

Description The correlation kernel accepts five rows of pitch input pixels and produces one row of
width output pixels using the input mask of 5x5. This correlation performs a
point-by-point multiplication of 5x5 masks with the input image. The result of the 25
multiplications are then summed to produce a 40-bit sum. A rounding const is added and
the result is shifted and stored in the output array. Overflow and saturation of the
accumulated sum is not handled; however, assumptions are made on filter gain to avoid
them. The mask is moved one column at a time, advancing the mask over the entire
image until the entire width is covered. The masks are provided as 16-bit signed values
and the input image pixels are provided as 16-bit signed values and the output pixels will
be 32-bit signed. The image mask to be correlated is typically part of the input image or
another image.

Algorithm This is the C code implementation without any restrictions. However, intrinsic code has
restrictions as listed in the special requirements:
void IMG_corr_5x5_i16s_c16s
(

const short *restrict imgin_ptr,
int *restrict imgout_ptr,
short width,
short pitch,

const short *restrict mask_ptr,
short shift,

int round
)
{

int i, j, k;
long sum;
for (i = 0; i < width ; i++)
{

sum = round;
for (j = 0; j < 5; j++)

for (k = 0; k < 5; k++)
sum += imgin_ptr[j * pitch + i + k] * mask_ptr[j * 5 + k];

sum = (sum >> shift);
imgout_ptr[i] = (int)sum;

}
}

Special Requirements
• Width must be >= 2 and multiples of 2.
• Pitch should be >= width.
• Internal accuracy of the computations is 40 bits. To ensure correctness on a 16-bit

input data, the maximum permissible filter gain in terms of bits is 24-bits i.e. the
cumulative sum of the absolute values of the filter coefficients should not exceed 224

104 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_corr_5x5_i16s_c16s — 5x5 Correlation for 16-bit Inputs

– 1.
• Output array must be double word aligned.
• Input and mask arrays should be half-word aligned.
• The input and output arrays should not overlap.
• Shift is appropriate to produce a 32-bit result.
• Range of filter co-efficients is -32767 to 32767.

Implementation Notes
• The inner loop is manually unrolled completely to form a single loop and two output

samples are calculated per iteration.
• Code is LITTLE ENDIAN.

Compatibility Compatible for C64x+.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 105
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

6.17 IMG_corr_11x11_i16s_c16s
IMG_corr_11x11_i16s_c16s — 11x11 Correlation for 16-bit Inputs www.ti.com

IMG_corr_11x11_i16s_c16s 11x11 Correlation for 16-bit Inputs

Syntax void IMG_corr_11x11_i16s_c16s (const short *restrict imgin_ptr, int *restrict imgout_ptr,
short width, short pitch, const short *restrict mask_ptr, int round)

Arguments

imgin_ptr Pointer to input image (16-bit signed).
imgout_ptr Pointer to output correlation result (32-bit signed).
width Number of outputs to be calculated.
pitch Number of columns in the input image.
mask_ptr Pointer to 11x11 mask used (16-bit signed).
round User-specified round value.

Description The correlation kernel accepts 11 rows of pitch input pixels and produces one row of
width output pixels using the input mask of 11x11. This correlation performs a
point-by-point multiplication of 11x11 masks with the input image. The result of the 121
multiplications are then summed to produce a 40-bit sum which is added to user
specified round value and then stored in an output array. Overflow and saturation of the
accumulated sum is not handled; hoowever, assumptions are made on filter gain to
avoid them. The mask is moved one column at a time, advancing the mask over the
entire image until the entire width is covered. The masks are provided as 16-bit signed
values, the input image pixels are provided as 16-bit signed values, and the output pixels
will be 32-bit signed. The image mask to be correlated is typically part of the input image
or another image

Algorithm This is the C code implementation without any restrictions. However, intrinsic code has
restrictions as listed in the special requirements:
define SHIFT 7
void IMG_corr_11x11_i16s_c16s
(

const short *restrict imgin_ptr,
int *restrict imgout_ptr,
short width,
short pitch,

const short *restrict mask_ptr,
int round

)
{

int i, j, k;
long sum;
for (i = 0; i < width ; i++)
{

sum = round;
for (j = 0; j < 11; j++)

for (k = 0; k < 11; k++)
sum += imgin_ptr[j * pitch + i + k] * mask_ptr[j * 11 + k];

sum = (sum >> SHIFT);
imgout_ptr[i] = sum;

}
}

Special Requirements
• Width must be >= 2 and multiples of 2.
• Pitch should be >= width.
• Internal accuracy of the computations is 40 bits. To ensure correctness on a 16-bit

input data, the maximum permissible filter gain in terms of bits is 24-bits (i.e., the
cumulative sum of the absolute values of the filter coefficients should not exceed 224

– 1).

106 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_corr_11x11_i16s_c16s — 11x11 Correlation for 16-bit Inputs

• Output array must be double-word aligned.
• Input and mask arrays should be half-word aligned.
• The input and output arrays should not overlap.

Implementation Notes
• The inner loop is manually unrolled by two to calculate two output samples per

iteration.
• Code is LITTLE ENDIAN.

Compatibility Compatible for C64x+.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 107
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

6.18 IMG_corr_11x11_i8_c16s
IMG_corr_11x11_i8_c16s — 11x11 Correlation for 8-bit input and 16-bit masks www.ti.com

IMG_corr_11x11_i8_c16s 11x11 Correlation for 8-bit input and 16-bit masks

Syntax void IMG_corr_11x11_i8_c16s (const unsigned char *restrict imgin_ptr, int *restrict
imgout_ptr, short width, short pitch, const short *restrict mask_ptr, int round)

Arguments

imgin_ptr Pointer to input image (8-bit signed).
imgout_ptr Pointer to output correlation result (32-bit signed).
width Number of outputs to be calculated.
pitch Number of columns in the input image.
mask_ptr Pointer to 11x11 mask used (16-bit signed).
round User-specified round value.

Description The correlation kernel accepts 11 rows of pitch input pixels and produces one row of
width output pixels using the input mask of 11x11. This correlation performs a
point-by-point multiplication of 11x11 masks with the input image. The result of the 121
multiplications are then summed together to produce a 40-bit sum which is added to
user specified round value and then stored in an output array. Overflow and saturation of
the accumulated sum is not handled; however, assumptions are made on filter gain to
avoid them. The mask is moved one column at a time, advancing the mask over the
entire image until the entire width is covered. The masks are provided as 16-bit signed
values, the input image pixels are provided as 16-bit signed values, and the output pixels
will be 32-bit signed. The image mask to be correlated is typically part of the input image
or another image

Algorithm This is the C code implementation without any restrictions. However, intrinsic code has
restrictions as listed in the special requirements:
void IMG_corr_11x11_i8_c16s
(

const unsigned char *restrict imgin_ptr,
int *restrict imgout_ptr,
short width,
short pitch,

const short *restrict mask_ptr,
int round

)
{

int i, j, k;
int sum;
for (i = 0; i < width ; i++)
{

sum = round;
for (j = 0; j < 11; j++)

for (k = 0; k < 11; k++)
sum += imgin_ptr[j * pitch + i + k] * mask_ptr[j * 11 + k];

imgout_ptr[i] = sum;
}

}

Special Requirements
• Width must be >= 2 and multiples of 2.
• Pitch should be >= width.
• Internal accuracy of the computations is 32 bits. To ensure correctness on 8-bit input

data, the maximum permissible filter gain in terms of bits is 24-bits (i.e., the
cumulative sum of the absolute values of the filter coefficients should not exceed 224

– 1).
• Output array must be double-word aligned.
• No alignment restrictions on Input array.

108 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_corr_11x11_i8_c16s — 11x11 Correlation for 8-bit input and 16-bit masks

• Mask should be half-word aligned.
• The input and output arrays should not overlap.

Implementation Notes
• The inner loop is manually unrolled by two to calculate two output samples per

iteration.
• Code is LITTLE ENDIAN.

Compatibility Compatible for C64x+.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 109
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

6.19 IMG_corr_gen_i16s_c16s
IMG_corr_gen_i16s_c16s — Generalized Correlation www.ti.com

IMG_corr_gen_i16s_c16s Generalized Correlation

Syntax void IMG_corr_gen_i16s_c16s_(const short *in_data, short *h, short *out_data, int M,
int cols)

Arguments

in_data[] Input image data (one line of width cols). Must be word aligned.
h[M] 1xM tap filter
out_data[] Output array of size cols – M + 8. Must be double–word aligned.
M Number of filter taps.
cols Width of line of image data.

Description This routine performs a generalized correlation with a 1xM tap filter. It can be called
repetitively to form an arbitrary MxN 2-D generalized correlation function. The correlation
sums are stored as half words. The input pixel, and mask data are assumed to be
shorts. No restrictions are placed on the number of columns in the image (cols) or the
number of filter taps (M).

Algorithm Behavioral C code for the routine is provided below:
void IMG_corr_gen_cn
(

const short *in_data,
const short *h,
short *out_data,
int M,
int cols

)
{

int i, j;
for (j = 0; j < cols - M; j++)

for (i = 0; i < M; i++)
out_data[j] += in_data[i + j] * h[i];

}

Special Requirements
• Array in_data[] must be word-aligned, array out_data[] must be double-word

aligned, and array h[] must be half-word aligned.
• The size of the output array must be at least (cols - m + 8).
• Internal accuracy of computations is 16 bits. The convolution sum should not exceed

16 bits (signed) at any stage
• cols > M

Implementation Notes
• Bank Conflicts: No bank conflicts occur.
• Endian: The code is ENDIAN NEUTRAL.
• Interruptibility: The code is interrupt-tolerant, but not interruptible.
• Since this function performs generalized correlation, the number of filter taps can be

as small as one. Hence, it is not beneficial to pipeline this loop in its original form. In
addition, collapsing of the loops causes data dependencies and degrades the
performance.

• However, loop order interchange can be used effectively. For example, the outer loop
of the natural C code is exchanged to be the inner loop that is to be software
pipelined in the optimized assembly code. It is beneficial to pipeline this loop because
typical image dimensions are larger than the number of filter taps. Note however, that
the number of data loads and stores increase within this loop compared to the natural
C code.

110 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_corr_gen_i16s_c16s — Generalized Correlation

• Unrolling of the outer loop assumes that there are an even number of filter taps (M).
Two special cases arise:
– m = 1. In this case, a separate version that processes just 1 tap is used and the

code directly starts from this loop without executing the version of the code for
even number of taps.

– m is odd. In this case, the even version of the loop is used for as many even taps
as possible and then the last tap is computed using the odd tap special version
created for m = 1.

• The inner loop is unrolled 8 times, assuming that the loop iteration (cols – M) is a
multiple of 8. In most typical images, cols is a multiple of 8 but since M is completely
general, (cols – M) may not be a multiple of 8. If (cols – M) is not a multiple of 8, then
the inner loop iterates fewer times than required and certain output pixels may not be
computed. Use the following process to solve this problem:
– Eight is added to (cols – M) so that the next higher multiple of 8 is computed. This

implies that in certain cases, up to 8 extra pixels may be computed. To annul this
extra computation, 8 locations starting at out_data[cols – M] are zeroed out before
returning to the calling function.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 111
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

6.20 IMG_corr_gen_iq
IMG_corr_gen_iq — Correlation fwith Q-point Math www.ti.com

IMG_corr_gen_iq Correlation fwith Q-point Math

Syntax void IMG_corr_gen_iq (const int *restrict x, const short *restrict h, int *restrict y, int m,
int x_dim, int x_qpt, int h_qpt, int y_qpt)

Arguments

x Input image data (one line of width ‘x_dim’).
h[m] 1 x m tap filter
y Correlation output array of size ‘x_dim – m’
m Number of filter taps
x_dim Width of input image data
x_qpt Q-format used by the input pixel array
h_qpt Q-format used by the filter mask array
y_qpt Q-format to be used for the output array

Description The function performs a generalized correlation with a 1 by ‘m’ tap filter. It can be called
repetitively to form an arbitrary ‘m x n’ 2D generalized correlation kernel. The input data,
mask data and output data are in Q-formats. The data type of input image array and
output is int where as it is short for mask array. The intermediate correlation sum is
accumulated to a 64-bit value in an intermediate Q-format. This sum is shifted by a
suitable value to get the final output in the specified output Q-format. If the width of the
input image is x_dim and the mask is m then the output array must have at-least a
dimension of (x_dim - m). Overflow may occur while accumulating the intermediate sum
in 64-bits or while converting the intermediate sum to the final sum in 32-bits. In either of
the cases, no saturation will be performed by this function. However assumptions on
filter gain are made to avoid overflow.

Algorithm This is the C code implementation without any restrictions. However, intrinsic code has
restrictions as listed in the special requirements:
void IMG_corr_gen_iq
(
const int *restrict x,
const short *restrict h,

int *restrict y,
int m,
int x_dim,
int x_qpt,
int h_qpt,
int y_qpt
)
{

int i, j;
int q_pt;
long long temp_y;
q_pt = x_qpt + h_qpt - y_qpt;
for (j = 0; j < x_dim - m; j++)
{

temp_y = 0;
for (i = 0; i < m; i++)
{
temp_y += x[i + j] * h[i];

}
temp_y >>= q_pt;

y[j] = (int)temp_y;
}

}

112 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_corr_gen_iq — Correlation fwith Q-point Math

Special Requirements
• Length of filter (m) should be a minimum of 2 and also multiple of 2
• Minimum value of 'm' is 2.
• Minimum value of 'x_dim' is 'm' + 2.
• The following assumption is made on the Q-formats: y_qpt ≤ x_qpt + h_qpt. .
• Both the input arrays and the output array should be double-word aligned
• The input and output matrices should not overlap
• Internal accuracy of the computations is 64 bits. To ensure correctness on 32-bit

input data, the maximum permissible filter-gain in bits is 32-bits (i.e., the cumulative
sum of the absolute values of the filter coefficients should not exceed 2^32 – 1) .

Implementation Notes
• The inner loop is unrolled twice and two output values are calculated per iteration of

the outer loop.
• Saturation is performed appropriately at all stages of computation.
• Code is LITTLE ENDIAN.

Compatibility Compatible for both C64x and C64x+.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 113
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

6.21 IMG_median_3x3_16s
IMG_median_3x3_16s — 3x3 Median Filtering for 16-bit input www.ti.com

IMG_median_3x3_16s 3x3 Median Filtering for 16-bit input

Syntax void IMG_median_3x3_16s (const short *restrict i_data, int n, short *restrict o_data)

Arguments

i_data Pointer to input array of size 3 x n
n Width of the input image
o_data Pointer to output array of size 1 x n

Description This function performs a 3x3 median filter operation on 16-bit signed values. The median
filter comes under the class of non-linear signal processing algorithms. The grey level at
each pixel is replaced by the median of the nine neighboring values. The median of a set
of nine numbers is the middle element so that half of the elements in the list are larger
and half are smaller. The i_data points to an array which consists of three rows of pixel
values. The median value is calculated corresponding to the middle row of i_data, and
written into memory location pointed by o_data. The first two values in the output array
will not be containing any meaningful data. The 3rd value in the output array will be the
median of 2nd value in the middle row of input array and so on. The nth value in the
output array will be the median of the (n-1)th value in the mid row of input array. Hence,
the output array will not contain the median values corresponding to first and last
elements in the middle row of input image. .

Algorithm The algorithm processes a 3x3 region as three 3-element columns, incrementing through
the columns in the image. Each column of data is first sorted into MAX, MED, and MIN
values, resulting in the following arrangement:

Column 0 Column 1 Column 2 Columnwise sorted
Prev_col0_0 Prev_col1_0 Cur_col_0 MAX
Prev_col0_1 Prev_col1_1 Cur_col_1 MED
Prev_col0_2 Prev_col1_2 Cur_col_2 MIN

After sorting all the three columns in the descending order specified above, The MIN of
MAX (i.e., row 0) , the MEDium of MEDium values (row 1) and MAX of MIN values (row
2) is taken and their MEDium value is calculated to get the median of the above
considered 3x3 region. After this, the pointers moves by a column, that is, prev_col1
becomes prev_col0, cur_col becomes prev_col1, and a new column is loaded into
cur_col.

Special Requirements
• The minimum value for width of input image ‘n’ is 4.
• Width of input image ‘n’ should be a multiple of 4.
• Input and output arrays must be double word aligned.
• Input and output arrays should not overlap .

Implementation Notes
• The loop is manually unrolled by two and further unrolled twice using pragma

directives to the compiler, resulting in a total unroll of four.
• Four output pixels are calculated per iteration, after unrolling is taken into

consideration.
• Valid output starts from third element to nth element in the output array which

corresponds to median values starting from second element to 'n - 1'th element in the
middle row of input.

• Code is LITTLE ENDIAN.

Compatibility Compatible for both C64x and C64x+.

114 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

6.22 IMG_median_3x3_16

www.ti.com IMG_median_3x3_16 — 3x3 Median Filtering for 16-bit input

IMG_median_3x3_16 3x3 Median Filtering for 16-bit input

Syntax void IMG_median_3x3_16 (const short *restrict i_data, int n, short *restrict o_data)

Arguments

i_data Pointer to input array of size 3 x n
n Width of the input image
o_data Pointer to output array of size 1 x n

Description This kernel performs a 3x3 median filter operation on 16-bit unsigned values. The
median filter comes under the class of non-linear signal processing algorithms. Rather
than replace the grey level at a pixel by a weighted average of the nine pixels including
and surrounding it, the grey level at each pixel is replaced by the median of the nine
values. The median of a set of nine numbers is the middle element so that half of the
elements in the list are larger and half are smaller. Median filters remove the effects of
extreme values from data, such as salt and pepper noise, although using a wide filter
may result in unacceptable blurring of sharp edges in the original image.

Algorithm The algorithm is same as IMG_median_3x3_16s, with the difference of unsigned input.

Special Requirements
• The length 'n' must be a multiple of four

Memory Notes
• No bank conflicts occur.
• No alignment restrictions on input/output buffers.

Compatibility Compatible for both C64x and C64x+.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 115
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

6.23 IMG_yc_demux_be16_16
IMG_yc_demux_be16_16 — YCbCR Demultiplexing (16-bit big endian source) www.ti.com

IMG_yc_demux_be16_16 YCbCR Demultiplexing (16-bit big endian source)

Syntax void IMG_yc_demux_be16_16 (int n, const unsigned short * yc, short *restrict y, short
*restrict cr, short *restrict cb);

Arguments

n Number of luma points. Must be multiple of 16.
yc Packed luma/chroma inputs. Must be double-word aligned.
y Unpacked luma data. Must be double-word aligned.
cr Unpacked chroma r data. Must be double-word aligned.
cb Unpacked chroma b data. Must be double-word aligned.

Description The input array 'yc' is expected to be an interleaved 4:2:2 video stream. The input is
expected in BIG ENDIAN byte order within each 4-byte word. This is consistent with
reading the video stream from a word-oriented BIG ENDIAN device while the C6000
device is in a LITTLE ENDIAN configuration. In other words, the expected pixel order is:

Word 0 Word 1 Word 2
+---------------+---------------+---------------+--

Byte# | 0 1 2 3 | 4 5 6 7 | 8 9 10 11 |...
| cb0 y1 | cr0 y0 | cb1 y2 |...
+---------------+---------------+---------------+--

The output arrays 'y', 'cr', and 'cb' are expected to not overlap. The de-interleaved pixels
are written as half-words in LITTLE ENDIAN order.

This function reads the halfword-oriented pixel data, zero-extends it, and then writes it to
the appropriate result array. Both the luma and chroma values are expected to be
unsigned. The data is expected to be in an order consistent with reading byte oriented
data from a word-oriented peripheral that is operating in BIG ENDIAN mode, while the
CPU is in LITTLE ENDIAN mode. This results in a pixel ordering which is not
immediately obvious. This function correctly reorders the pixel values so that further
processing may proceed in LITTLE ENDIAN mode.

Algorithm void IMG_yc_demux_be16_16_c
(

int n, /* Number of luma pixels */
const unsigned short *yc, /* Interleaved luma/chroma */
short *restrict y, /* Luma plane (16-bit) */
short *restrict cr, /* Cr chroma plane (16-bit) */
short *restrict cb /* Cb chroma plane (16-bit) */

)
{

int i;

for (i = 0; i < (n >> 1); i++)
{

/* 0 1 2 3 */
/* cb0 y1 cr0 y0 */

y[2*i+0] = yc[4*i + 3];
y[2*i+1] = yc[4*i + 1];
cr[i] = yc[4*i + 2];
cb[i] = yc[4*i + 0];

}
}

Special Requirements
• Input and output arrays are double-word aligned.
• The input must be a multiple of 16 luma pixels long.

Compatibility Compatible for both C64x and C64x+.

DSPImage/Video Processing Library116 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

6.24 IMG_yc_demux_le16_16
www.ti.com IMG_yc_demux_le16_16 — YCbCR Demultiplexing (16-bit little endian source

IMG_yc_demux_le16_16 YCbCR Demultiplexing (16-bit little endian source

Syntax void IMG_yc_demux_le16_16 (int n, const unsigned short * yc, short *restrict y, short
*restrict cr, short *restrict cb)

Arguments

n Number of luma points. Must be multiple of 16.
yc Packed luma/chroma inputs. Must be double-word aligned.
y Unpacked luma data. Must be double-word aligned.
cr Unpacked chroma r data. Must be double-word aligned.
cb Unpacked chroma b data. Must be double-word aligned.

Description The input array 'yc' is expected to be an interleaved 4:2:2 video stream. The input is
expected in LITTLE ENDIAN byte order within each 4-byte word. This is consistent with
reading the video stream from a word-oriented LITTLE ENDIAN device while the C6000
device is in a LITTLE ENDIAN configuration. In other words, the expected pixel order is:

Word 0 Word 1 Word 2
+-----------------+-----------------+-----------------+--

Byte# | 0 1 | 2 3 | 4 5 | 6 7 | 8 9 | 10 11 |...
| y0 | cr0 | y1 | cb0 | y2 | cr2 |...
+-----------------+-----------------+-----------------+--

The output arrays 'y', 'cr', and 'cb' are expected to not overlap. The de-interleaved pixels
are written as half-words in LITTLE ENDIAN order. Note: Please see the IMGLIB
function IMB_yc_demux_be16_16 for code which handles input coming from a BIG
ENDIAN device.

This function reads the halfword-oriented pixel data, zero-extends it, and then writes it to
the appropriate result array. Both the luma and chroma values are expected to be
unsigned. The data is expected to be in an order consistent with reading byte-oriented
data from a word-oriented peripheral that is operating in LITTLE ENDIAN mode, while
the CPU is in LITTLE ENDIAN mode. This function unpacks the byte-oriented data so
that further processing may proceed in LITTLE ENDIAN mode.

Special Requirements
• Input and output arrays are double-word aligned.
• The input must be a multiple of 16 luma pixels long.

Compatibility Compatible for both C64x and C64x+.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 117
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

7 Compression/Decompression IMGLIB2 Reference

7.1 IMG_fdct_8x8

4

7 7 2 1 2 1
cos cos

16 16
0 0

u v
luv

x u y v
ixy

x y

a a
=

+ p + pæ ö æ ö
å å ç ÷ ç ÷

è ø è ø= =

1
0

2

0 1

z z

z z

= Þ a =

¹ Þ a =

Compression/Decompression IMGLIB2 Reference www.ti.com

This section provides a list of the routines within the IMGLIB organized into functional categories. The
functions within each category are listed in alphabetical order and include arguments, descriptions,
algorithms, benchmarks, and special requirements.

IMG_fdct_8x8 Forward Discrete Cosine Transform (FDCT)

Syntax void IMG_fdct_8x8(short *fdct_data, unsigned num_fdcts)

Arguments

fdct_data Pointer to `num_fdct' 8x8 blocks of image data. Must be double-word
aligned.

num_fdcts Number of FDCTs to perform. Note that IMG_fdct_8x8 requires
exactly `num_fdcts' blocks of storage starting at the location pointed
to by `fdct_data', since the transform is executed completely in place.

Description This routine implements the forward discrete cosine transform (FDCT). Output values
are rounded, providing improved accuracy. Input terms are expected to be signed 11Q0
values, producing signed 15Q0 results. A smaller dynamic range may be used on the
input, producing a correspondingly smaller output range. Typical applications include
processing signed 9Q0 and unsigned 8Q0 pixel data, producing signed 13Q0 or 12Q0
outputs, respectively. No saturation is performed.

Algorithm The FDCT is described by the following equation:

where

i(x,y) : pixel values (spatial domain)

I(u,v) : transform values (frequency domain)

This particular implementation uses the Chen algorithm for expressing the FDCT.
Rounding is performed to provide improved accuracy.

Special Requirements
• The fdct_data[] array must be aligned on a double-word boundary.
• Stack must be aligned on a double-word boundary.
• Input terms are expected to be signed 11Q0 values; i.e., in the range [-512,511],

producing signed 15Q0 results. Larger inputs may result in overflow.
• The IMG_fdct_8x8 routine accepts a list of 8x8 pixel blocks and performs FDCTs on

each. Pixel blocks are stored contiguously in memory. Within each pixel block, pixels
are expected in left-to-right, top-to-bottom order.

• Results are returned contiguously in memory. Within each block, frequency domain
terms are stored in increasing horizontal frequency order from left to right, and
increasing vertical frequency order from top to bottom.

118 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_fdct_8x8 — Forward Discrete Cosine Transform (FDCT)

Notes
• Bank Conflicts: No bank conflicts occur.
• Endian: The code is LITTLE ENDIAN.
• Interruptibility: The code is fully interruptible. Interrupts are blocked out only in branch

delay slots.
• The code is set up to provide an early exit if it is called with num_fdcts = 0. In that

situation, it will run for 13 cycles.
• Both vertical and horizontal loops have been software pipelined.
• For performance, portions of the optimized assembly code outside the loops have

been interscheduled with the prolog and epilog code of the loops. Also, twin stack
pointers are used to accelerate stack accesses. Finally, pointer values and cosine
term registers are reused between the horizontal and vertical loops to reduce the
impact of pointer and constant re-initialization.

• To save code size, prolog and epilog collapsing have been performed in the
optimized assembly code to the extent that it does not impact performance.

• To reduce register pressure and save code, the horizontal loop uses the same pair of
pointer registers for both reading and writing. The pointer increments are on the loads
to permit prolog and epilog collapsing, since loads can be speculated.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 119
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

7.2 IMG_idct_8x8_12q4

7 71 2 1 2 1
cos cos

4 16 16
0 0

x u y v
ixy luv

u v

+ p + pæ ö æ ö
= = å å ç ÷ ç ÷

è ø è ø= =

1
0

2

0 1

z z

z z

= Þ a =

¹ Þ a =

IMG_idct_8x8_12q4 — Inverse Discrete Cosine Transform(IDCT) www.ti.com

IMG_idct_8x8_12q4 Inverse Discrete Cosine Transform(IDCT)

Syntax void IMG_idct_8x8_12q4(short *idct_data, unsigned num_idcts)

Arguments

idct_data Pointer to `num_idcts' 8x8 blocks of DCT coefficients. Must be
double-word aligned.

num_idcts Number of IDCTs to perform.

Description This routine performs an IEEE 1180-1990 compliant IDCT, including rounding and
saturation to signed 9-bit quantities. The input coefficients are assumed to be signed
16-bit DCT coefficients in 12Q4 format.

This function performs a series of 8×8 IDCTs on a list of 8x8 blocks.

Algorithm The IDCT is described by the following equation:

where

i(x,y) : pixel values (spatial domain)

i(x,y) : pixel values (spatial domain)

I(u,v) : transform values (frequency domain)

This particular implementation uses the Even-Odd decomposition algorithm for
expressing the IDCT. Rounding is performed so that the result meets the IEEE
1180-1990 precision and accuracy specification.

Special Requirements
• The idct_data[] array must be aligned on a double-word boundary.
• Input DCT coefficients are expected to be in the range +2047 to -2048 inclusive.

Output terms are saturated to the range +255 to -256 inclusive; i.e., inputs are in a
12Q4 format and outputs are saturated to a 9Q0 format.

• The code is set up to provide an early exit if it is called with num_idcts = 0. In this
situation, it will run for 13 cycles.

• The routine accepts a list of 8x8 DCT coefficient blocks and performs IDCTs on each.
Coefficient blocks are stored contiguously in memory. Within each block, frequency
domain terms are stored in increasing horizontal frequency order from left to right,
and increasing vertical frequency order from top to bottom.

• Results are returned contiguously in memory. Within each pixel block, pixels are
returned in left-to-right, top-to-bottom order.

Notes
• Bank Conflicts: No bank conflicts occur.
• Endian: The code is LITTLE ENDIAN.
• Interruptibility: The code is fully interruptible and fully re-entrant.
• All levels of looping are collapsed into single loops which are pipelined. The outer

loop focuses on 8-pt IDCTs, whereas the inner loop controls the column-pointer to
handle jumps between IDCT blocks. (The column-pointer adjustment is handled by a
four-phase rotating fix-up constant which takes the place of the original inner-loop.)

• For performance, portions of the outer-loop code have been inter-scheduled with the

120 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_idct_8x8_12q4 — Inverse Discrete Cosine Transform(IDCT)

prologs and epilogs of both loops. Finally, cosine term registers are reused between
the horizontal and vertical loops to save the need for re-initialization.

• To save code size, prolog and epilog collapsing have been performed to the extent
that performance is not affected. The remaining prolog and epilog code has been
inter-scheduled with code outside the loops to improve performance.

• The code may perform speculative reads of up to 128 bytes beyond the end of the
IDCT array. The speculatively accessed data is ignored.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 121
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

7.3 IMG_mad_8x8
IMG_mad_8x8 — 8x8 Minimum Absolute Difference www.ti.com

IMG_mad_8x8 8x8 Minimum Absolute Difference

Syntax void IMG_mad_8x8(const unsigned char * restrict ref_data, const unsigned char *
restrict src_data, int pitch, int sx, int sy, unsigned int * restrict match)

Arguments

*ref_data Pointer to a pixel in a reference image which constitutes the top-left
corner of the area to be searched. The dimensions of the search area
are given by (sx + 8) x (sy + 8).

src_data[8*8] Pointer to 8×8 source image pixels. Must be word aligned.
pitch Width of reference image.
sx Horizontal dimension of the search space.
sy Vertical dimension of the search space.
match[2] Result. Must be word aligned.

match[0]: Packed best match location. The upper half-word contains
the horizontal pixel position and the lower half-word the vertical pixel
position of the best matching 8×8 block in the search area. The range
of the coordinates is [0,sx-1] in the horizontal dimension and [0,sy-1]
in the vertical dimension, where the location (0,0) represents the
top-left corner of the search area.
match[1]: Minimum absolute difference value at the best match
location.

Description This routine locates the position of the top-left corner of an 8×8 pixel block in a reference
image which most closely matches the 8×8 pixel block in src_data[], using the sum of
absolute differences metric. The source image block src_data[] is moved over a range
that is sx pixels wide and sy pixels tall within a reference image that is pitch pixels wide.
The pointer *ref_data points to the top-left corner of the search area within the reference
image. The match location as well as the minimum absolute difference value for the
match are returned in the match[2] array. The search is performed in top-to-bottom,
left-to-right order, with the earliest match taking precedence in the case of ties.

Algorithm Behavioral C code for the routine is provided below: The assembly implementation has
restrictions as noted under Special Requirements.
void IMG_mad_8×8
(

const unsigned char *restrict refImg,
const unsigned char *restrict srcImg,
int pitch, int sx, int sy,
unsigned int *restrict match

)
{

int i, j, x, y, matx, maty;
unsigned matpos, matval;

matval = ~0U;
matx = maty = 0;

for (x = 0; x < sx; x++)
for (y = 0; y < sy; y++)
{

unsigned acc = 0;

for (i = 0; i < 8; i++)
for (j = 0; j < 8; j++)

acc += abs(srcImg[i*8 + j] -
refImg[(i+y)*pitch + x + j]);

122 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_mad_8x8 — 8x8 Minimum Absolute Difference

if (acc < matval)
{

matval = acc;
matx = x;
maty = y;

}
}

matpos = (0xffff0000 & (matx << 16)) |
(0x0000ffff & maty);

match[0] = matpos;
match[1] = matval;

}

Special Requirements
• It is assumed that src_data[] and ref_data[] do not alias in memory.
• The arrays src_data[] and match[] must be word aligned.

Notes
• Bank Conflicts: No bank conflicts occur.
• Endian: The code is LITTLE ENDIAN.
• Interruptibility: The code is fully interruptible.
• The inner loops that perform the 8x8 MADs are completely unrolled and the outer two

loops are collapsed together. In addition, all source image data is preloaded into
registers.

• The data required for any one row is brought in using nonaligned loads. SUBABS4
and DOTPU4 are used together to do the MAD computation.

• To save instructions and fit within an 8 cycle loop, the precise location of a given
match is not stored. Rather, the loop iteration that it was encountered on is stored. A
short divide loop after the search loop converts this value into X and Y coordinates of
the location.

• The inner loop comprises 64 instructions that are executed in 8 cycles, with 64
absolute differences accumulated in a single iteration. The source pixels are pre-read
into registers. Thus, this code executes 8 instructions per cycle, and computes 8
absolute differences per cycle.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 123
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

7.4 IMG_mad_16x16
IMG_mad_16x16 — 16×16 Minimum Absolute Difference www.ti.com

IMG_mad_16x16 16×16 Minimum Absolute Difference

Syntax void IMG_mad_16×16 (const unsigned char * restrict ref_data, const unsigned char *
restrict src_data, int pitch, int sx, int sy, unsigned int * restrict match)

Arguments

*ref_data Pointer to a pixel in a reference image which constitutes the top-left
corner of the area to be searched. The dimensions of the search area
are given by (sx + 16) x (sy + 16).

src_data[16*16] Pointer to 16x16 source image pixels.
pitch Width of reference image.
sx Horizontal dimension of the search space.
sy Vertical dimension of the search space.
match[2] Result.

match[0]: Packed best match location. The upper half-word contains
the horizontal pixel position and the lower half-word the vertical pixel
position of the best matching 16x16 block in the search area. The
range of the coordinates is [0,sx-1] in the horizontal dimension and
[0,sy-1] in the vertical dimension, where the location (0,0) represents
the top-left corner of the search area.
match[1]: Minimum absolute difference value at the best match
location.

Description This routine locates the position of the top-left corner of an 16×16 pixel block in a
reference image which most closely matches the 16×16 pixel block in src_data[], using
the sum of absolute differences metric. The source image block src_data[] is moved
over a range that is sx pixels wide and sy pixels tall within a reference image that is pitch
pixels wide. The pointer *ref_data points to the top-left corner of the search area within
the reference image. The match location and the minimum absolute difference value for
the match are returned in the match[2] array.

Algorithm Behavioral C code for the routine is provided below: The assembly implementation has
restrictions as noted under Special Requirements.
void IMG_mad_16×16
(

const unsigned char *restrict refImg,
const unsigned char *restrict srcImg,
int pitch, int sx, int sy,
unsigned int *restrict match

)
{

int i, j, x, y, matx, maty;
unsigned matpos, matval;

matval = ~0U;
matx = maty = 0;

for (x = 0; x < sx; x++)
for (y = 0; y < sy; y++)
{

unsigned acc = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)

acc += abs(srcImg[i*16 + j] -
refImg[(i+y)*pitch + x + j]);

if (acc < matval)
{

124 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_mad_16x16 — 16×16 Minimum Absolute Difference

matval = acc;
matx = x;
maty = y;

}
}

matpos = (0xffff0000 & (matx << 16)) |
(0x0000ffff & maty);

match[0] = matpos;
match[1] = matval;

}

Special Requirements
• It is assumed that src_data[] and ref_data[] do not alias in memory.
• sy must be a multiple of 2.
• There are no alignment restrictions.

Notes
• Bank Conflicts: No bank conflicts occur.
• Endian: The code is LITTLE ENDIAN.
• Interruptibility: The code is fully interruptible.
• The two outer loops are merged, as are the two inner loops. The inner loop process 2

lines of 2 search locations in parallel.
• The search is performed in top-to-bottom, left-to-right order, with the earliest match

taking precedence in the case of ties.
• Further use is made of SUBABS4 and DOTPU4. The SUBABS4 takes the absolute

difference on four 8 bit quantities packed into a 32 bit word. The DOTPU4 performs
four 8 bit wide multiplies and adds the results together.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 125
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

7.5 IMG_mpeg2_vld_intra
IMG_mpeg2_vld_intra — MPEG-2 Variable Length Decoding of Intra MBs www.ti.com

IMG_mpeg2_vld_intra MPEG-2 Variable Length Decoding of Intra MBs

Syntax void IMG_mpeg2_vld_intra(const short *restrict Wptr, short *restrict outi,
IMG_mpeg2_vld *restrict Mpeg2v, int dc_pred[3], int mode_12Q4, int num_blocks, int
bsbuf_words)

Arguments

Wptr[] Pointer to array that contains quantization matrix. The elements of the
quantization matrix in Wptr[] must be ordered according to the scan
pattern used (zigzag or alternate scan). Video format 4:2:0 requires
one quantization matrix of 64 array elements. For formats 4:2:2 and
4:4:4, two quantization matrices, one for luma and one for chroma,
must be specified in the array now containing 128 array elements.

outi[6*64] Pointer to the context object containing the coding parameters of the
MB to be decoded and the current state of the bitstream buffer. Tthe
structure is described below.

Mpeg2v Pointer to the context structure containing the coding parameters of
the MB to be decoded and the current state of the bitstream buffer.

dc_pred[3] Intra DC prediction array. The first element of dc_pred is the DC
prediction for Y, the second for Cr, and the third for Cb.

mode_12Q4 0: Coefficients are returned in normal 16-bit integer format.
Otherwise: Coefficients are returned in 12Q4 format (normal 16-bit
integer format left shifted by 4). This mode is useful for directly
passing the coefficients into the IMG_idct_8x8_12q4 routine.

num_blocks Number of blocks that the MB contains. Valid values are 6 for 4:2:0, 8
for 4:2:2, and 12 for 4:4:4 format.

bsbuf_words Size of bitstream buffer in words. Must be a power of 2. Bitstream
buffer must be aligned at an address boundary equal to its size in
bytes because the bitstream buffer is addressed circularly by this
routine.

Description This routine takes a bitstream of an MPEG-2 intra coded macroblock (MB) and returns
the decoded IDCT coefficients. The routine checks the coded block pattern (cbp) and
performs DC and AC coefficient decoding including variable length decode, run-length
expansion, inverse zigzag ordering, de-quantization, saturation, and mismatch control.
An example program is provided that illustrates the usage of this routine. The structure
IMG_mpeg2_vld is defined as follows:
typedef struct {

unsigned int *bsbuf; // pointer to bitstream buffer
unsigned int next_wptr; // next word to read from buffer
unsigned int bptr; // bit position within word
unsigned int word1; // word aligned buffer
unsigned int word2; // word aligned buffer
unsigned int top0; // top 32 bits of bitstream
unsigned int top1; // next 32 bits of bitstream
unsigned char *scan; // inverse zigzag scan matrix
unsigned int intravlc; // intra_vlc_format
unsigned int quant_scale; // quantiser_scale
unsigned int dc_prec; // intra_dc_precision
unsigned int cbp; // coded_block_pattern
unsigned int fault; // fault condition (returned)

} IMG_mpeg2_vld;

The Mpeg2v variables should have a fixed layout because they are accessed by this
routine. If the layout is changed, the corresponding changes also have to be made in

126 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_mpeg2_vld_intra — MPEG-2 Variable Length Decoding of Intra MBs

code.

The routine sets the fault flag Mpeg2v.fault to 1 if an invalid VLC code was encountered
or the total run went beyond 63. In these situations, the decoder has to resynchronize.

Before calling the routine, the bitstream variables in Mpeg2v have to be initialized. If
bsbuf is a circular buffer and bsptr contains the number of bits in the buffer that have
already been consumed, then next_wptr, bptr, word1, word2, top0 and top1 are
initialized as follows:
1. next_wptr: bsptr may not be a multiple of 32, therefore it is set to the next lower

multiple of 32.
next_wptr = (bsptr >> 5);

2. bptr: bptr is the bit pointer that points to the current bit within the word pointed to by
next_wptr.
bptr = bsptr & 31;
bptr_cmpl = 32 - bptr;

3. word1 and word2: Read the next 3 words from the bitstream buffer bsbuf.
bsbuf_words is the size of the bitstream buffer in words (word0 is a temporary
variable not passed in Mpeg2v).
word0 = bsbuf[next_wptr];
next_wptr = (next_wptr+1) & (bsbuf_words -1);
word1 = bsbuf[next_wptr];
next_wptr = (next_wptr+1) & (bsbuf_words -1);
word2 = bsbuf[next_wptr];
next_wptr = (next_wptr+1) & (bsbuf_words -1);

4. top0 and top1: Shift words word0, word1, word2 by bptr to the left so that the current
bit becomes the left-most bit in top0 and top0 and top1 contain the next 64 bits to be
decoded.
s1 = word0 << bptr;
s2 = word1 >> bptr_cmpl; /*unsigned shift*/
top0 = s1 + s2;
s3 = word1<< bptr;
s4 = word2 >> bptr_cmpl; /*unsigned shift*/
top1 = s3 + s4;

Note that the routine returns the updated state of the bitstream buffer variables, top0,
top1, word1, word2, bptr and next_wptr. If all other functions which access the
bitstream in a decoder system maintain the buffer variables in the same way, then
the above initialization procedure only has to be performed once at the beginning.

Algorithm This routine is implemented as specified in the MPEG-2 standard text (ISO/IEC
13818-2).

Special Requirements
• The bitstream must be stored in memory in 32-bit words in little Endian byte order.
• Wptr is allowed to overrun once to detect if a decoded run causes the total run to

exceed 63. The maximum overrun that can occur is the error mark 66 because it is
the highest value that can be decoded for a run value. Therefore, 67 half-words
behind the weighting matrix array should be memory locations whose read access
does not cause any side effects, such as peripherals.

• Note that the AMR register is set to zero on exit.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 127
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

IMG_mpeg2_vld_intra — MPEG-2 Variable Length Decoding of Intra MBs www.ti.com

Notes
• Bank Conflicts: No bank conflicts occur.
• This code is LITTLE ENDIAN.
• Interruptibility: This code is interrupt-tolerant but not interruptible.
• The instruction NORM is used to detect the number of leading zeros or ones in a

code word. This value, together with additional bits extracted from the code word, is
then used as an index into lookup tables to determine the length, run, level, and sign.
Escape code sequences are directly extracted from the code word.

• DC coefficients are decoded without lookup tables by exploiting the relatively simple
relationship between the number of leading zeros and dc_size and the length of the
code word.

DSPImage/Video Processing Library128 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

7.6 IMG_mpeg2_vld_inter
www.ti.com IMG_mpeg2_vld_inter — MPEG-2 Variable Length Decoding of Inter MBs

IMG_mpeg2_vld_inter MPEG-2 Variable Length Decoding of Inter MBs

Syntax void IMG_mpeg2_vld_inter(const short *Wptr, short *outi, IMG_mpeg2_vld *Mpeg2v, int
mode_12Q4, int num_blocks, int bsbuf_words)

Arguments

Wptr[] Pointer to array that contains quantization matrix. The elements of the
quantization matrix in Wptr[] must be ordered according to the scan
pattern used (zigzag or alternate scan). Video format 4:2:0 requires
one quantization matrix of 64 array elements. For formats 4:2:2 and
4:4:4, two quantization matrices, one for luma and one for chroma,
must be specified in the array now containing 128 array elements.

outi[6*64] Pointer to the IDCT coefficients output array (6*64 elements),
elements must be set to zero prior to function call.

Mpeg2v Pointer to the context object containing the coding parameters of the
MB to be decoded and the current state of the bitstream buffer. The
structure is described below.

mode_12Q4 0: Coefficients are returned in normal 16-bit integer format.
Otherwise: Coefficients are returned in 12Q4 format (normal 16-bit
integer format left shifted by 4). This mode is useful for directly
passing the coefficients into the IMG_idct_8x8_12q4 routine.

num_blocks Number of blocks that the MB contains. Valid values are 6 for 4:2:0, 8
for 4:2:2, and 12 for 4:4:4 format.

bsbuf_words Size of bitstream buffer in words. Must be a power of 2. Bitstream
buffer must be aligned at an address boundary equal to its size in
bytes because the bitstream buffer is addressed circularly by this
routine.

Description This routine takes a bitstream of an MPEG-2 non-intra coded macroblock (MB) and
returns the decoded IDCT coefficients. The routine checks the coded block pattern (cbp)
and performs coefficient decoding including variable length decode, run-length
expansion, inverse zigzag ordering, de-quantization, saturation, and mismatch control.
An example program is provided illustrating the usage of this routine.

See the description of the IMG_mpeg2_vld_intra routine for further information about the
usage of this routine.

Algorithm This routine is implemented as specified in the MPEG-2 standard text (ISO/IEC
13818-2).

Special Requirements
• The bitstream must be stored in memory in 32-bit words which are in little Endian

byte order.
• Wptr is allowed to overrun once to detect if a decoded run causes the total run to

exceed 63. The maximum overrun that can occur is the error mark 66 because it is
the highest value that can be decoded for a run value. Therefore, 67 half-words
behind the weighting matrix array should be memory locations whose read access
does not cause any side effects, such as peripherals.

• Note that the AMR register is set to zero on exit.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 129
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

IMG_mpeg2_vld_inter — MPEG-2 Variable Length Decoding of Inter MBs www.ti.com

Notes
• Bank Conflicts: No bank conflicts occur.
• Endian: This code is LITTLE ENDIAN.
• Interruptibility: This code is interrupt-tolerant but not interruptible.
• The instruction NORM is used to detect the number of leading zeros or ones in a

code word. This value, together with additional bits extracted from the codeword, is
then used as an index into lookup tables to determine the length, run, level, and sign.
Escape code sequences are directly extracted from the code word.

• The special case of the first coefficient of a block is handled by modifying the prolog
of the decoding loop.

DSPImage/Video Processing Library130 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

7.7 IMG_quantize
www.ti.com IMG_quantize — Matrix Quantization With Rounding

IMG_quantize Matrix Quantization With Rounding

Syntax void IMG_quantize (short *data, int num_blks, int blk_size, const short *recip_tbl, int
q_pt)

Arguments

data[] Pointer to data to be quantized. Must be double-word aligned and
contain num_blks * blk_size elements.

num_blks Number of blocks to be processed. May be zero.
blk_size Block size. Must be multiple of 16 and ≥ 32
recip_tbl[] Pointer to quantization values (reciprocals) . Must be double-word

aligned and contain blk_size elements.
q_pt Q-point of quantization values. 0 3 q_pt ≤ 31

Description This routine quantizes a list of blocks by multiplying their contents with a second block of
values that contains reciprocals of the quantization terms. This step corresponds to the
quantization that is performed in 2-D DCT-based compression techniques, although the
routine may be used on any signed 16-bit data using signed 16-bit quantization terms.

The routine merely multiplies the contents of the quantization array recip_tbl[] with the
data array data[]. Therefore, it may be used for inverse quantization as well, by setting
the Q-point appropriately.

Algorithm Behavioral C code for the routine is provided below:
void IMG_quantize (short *data, int num_blks, int blk_size, const short
*recip_tbl, int q_pt)
{

short recip;
int i, j, k, quot, round;

round = q_pt ? 1 << (q_pt - 1) : 0;

for (i = 0; i < blk_size; i++)
{

recip = recip_tbl[i];
k = i;

for (j = 0; j < num_blks; j++)
{

quot = data[k] * recip + round;
data[k] = quot >> q_pt;
k += blk_size;

}
}

}

Special Requirements
• The number of blocks, num_blks, may be zero.
• The block size, blk_size, must be at least 32 and a multiple of 16.
• The Q-point, q_pt, controls rounding and final truncation; it must be in the range 0 ≤

q_pt ≤ 31.
• Both input arrays, data[] and recip_tbl[], must be double-word aligned.
• The data[] array must contain num_blks * blk_size elements, and the recip_tbl[]

array must contain blk_size elements.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 131
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

IMG_quantize — Matrix Quantization With Rounding www.ti.com

Notes
• Bank Conflicts: No bank conflicts occur, regardless of the relative orientation of

recip_tbl[] and data[].
• Endian: The code is LITTLE ENDIAN.
• Interruptibility: This code is fully interruptible, with a maximum interrupt latency of 16

cycles due to branch delay slots.
• The outer loop is unrolled 16 times to allow greater amounts of work to be performed

in the inner loop. The resulting loop-nest is then collapsed and pipelined as a single
loop, since the code is not bottlenecked on bandwidth.

• Reciprocals and data terms are loaded in groups of four with double-word loads,
making the best use of the available memory bandwidth.

• SSHVR is used in the M-unit to avoid an S-unit bottleneck.
• Twin stack pointers are used to speed up stack accesses.

DSPImage/Video Processing Library132 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

7.8 IMG_sad_8x8
www.ti.com IMG_sad_8x8 — Sum of Absolute Differences on Single 8×8 Block

IMG_sad_8x8 Sum of Absolute Differences on Single 8×8 Block

Syntax unsigned IMG_sad_8×8(const unsigned char * restrict srclmg, const unsigned char *
restrict reflmg, int pitch)

Arguments

srcImg[64] 8×8 source block. Must be double-word aligned.
refImg[] Reference image.
pitch Width of reference image.

Description This function returns the sum of the absolute differences between the source block and
the 8×8 region pointed to in the reference image.

The code accepts a pointer to the 8×8 source block (srcImg), and a pointer to the
upper-left corner of a target position in a reference image (refImg). The width of the
reference image is given by the pitch argument.

Algorithm Behavioral C code for the routine is provided below:
unsigned sad_8×8
(

const unsigned char *restrict srcImg,
const unsigned char *restrict refImg,
int pitch

)
{

int i, j;
unsigned sad = 0;

for (i = 0; i < 8; i++)
for (j = 0; j < 8; j++)

sad += abs(srcImg[j+i*8] - refImg[j+i*pitch]);

return sad;
}

Special Requirements
• The array srcImg[64] must be aligned at a double-word boundary.

Notes
• Bank Conflicts: No bank conflicts occur.
• Endian: The code is ENDIAN NEUTRAL.
• Interruptibility: The code is fully interruptible.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 133
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

7.9 IMG_sad_16x16
IMG_sad_16x16 — Sum of Absolute Differences on Single 16×16 Block www.ti.com

IMG_sad_16x16 Sum of Absolute Differences on Single 16×16 Block

Syntax unsigned IMG_sad_16×16(const unsigned char * restrict srclmg, const unsigned char *
restrict reflmg, int pitch)

Arguments

srcImg[256] 16×16 source block. Must be double-word aligned.
refImg[] Reference image.
pitch Width of reference image.

Description This function returns the sum of the absolute differences between the source block and
the 16×16 region pointed to in the reference image.

The code accepts a pointer to the 16×16 source block (srcImg), and a pointer to the
upper-left corner of a target position in a reference image (refImg). The width of the
reference image is given by the pitch argument.

Algorithm Behavioral C code for the routine is provided below:
unsigned sad_16×16
(

const unsigned char *restrict srcImg,
const unsigned char *restrict refImg,
int pitch

)
{

int i, j;
unsigned sad = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)

sad += abs(srcImg[j+i*16] - refImg[j+i*pitch]);

return sad;
}

Special Requirements
• The array srcImg[256] must be aligned at a double-word boundary.

Notes
• Bank Conflicts: No bank conflicts occur.
• Endian: The code is ENDIAN NEUTRAL.
• Interruptibility: The code is fully interruptible.

DSPImage/Video Processing Library134 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

7.10 IMG_wave_horz
www.ti.com IMG_wave_horz — Horizontal Wavelet Transform

IMG_wave_horz Horizontal Wavelet Transform

Syntax void IMG_wave_horz (const short * restrict in_data, const short * restrict qmf, const
short * restrict mqmf, short * restrict out_data, int cols)

Arguments

in_data[cols] Pointer to one row of input pixels. Must be word aligned.
qmf[8] Pointer to Q.15 qmf filter-bank for low-pass filtering. Must be

double-word aligned.
mqmf[8] Pointer to Q.15 mirror qmf filter bank for high-pass filtering. Must be

double-word aligned.
out_data[cols] Pointer to row of reference/detailed decimated outputs.
cols Number of columns in the input image. Must be multiple of 2 and ≥ 8.

Description This routine performs a 1-D Periodic Orthogonal Wavelet decomposition. It also performs
the row decomposition component of a 2-D wavelet transform. An input signal x[n] is low
pass and high pass filtered and the resulting signals are decimated by a factor of two.
This results in a reference signal r1[n] which is the decimated output obtained by
dropping the odd samples of the low pass filter output, and a detail signal d[n] obtained
by dropping the odd samples of the highpass filter output. A circular convolution
algorithm is implemented, so the wavelet transform is periodic. The reference signal and
the detail signal are each half the size of the original signal.

Algorithm Behavioral C code for the routine wave_horz is provided below:
void IMG_wave_horz
(

const short *restrict in_data, /* Row of input pixels */
const short *restrict qmf, /* Low–pass QMF filter */
const short *restrict mqmf, /* High–pass QMF filter */
short *restrict out_data, /* Row of output data */
int cols /* Length of input. */

);

{
int i, res, iters;
int j, sum, prod;
short *xptr = in_data;
short *yptr = out_data;
short *x_end = &in_data[cols - 1];
short xdata, hdata;
short *xstart;
short *filt_ptr;
int M = 8;

/* --- */
/* Set our loop trip count and starting x posn. */
/* ’xstart’ is used in the high-pass filter loop. */
/* --- */
iters = cols;
xstart = in_data + (cols - M) + 2;

/* --- */
/* Low pass filter. Iterate for cols/2 iterations */
/* generating cols/2 low pass sample points with */
/* the low-pass quadrature mirror filter. */
/* --- */
for (i = 0; i < iters; i += 2)
{

/* --- */
/* Initialize our sum to the rounding value */
/* and reset our pointer. */
/* --- */

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 135
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

IMG_wave_horz — Horizontal Wavelet Transform www.ti.com

sum = Qr;
xptr = in_data + i;

/* --- */
/* Iterate over the taps in our QMF. */
/* --- */
for (j = 0; j < M; j++)
{

xdata = *xptr++;
hdata = qmf[j];
prod = xdata * hdata;
sum += prod;
if (xptr > x_end) xptr = in_data;

}

/* --- */
/* Adjust the Qpt of our sum and store result. */
/* --- */
res = (sum >> Qpt);
*out_data++ = res;

}

/* --- */
/* High pass filter. Iterate for cols/2 iters */
/* generating cols/2 high pass sample points with */
/* the high-pass quadrature mirror filter. */
/* --- */
for (i = 0; i < iters ; i+=2)
{

/* --- */
/* Initialize our sum and filter pointer. */
/* --- */
sum = Qr;
filt_ptr = mqmf + (M - 1);

/* --- */
/* Set up our data pointer. This is slightly */
/* more complicated due to how the data wraps */
/* around the edge of the buffer. */
/* --- */
xptr = xstart;
xstart += 2;
if (xstart > x_end) xstart = in_data;

/* --- */
/* Iterate over the taps in our QMF. */
/* --- */
for (j = 0; j < M; j++)
{

xdata = *xptr++;
hdata = *filt_ptr--;
prod = xdata * hdata;
if (xptr > x_end) xptr = in_data;
sum += prod;

}

/* --- */
/* Adjust the Qpt of our sum and store result. */
/* --- */
res = (sum >> Qpt);
*out_data++ = res;

}
}

Special Requirements
• This function assumes that the number of taps for the qmf and mqmf filters is 8, and

that the filter coefficient arrays qmf[] and mqmf[] are double-word aligned.
• The array in_data[] is assumed to be word aligned.
• This function assumes that filter coefficients are maintained as 16-bit Q.15 numbers.
• It is also assumed that input data is an array of shorts, to allow for re-use of this

function to perform Multi Resolution Analysis where the output of this code is

136 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_wave_horz — Horizontal Wavelet Transform

feedback as input to an identical next stage.
• The transform is a dyadic wavelet, requiring the number of image columns cols to be

a multiple of 2. Cols must also be at least 8.

Notes
• Bank Conflicts: The code has no bank conflicts.
• Endian: The code is ENDIAN NEUTRAL.
• Interruptibility: The code is interrupt-tolerant, but not interruptible.
• Optimizing the code includes issuing one set of reads to the data array and

performing low-pass and high pass filtering together to maximize the number of
multiplies. The last six elements of the low-pass filter and the first six elements of the
high-pass filter use the same input. This is used to appropriately change the output
pointer to the low-pass filter after six iterations. However, for the first six iterations,
pointer wraparound can occur, creating a dependency. Prereading those six values
outside the array prevents the checks that introduce this dependency. In addition, the
input data is read as word wide quantities and the low-pass and high-pass filter
coefficients are stored in registers, allowing for the input loop to be completely
unrolled. Therefore, the assembly code has only one loop. A predication register is
used to reset the low-pass output pointer after three iterations. The merging of the
loops allows for the maximum number of multiplies with the minimum number of
reads.

• This code can implement the Daubechies D4 filter bank for analysis with four
vanishing moments. The length of the analyzing low-pass and high-pass filters is 8, in
this case.

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 137
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

7.11 IMG_wave_vert
IMG_wave_vert — Vertical Wavelet Transform www.ti.com

IMG_wave_vert Vertical Wavelet Transform

Syntax void IMG_wave_vert (const short * restrict * restrict in_data, const short * restrict qmf,
const short * restrict mqmf, short * restrict out_ldata, short * restrict out_hdata, int cols)

Arguments

*in_data[8] Pointer to an array of 8 pointers that point to input data line buffers.
Each of the 8 lines has cols number of elements and must be
double-word aligned.

qmf[8] Pointer to Q.15 QMF filter bank for low-pass filtering. Must be word
aligned.

mqmf[8] Pointer to Q.15 mirror QMF filter bank for high-pass filtering. Must be
word aligned.

out_ldata[] Pointer to one line of low-pass filtered outputs consisting of cols
number of elements. Must be double-word aligned.

out_hdata[] Pointer to one line of high-pass filtered outputs consisting of cols
number of elements. Must be double-word aligned.

cols Width of each line in the input buffer. Must be a multiple of 2.

Description This routine performs the vertical pass of a 2-D wavelet transform. A vertical filter is
applied on 8 lines that are pointed to by the pointers contained in the array in_data[].
Instead of transposing the input image and re-using the horizontal wavelet function, the
vertical filter is applied directly to the image data as-is, producing a single line of
high-pass and a single line of low-pass filtered outputs. The vertical filter is traversed
over the entire width of the line.

In a traditional wavelet implementation, the input context for the low-pass filter is offset
by a number of lines from the input context for the high-pass filter for a given pair of
output lines. The amount of offset is determined by the number of filter taps and is
generally num_taps - 2 rows (this implementation is fixed at 8 taps, so the offset would
be 6 rows).

This implementation breaks from the traditional model so that it can re-use the same
input context for both low-pass and high-pass filters simultaneously. The result is that the
low-pass and high-pass outputs must instead be offset by the calling function. To write
the low-pass filtered output to the top half and the high pass-filtered output to the bottom
half of the output image, the respective start pointers have to be set to:
out_lstart = o_im + ((rows >> 1) - 3) * cols
out_hstart = o_im + (rows >> 1) * cols

Where o_im is the start of the output image, rows is the number of rows of the input
image, and cols is the number of cols of the output image. The following table illustrates
how the pointers out_ldata and out_hdata need to be updated at the start of each call to
this function:

Call Number out_ldata out_hdata
1 out_lstart out_hstart
2 out_lstart + cols out_hstart + cols
3 out_lstart + 2 * cols out_hstart + 2 * cols

At this point out_ldata wraps around to become o_im, while out_hdata proceeds as
usual:

DSPImage/Video Processing Library138 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

www.ti.com IMG_wave_vert — Vertical Wavelet Transform

4 o_im out_hstart + 3 * cols
Corresponding to the output pointer update scheme described above, the input buffer
lines have to be filled starting with the 6th row from the bottom of the input image. That
is, for the first call of the wave_vert function, the eight input line buffers consist of the last
six plus the first two lines of the image. For the second call, the input line buffers contain
the last four plus the first 4 lines of the image, and so on.

The routine can obtain maximum performance by using a working buffer of ten input
lines to effectively mix processing and data transfer through DMAs. At the start of the
routine, eight input lines are loaded into the first 8 line buffers and processing begins. In
the background, the next two lines are fetched. The pointers are moved up by 2, namely
ptr[i] = ptr[i+2] and the last two lines now point to lines 9 and 10 and processing starts
again. In the background, the next two lines are loaded into the first two lines of the line
buffer. Pointers move up again by two but now the last two point to line 0 and 1. This
pattern then repeats.

Algorithm Behavioral C code for the routine wave_vert is provided below:
void IMG_wave_vert
(

short **in_data, /* Array of row pointers */
short *lp_filt, /* Low pass QMF filter */
short *hp_filt, /* High pass QMF filter */
short *out_ldata, /* Low pass output data */
short *out_hdata, /* High pass output data */
int cols /* Length of rows to process */

)
{

int i, j;
/* -- */
/* First, perform the low-pass filter on the eight input rows. */
/* -- */
for (i = 0; i < cols; i++)
{

int sum = 1 << 14;

for (j = 0; j < 8; j++)
sum += in_data[j][i] * lp_filt[j];

out_ldata[i] = sum >> 15;
}
/* -- */
/* Next, perform the high-pass filter on the same eight input rows. */
/* -- */
for (i = 0; i < cols; i++)
{

int sum = 1 << 14;

for (j = 0; j < 8; j++)
sum += in_data[j][i] * hp_filt[7 - j];

out_hdata[i] = sum >> 15;
}

}

Special Requirements
• Since the wavelet transform is dyadic, cols must be a multiple of 2.
• The filters qmf[] and mqmf[] are assumed to be word aligned and have 8 taps.
• The input data on any line, and the output arrays out_ldata[] and out_hdata[] must

be double-word aligned.
• The mqmf filter is constructed from the qmf as follows:

status = -1;
for (i = 0; i < M; i++)
{

status = status * -1;
hdata = qmf[i] * status;
filter[i] = hdata;

}

SPRUF30A–October 2007–Revised May 2008 DSPImage/Video Processing Library 139
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

IMG_wave_vert — Vertical Wavelet Transform www.ti.com

Notes
• Bank Conflicts: No bank conflicts occur.
• Endian: The code is LITTLE ENDIAN.
• Interruptibility: The code is interrupt-tolerant, but not interruptible.
• The low-pass and high-pass filtering are performed together. This implies that the

low-pass and high-pass filters be overlapped in execution so that the input data array
may be read once and both filters can be executed in parallel.

• The inner loop that advances along each filter tap is totally optimized by unrolling.
Double-word loads are performed, and paired multiplies are used to perform four
iterations of low-pass filter in parallel.

• For the high-pass kernel, the same loop is reused, to save code size. This is done by
loading the filter coefficients in a special order.

140 DSPImage/Video Processing Library SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

Appendix A Low Level Kernels

www.ti.com Appendix A

Often during Image Processing algorithm development, it is required to perform low -evel
operations on the input image data. These are basic operations like Image Addition, Image
Multiplication, etc. This appendix provides example code for such operations. The intent is for user
to either use the code provided in this Appendix as is, or use the code examples to develop more
complex kernels. The following kernel implementations are provided:

Table A-1. Table 4. Low-level kernels and Their Performance
Kernel Name Description Clocks/Pixel

IMG_mulS_16s Multiply pixels with a constant 16-bit data 0.375
IMG_mulS_8 Multiply pixels with a constant 8-bit data 0.1875

IMG_addS_16s Add pixels with a constant 16-bit data 0.25
IMG_addS_8 Add pixels with a constant 8-bit data 0.125

IMG_subS_16s Subtract pixels with a constant 16bit data 0.25
IMG_subS_8 Subtract pixels with a constant 8-bit data 0.125
IMG_not_16 Bitwise NOT operation on each pixel 16-bit data 0.25
IMG_not_8 Bitwise NOT operation on each pixel 8-bit data 0.125

IMG_andS_16 Bitwise AND operation of each pixel with a constant data 16-bit 0.25
data

IMG_andS_8 Bitwise AND operation of each pixel with a constant data 8-bit 0.125
data

IMG_orS_16 Bitwise OR operation of each pixel with a constant data 16-bit 0.25
data

IMG_orS_8 Bitwise OR operation of each pixel with a constant data 8-bit 0.125
data

IMG_and_16 Combines corresponding pixels of two images by a bitwise AND 0.375
16-bit data

IMG_and_8 Combines corresponding pixels of two images by a bitwise AND 0.1875
8-bit data

IMG_or_16 Combines corresponding pixels of two images by a bitwise OR 0.375
16-bit data

IMG_or_8 Combines corresponding pixels of two images by a bitwise OR 0.1875
8-bit data

IMG_mul_16s Multiply corresponding pixels from two images 16-bit data 0.5
IMG_mul_8 Multiply corresponding pixels from two images 8-bit data 0.25

IMG_add_16s Add corresponding pixels from two images 16-bit data 0.375
IMG_add_8 Add corresponding pixels from two images 8-bit data 0.1875

IMG_sub_16s Subtract corresponding pixels from two images 16-bit data 0.375
IMG_sub_8 Subtract corresponding pixels from two images 8-bit data 0.1875

SPRUF30A–October 2007–Revised May 2008 Low Level Kernels 141
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

A.1 IMG_mulS_16s
IMG_mulS_16s www.ti.com

/*--**
** This function performs multiplication of each pixel in a image **
** with a constant value. The image consist of 16bits per pixel. **
** The constant is 16bits in size **
**--*/

void IMG_mulS_16s
(

short * restrict imgR, /* Read pointer for the input image */
int * restrict imgW, /* Write pointer for the output image */
short constData, /* Constant data */
int count /* Number of samples in the image */

)
{

int i;
long long pix3_pix2_pix1_pix0;
int pix3_pix2, pix1_pix0;
double respix1_respix0, respix3_respix2;

long long pix7_pix6_pix5_pix4;
int pix7_pix6, pix5_pix4;
double respix5_respix4, respix7_respix6;

int cData_cData;

cData_cData = (constData << 16) | constData;

for (i = 0; i < count >> 3; i += 8) {
pix3_pix2_pix1_pix0 = _amem8(imgR);
pix3_pix2 = _hill (pix3_pix2_pix1_pix0);
pix1_pix0 = _loll (pix3_pix2_pix1_pix0);
imgR += 4;

respix1_respix0 = _mpy2 (pix1_pix0, cData_cData);
respix3_respix2 = _mpy2 (pix3_pix2, cData_cData);
*((double *)imgW) = respix1_respix0;
imgW += 2;
*((double *)imgW) = respix3_respix2;
imgW += 2;

pix7_pix6_pix5_pix4 = _amem8(imgR);
pix7_pix6 = _hill (pix7_pix6_pix5_pix4);
pix5_pix4 = _loll (pix7_pix6_pix5_pix4);
imgR += 4;

respix5_respix4 = _mpy2 (pix5_pix4, cData_cData);
respix7_respix6 = _mpy2 (pix7_pix6, cData_cData);
*((double *)imgW) = respix5_respix4;
imgW += 2;
*((double *)imgW) = respix7_respix6;
imgW += 2;

}
}

Low Level Kernels142 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

A.2 IMG_mulS_8
www.ti.com IMG_mulS_8

/*--**
** This function performs multiplication of each pixel in a image **
** with a constant value. The image consist of 8 bits per pixel. **
** The constant is 8 bits in size **
**--*/

void IMG_mulS_8
(

unsigned char * restrict imgR, /* Read pointer for the input image */
short * restrict imgW, /* Write pointer for the output image */
char constData, /* Constant data */
int count /* Number of samples in the image */

)
{

int i;
long long p7_p6_p5_p4_p3_p2_p1_p0;
int p7_p6_p5_p4, p3_p2_p1_p0;
double rp3_rp2_rp1_rp0, rp7_rp6_rp5_rp4;

int cD_cD_cD_cD;

cD_cD_cD_cD = (constData << 24) | (constData << 16) |
(constData << 8) | (constData);

for (i = 0; i < count >> 4; i += 16) {
p7_p6_p5_p4_p3_p2_p1_p0 = _amem8(imgR);
p7_p6_p5_p4 = _hill (p7_p6_p5_p4_p3_p2_p1_p0);
p3_p2_p1_p0 = _loll (p7_p6_p5_p4_p3_p2_p1_p0);
imgR += 8;

rp3_rp2_rp1_rp0 = _mpysu4 (cD_cD_cD_cD, p7_p6_p5_p4);
rp7_rp6_rp5_rp4 = _mpysu4 (cD_cD_cD_cD, p3_p2_p1_p0);
*((double *)imgW) = rp3_rp2_rp1_rp0;
imgW += 4;
*((double *)imgW) = rp7_rp6_rp5_rp4;
imgW += 4;

p7_p6_p5_p4_p3_p2_p1_p0 = _amem8(imgR);
p7_p6_p5_p4 = _hill (p7_p6_p5_p4_p3_p2_p1_p0);
p3_p2_p1_p0 = _loll (p7_p6_p5_p4_p3_p2_p1_p0);
imgR += 8;

rp3_rp2_rp1_rp0 = _mpysu4 (cD_cD_cD_cD, p7_p6_p5_p4);
rp7_rp6_rp5_rp4 = _mpysu4 (cD_cD_cD_cD, p3_p2_p1_p0);
*((double *)imgW) = rp3_rp2_rp1_rp0;
imgW += 4;
*((double *)imgW) = rp7_rp6_rp5_rp4;
imgW += 4;

}
}

SPRUF30A–October 2007–Revised May 2008 Low Level Kernels 143
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

A.3 IMG_addS_16s
IMG_addS_16s www.ti.com

/*--**
** This function performs addition of each pixel in a image with **
** a constant value. The image consist of 16bits per pixel. The **
** constant is 16bits in size **
**--*/

void IMG_addS_16s
(

short * restrict imgR, /* Read pointer for the input image */
short * restrict imgW, /* Write pointer for the output image */
short constData, /* Constant data */
int count /* Number of samples in the image */

)
{

int i;
long long pix3_pix2_pix1_pix0;
int pix3_pix2, pix1_pix0;
int respix1_respix0, respix3_respix2;

int cData_cData;

cData_cData = (constData << 16) | constData;

for (i = 0; i < count >> 3; i += 8) {
pix3_pix2_pix1_pix0 = _amem8(imgR);
pix3_pix2 = _hill (pix3_pix2_pix1_pix0);
pix1_pix0 = _loll (pix3_pix2_pix1_pix0);
imgR += 4;

respix1_respix0 = _add2 (pix1_pix0, cData_cData);
respix3_respix2 = _add2 (pix3_pix2, cData_cData);

_amem8(imgW) = _itoll (respix3_respix2, respix1_respix0);
imgW += 4;

pix3_pix2_pix1_pix0 = _amem8(imgR);
pix3_pix2 = _hill (pix3_pix2_pix1_pix0);
pix1_pix0 = _loll (pix3_pix2_pix1_pix0);
imgR += 4;

respix1_respix0 = _add2 (pix1_pix0, cData_cData);
respix3_respix2 = _add2 (pix3_pix2, cData_cData);

_amem8(imgW) = _itoll (respix3_respix2, respix1_respix0);
imgW += 4;

}
}

Low Level Kernels144 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

A.4 IMG_addS_8
www.ti.com IMG_addS_8

/*--**
** This function performs addition of each pixel in a image with **
** a constant value. The image consist of 8 bits per pixel. The **
** constant is 8 bits in size **
**--*/

void IMG_addS_8
(

char * restrict imgR, /* Read pointer for the input image */
char * restrict imgW, /* Write pointer for the output image */
char constData, /* Constant data */
int count /* Number of samples in the image */

)
{

int i;
long long p7_p6_p5_p4_p3_p2_p1_p0;
int p3_p2_p1_p0, p7_p6_p5_p4;
int r7_r6_r5_r4, r3_r2_r1_r0;

int cD_cD_cD_cD;

cD_cD_cD_cD = (constData << 24) | (constData << 16) |
(constData << 8) | constData;

for (i = 0; i < count >> 4; i += 16) {
p7_p6_p5_p4_p3_p2_p1_p0 = _amem8(imgR);
p7_p6_p5_p4 = _hill (p7_p6_p5_p4_p3_p2_p1_p0);
p3_p2_p1_p0 = _loll (p7_p6_p5_p4_p3_p2_p1_p0);
imgR += 8;

r7_r6_r5_r4 = _add4 (p7_p6_p5_p4, cD_cD_cD_cD);
r3_r2_r1_r0 = _add4 (p3_p2_p1_p0, cD_cD_cD_cD);

_amem8(imgW) = _itoll (r7_r6_r5_r4, r3_r2_r1_r0);
imgW += 8;

p7_p6_p5_p4_p3_p2_p1_p0 = _amem8(imgR);
p7_p6_p5_p4 = _hill (p7_p6_p5_p4_p3_p2_p1_p0);
p3_p2_p1_p0 = _loll (p7_p6_p5_p4_p3_p2_p1_p0);
imgR += 8;

r7_r6_r5_r4 = _add4 (p7_p6_p5_p4, cD_cD_cD_cD);
r3_r2_r1_r0 = _add4 (p3_p2_p1_p0, cD_cD_cD_cD);

_amem8(imgW) = _itoll (r7_r6_r5_r4, r3_r2_r1_r0);
imgW += 8;

}
}

SPRUF30A–October 2007–Revised May 2008 Low Level Kernels 145
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

A.5 IMG_subS_16s
IMG_subS_16s www.ti.com

/*---**
** This function performs subtraction of each pixel in a image with **
** a constant value. The image consist of 16bits per pixel. The **
** constant is 16bits in size **
**---*/

void IMG_subS_16s
(

short * restrict imgR, /* Read pointer for the input image */
short * restrict imgW, /* Write pointer for the output image */
short constData, /* Constant data */
int count /* Number of samples in the image */

)
{

int i;
long long pix3_pix2_pix1_pix0;
int pix3_pix2, pix1_pix0;
int respix1_respix0, respix3_respix2;

int cData_cData;

cData_cData = (constData << 16) | constData;

for (i = 0; i < count >> 3; i += 8) {
pix3_pix2_pix1_pix0 = _amem8(imgR);
pix3_pix2 = _hill (pix3_pix2_pix1_pix0);
pix1_pix0 = _loll (pix3_pix2_pix1_pix0);
imgR += 4;

respix1_respix0 = _sub2 (pix1_pix0, cData_cData);
respix3_respix2 = _sub2 (pix3_pix2, cData_cData);

_amem8(imgW) = _itoll (respix3_respix2, respix1_respix0);
imgW += 4;

pix3_pix2_pix1_pix0 = _amem8(imgR);
pix3_pix2 = _hill (pix3_pix2_pix1_pix0);
pix1_pix0 = _loll (pix3_pix2_pix1_pix0);
imgR += 4;

respix1_respix0 = _sub2 (pix1_pix0, cData_cData);
respix3_respix2 = _sub2 (pix3_pix2, cData_cData);

_amem8(imgW) = _itoll (respix3_respix2, respix1_respix0);
imgW += 4;

}
}

Low Level Kernels146 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

A.6 IMG_subS_8
www.ti.com IMG_subS_8

/*---**
** This function performs subtraction of each pixel in a image with **
** a constant value. The image consist of 8 bits per pixel. The **
** constant is 8 bits in size **
**---*/

void IMG_subS_8
(

char * restrict imgR, /* Read pointer for the input image */
char * restrict imgW, /* Write pointer for the output image */
char constData, /* Constant data */
int count /* Number of samples in the image */

)
{

int i;
long long p7_p6_p5_p4_p3_p2_p1_p0;
int p3_p2_p1_p0, p7_p6_p5_p4;
int r7_r6_r5_r4, r3_r2_r1_r0;

int cD_cD_cD_cD;

cD_cD_cD_cD = (constData << 24) | (constData << 16) |
(constData << 8) | constData;

for (i = 0; i < count >> 4; i += 16) {
p7_p6_p5_p4_p3_p2_p1_p0 = _amem8(imgR);
p7_p6_p5_p4 = _hill (p7_p6_p5_p4_p3_p2_p1_p0);
p3_p2_p1_p0 = _loll (p7_p6_p5_p4_p3_p2_p1_p0);
imgR += 8;

r7_r6_r5_r4 = _sub4 (p7_p6_p5_p4, cD_cD_cD_cD);
r3_r2_r1_r0 = _sub4 (p3_p2_p1_p0, cD_cD_cD_cD);

_amem8(imgW) = _itoll (r7_r6_r5_r4, r3_r2_r1_r0);
imgW += 8;

p7_p6_p5_p4_p3_p2_p1_p0 = _amem8(imgR);
p7_p6_p5_p4 = _hill (p7_p6_p5_p4_p3_p2_p1_p0);
p3_p2_p1_p0 = _loll (p7_p6_p5_p4_p3_p2_p1_p0);
imgR += 8;

r7_r6_r5_r4 = _sub4 (p7_p6_p5_p4, cD_cD_cD_cD);
r3_r2_r1_r0 = _sub4 (p3_p2_p1_p0, cD_cD_cD_cD);

_amem8(imgW) = _itoll (r7_r6_r5_r4, r3_r2_r1_r0);
imgW += 8;

}
}

SPRUF30A–October 2007–Revised May 2008 Low Level Kernels 147
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

A.7 IMG_not_16
IMG_not_16 www.ti.com

/*--**
** This function performs bitwise NOT operation on a image **
** Each image consist of 16 bits per sample **
**--*/

void IMG_not_16
(

unsigned short * restrict imgR, /* Image read pointer */
unsigned short * restrict imgW, /* Image write pointer */
int count /* Number of samples in image */

)
{

int i;
long long pix3_pix2_pix1_pix0;

for (i = 0; i < count >> 3; i += 8) {
pix3_pix2_pix1_pix0 = _amem8(imgR);
imgR += 4;
_amem8(imgW) = ~pix3_pix2_pix1_pix0;
imgW += 4;

pix3_pix2_pix1_pix0 = _amem8(imgR);
imgR += 4;
_amem8(imgW) = ~pix3_pix2_pix1_pix0;
imgW += 4;

}
}

Low Level Kernels148 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

A.8 IMG_not_8
www.ti.com IMG_not_8

/*--**
** This function performs bitwise NOT operation on a image **
** Each image consist of 8 bits per sample **
**--*/

void IMG_not_8
(

unsigned char * restrict imgR, /* Image read pointer */
unsigned char * restrict imgW, /* Image write pointer */
int count /* Number of samples in image */

)
{

int i;
long long p7_p6_p5_p4_p3_p2_p1_p0;

for (i = 0; i < count >> 4; i += 16) {
p7_p6_p5_p4_p3_p2_p1_p0 = _amem8(imgR);
imgR += 8;
_amem8(imgW) = ~p7_p6_p5_p4_p3_p2_p1_p0;
imgW += 8;

p7_p6_p5_p4_p3_p2_p1_p0 = _amem8(imgR);
imgR += 8;
_amem8(imgW) = ~p7_p6_p5_p4_p3_p2_p1_p0;
imgW += 8;

}
}

SPRUF30A–October 2007–Revised May 2008 Low Level Kernels 149
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

A.9 IMG_andS_16
IMG_andS_16 www.ti.com

/*--**
** This function performs bit wise AND of each pixel in a image **
** with a constant value. The image consist of 16bits per pixel. **
** The constant is 16bits in size **
**--*/

void IMG_andS_16
(

unsigned short * restrict imgR, /* Read pointer for the input image */
unsigned short * restrict imgW, /* Write pointer for the output image */
short constData, /* Constant data */
int count /* Number of samples in the image */

)
{

int i;
long long pix3_pix2_pix1_pix0;
int pix3_pix2, pix1_pix0;
int respix1_respix0, respix3_respix2;

int cData_cData;

cData_cData = (constData << 16) | constData;

for (i = 0; i < count >> 3; i += 8) {
pix3_pix2_pix1_pix0 = _amem8(imgR);
pix3_pix2 = _hill (pix3_pix2_pix1_pix0);
pix1_pix0 = _loll (pix3_pix2_pix1_pix0);
imgR += 4;

respix1_respix0 = pix1_pix0 & cData_cData;
respix3_respix2 = pix3_pix2 & cData_cData;

_amem8(imgW) = _itoll (respix3_respix2, respix1_respix0);
imgW += 4;

pix3_pix2_pix1_pix0 = _amem8(imgR);
pix3_pix2 = _hill (pix3_pix2_pix1_pix0);
pix1_pix0 = _loll (pix3_pix2_pix1_pix0);
imgR += 4;

respix1_respix0 = pix1_pix0 & cData_cData;
respix3_respix2 = pix3_pix2 & cData_cData;

_amem8(imgW) = _itoll (respix3_respix2, respix1_respix0);
imgW += 4;

}
}

Low Level Kernels150 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

A.10 IMG_andS_8
www.ti.com IMG_andS_8

/*--**
** This function performs AND of each pixel in a image with **
** a constant value. The image consist of 8 bits per pixel. The **
** constant is 8 bits in size **
**--*/

void IMG_andS_8
(

unsigned char * restrict imgR, /* Read pointer for the input image */
unsigned char * restrict imgW, /* Write pointer for the output image */
char constData, /* Constant data */
int count /* Number of samples in the image */

)
{

int i;
long long p7_p6_p5_p4_p3_p2_p1_p0;
int p3_p2_p1_p0, p7_p6_p5_p4;
int r7_r6_r5_r4, r3_r2_r1_r0;

int cD_cD_cD_cD;

cD_cD_cD_cD = (constData << 24) | (constData << 16) |
(constData << 8) | constData;

for (i = 0; i < count >> 4; i += 16) {
p7_p6_p5_p4_p3_p2_p1_p0 = _amem8(imgR);
p7_p6_p5_p4 = _hill (p7_p6_p5_p4_p3_p2_p1_p0);
p3_p2_p1_p0 = _loll (p7_p6_p5_p4_p3_p2_p1_p0);
imgR += 8;

r7_r6_r5_r4 = p7_p6_p5_p4 & cD_cD_cD_cD;
r3_r2_r1_r0 = p3_p2_p1_p0 & cD_cD_cD_cD;

_amem8(imgW) = _itoll (r7_r6_r5_r4, r3_r2_r1_r0);
imgW += 8;

p7_p6_p5_p4_p3_p2_p1_p0 = _amem8(imgR);
p7_p6_p5_p4 = _hill (p7_p6_p5_p4_p3_p2_p1_p0);
p3_p2_p1_p0 = _loll (p7_p6_p5_p4_p3_p2_p1_p0);
imgR += 8;

r7_r6_r5_r4 = p7_p6_p5_p4 & cD_cD_cD_cD;
r3_r2_r1_r0 = p3_p2_p1_p0 & cD_cD_cD_cD;

_amem8(imgW) = _itoll (r7_r6_r5_r4, r3_r2_r1_r0);
imgW += 8;

}
}

SPRUF30A–October 2007–Revised May 2008 Low Level Kernels 151
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

A.11 IMG_orS_16
IMG_orS_16 www.ti.com

/*--**
** This function performs bit wise OR of each pixel in a image **
** with a constant value. The image consist of 16bits per pixel. **
** The constant is 16bits in size **
**--*/

void IMG_orS_16
(

unsigned short * restrict imgR, /* Read pointer for the input image */
unsigned short * restrict imgW, /* Write pointer for the output image */
short constData, /* Constant data */
int count /* Number of samples in the image */

)
{

int i;
long long pix3_pix2_pix1_pix0;
int pix3_pix2, pix1_pix0;
int respix1_respix0, respix3_respix2;

int cData_cData;

cData_cData = (constData << 16) | constData;

for (i = 0; i < count >> 3; i += 8) {
pix3_pix2_pix1_pix0 = _amem8(imgR);
pix3_pix2 = _hill (pix3_pix2_pix1_pix0);
pix1_pix0 = _loll (pix3_pix2_pix1_pix0);
imgR += 4;

respix1_respix0 = pix1_pix0 | cData_cData;
respix3_respix2 = pix3_pix2 | cData_cData;

_amem8(imgW) = _itoll (respix3_respix2, respix1_respix0);
imgW += 4;

pix3_pix2_pix1_pix0 = _amem8(imgR);
pix3_pix2 = _hill (pix3_pix2_pix1_pix0);
pix1_pix0 = _loll (pix3_pix2_pix1_pix0);
imgR += 4;

respix1_respix0 = pix1_pix0 | cData_cData;
respix3_respix2 = pix3_pix2 | cData_cData;

_amem8(imgW) = _itoll (respix3_respix2, respix1_respix0);
imgW += 4;

}
}

Low Level Kernels152 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

A.12 IMG_orS_8
www.ti.com IMG_orS_8

/*--**
** This function performs bit wise OR of each pixel in a image **
** with a constant value. The image consist of 8 bits per pixel. **
** The constant is 16bits in size **
**--*/

void IMG_orS_8
(

unsigned char * restrict imgR, /* Read pointer for the input image */
unsigned char * restrict imgW, /* Write pointer for the output image */

char constData, /* Constant data */
int count /* Number of samples in the image */

)
{

int i;
long long p7_p6_p5_p4_p3_p2_p1_p0;
int p3_p2_p1_p0, p7_p6_p5_p4;
int r7_r6_r5_r4, r3_r2_r1_r0;

int cD_cD_cD_cD;

cD_cD_cD_cD = (constData << 24) | (constData << 16) |
(constData << 8) | constData;

for (i = 0; i < count >> 4; i += 16) {
p7_p6_p5_p4_p3_p2_p1_p0 = _amem8(imgR);
p7_p6_p5_p4 = _hill (p7_p6_p5_p4_p3_p2_p1_p0);
p3_p2_p1_p0 = _loll (p7_p6_p5_p4_p3_p2_p1_p0);
imgR += 8;

r7_r6_r5_r4 = p7_p6_p5_p4 | cD_cD_cD_cD;
r3_r2_r1_r0 = p3_p2_p1_p0 | cD_cD_cD_cD;

_amem8(imgW) = _itoll (r7_r6_r5_r4, r3_r2_r1_r0);
imgW += 8;

p7_p6_p5_p4_p3_p2_p1_p0 = _amem8(imgR);
p7_p6_p5_p4 = _hill (p7_p6_p5_p4_p3_p2_p1_p0);
p3_p2_p1_p0 = _loll (p7_p6_p5_p4_p3_p2_p1_p0);
imgR += 8;

r7_r6_r5_r4 = p7_p6_p5_p4 | cD_cD_cD_cD;
r3_r2_r1_r0 = p3_p2_p1_p0 | cD_cD_cD_cD;

_amem8(imgW) = _itoll (r7_r6_r5_r4, r3_r2_r1_r0);
imgW += 8;

}
}

SPRUF30A–October 2007–Revised May 2008 Low Level Kernels 153
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

A.13 IMG_and_16
IMG_and_16 www.ti.com

/*--**
** This function performs bitwise AND operation on 2 images **
** Each image consist of 16bits per sample **
**--*/

void IMG_and_16
(

unsigned short * restrict imgR1, /* Image 1 read pointer */
unsigned short * restrict imgR2, /* Image 2 read pointer */
short * restrict imgW, /* Output image pointer */
int count /* Number of samples in image */

)
{

int i;
long long im1_p3_p2_p1_p0, im2_p3_p2_p1_p0;
long long res_p3_p2_p1_p0;

for (i = 0; i < count >> 3; i += 8) {
im1_p3_p2_p1_p0 = _amem8(imgR1);
im2_p3_p2_p1_p0 = _amem8(imgR2);
imgR1 += 4;
imgR2 += 4;

res_p3_p2_p1_p0 = im1_p3_p2_p1_p0 & im2_p3_p2_p1_p0;

_amem8(imgW) = res_p3_p2_p1_p0;
imgW += 4;

im1_p3_p2_p1_p0 = _amem8(imgR1);
im2_p3_p2_p1_p0 = _amem8(imgR2);
imgR1 += 4;
imgR2 += 4;

res_p3_p2_p1_p0 = im1_p3_p2_p1_p0 & im2_p3_p2_p1_p0;

_amem8(imgW) = res_p3_p2_p1_p0;
imgW += 4;

}
}

Low Level Kernels154 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

A.14 IMG_and_8
www.ti.com IMG_and_8

/*--**
** This function performs bitwise AND operation on 2 images **
** Each image consist of 8 bits per sample **
**--*/

void IMG_and_8
(

unsigned char * restrict imgR1, /* Image 1 read pointer */
unsigned char * restrict imgR2, /* Image 2 read pointer */
char * restrict imgW, /* Output image pointer */
int count /* Number of samples in image */

)
{

int i;
long long im1_p7_p6_p5_p4_p3_p2_p1_p0, im2_p7_p6_p5_p4_p3_p2_p1_p0;
long long res_p7_p6_p5_p4_p3_p2_p1_p0;

for (i = 0; i < count >> 4; i += 16) {
im1_p7_p6_p5_p4_p3_p2_p1_p0 = _amem8(imgR1);
im2_p7_p6_p5_p4_p3_p2_p1_p0 = _amem8(imgR2);
imgR1 += 8;
imgR2 += 8;

res_p7_p6_p5_p4_p3_p2_p1_p0 = im1_p7_p6_p5_p4_p3_p2_p1_p0 & im2_p7_p6_p5_p4_p3_p2_p1_p0;

_amem8(imgW) = res_p7_p6_p5_p4_p3_p2_p1_p0;
imgW += 8;

im1_p7_p6_p5_p4_p3_p2_p1_p0 = _amem8(imgR1);
im2_p7_p6_p5_p4_p3_p2_p1_p0 = _amem8(imgR2);
imgR1 += 8;
imgR2 += 8;

res_p7_p6_p5_p4_p3_p2_p1_p0 = im1_p7_p6_p5_p4_p3_p2_p1_p0 & im2_p7_p6_p5_p4_p3_p2_p1_p0;

_amem8(imgW) = res_p7_p6_p5_p4_p3_p2_p1_p0;
imgW += 8;

}
}

SPRUF30A–October 2007–Revised May 2008 Low Level Kernels 155
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

A.15 IMG_or_16
IMG_or_16 www.ti.com

/*--**
** This function performs bitwise OR operation on 2 images **
** Each image consist of 16bits per sample **
**--*/

void IMG_or_16
(

unsigned short * restrict imgR1, /* Image 1 read pointer */
unsigned short * restrict imgR2, /* Image 2 read pointer */
short * restrict imgW, /* Output image pointer */
int count /* Number of samples in image */

)
{

int i;
long long im1_p3_p2_p1_p0, im2_p3_p2_p1_p0;
long long res_p3_p2_p1_p0;

for (i = 0; i < count >> 3; i += 8) {
im1_p3_p2_p1_p0 = _amem8(imgR1);
im2_p3_p2_p1_p0 = _amem8(imgR2);
imgR1 += 4;
imgR2 += 4;

res_p3_p2_p1_p0 = im1_p3_p2_p1_p0 | im2_p3_p2_p1_p0;

_amem8(imgW) = res_p3_p2_p1_p0;
imgW += 4;

im1_p3_p2_p1_p0 = _amem8(imgR1);
im2_p3_p2_p1_p0 = _amem8(imgR2);
imgR1 += 4;
imgR2 += 4;

res_p3_p2_p1_p0 = im1_p3_p2_p1_p0 | im2_p3_p2_p1_p0;

_amem8(imgW) = res_p3_p2_p1_p0;
imgW += 4;

}
}

Low Level Kernels156 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

A.16 IMG_or_8
www.ti.com IMG_or_8

/*--**
** This function performs bitwise OR operation on 2 images **
** Each image consist of 8 bits per sample **
**--*/

void IMG_or_8
(

unsigned char * restrict imgR1, /* Image 1 read pointer */
unsigned char * restrict imgR2, /* Image 2 read pointer */
char * restrict imgW, /* Output image pointer */
int count /* Number of samples in image */

)
{

int i;
long long im1_p7_p6_p5_p4_p3_p2_p1_p0, im2_p7_p6_p5_p4_p3_p2_p1_p0;
long long res_p7_p6_p5_p4_p3_p2_p1_p0;

for (i = 0; i < count >> 4; i += 16) {
im1_p7_p6_p5_p4_p3_p2_p1_p0 = _amem8(imgR1);
im2_p7_p6_p5_p4_p3_p2_p1_p0 = _amem8(imgR2);
imgR1 += 8;
imgR2 += 8;

res_p7_p6_p5_p4_p3_p2_p1_p0 = im1_p7_p6_p5_p4_p3_p2_p1_p0 | im2_p7_p6_p5_p4_p3_p2_p1_p0;

_amem8(imgW) = res_p7_p6_p5_p4_p3_p2_p1_p0;
imgW += 8;

im1_p7_p6_p5_p4_p3_p2_p1_p0 = _amem8(imgR1);
im2_p7_p6_p5_p4_p3_p2_p1_p0 = _amem8(imgR2);
imgR1 += 8;
imgR2 += 8;

res_p7_p6_p5_p4_p3_p2_p1_p0 = im1_p7_p6_p5_p4_p3_p2_p1_p0 | im2_p7_p6_p5_p4_p3_p2_p1_p0;

_amem8(imgW) = res_p7_p6_p5_p4_p3_p2_p1_p0;
imgW += 8;

}
}

SPRUF30A–October 2007–Revised May 2008 Low Level Kernels 157
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

A.17 IMG_mul_16s
IMG_mul_16s www.ti.com

/*--**
** This function performs multiplication of corresponding samples of **
** two images Each image consist of 16bits per samples. **
**--*/

void IMG_mul_16s
(

short * restrict imgR1, /* Image 1 read pointer */
short * restrict imgR2, /* Image 2 read pointer */
int * restrict imgW, /* Output image pointer */
int count /* Number of samples in image */

)
{

int i;
long long img1_p3_p2_p1_p0, img2_p3_p2_p1_p0;
int img1_p3_p2, img1_p1_p0, img2_p3_p2, img2_p1_p0;
double r1_r0, r3_r2;

for (i = 0; i < count >> 2; i += 4) {
img1_p3_p2_p1_p0 = _amem8(imgR1);
img1_p3_p2 = _hill (img1_p3_p2_p1_p0);
img1_p1_p0 = _loll (img1_p3_p2_p1_p0);
imgR1 += 4;

img2_p3_p2_p1_p0 = _amem8(imgR2);
img2_p3_p2 = _hill (img2_p3_p2_p1_p0);
img2_p1_p0 = _loll (img2_p3_p2_p1_p0);
imgR2 += 4;

r1_r0 = _mpy2 (img1_p1_p0, img2_p1_p0);
r3_r2 = _mpy2 (img1_p3_p2, img2_p3_p2);
*((double *)imgW) = r1_r0;
imgW += 2;
*((double *)imgW) = r3_r2;
imgW += 2;

}
}

Low Level Kernels158 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

A.18 IMG_mul_8
www.ti.com IMG_mul_8

/*--**
** This function performs multiplication of corresponding samples of **
** two images Each image consist of 8 bits per samples. **
**--*/

void IMG_mul_8
(

char * restrict imgR1, /* Image 1 read pointer */
char * restrict imgR2, /* Image 2 read pointer */
short * restrict imgW, /* Output image pointer */
int count /* Number of samples in image */

)
{

int i;
long long img1_p7_p6_p5_p3_p2_p1_p0, img2_p7_p6_p5_p3_p2_p1_p0;
int img1_p7_p6_p5_p4, img1_p3_p2_p1_p0, img2_p7_p6_p5_p4, img2_p3_p2_p1_p0;
double r3_r2_r1_r0, r7_r6_r5_r4;

for (i = 0; i < count >> 3; i += 8) {
img1_p7_p6_p5_p3_p2_p1_p0 = _amem8(imgR1);
img1_p7_p6_p5_p4 = _hill (img1_p7_p6_p5_p3_p2_p1_p0);
img1_p3_p2_p1_p0 = _loll (img1_p7_p6_p5_p3_p2_p1_p0);
imgR1 += 8;

img2_p7_p6_p5_p3_p2_p1_p0 = _amem8(imgR2);
img2_p7_p6_p5_p4 = _hill (img2_p7_p6_p5_p3_p2_p1_p0);
img2_p3_p2_p1_p0 = _loll (img2_p7_p6_p5_p3_p2_p1_p0);
imgR2 += 8;

r3_r2_r1_r0 = _mpyu4 (img1_p3_p2_p1_p0, img2_p3_p2_p1_p0);
r7_r6_r5_r4 = _mpyu4 (img1_p7_p6_p5_p4, img2_p7_p6_p5_p4);
*((double *)imgW) = r3_r2_r1_r0;
imgW += 4;
*((double *)imgW) = r7_r6_r5_r4;
imgW += 4;

}
}

SPRUF30A–October 2007–Revised May 2008 Low Level Kernels 159
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

A.19 IMG_add_16s
IMG_add_16s www.ti.com

/*---**
** This function performs addition of 2 images **
** Each image consist of 16bits per samples. **
**---*/

void IMG_add_16s
(

short * restrict imgR1, /* Image 1 read pointer */
short * restrict imgR2, /* Image 2 read pointer */
short * restrict imgW, /* Output image pointer */
int count /* Number of samples in image */

)
{

int i;
long long im1_p3_p2_p1_p0, im2_p3_p2_p1_p0;
int im1_p3_p2, im1_p1_p0, im2_p3_p2, im2_p1_p0;
int res_p3_p2, res_p1_p0;

for (i = 0; i < count >> 3; i += 8) {
im1_p3_p2_p1_p0 = _amem8(imgR1);
im2_p3_p2_p1_p0 = _amem8(imgR2);
imgR1 += 4;
imgR2 += 4;

im1_p3_p2 = _hill (im1_p3_p2_p1_p0);
im1_p1_p0 = _loll (im1_p3_p2_p1_p0);

im2_p3_p2 = _hill (im2_p3_p2_p1_p0);
im2_p1_p0 = _loll (im2_p3_p2_p1_p0);

res_p3_p2 = _add2 (im1_p3_p2, im2_p3_p2);
res_p1_p0 = _add2 (im1_p1_p0, im2_p1_p0);

_amem8(imgW) = _itoll (res_p3_p2, res_p1_p0);
imgW += 4;

im1_p3_p2_p1_p0 = _amem8(imgR1);
im2_p3_p2_p1_p0 = _amem8(imgR2);
imgR1 += 4;
imgR2 += 4;

im1_p3_p2 = _hill (im1_p3_p2_p1_p0);
im1_p1_p0 = _loll (im1_p3_p2_p1_p0);

im2_p3_p2 = _hill (im2_p3_p2_p1_p0);
im2_p1_p0 = _loll (im2_p3_p2_p1_p0);

res_p3_p2 = _add2 (im1_p3_p2, im2_p3_p2);
res_p1_p0 = _add2 (im1_p1_p0, im2_p1_p0);

_amem8(imgW) = _itoll (res_p3_p2, res_p1_p0);
imgW += 4;

}
}

Low Level Kernels160 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

A.20 IMG_add_8
www.ti.com IMG_add_8

/*---**
** This function performs addition of 2 images **
** Each image consist of 8bits per samples. **
**---*/

void IMG_add_8
(

char * restrict imgR1, /* Image 1 read pointer */
char * restrict imgR2, /* Image 2 read pointer */
char * restrict imgW, /* Output image pointer */
int count /* Number of samples in image */

)
{

int i;
long long im1_p7_p6_p5_p4_p3_p2_p1_p0, im2_p7_p6_p5_p4_p3_p2_p1_p0;
int im1_p7_p6_p5_p4, im1_p3_p2_p1_p0, im2_p7_p6_p5_p4, im2_p3_p2_p1_p0;
int res_p7_p6_p5_p4, res_p3_p2_p1_p0;

for (i = 0; i < count >> 4; i += 16) {
im1_p7_p6_p5_p4_p3_p2_p1_p0 = _amem8(imgR1);
im2_p7_p6_p5_p4_p3_p2_p1_p0 = _amem8(imgR2);
imgR1 += 8;
imgR2 += 8;

im1_p3_p2_p1_p0 = _loll (im1_p7_p6_p5_p4_p3_p2_p1_p0);
im1_p7_p6_p5_p4 = _hill (im1_p7_p6_p5_p4_p3_p2_p1_p0);

im2_p3_p2_p1_p0 = _loll (im2_p7_p6_p5_p4_p3_p2_p1_p0);
im2_p7_p6_p5_p4 = _hill (im2_p7_p6_p5_p4_p3_p2_p1_p0);

res_p3_p2_p1_p0 = _add4 (im1_p3_p2_p1_p0, im2_p3_p2_p1_p0);
res_p7_p6_p5_p4 = _add4 (im1_p7_p6_p5_p4, im2_p7_p6_p5_p4);

_amem8(imgW) = _itoll (res_p7_p6_p5_p4, res_p3_p2_p1_p0);
imgW += 8;

im1_p7_p6_p5_p4_p3_p2_p1_p0 = _amem8(imgR1);
im2_p7_p6_p5_p4_p3_p2_p1_p0 = _amem8(imgR2);
imgR1 += 8;
imgR2 += 8;

im1_p3_p2_p1_p0 = _loll (im1_p7_p6_p5_p4_p3_p2_p1_p0);
im1_p7_p6_p5_p4 = _hill (im1_p7_p6_p5_p4_p3_p2_p1_p0);

im2_p3_p2_p1_p0 = _loll (im2_p7_p6_p5_p4_p3_p2_p1_p0);
im2_p7_p6_p5_p4 = _hill (im2_p7_p6_p5_p4_p3_p2_p1_p0);

res_p3_p2_p1_p0 = _add4 (im1_p3_p2_p1_p0, im2_p3_p2_p1_p0);
res_p7_p6_p5_p4 = _add4 (im1_p7_p6_p5_p4, im2_p7_p6_p5_p4);

_amem8(imgW) = _itoll (res_p7_p6_p5_p4, res_p3_p2_p1_p0);
imgW += 8;

}
}

SPRUF30A–October 2007–Revised May 2008 Low Level Kernels 161
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

A.21 IMG_sub_16s
IMG_sub_16s www.ti.com

/*---**
** This function performs subtraction of 2 **
** images. Each image consist of 16bits per samples. **
**---*/

void IMG_sub_16s
(

short * restrict imgR1, /* Image 1 read pointer */
short * restrict imgR2, /* Image 2 read pointer */
short * restrict imgW, /* Output image pointer */
int count /* Number of samples in image */

)
{

int i;
long long im1_p3_p2_p1_p0, im2_p3_p2_p1_p0;
int im1_p3_p2, im1_p1_p0, im2_p3_p2, im2_p1_p0;
int res_p3_p2, res_p1_p0;

for (i = 0; i < count >> 3; i += 8) {
im1_p3_p2_p1_p0 = _amem8(imgR1);
im2_p3_p2_p1_p0 = _amem8(imgR2);
imgR1 += 4;
imgR2 += 4;

im1_p3_p2 = _hill (im1_p3_p2_p1_p0);
im1_p1_p0 = _loll (im1_p3_p2_p1_p0);

im2_p3_p2 = _hill (im2_p3_p2_p1_p0);
im2_p1_p0 = _loll (im2_p3_p2_p1_p0);

res_p3_p2 = _sub2 (im1_p3_p2, im2_p3_p2);
res_p1_p0 = _sub2 (im1_p1_p0, im2_p1_p0);

_amem8(imgW) = _itoll (res_p3_p2, res_p1_p0);
imgW += 4;

im1_p3_p2_p1_p0 = _amem8(imgR1);
im2_p3_p2_p1_p0 = _amem8(imgR2);
imgR1 += 4;
imgR2 += 4;

im1_p3_p2 = _hill (im1_p3_p2_p1_p0);
im1_p1_p0 = _loll (im1_p3_p2_p1_p0);

im2_p3_p2 = _hill (im2_p3_p2_p1_p0);
im2_p1_p0 = _loll (im2_p3_p2_p1_p0);

res_p3_p2 = _sub2 (im1_p3_p2, im2_p3_p2);
res_p1_p0 = _sub2 (im1_p1_p0, im2_p1_p0);

_amem8(imgW) = _itoll (res_p3_p2, res_p1_p0);
imgW += 4;

}
}

Low Level Kernels162 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

A.22 IMG_sub_8
www.ti.com IMG_sub_8

/*---**
** This function performs subtraction of 2 **
** images. Each image consist of 8 bits per samples. **
**---*/

void IMG_sub_8
(

char * restrict imgR1, /* Image 1 read pointer */
char * restrict imgR2, /* Image 2 read pointer */
char * restrict imgW, /* Output image pointer */
int count /* Number of samples in image */

)
{

int i;
long long im1_p7_p6_p5_p4_p3_p2_p1_p0, im2_p7_p6_p5_p4_p3_p2_p1_p0;
int im1_p7_p6_p5_p4, im1_p3_p2_p1_p0, im2_p7_p6_p5_p4, im2_p3_p2_p1_p0;
int res_p7_p6_p5_p4, res_p3_p2_p1_p0;

for (i = 0; i < count >> 4; i += 16) {
im1_p7_p6_p5_p4_p3_p2_p1_p0 = _amem8(imgR1);
im2_p7_p6_p5_p4_p3_p2_p1_p0 = _amem8(imgR2);
imgR1 += 8;
imgR2 += 8;

im1_p3_p2_p1_p0 = _loll (im1_p7_p6_p5_p4_p3_p2_p1_p0);
im1_p7_p6_p5_p4 = _hill (im1_p7_p6_p5_p4_p3_p2_p1_p0);

im2_p3_p2_p1_p0 = _loll (im2_p7_p6_p5_p4_p3_p2_p1_p0);
im2_p7_p6_p5_p4 = _hill (im2_p7_p6_p5_p4_p3_p2_p1_p0);

res_p3_p2_p1_p0 = _sub4 (im1_p3_p2_p1_p0, im2_p3_p2_p1_p0);
res_p7_p6_p5_p4 = _sub4 (im1_p7_p6_p5_p4, im2_p7_p6_p5_p4);

_amem8(imgW) = _itoll (res_p7_p6_p5_p4, res_p3_p2_p1_p0);
imgW += 8;

im1_p7_p6_p5_p4_p3_p2_p1_p0 = _amem8(imgR1);
im2_p7_p6_p5_p4_p3_p2_p1_p0 = _amem8(imgR2);
imgR1 += 8;
imgR2 += 8;

im1_p3_p2_p1_p0 = _loll (im1_p7_p6_p5_p4_p3_p2_p1_p0);
im1_p7_p6_p5_p4 = _hill (im1_p7_p6_p5_p4_p3_p2_p1_p0);

im2_p3_p2_p1_p0 = _loll (im2_p7_p6_p5_p4_p3_p2_p1_p0);
im2_p7_p6_p5_p4 = _hill (im2_p7_p6_p5_p4_p3_p2_p1_p0);

res_p3_p2_p1_p0 = _sub4 (im1_p3_p2_p1_p0, im2_p3_p2_p1_p0);
res_p7_p6_p5_p4 = _sub4 (im1_p7_p6_p5_p4, im2_p7_p6_p5_p4);

_amem8(imgW) = _itoll (res_p7_p6_p5_p4, res_p3_p2_p1_p0);
imgW += 8;

}
}

SPRUF30A–October 2007–Revised May 2008 Low Level Kernels 163
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

Appendix B Benchmarks

B.1 Benchmarks for Image Analysis Functions

5 20
4

rows cols´
´ + 5 20

4

rows cols´
´ +

5 20
4

rows cols´
´ + 5 20

4

rows cols´
´ +

4 10
8

rows cols´
´ +2 10

8

rows cols´
´ +

5 40
4

cols
´ + 5 40

4

cols
´ +

5 40
4

cols
´ + 5 40

4

cols
´ +

(11 10) 40rows cols + +*(11* 12) 50rows cols + +

10 430
8

n
´ +

13 50
16

cols
´ +

_()2
10 3 50

8 2

img bitsn
´ + ´ +

_()2
10 3 40

8 2

img bitsn
´ + ´ +

8 50
4

n
´ + 9 50

4

n
´ +

13 50
16

cols
´ + 14 40

16

cols
´ +

Appendix B www.ti.com

This appendix lists the benchmarks of various functions within each category. These benchmarks
are approximate details and dependent on the compiler version and subject to change for the
newer versions. The test environment for the listed benchmarks are as listed below:
• Compiler version 6.0.9
• Single cycle access of (L1) flat memory. No other memory overheads are considered.

These benchmarks are subject to change with the version of the compiler and/or considering other
memory overheads. The performance formulae are indicative and actual figures might vary slightly based
on the input dimensions and compiler version.

Table B-1. Benchmarks for Image Analysis Functions
Int C Code Performance Formulae (1)

Input Image Size
Function C64x+ C64x (rows x cols) C64x+ C64x

IMG_boundary_8 473 479 3 x 120

IMG_boundary_16s 476 479 3 x 120

IMG_clipping_16s 4126 8217 128 x 128

IMG_dilate_bin 144 143 3x80

IMG_erode_bin 144 143 3x80

IMG_errdif_bin_8 5735 5711 4x128

IMG_errdif_bin_16 422 422 8x8 rows * (cols * 8 + 16) + 40 rows * (cols * 8 + 16) +
40

IMG_histogram_8 1073 1141 n=512

IMG_histogram_16 98987 99008 n = 512 img_bits/
pixel = 16

IMG_median_3x3_8 563 626 n=256

IMG_perimeter_8 646 669 3x720

(1) Intrinsic C code implementation benchmarks
NC → Not Compatible

164 Benchmarks SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

13 40
8

cols
´ + 14 50

8

cols
´ +

3 20
16

cols
´ + 6 25

16

cols
´ +

3 30
16

cols
´ + 3 30

16

cols
´ +

((- 2))
13 46

8

rows cols´
´ +((- 2))

12 48
8

rows cols´
´ +

((- 2)) - 2
9 80

4

rows cols´
´ +

* (- 2)
15 32

4

cols rows
´ +

* (- 2)
15 32

4

cols rows
´ +

((- 4)) - 4
15 30

2

rows cols´
´ +

((- 6)) - 6
19 40

2

rows cols´
´ +

3 *(*) /16 30rows cols + 6 *(*) /16 30rows cols +

7 *(*) /16 26rows cols + 7 *(*) /16 26rows cols +

2 *(*) /16 27rows cols + 6 *(*) /16 30rows cols +

6 *(*) / 16 26rows cols +6 *(*) /16 26rows cols +

3 *(*) /16 30rows cols + 6 *(*) /16 34rows cols +

7 *(*) /16 26rows cols + 7 *(*) /16 26rows cols +

2*(*) /16 26rows cols + 6 *(*) /16 26rows cols +

6 *(*) /16 26rows cols + 6 *(*) /16 26rows cols +

7 35
16

luma
´ + 7 40

16

luma
´ +

6 35
16

luma
´ + 7 40

16

luma
´ +

15 65
8

luma
´ + 15 65

8

luma
´ +

www.ti.com Benchmarks for Image Analysis Functions

Table B-1. Benchmarks for Image Analysis Functions (continued)
Int C Code Performance Formulae (1)

Input Image Size
Function C64x+ C64x (rows x cols) C64x+ C64x

IMG_perimeter_16 1216 1311 3 x 720

IMG_pix_expand 223 426 1072

IMG_pix_sat 149 149 640

IMG_sobel_3x3_8 624 670 8 x 64

IMG_sobel_3x3_16s 947 NC 8 x 64 NC

IMG_sobel_3x3_16 2912 2912 3 * 256

IMG_sobel_5x5_16s 1950 NC 8 x 64 NC

IMG_sobel_7x7_16s 1233 NC 8 x 64 NC

IMG_thr_gt2max_8 192 417 32 x 32

IMG_thr_gt2max_16 362 362 3 x 256

IMG_thr_gt2thr_8 155 411 32 x 32

IMG_thr_gt2thr_16 314 314 3 x 256

IMG_thr_le2min_8 223 418 32 x 32

IMG_thr_le2min_16 362 362 3 x 256

IMG_thr_le2thr_8 154 410 32 x 32

IMG_thr_le2thr_16 314 314 3 x 256

IMG_yc_demux_ 483 488 luma = 1024
be16_8

IMG_yc_demux_ 418 488 luma = 1024
le16_8

IMG_ycbcr422p_rgb565 1268 1266 luna=640

SPRUF30A–October 2007–Revised May 2008 Benchmarks 165
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

B.2 Benchmarks for Picture Filtering / Format Conversion Functions

6 40
4

cols
´ + 6 55

4

cols
´ +

4 30
2

width
´ +

14 34
4

width
´ + 14 34

4

width
´ +

17 30
4

width
´ + 17 30

4

width
´ +

12 30
2

width
´ +

13 40
2

width
´ +

15
2

width
´ 15

2

width
´

90
8

width
´

48
2

width
´

120
2

width
´ 120

2

width
´

160
4

width
´

5 30
2

width
´ +

_
18 50

4

n out
´ +

_
18 50

4

n out
´ +

_
6 40

4

n out
´ +

_
6 55

4

n out
´ +

4 30
2

width
´ +

12 30
2

width
´ +

Benchmarks for Picture Filtering / Format Conversion Functions www.ti.com

Table B-2. Benchmarks for Picture Filtering Functions
Int C Code Performance Formulae (1)

No. of Outputs
Function C64x+ C64x (width) C64x+ C64x

IMG_conv_3x3_ 760 775 480
i8_c8s

IMG_conv_3x3_ 557 NC 256 NC
i16s_c16s

IMG_conv_3x3_ 930 930 256
i16_c16s

IMG_conv_5x5_ 1151 1148 256
i8_c8s

IMG_conv_5x5_ 1592 NC 256 NC
i16s_c16s

IMG_conv_5x5_ 1711 NC 256 NC
i8_c16s

IMG_conv_7x7_ 1845 1847 256
i8_c8s

IMG_conv_7x7_ 3178 NC 256 NC
i16s_c16s

IMG_conv_7x7_ 6035 NC 256 NC
i8_c16s

IMG_conv_11x11_ 5597 5417 256
i8_c8s

IMG_conv_11x11_ 9920 NC 256 NC
i16s_c16s

IMG_corr_3x3_ 674 NC 256 NC
i8_c16s

IMG_corr_3x3_ 1202 1202 256
i16_c16s

IMG_corr_3x3_ 248 394 296
i8_c8

IMG_corr_3x3_ 558 NC 256 NC
i16_c16s

IMG_corr_5x5_ 1595 NC 256 NC
i16s_c16s

(1) Intrinsic C code implementation benchmarks
NC → Not Compatible

166 Benchmarks SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

90
2

width
´

90
2

width
´

() ()(- 7) (- 3)
(- 1) * 11 3 * 40

4 4

X m x m
m floor floor

+ +
+ + +é ù

ê úë û

- 8

4
* 11 30

X m
m floor

+æ ö
ç ÷
è ø

+ +é ù
ê úë û

(_ dim -)
4 20 10

2 2

m x mæ ö
´ + ´ +ç ÷

è ø

(_ dim -)
4 20 10

2 2

m x mæ ö
´ + ´ +ç ÷

è ø

11 30
4

n
´ + 18 30

4

n
´ +

14 79
4

n
´ + 14 79

4

n
´ +

_
4 10

8

num luma
´ +

_
4 10

8

num luma
´ +

_
4 10

8

num luma
´ +_

4 10
8

num luma
´ +

www.ti.com Benchmarks for Picture Filtering / Format Conversion Functions

Table B-2. Benchmarks for Picture Filtering Functions (continued)
Int C Code Performance Formulae (1)

No. of Outputs
Function C64x+ C64x (width) C64x+ C64x

IMG_corr_11x11_ 10671 NC 256 NC
i16s_c16s

IMG_corr_11x11_ 11044 NC 256 NC
i8_c16s

IMG_corr_gen_ 2094 2094 For odd no. of taps
i16s_c16s (m) X = 720, m = 9

1557 1557 For even no. of
taps (m) X = 720,

m = 8

IMG_corr_gen_iq 14232 14219 Input width x_dim =
720 Filter Length m

=10
Outputs:

x_dim – m = 710
IMG_median_3x3_ 734 1187 3 x 256
16s

IMG_median_3x3_16 975 975 n = 256

IMG_yc_demux_ 522 522 num_luma = 1024
be16_16

IMG_yc_demux_ 522 522 num_luma = 1024
le16_16

SPRUF30A–October 2007–Revised May 2008 Benchmarks 167
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

B.3 Benchmarks for Compression/Decompression Functions

��
����

�
� �� ��

����

�
� ��

��
����

�
� ��� ���

����

�
� ��

Benchmarks for Compression/Decompression Functions www.ti.com

Table B-3. Benchmarks for Compression/Decompression Functions
ASM Code Performance Formulae

Function C64x+ C64x No. of Outputs C64x+ C64x
(width)

IMG_fdct_8x8 368 NC num_fdcts=6 52 × num_fdcts + NC
56

IMG_idct_8x8_12q4 614 NC num_idcts=6 72 × num_idcts + 63 NC
IMG_mad_8x8 194 NC sx=4, sy=4 8 × sx × sy + 66 NC
IMG_mad_16x16 628 NC sx=4, sy=4 38 × sx × sy + 20 NC
IMG_mpeg2_vld_int 1505 1505 S=120, CB=6, 10 × (S-CB) + 55 × 10 × (S-CB) + 55 ×
ra NCB=0 CB + 15 × NCB + CB + 15 × NCB +

35 35
IMG_mpeg2_vld_int 1032 1032 S=80, CB=5, 10 ×S + 37 × CB + 10 × S + 37 × CB +
er NCB=1 15 × NCB + 34 15 × NCB + 34
IMG_quantize 282 NC blk_size=64, (blk_size/16) × NC

num_blks=8 num_blks 8 + 26
IMG_sad_8x8 31 NC NC
IMG_sad_16x16 67 NC NC
IMG_wave_horz 545 798 256

IMG_wave_vert 3302 4875 800

Benchmarks168 SPRUF30A–October 2007–Revised May 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

Appendix C Revision History

www.ti.com Appendix C

This document has been revised because of the following technical change(s).

Table C-1. Additions, Deletes
Location Description of Change

Global Changed instances of 164P to l64P
Global Removed all references to these functions:

IMG_idct_8x8
IMG_pix_expand_nM32
IMG_median_5x5_16s

Section 1.1.1 Added the last paragraph to this section
Section 2.1 Changed: The DSPLIB is provided in the file img64plus.zip. The file must be unzipped

to provide the following directory structure.
To
IMGLIB is provided as a self installing executable imglibc64plus-2.x.x-Setup.exe. Upon
installation, it produces the following directory srtucture.

Section 2.1 Changed the last paragrah of this section.
Section 2.2.2 Changed: img64plus2_0_host.lib To : imglib2_host.lib
Section 3.3.1 Added IMG_boundary_8 and IMG_PERIMETER_8 and edited text
Section 3.3.3 Added IMG_sobel_3x3-8 and edited text
Section 3.3.4 Added IMG_histogram_8 and edited text
Section 3.3.5 Added four functions and edited text
Section 3.4.1 Added new functions and edited text
Section 3.4.2 Revised the entire section
Section 3.4.3 Revised the entire section
Section 3.4.5 Added IMG_median_3x3_8 and edited text
Section 3.5.1 Added IMG_idct_8x8_12q4
Section 6.14 In the Requirements section, changed from n_out should be a multiple of 2 to

n_out should be a multiple of 4
Section 7.6 and Section 7.5 For argument mod_12Q4, replaced IMG_idct_8x8 with IMG_idct_8.8_12q4
Table B-2 Added benchmark formula for IMG_corr_gen_i16s_c16s()

SPRUF30A–October 2007–Revised May 2008 Revision History 169
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUF30A

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Clocks and Timers www.ti.com/clocks Digital Control www.ti.com/digitalcontrol
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
RFID www.ti-rfid.com Telephony www.ti.com/telephony
RF/IF and ZigBee® Solutions www.ti.com/lprf Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://www.ti.com/clocks
http://www.ti.com/digitalcontrol
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless

	Table of Contents
	Preface
	1 Introduction to the TI C64x+ IMGLIB
	1.1 Features and Benefits
	1.1.1 Software Routines

	2 Installing and Using IMGLIB
	2.1 Installing IMGLIB
	2.2 Using IMGLIB2
	2.2.1 Calling an IMGLIB2 Function From C
	2.2.1.1 Code Composer Studio Users

	2.2.2 Calling an IMGLIB2 Function From VC++
	2.2.3 Calling an IMGLIB Function From Assembly
	2.2.4 IMGLIB Testing - Allowable Error
	2.2.5 IMGLIB Overflow and Scaling Issues
	2.2.6 Interrupt Behavior of IMGLIB Functions

	2.3 Rebuilding IMGLIB
	2.4 IMGLIB2 Test Suite
	2.5 Building the Test Suite

	3 IMGLIB2 Function Descriptions
	3.1 IMGLIB2 Functions Overview
	3.2 Notational Conventions
	3.3 IMGLIB Image Analysis Functions Overview
	3.3.1 Boundary and Perimeter Functions
	3.3.2 Dilation and Erosion Operation Functions
	3.3.3 Edge Detection Function
	3.3.4 Histogram Function
	3.3.5 Image Threshold Function

	3.4 IMGLIB Picture Filtering Functions Overview
	3.4.1 Color Space Conversion Functions
	3.4.2 Convolution Function
	3.4.3 Correlation Functions
	3.4.4 Error Diffusion Function
	3.4.5 Median Filtering Function
	3.4.6 Pixel Expand Functions

	3.5 Compression/Decompression Functions Overview
	3.5.1 Forward and Inverse DCT Functions
	3.5.2 High Performance Motion Estimation Functions
	3.5.3 MPEG-2 Variable Length Decoding Functions
	3.5.4 Quantization Function
	3.5.5 Wavelet Processing Functions

	4 IMGLIB Function Tables
	5 IMGLIB Image Analysis Functions
	5.1 IMG_boundary_8
	5.2 IMG_boundary_16s
	5.3 IMG_clipping_16s
	5.4 IMG_dilate_bin
	5.5 IMG_erode_bin
	5.6 IMG_errdif_bin_8
	5.7 IMG_errdif_bin_16
	5.8 IMG_histogram_8
	5.9 IMG_histogram_16
	5.10 IMG_median_3x3_8
	5.11 IMG_perimeter_8
	5.12 IMG_perimeter_16
	5.13 IMG_pix_expand
	5.14 IMG_pix_sat
	5.15 IMG_sobel_3x3_8
	5.16 IMG_sobel_3x3_16s
	5.17 IMG_sobel_3x3_16
	5.18 IMG_sobel_5x5_16s
	5.19 IMG_sobel_7x7_16s
	5.20 IMG_thr_gt2max_8
	5.21 IMG_thr_gt2max_16
	5.22 IMG_thr_gt2thr_8
	5.23 IMG_thr_gt2thr_16
	5.24 IMG_thr_le2min_8
	5.25 IMG_thr_le2min_16
	5.26 IMG_thr_le2thr_8
	5.27  IMG_thr_le2thr_16
	5.28 IMG_thr_le2thr
	5.29 IMG_yc_demux_be16_8
	5.30 IMG_yc_demux_le16_8
	5.31 IMG_ycbcr422p_rgb565

	6 IMGLIB2 Picture Filtering Functions
	6.1 IMG_conv_3x3_i8_c8s
	6.2 IMG_conv_3x3_i16s_c16s
	6.3 IMG_conv_3x3_i16_c16s
	6.4 IMG_conv_5x5_i8_c8s
	6.5 IMG_conv_5x5_i16s_c16s
	6.6 IMG_conv_5x5_i8_c16s
	6.7 IMG_conv_7x7_i8_c8s
	6.8 IMG_conv_7x7_i16s_c16s
	6.9 IMG_conv_7x7_i8_c16s
	6.10 IMG_conv_11x11_i8_c8s
	6.11  IMG_conv_11x11_i16s_c16s
	6.12 IMG_corr_3x3_i8_c16s
	6.13 IMG_corr_3x3_i16s_c16s
	6.14 IMG_corr_3x3_i8_c8
	6.15 IMG_corr_3x3_i16_c16s
	6.16 IMG_corr_5x5_i16s_c16s
	6.17 IMG_corr_11x11_i16s_c16s
	6.18  IMG_corr_11x11_i8_c16s
	6.19 IMG_corr_gen_i16s_c16s
	6.20 IMG_corr_gen_iq
	6.21 IMG_median_3x3_16s
	6.22  IMG_median_3x3_16
	6.23  IMG_yc_demux_be16_16
	6.24 IMG_yc_demux_le16_16

	7 Compression/Decompression IMGLIB2 Reference
	7.1 IMG_fdct_8x8
	7.2 IMG_idct_8x8_12q4
	7.3 IMG_mad_8x8
	7.4 IMG_mad_16x16
	7.5 IMG_mpeg2_vld_intra
	7.6 IMG_mpeg2_vld_inter
	7.7 IMG_quantize
	7.8 IMG_sad_8x8
	7.9 IMG_sad_16x16
	7.10 IMG_wave_horz
	7.11 IMG_wave_vert

	Appendix A Low Level Kernels
	A.1 IMG_mulS_16s
	A.2 IMG_mulS_8
	A.3 IMG_addS_16s
	A.4  IMG_addS_8
	A.5 IMG_subS_16s
	A.6 IMG_subS_8
	A.7 IMG_not_16
	A.8 IMG_not_8
	A.9 IMG_andS_16
	A.10 IMG_andS_8
	A.11 IMG_orS_16
	A.12 IMG_orS_8
	A.13 IMG_and_16
	A.14 IMG_and_8
	A.15 IMG_or_16
	A.16 IMG_or_8
	A.17 IMG_mul_16s
	A.18 IMG_mul_8
	A.19 IMG_add_16s
	A.20 IMG_add_8
	A.21 IMG_sub_16s
	A.22 IMG_sub_8

	Appendix B Benchmarks
	B.1 Benchmarks for Image Analysis Functions
	B.2 Benchmarks for Picture Filtering / Format Conversion Functions
	B.3 Benchmarks for Compression/Decompression Functions

	Appendix C Revision History

