
TMS320DM644x DVEVM Windows CE v5.0
BSP

User's Guide

Literature Number: SPRUEV9

March 2007

2 SPRUEV9–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

Contents

Preface ... 5
1 Components of BSP.. 7

1.1 Bootloader ... 7

1.2 OEM Adaptation Layer .. 7

1.3 Drivers... 7

1.4 Codec Engine .. 8

1.5 DirectShow Filters ... 8

1.6 Catalog Components .. 9

2 Installation ... 9

2.1 3.1 Installation Using the Zip Archive ... 9

2.2 Distribution Archive .. 10

3 BSP Configuration Files .. 10

3.1 DAVINCI.bat .. 11

3.2 DAVINCI.cec ... 11

4 Building BSP ... 11

4.1 Windows CE OS Image Build Process .. 11

5 Memory Mapping .. 19

6 Drivers .. 20

6.1 I2C Driver.. 20

6.2 Serial Driver ... 21

6.3 EDMA APIs ... 22

6.4 Audio Driver ... 23

6.5 VPBE/Display ... 25

6.6 IR-Remote Driver... 29

6.7 ATA/CF Driver .. 31

6.8 SPI Driver ... 34

6.9 NDIS Miniport Driver ... 35

6.10 DSP/BIOS Link Driver ... 37

6.11 VPFE Driver... 37

6.12 7.12 SD Host Controller .. 38

6.13 NAND Flash Media Driver... 40

6.14 USB Function Controller Driver... 42

6.15 USB Host Controller Driver ... 50

7 DirectShow Filters... 51

8 Known Issues/Caveats .. 51

9 References ... 51

SPRUEV9–March 2007 Contents 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

List of Figures

1 Catalog Entries of the BSP ... 9
2 Workspace Name and Path Selection in Platform Wizard.. 12
3 BSP Selection in Platform Wizard ... 12
4 Design Template Selection in Platform Wizard .. 13
5 Application and Media Components Selection ... 13
6 Networking and Communications Configuration ... 14
7 Environment Tab of the Project Settings Dialog Box .. 14
8 Build Options Tab of the Project Settings Dialog Box ... 15
9 Workspace Window With DaVinci Components ... 16
10 Workspace Window Device Drivers ... 17
11 Workspace Window Core OS Components .. 17
12 Workspace Window Multi-media Components ... 18
13 Target Device Connectivity Options Dialog Box ... 19

List of Tables

1 Terms, Acronyms and Descriptions ... 5
2 Distribution Archive .. 10
3 Memory Map of OS Image .. 19
4 Terms and Acronyms .. 20
5 Registry Keys for Serial Driver ... 22
6 Registry for EDMA Driver ... 23
7 Build Options for Audio Driver .. 24
8 Registry Options for Audio Driver .. 24
9 Audio Driver Registry .. 25
10 Terms and Acronyms .. 25
11 Build Options for Display Driver .. 28
12 Registry Keys for Display Driver ... 28
13 IR-Remote Key Mapping .. 30
14 Registry Keys for IR Remote Driver ... 31
15 Terms and Acronyms .. 31
16 Registry Keys for ATA Driver ... 33
17 Registry Keys for SPI Driver .. 35
18 Registry Entries for EMAC NDIS Miniport Driver .. 36
19 Registry Keys for VPFE Driver ... 38
20 Terms and Acronyms .. 38
21 Build Options for SD/MMC Card Driver ... 39
22 Registry Keys for SD/MMC Card Driver... 40
23 Registry Keys for NAND FMD .. 41
24 Terms and Acronyms .. 42
25 Build Options for Function Controller Driver .. 43
26 Registry Keys for USB Function Controller Driver ... 43
27 Registry for MSC Client Driver ... 44
28 Mass Storage Conformance Tests... 49
29 Terms and Acronyms .. 50
30 USB Host Controller Driver Registry... 51

4 List of Figures SPRUEV9–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

Preface
SPRUEV9–March 2007

Read This First

About This Manual

This document accompanies the release of Windows® CE 5.0 BSP for DaVinci-based DM644x DVEVM.

Purpose and Scope

This document provides information about the release contents of Windows CE 5.0 BSP for
DaVinci-based DM644x DVEVM. The document illustrates various components that are part of this
release, the procedure to install this release on to the host system, and lists the limitations of this release.

This document assumes that the user has access to Microsoft® Platform Builder 5.0 and is familiar with its
usage.

Note: This release of BSP is tested on the DaVinci Rev-D EVM board.

Notational Conventions

This document uses the following conventions:

• Backward slashes are used as pathname delimiters for filenames.
• Catalog->Third Party refers to the Catalog Window Tree Items in the Platform Builder IDE.
• All the shell commands are in courier new font.
• Menu commands are depicted using the following notation menu name > menu command.

Terms, Acronyms and Descriptions

Table 1. Terms, Acronyms and Descriptions

Number Term Description

1 APIs Application Programmer Interface

2 ATA AT Attachment

3 BLCOMMON Boot Loader Common Architecture

4 BSP Board Support Package

5 CETK Windows CE Test Kit

6 CF Compact Flash

7 DAC Digital to Analog Converter

8 DHCP Dynamic Host Configuration Protocol

9 DLL Dynamic Link Library

10 DMA Direct Memory Access

11 DMSoC Digital Media System-on-Chip

12 EDMA Enhanced Direct Memory Access Controller

13 EVM Evaluation Module

14 FAT File Allocation Table

15 GDI Graphic Device Interface (Windows CE Display driver model)

16 GUI Graphical User Interface

17 GWES Graphics Windows Events Subsystem

18 I2C Inter-Integrated Circuit

19 IDE Integrated Development Environment

SPRUEV9–March 2007 Read This First 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

Related Documentation from Texas Instruments

Table 1. Terms, Acronyms and Descriptions (continued)

Number Term Description

20 IOCTL Input Output Control

21 IST Interrupt Service Thread

22 MDD Model Device Driver

23 MMU Memory Management Unit

24 NTSC National Television System Committee

25 OAL OEM Adaptation Layer

26 OEM Original Equipment Manufacturer

27 OSD On-Screen Display

28 PAL Phase-Alternating Line (Television standard)

29 PDD Platform Device Driver

30 PIO Programmed Input Output

31 PQ Production Quality

32 RGB Red-Green-Blue Digital Color Format

33 RTC Real Time Clock

34 SDRAM Synchronous Dynamic Random Access Memory

35 UDMA Ultra Direct Memory Access

36 VPBE Video Processing Back End

37 VPSS Video Processing Sub System (Module on DMSoC)

Related Documentation from Texas Instruments

The following documents describe the BSP for DaVinci-based DM644x DVEVM.

SPRUEV9 — TMS320DM644x DVEVM Windows CE v5.0 BSP Users Guide.
Provides information about the release contents of Windows CE 5.0 BSP for DaVinci-based
DM644x DVEVM. The document illustrates various components that are part of this release, the
procedure to install this release on to the host system, and the limitations of the release.

SPRUEW1 — TMS320DM644x DVEVM Windows CE v5.0 BSP Bootloader Users Guide.
Provides information about the Windows CE 5.0 bootloader for DaVinci EVM. The document
illustrates various features and the build and flash procedures.

SPRUEW0 — TMS320DM644x DVEVM Windows CE v5.0 BSP DSP/BIOS Link Users Guide.
Describes the usage of the DSP/BIOS Link binaries provided along with the Windows CE 5.00 BSP
for the Davinci EVM platform and the integration procedures in a given Windows CE image.

SPRUEV8 — TMS320DM644x DVEVM Windows CE v5.0 Codec Engine Binary Users Guide
Provides information on the build procedure for the codec engine samples on Windows CE 5.0
platform.

SPRS283 — TMS320DM6446 Digital Media System-on-Chip Data Manual (SPRS283)
The TMS320DM6446 (also referenced as DM6446) leverages TI’s DaVinci™ technology to meet
the networked media encode and decode application processing needs of next-generation
embedded devices.

Trademarks

Windows, Microsoft are registered trademarks of Microsoft Corporation in the United States and/or other
countries.

6 Read This First SPRUEV9–March 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRS283
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

1 Components of BSP

1.1 Bootloader

1.2 OEM Adaptation Layer

1.3 Drivers

User's Guide
SPRUEV9–March 2007

TMS320DM644x DVEVM Windows CE v5.0 BSP

Please refer to the TMS320DM644x DVEVM Windows CE v5.0 BSP Bootloader Users Guide (SPRUEW1)
for more information on the bootloader features.

An OEM adaptation layer (OAL) is an abstraction layer of code that logically resides between kernel and
the hardware device. Physically, the OAL is linked with the kernel libraries to create the kernel executable
file. The OAL facilitates communication between the operating system (OS) and the target device and
includes code to handle interrupts, timers, power management, bus abstraction; generic I/O control codes
(IOCTLs), and so on.

The OAL is developed using the Production Quality OAL model of Windows CE 5.0. The PQOAL model
provides us with greater level of software componentization through the usage of software libraries,
standard file naming conventions.

The production-quality OAL provides the following improvements over the previous OAL model:
• A common set of processor-specific components
• OAL software components
• A standard directory structure
• Conventions for BSP development

The OAL libraries are a collection of functional, static libraries that are assembled together in a modular
approach, to create an OAL. The individual libraries conform to a set of APIs common across all CPU
architectures. The hardware library is organized and implemented in a consistent fashion across
platforms.

The OAL includes the code for the following:

• Initialization of CPU
• Initialization of OS Timer clock and RTC
• Initialization of MMU and cache
• Initialization of interrupt controller
• APIs to program/ access the interrupt controller
• Generic IO control functionality for the OEM supplied information

This release of BSP supports the following drivers:

• I2C driver
• Serial driver
• EDMA APIs
• Audio driver
• VPBE driver ith DirectDraw extensions

SPRUEV9–March 2007 TMS320DM644x DVEVM Windows CE v5.0 BSP 7
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

1.4 Codec Engine

1.5 DirectShow Filters

Components of BSP

• IR/Keypad driver
• Block-device driver for ATA-based hard disk and compact flash disk
• SPI driver
• DSP/BIOS link
• NDIS driver
• VPFE controller driver
• SD host controller driver
• NAND flash media driver
• USB function controller driver
• USB host controller driver

This release also contains the codec engine binary build component. The following watermarked codecs
are included in binary form with this BSP.

• WMA9 decoder
• MP3 decoder
• AAC decoder
• G.711 decoder and encoder
• H.264 decoder and encoder
• WMV9 decoder
• MPEG2 decoder
• MPEG4 decoder and encoder

Since these codecs are watermarked, they exhibit the following characteristics:

• All the audio decoder would introduce a periodic sine tone (audible as a beep) in the playback
sequence.

• All the video decoders would introduce the TI Logo on the right-top corner of the screen.
• All the video encoders would stop encoding after 10 minutes of encoding.

This release of the BSP supports the DirectShow transform filters for following decoders:

• WMA9 decode filter
• WMV9 decode filter
• G.711 decode filter
• MP3 decode filter
• AAC decode filter
• MPEG2 decode filter
• H.264 decode filter
• MPEG4 decode filter

The following parsers filters are also made available with this BSP:

• AAC parser filter
• AVI source filter

TMS320DM644x DVEVM Windows CE v5.0 BSP8 SPRUEV9–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

1.6 Catalog Components

2 Installation

2.1 3.1 Installation Using the Zip Archive

Installation

Figure 1. Catalog Entries of the BSP

Section 9 lists the system requirements for the installation of this release.

This section provides the installation procedure for installing the BSP using the zip archive of BSP source
code.

The following steps illustrate the procedure to install the BSP and making the BSP part of the Platform
Builder IDE.

1. Extract the zip archive to $(_WINCEROOT)\PLATFORM.
2. Ensure that the $(_WINCEROOT)\PLATFORM\DAVINCI directory is created.
3. Open the DAVINCI.cec file using the CEC editor (provided by Microsoft Platform builder IDE). This file

is located in the path:
$(_WINCEROOT)\PLATFORM\DAVINCI

4. In the CEC editor, select the catalog→Add to catalog command.
5. In the catalog window of Platform Builder, refresh the catalog list.

SPRUEV9–March 2007 TMS320DM644x DVEVM Windows CE v5.0 BSP 9
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

2.2 Distribution Archive

3 BSP Configuration Files

BSP Configuration Files

Note: If the BSP was already imported to the catalog, then select Catalog>Update in Catalog
command during Step 1.

The directories shown in Table 2, under the path:

$(_WINCEROOT)\Platform

are created as the part of installation procedure.

Table 2. Distribution Archive

Directory Description

\DAVINCI\SRC\APPS This folder has the custom apps used for testing the following:

• Audio record application
• Audio playback application
• EDMA memory to memory transfer application
• SPI test application
• I2C test application
• Interrupt latency test
• Remote key test application
• VPFE camera test application
• Sample applications for DirectDraw overlay and alpha-blend
• Codec engine demo applications
• Sample application for codec engine using VISA APIs for encode only, decode only, and

encode and decode.

\DAVINCI\SRC\BOOTLOADER\ Contains the source code necessary to create a standalone bootloader customized for the
DAVINCI based DVEVM platform.

\DAVINCI\SRC\COMMON\ This folder contains the code being shared between the bootloader and the OAL. It includes
assembly file for DaVinci ARM Initialization. These routines are required for implementing the
Windows CE bootloader/OAL startup on the DaVinci EVM board. This directory also includes
the sources for boot-part library and the Flash media driver for NAND Flash.

\DAVINCI\SRC\DM644x\ Contains the DAVINCI chip specific code libraries, which are statically linked with the OAL to
produce the kernel executable. Additionally, it also contains the code for drivers that are
DMSoC specific. This includes driver for UART, SPI, VPBE, EDMA and NDIS.

\DAVINCI\SRC\DRIVERS This directory contains the source code for all the drivers integrated with the BSP for M2
Release; drivers for ATA/CF, DSPBIOSLINK, IR-remote, USB function controller, USB host
controller, SDIO host controller, VPFE and Wavedev.

\DAVINCI\SRC\DShowFilters This directory contains the source code for the transform filter implementation for the
decoders bundled in this BSP. This transform filter wraps around the VISA. This directory also
contains additional source/parser filters that are necessary for DirectShow framework to use
these transform filters.

\DAVINCI\SRC\INC\ Contains platform specific header files.

\DAVINCI\SRC\KERNEL\ This directory contains all files and source code necessary to implement the OAL. The OAL is
statically linked to the Windows CE kernel provided by Microsoft.

\DAVINCI\FILES\ Contains files providing registry settings (.reg files), configuration settings (.bib files), database
information (.db files), and miscellaneous files.

\DAVINCI\TOOLS\ This directory contains the utility program for generating the header file from the binary file.
This includes CCS projects for flashing the boot-loader into the NOR Flash and the CCS code
for building the user bootloader.

When using the DaVinci adaptation for development, you may be required to change your platform files.
The following file summaries are provided as general information. Any specific modifications that you
require are detailed in later chapters of this document.

10 TMS320DM644x DVEVM Windows CE v5.0 BSP SPRUEV9–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

3.1 DAVINCI.bat

3.2 DAVINCI.cec

4 Building BSP

4.1 Windows CE OS Image Build Process

4.1.1 Steps Involved in Creating a Mobile Hand Held Image Configuration

Building BSP

This file is used to set environment variables for the Windows CE build window environment. Like
Setenv.bat, when WinCe.bat opens a command prompt build window, it calls DAVINCI.bat. This file is
located in the $(_WINCEROOT)\PLATFORM\DAVINCI\ directory. Unlike Setenv.bat, this file is not
developer-specific, but common to every developer using the board support package.

This file is relevant for both DOS command line build operations and Platform Builder IDE build
operations. When called from a command line, this file specifically controls the build environment. When
called from the Platform Builder IDE, this file initializes the environment.

Note: Settings made in DAVINCI.bat can/will be overridden by settings in the Platform Builder
IDE.

DAVINCI.cec provides information that is integrated with the existing Platform Builder catalog and is used
to provide additional control of the working environment within the Platform Builder IDE. This file defines
the individual features and components that are used by the IDE to create a customized Windows CE
kernel that can be downloaded to the target device.

This section describes the procedure to build sample workspace using the BSP.

This section highlights the various steps involved in building a sample Windows CE Image using the
Windows CE 5.0 BSP for DaVinci. This section describes the procedure to build the image (of Mobile
Handheld configuration) including various drivers supported in this release of BSP.

The following steps illustrate procedure to build a sample Mobile Hand-Held configuration image.

1. Create a new platform by selecting the File→New Platform command. This opens the New Platform
Wizard. Select the Next button.

2. Specify the name and the path for the workspace upon which the Mobile Handheld configuration is
created.

SPRUEV9–March 2007 TMS320DM644x DVEVM Windows CE v5.0 BSP 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

Building BSP

Figure 2. Workspace Name and Path Selection in Platform Wizard

3. Press Next after entering the name of the workspace and selecting the path for the same.
4. Select the BSP upon which the mobile handheld configuration is based. Select DaVinci BSP for

building the Image.
5. Press Next to continue to the next step

Figure 3. BSP Selection in Platform Wizard

6. Select the Design Template upon which the current workspace will be based. Select Mobile Handheld
Image Configuration as shown in Figure 4.

12 TMS320DM644x DVEVM Windows CE v5.0 BSP SPRUEV9–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

Building BSP

Figure 4. Design Template Selection in Platform Wizard

7. Click on the Next Button.
8. Configure the components in the workspace that is created. Select the Windows Media Audio/MP3

only. De-select other components.

Figure 5. Application and Media Components Selection

9. Press Next.
10. Configure the Network components in the Workspace. Select the Wired Local Area Network

components. Please select the TCP/IP Support component.

SPRUEV9–March 2007 TMS320DM644x DVEVM Windows CE v5.0 BSP 13
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

Building BSP

Figure 6. Networking and Communications Configuration

11. De-select other components and press Next to continue to the next step.
12. Click on Finish when the platform Wizard displays the Finish Dialog box.

Now the Workspace creation is complete.

Figure 7. Environment Tab of the Project Settings Dialog Box

13. Before building the platform, select the Build Configuration from the Project Settings Dialog box.
14. Select the Build Configuration as DaVinci: ArmV4I_Release. The Build type is set to Release.
15. In the Build Options tab, select the following options as shown in Figure 8.

14 TMS320DM644x DVEVM Windows CE v5.0 BSP SPRUEV9–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

Building BSP

Figure 8. Build Options Tab of the Project Settings Dialog Box

16. Add the necessary DaVinci specific catalog components to the workspace from the catalog. Figure 9
shows the workspace window after including the necessary drivers.

SPRUEV9–March 2007 TMS320DM644x DVEVM Windows CE v5.0 BSP 15
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

Building BSP

Figure 9. Workspace Window With DaVinci Components

17. Add the necessary device driver support as shown in Figure 10.

16 TMS320DM644x DVEVM Windows CE v5.0 BSP SPRUEV9–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

Building BSP

Figure 10. Workspace Window Device Drivers

18. Add the necessary Core OS components. Figure 11 shows some sample components that may be
chosen.

Figure 11. Workspace Window Core OS Components

19. Add the desired multi-media components. Figure 12 shows some sample components that may be
chosen.

SPRUEV9–March 2007 TMS320DM644x DVEVM Windows CE v5.0 BSP 17
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

Building BSP

Figure 12. Workspace Window Multi-media Components

20. Select the components DirectDraw, Fat File System, Partition Driver and Storage Manager Control
Panel Applet to include in the OS configuration.

21. Select Build OS→Sysgen in order to build a release Image.
Once the kernel image is built and the nk.bin file is created in the $(_FLATRELEASEDIR), we are
ready to download the image on the board.

22. Power-up the DaVinci board and press the Enter key to enter the command mode. Type exit on the
serial console.

23. Use the Target→Connectivity Options command to configure the remote connection type used to
download the image.

24. In the Connectivity Options Dialog box, first add a new Device named Davinci#### and then select the
Device Name.

25. For adding a new Device, click on the Add Device text shown on the Connectivity Options dialog box.

18 TMS320DM644x DVEVM Windows CE v5.0 BSP SPRUEV9–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

5 Memory Mapping

Memory Mapping

Figure 13. Target Device Connectivity Options Dialog Box

26. Once the new Device name is entered, click on the Apply button. Now configure the Device ID for this
new Device.

27. Click on the Kernel Service Map and under the Download option, select Ethernet and click on the
Settings Command Button.
The boot loader would be sending BOOTME packets to a pre-determined broadcast IP Address. The
name of the board should appear on the list of devices.

28. Once the Device Name is selected, click on the OK Button in the dialog box.
29. Click on Apply in the main Connectivity Options Dialog box. The download of the Image can start now.
30. Select Target→Attach Device or use the CTRL+SHIFT+D keyboard shortcut to start the download of

the OS Image.
31. The download progress bar appears and starts downloading the kernel image on to the board.

For information on the memory map of the DMSoC, Please refer to the TMS320DM6446 Digital Media
System-on-Chip Data Manual (SPRS283).

The following blocks of memory in SDRAM are reserved by the BSP for special purposes.

Table 3. Memory Map of OS Image

Sl. No Start Address Size (In Bytes) Description

1 0x80000000 0x0001000 SDRAM region reserved for communication between Bootloader and
OS image.

2 0x80001000 0x00006000 SDRAM region reserved for EMAC buffer

3 0x80007000 0x00A00000 NK kernel section in the image built for RAM

4 0x80A07000 0x05500000 RAM area reserved

5 0x85F10000 0x000E0000 SDRAM region for reserved for EMAC buffer for use in the NDIS
driver

6 0x86000000 0x00500000 Region reserved for display frame-buffer

7 0x86500000 0x00020000 Region reserved for ATA driver

SPRUEV9–March 2007 TMS320DM644x DVEVM Windows CE v5.0 BSP 19
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

6 Drivers

6.1 I2C Driver

6.1.1 Overview and Features

6.1.2 Source Code Path

6.1.3 CEC Entries

Drivers

Table 3. Memory Map of OS Image (continued)

Sl. No Start Address Size (In Bytes) Description

8 0x86600000 0x00080000 Region reserved for audio DMA buffer

9 0x86680000 0x00080000 Region reserved for SD host controller driver DMA buffer.

10 0x86700000 0x00100000 Region reserved for USB function controller driver DMA buffer.

11 0x86800000 0x00500000 Region reserved for camera (VPFE) DMA buffer.

12 0x87800000 0x00800000 Region reserved for CMEM area.

13 0x8B800000 0x04200000 SDRAM region reserved for DSP heap area for dynamic memory
allocation.

14 0x8FA00000 0x00400000 SDRAM region reserved for DSP program memory

15 0x8FE00000 0x00100000 Region reserved for DSP Link memory table 0

16 0x8FF00000 0x00000080 Region reserved for DSP Link memory table 1

17 0x8FF00080 0x000FFF80 Region reserved for DSP Link memory table 2

This section describes the features of the all the drivers included in this release, and identifies their source
code location and CEC entries. The various build options and the registry keys are also described for
every driver in their corresponding sections.

Table 4. Terms and Acronyms

Number Term Description

1 CETK Windows CE test kit

2 I2C Inter-Integrated circuit

3 OAL OEM adaptation layer

4 RTC Real-time clock

5 APIs Application programmer interfaces

The I2C module is provided as a library, instead of a stream interface driver. As per Windows CE kernel
architecture, RTC routines are required to be present in the OAL. Since the RTC is accessed from I2C,
I2C API’s are provided in OAL and the drivers can access these routines using the KernelIoControl
routine.

The source code for this driver implementation is located in the path:

$(_WINCEROOT)\PLATFORM\DAVINCI\SRC\DM644X\I2c

The sources file in this path builds the Library named Dm644xI2c.lib in the path:

$(WINCEROOT)\PLATFORM\DAVINCI\LIB\ARMV4I\$(WINCEDEBUG)

Since I2C library is part of the OAL, there is no catalog entry corresponding to the I2C library. This library
gets built along with the OAL by default.

TMS320DM644x DVEVM Windows CE v5.0 BSP20 SPRUEV9–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

6.1.4 Build Options

6.1.5 Registry File

6.1.6 Driver Testing

6.2 Serial Driver

6.2.1 Overview and Features

6.2.2 Source Code Path

6.2.3 CEC Entries

Drivers

The default sources and the makefile is located in the path illustrated in Section 6.1.2. There are no
compile time options provided to build this module. This library is built by default while building the OAL.

Since this is not a driver module, there is no registry entry for I2C.

There are no CETK tests available for the I2C. An application is provided in the
$(_WINCEROOT)\PLATFORM\DAVINCI\SRC\APPS\I2CTEST folder to test the I2C routines. This
application must be built from the command prompt. This application runs in an infinite loop and reads the
current RTC value for every second and displays in the output window of the Platform Builder. To run the
application, give s I2cTestApp.exe on CE target shell or go to Target→Run Programs and select the
I2cTestApp.exe and run it.

The serial driver for this platform is a Window CE stream interface driver dynamic link library
(Dm644xUart.dll), which is implemented using Windows CE driver model architectures MDD and PDD:

• Model device driver layer (MDD): a library (COM_MDD2), which draws from code under the
OAK\DRIVERS tree.

• Platform-dependent driver layer (PDD): a layer implemented specifically for the DAVINCI, which is
linked to the MDD library to create the driver DLL.

The following sections describe serial driver components and their functions.

The device manager uses the registry key, [HKEY_LOCAL_MACHINE \Drivers\BuiltIn\Serial] to load the
driver, Dm644xUart.DLL.

As a streams model driver, the prefix registry entry under [HKEY_LOCAL_MACHINE
\Drivers\BuiltIn\Serialn] defines the prefix to be used with all exported routines. The device manager uses
this prefix to create the routine name, COM_Init (), and calls it to let the driver perform its specific
initialization. This routine, along with all other high-level COM_xxx () routines, are located in the
Microsoft-provided MDD layer. This driver supports the following features:

• Uses FIFO for transmission and reception of data
• Flow control for UART2
• Support for configuring the baud rates and configurations, parity, number of stop bits and data bits

The source code for this driver implementation is located in the path:

$(_WINCEROOT)\PLATFORM\DAVINCI\SRC\DM644X\Serial

The sources file in this path builds the DLL named Dm644xUart.dll in the path:

$(WINCEROOT)\PLATFORM\DAVINCI\TARGET\ARMV4I\$(WINCEDEBUG)

This driver is identified as Serial COM0 Dm644x under the path Catalog → Third Party → BSPs →
Davinci:ARMV4I → Device Drivers → Serial → Serial COM0 Dm644x.

Including this component into the OS design ensures that the serial driver is built while building the OS
image.

SPRUEV9–March 2007 TMS320DM644x DVEVM Windows CE v5.0 BSP 21
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

6.2.4 Build Options

6.2.5 Registry File

6.2.6 Driver Testing

6.3 EDMA APIs

6.3.1 Overview and Features

6.3.2 Source Code Path

Drivers

The following systen variables is defined when this component is included:

• BSP_USE_UART=1

The default sources and the makefile are located in the path illustrated in Section 6.2.2. This sources file
enables the serial driver to configure the UART in following manner:

• By default UART0 is selected by the build.
• Any other UART instance like UART1, UART2 will not be configured due to pin multiplexing issues.

However, this implementation of the driver supports all the UART (0,1,2) instances available.

This driver implementation expects the configuration information to be available in the registry. Table 5
identifies the various keys corresponding to this driver and their significance. The sample registry file for
configuring the serial driver is located in the path:

$(_WINCEROOT)\PLATFORM\DAVINCI\SRC\DM644x\serial\Driver\Serial1.REG

Table 5. Registry Keys for Serial Driver

Sl. No Key Name Value Type Current Value Description

1 Prefix STRING COM Specifies the device prefix

2 Dll STRING Dm644xUart.dll Specifies the Dll name to be loaded

3 Order DWORD 0 Order as per which the driver needs to be loaded

4 Index DWORD 1 Index of the driver

5 DeviceArrayInde DWORD 0 Hardware index used by the driver
x

This implementation of the driver is tested using the serial port driver test cases provided by the CETK. All
the serial port test cases are passing.

The EDMA is implemented as a custom DLL named DM644xEDMA.dll, which is loaded and instantiated
by the Windows CE system process, DEVICE.EXE. The DM644xEDMA.dll is based on the required PAL
SYS EDMA API’s (provided by TI) which are exported in the DM644xEDMA.DEF file. The signature and
syntax for the EDMA PAL API’s are maintained consistent (with the PAL SYS EDMA) with wrapper
functions added to set up the EDMA controller and interrupt handling. The interrupt service thread is
handled in the DM644xEDMA.dll, which takes care of setting the corresponding events based on the
interrupt fired from the EDMA controller.

The source code path for the EDMA is under $(_WINCEROOT)\Platform\DAVINCI\DM644x\EDMA. The
DLL name of the EDMA driver is DM644xEdma.dll and the same would be placed under
$(_WINCEROOT)\PLATFORM\DAVINCI\target\ARMV4I\$(WINCEDEBUG). The dependent libraries for
EDMA driver are coredll.lib and ceddk.lib.

TMS320DM644x DVEVM Windows CE v5.0 BSP22 SPRUEV9–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

6.3.3 CEC Entries

6.3.4 Build Options

6.3.5 Registry File

6.3.6 Driver Testing

6.4 Audio Driver

6.4.1 Overview and Features

Drivers

There is no CEC entry for EDMA.

There are no build options for EDMA.

The EDMA driver has a registry entry as given in Table 6.

Table 6. Registry for EDMA Driver

Sl. No Key Name Value Type Current Value Description

1 Dll STRING DM644xEdma.dll Specifies the Dll name to be loaded.

2 Index DWORD 1 Specifies the index value.

3 Order DWORD 1 Order as per which the driver needs to be
loaded.

4 Flags DWORD 8 DEVFLAGS_NAKEDENTRIES

The EDMA can also be tested using a custom application which performs a memory-to-memory transfer
using the PAL EDMA APIs. The application also supports channel linking and tests all the APIs required
for the DMA transfer to be successful. The sources of the same is located at
$(_WINCEROOT)\PLATFORM\DAVINCI\SRC\APPS\EDMATEST. The application edmatest.exe must be
executed from the Run programs options provided in Platform Builder IDE.

The audio driver is implemented using Windows CE Wavedev driver model architectures involving MDD
and PDD and includes the following features:

• Model device driver layer library for Wavedev (Wavemdd.lib) (MDD): provides the stream interface
driver (with the WAVE MANAGER specific IOCTLs) abstraction for use by Wave API manager. The
default implementation of the WaveMDD is based on the code under the path:
$(_WINCEROOT)\PUBLIC\COMMON\OAK\DRIVERS\WAVEDEV\MDD.
This audio MDD is modified in our Davinci BSP to support events from the EDMA interrupt service
thread (IST).

• Platform-dependent driver layer (PDD): a layer implemented specifically for the DaVinci, which is linked
to the MDD library to create the driver DLL. This layer configures the audio serial port (ASP) of DaVinci
in I2S mode and configures the AIC33 audio codec.

The audio driver supports Playback and Record for the different sampling rates supported by the AIC33
codec. However, the DaVinci EVM board design restricts the sampling rates for both playback and record
to be consistent with each other. Currently the codec is configured as the master and the audio serial port
(ASP) as the slave. The driver interfaces with the audio codec present on the DVEVM through I2C. The
audio driver supports DMA mode of data transfer and the same is achieved through the EDMA PAL APIs.
The base address and the size of the physical SDRAM region being used by audio driver is configurable
by means of registry.

The current implementation of the audio driver supports the following modes of operation:

• This driver supports sample rates supported by AIC33 codec – Sample rates of 8 KHz, 11 KHz, 16
KHz, 22 KHz, 32 KHz, 44 KHz, 48 KHz and 96 KHz. Off these, sample rates of 8 KHz, 11 KHz, 22 KHz
and 44 KHz have been validated in DVEVM.

SPRUEV9–March 2007 TMS320DM644x DVEVM Windows CE v5.0 BSP 23
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

6.4.2 Source Code Path

6.4.3 CEC Entry Details

6.4.4 Build Options

6.4.5 Registry File

Drivers

• This implementation provides support for configuring the codec in stereo and mono mode (default
being stereo mode).

• The audio codec and ASP are being configured to operate in I2S mode of operation.

The source code path for the audio driver is under
$(_WINCEROOT)\Platform\DAVINCI\SRC\Drivers\Wavedev. The DLL name of the audio driver is
DM644xWaveDev.dll and the same would be placed under
$(_WINCEROOT)\PLATFORM\DAVINCI\target\ARMV4I\$(WINCEDEBUG). The dependent libraries for
audio driver are Dm644xI2c.lib, DM644xEDMA.lib and wavemdd.lib.

This driver is identified as Audio - TLVAIC33B under the path Catalog → Third Party → BSPs →
Davinci:ARMV4I → Device Drivers → Audio → Audio - TLVAIC33B Driver.

Including this component into the OS design ensures the audio driver is built while building the OS image.

The following sysgen variable is defined when this component is included:

• BSP_AUDIO =1

This release of the audio driver has build options for the Mic and line inputs. The complier flag MIC
supports Mic inputs for recording path and LINE supports Line In for recording the files from the desktop
PC. The Table 7 gives an explanation of the same.

Table 7. Build Options for Audio Driver

Sl. No. Build Flags Description

1 MIC This flag sets the audio driver to build with MIC input enabled.

2 LINE This flag sets the audio driver to build with LINE input enabled.

The audio driver has a registry entry as given in Table 8.

Table 8. Registry Options for Audio Driver

Sl. No. Key Name Value Type Current Value Description

1 Prefix STRING WAV Specifies the device prefix for Wavedev driver.
Prefix value expected by the MDD.

2 Dll STRING DM644xWaveDev.dll Specifies the Dll name to be loaded.

3 Order DWORD 3 Order as per which the driver needs to be loaded

4 Index DWORD 1 Index of the driver

5 AudioDMAAreaBas DWORD 86600000 Physical address of base of buffer being used by
e audio driver for DMA purposes. This region must be

reserved in the config.bib file and must be
consistent.

6 AudioDMAAreaSiz DWORD 00002000 Size of the physical memory kept reserved for audio
e driver DMA region.

In addition to the registry associated with the audio driver, this registry file also configures the buffer in the
software mixer.

TMS320DM644x DVEVM Windows CE v5.0 BSP24 SPRUEV9–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

6.4.6 Driver Testing

6.4.6.1 WavRec Test Application

6.4.6.2 Wavplay test Application

6.5 VPBE/Display

Drivers

Table 9. Audio Driver Registry

Sl. No. Key Name Value Type Current Value Description

1 Buffers DWORD 4 Number of buffers to be created at the software
mixer.

2 BufferSize DWORD 1000 Size of each buffer at the software mixer layer.

The audio driver can be tested by a custom application provided in the BSP and the same is placed under
$(_WINCEROOT)\PLATFORM\DAVINCI\Src\APPS\WAVEREC and
$(_WINCEROOT)\PLATFORM\DAVINCI\Src\APPS\WAVEPLAY.

The Waverec.exe application supports recording of audio data from a line source or a MIC source based
on the complier flag selected during the audio driver build. The Wavplay.exe application supports playback
of audio-recorded files. The application can play only *.wav files. Another method used to validate the
driver is through CETK testing. The waveform audio driver test cases is used to perform CETK testing on
the audio driver.

The WavRec.exe records a sample test.wav file for the input parameters given in the application file (user
defined). The application user has to populate the necessary information like channels, bitspersample,
samplerate and duration. The recorded data is stored on the target memory under the path /windows/.
Currently the sample application supports 20 sec of wave data to be recorded. The sources of the same is
located under $(_WINCEROOT)\PLATFORM\DAVINCI\SRC\APPS\WAVREC.

The wavplay.exe plays out the wave file recorded by the wavrec.exe application. You can also play
sample wave files by changing the audio file named under /windows/*.wav. The sources of the same is
located under $(_WINCEROOT)\PLATFORM\DAVINCI\SRC\APPS\WAVPLAY.

Table 10. Terms and Acronyms

Number Term Description

1 CETK Windows CE Test Kit

2 DAC Digital to Analog Converter

3 EDMA Enhanced Direct Memory Access Controller

4 EVM Evaluation Module

5 GDI Graphic Device Interface (Windows CE Display driver model)

6 GUI Graphical User Interface

7 GWES Graphics Windows Events Subsystem

8 NTSC National Television System Committee

9 OSD On-Screen Display

10 PAL Phase-Alternating Line (Television standard)

11 RGB Red-Green-Blue Digital Color Format

12 SDRAM Synchronous Dynamic Random Access Memory

13 VPBE Video Processing Back End

14 VPSS Video Processing Sub System (Module on DMSoC)

SPRUEV9–March 2007 TMS320DM644x DVEVM Windows CE v5.0 BSP 25
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

6.5.1 Overview and Features

Drivers

The Windows CE standard graphic libraries (and graphics windows and events subsystem GWES) use
this driver to provide the graphical user interface (GUI). This driver provides the standard DDGPE class
based DirectDraw compliant display driver supporting one mode of display with support for mouse pointer.
It provides support for following type of surfaces.

• RGB 888 surface (on Video Window 0)
• YUV 4:2:2 surface (on Video window 0 and Video Window 1)
• RGB 565 surface (on OSD Window 0)

Note: The YUV 4:2:2 surfaces of destination sizes larger than 630 x 470 pixels are default given
on video window 0. The YUV 4:2:2 surfaces of destination sizes smaller than 630 x 470
pixels are rendered on video window 1.

This implementation of the DirectDraw display driver configures the video window 0 in RGB 888 mode and
uses this window as GDI primary surface.

The driver also supports the additional features of alpha-blending and the transparency on the OSD
window 0. The driver supports the following capabilities.

• ddCaps.dwCaps

– DDCAPS_BLT
– DDCAPS_ALIGNSIZEDEST (Destination surface aligned to 16 pixels)
– DDCAPS_ALIGNSIZESRC (Source surface aligned to 16 pixels)
– DDCAPS_ALIGNSTRIDE (Stride aligned to 32 bytes)
– DDCAPS_GDI
– DDCAPS_OVERLAY
– DDCAPS_OVERLAYSTRETCH (with minimum stretch factor being 1000 and maximum stretch

factor being 4000)
– DDCAPS_COLORKEY
– DDCAPS_BLTCOLORFILL
– DDCAPS_CANCLIP

• ddCaps.dwCaps2

– DDCAPS2_WIDESURFACES
– DDCAPS2_COPYFOURCC

• ddCaps.dwCKeyCaps

– DDCKEYCAPS_SRCOVERLAY (supported only on RGB 565 surfaces with flag
DDOVER_KEYSRCOVERRIDE and DDOVER_KEYSRC)

– DDCKEYCAPS_SRCOVERLAYONEACTIVE (supported only on RGB 565 surfaces)
• ddCaps.dwFXCaps

– DDFXCAPS_OVERLAYSTRETCHXN (stretch factor of 1000, 2000 & 4000 only)
– DDFXCAPS_OVERLAYSTRETCHYN (stretch factor of 1000, 2000 & 4000 only)
– DDFXCAPS_OVERLAYALPHA (Supported only on RGB565 surfaces with flag

DDOVER_ALPHASRCCONSTOVERRIDE. Overlay constant bit depth of 4 bits that is being scaled
to 3 bits)

• ddCaps.dwFXAlphaCaps

– DDFXALPHACAPS_OVERLAYALPHAEDGEBLEND
• ddCaps.ddsCaps.dwCaps

– DDSCAPS_BACKBUFFER
– DDSCAPS_COMPLEX
– DDSCAPS_FLIP
– DDSCAPS_FRONTBUFFER
– DDSCAPS_OFFSCREENPLAIN

26 TMS320DM644x DVEVM Windows CE v5.0 BSP SPRUEV9–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

6.5.2 Source Code Path

6.5.3 CEC Entries

Drivers

– DDSCAPS_OVERLAY
– DDSCAPS_PALETTE
– DDSCAPS_PRIMARYSURFACE
– DDSCAPS_SYSTEMMEMORY
– DDSCAPS_VIDEOMEMORY
– DDSCAPS_VISIBLE
– DDSCAPS_STANDARDVGAMODE

On the DaVinci EVM, this display driver initializes the VPBE controller with the frame buffer residing in the
SDRAM at the pre-defined addresses. The address and the range for this memory are configured using
the registry entries. These memory regions are required to be reserved in CONFIG.BIB entries. The
default settings reserve 5 Mbytes of SDRAM region as video memory which is being managed using the
SurfaceHeap manager. After any request for creating the surface, the driver first tries to allocate memory
from this region. If video memory is not available, then the memory from the system memory pool is
allocated.

This driver implementation configures the VPBE controller for standard definition analog video encoders. It
provides compile time support for configuring the video encoder to provide either NTSC or PAL output.

This implementation of the display driver also provides the mouse pointer support using the hardware
cursor windows. However, due to the lack of support for configuring the bit-map for the hardware cursor
window, setting the desired pointer shape is not supported.

This display driver advertises itself as the power management aware driver under the class
PMCLASS_DISPLAY, and includes two power states:

• D0 (Full On): In this state, the primary display window along with the cursor window is enabled for
display. The power to the VPSS and the DAC is enabled in this state.

• D4 (Full OFF): In this state, the primary display window and the cursor is disabled. The power to the
VPSS is not disabled (for the reason that VPSS contains both the VPBE and VPFE). However, the
power and clock to the DAC and video encoder are disabled.

The source code for this driver implementation is located in the path:

$(_WINCEROOT)\PLATFORM\DAVINCI\SRC\DM644X\VPBE

These sources build the DLL named Dm644xVpbe.dll in the path:

$(WINCEROOT)\PLATFORM\DAVINCI\TARGET\ARMV4I\$(WINCEDEBUG)

This DLL statically links to the following libraries.

• COREDLL.DLL: for Windows CE system calls
• EMUL.LIB: for emulated BitBlt routines
• GPE.Lib: for graphics primitive engine
• DDGPE.Lib: for methods associated with surface heap management.
• CEDDK.Lib: for Windows CE device driver kit specific system calls.
• DM644xEDMA.Lib: for APIs programming the EDMA engine for accelerated BitBlt operations.
• dxdrvguid.lib: for DirectX driver GUIDs functions.

This driver is identified as DM644x VPBE Driver under the path Catalog → Third Party → BSPs →
Davinci:ARMV4I → Device Drivers → Display → DM644x VPBE Driver.

Including this component into the OS design ensures the display driver is built while building the OS
image.

Including this component defines the following sysgen variables:

• BSP_DISPLAY_VPBE=1
• BSP_NODISPLAY=

SPRUEV9–March 2007 TMS320DM644x DVEVM Windows CE v5.0 BSP 27
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

6.5.4 Build Options

6.5.5 Registry File

Drivers

• SYSGEN_DDRAW=1

The default sources and the makefile are located in the path illustrated in Section 6.5.2. This sources file
enables the display driver to configure the VPBE in following manner.

1. Video encoder is configured to provide NTSC mode output.
2. Video Window 0 is enabled in RGB888 mode to act as the primary display surface.

However, this implementation of driver supports the compile time configuration for following.

• Enabling/disabling the DMA acceleration for BitBlt operations.

Table 11 identifies the list of build flags supported.

Table 11. Build Options for Display Driver

Sl. No. Build Flags Description

1 USE_DMA_ACCEL Defining this flag enables the code implementing the EDMA for BitBlt
operations. This would require the EDMA channel being reserved for these
operations.

2 NTSC_MODE Defining this flag enables the code for configuring the video encoder of DaVinci
EVM to enable the NTSC mode. If this flag is not defined, the default
compilation of the driver would configure the video encoder to enable PAL mode
of output.

This driver implementation expects the configuration information to be available in the registry. Table 12
identifies the various keys corresponding to this driver and their significance. The sample registry file for
configuring the display driver is located in the path:

$(_WINCEROOT)\PLATFORM\DAVINCI\SRC\DM644x\VPBE\VPBE.REG

Table 12. Registry Keys for Display Driver

Sl. No Key Name Value Type Current Value Description

1 FBPhysicalBase DWORD 86000000 Physical address of the memory block reserved
for video memory. The memory region needs to
be reserved in the config.bib files. This key must
be present for the driver to load successfully.

2 FBSize DWORD 00500000 Size of the memory block reserved as video
memory. This size must be coherent with the
settings made in config.bib. This key must be
present for the driver to load successfully.

3 FBBaseX DWORD 00000090 The X coordinate of the OSD display area to be
configured in the DMSoC OSD registers. This
key must be present for the driver to load
successfully.

4 FBBaseY DWORD 00000014 The Y coordinate of the OSD display area to be
configured in the DMSoC OSD registers. This
key must be present for the driver to load
successfully.

5 FBWidth DWORD 000002E0 This key specifies the width of the horizontal line
(in number of pixels) of the main display surface.
The value for this key must be in such a way that
the number of bytes representing one line is
always integer multiple of 32. This key must be
present for the driver to load successfully.

6 FBHeight DWORD 000001e0 This key specifies the Height of the screen (in
number of lines) of the main display surface. This
key must be present for the driver to load
successfully.

28 TMS320DM644x DVEVM Windows CE v5.0 BSP SPRUEV9–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

6.5.6 Driver Testing

6.5.7 Sample Applications

6.6 IR-Remote Driver

6.6.1 Overview and Features

Drivers

Table 12. Registry Keys for Display Driver (continued)

Sl. No Key Name Value Type Current Value Description

7 FBOffsetX DWORD 00000000 This key specifies the offset of Display surface
(Video window 0/1 or OSD window 0) relative to
the BASEPX. This key must be present for the
driver to load successfully.

8 FBOffsetY DWORD 00000000 This key specifies the offset of Display surface
(Video window 0/1 or OSD window 0) relative to
the BASEPY. This key must be present for the
driver to load successfully.

This implementation of the driver is tested using the following CETK test cases:

• All GDI test cases
• All GDI performance test cases
• All DirectDraw test cases

All the GDI test cases are passing with the exception of:

• Alpha blend test case ID 231
• All printer tests cases in the range 1200 to 1205
• DirectDraw overlay stretch test cases 1240 and 1340

Additionally, some of the test cases may fail at specific instances. However, in other iterations, the same
test cases pass. This is due to the difference in behavior of the test suites for different random numbers.

The test cases 1100 and 1101 are the test cases for TEXT blit. These test cases are to be skipped in the
platforms, which do not have support for keyboard. However, due to the bug in the CETK, these test
cases are, by default, executed. As there is no keyboard driver, these test cases fail occasionally.

The DirectDraw CETK test cases 1240 and 1340 are failing due to a bug in the CETK. The test case is
not skipping these tests based on the sub-capabilities declared by the driver.

The following sample applications use the alpha-blend and transparency features supported by the driver.
They are located under the path:

($_WINCEROOT)\PLATFORM\DAVINCI\SRC\APPS

• AlphaOnlyBug: - illustrates the usage of the alpha-blend feature of the display driver. On executing this
application, the bug appears on the screen (displayed on OSD window 0) at a constant location and
the appearance of the entire overlaid surface.

• Trans_AlphaBug: - illustrates the usage of the alpha-blend along with the transparency (color key). On
executing this application, the bug moves around on the screen (displayed on OSD window 0). The
bug appears with the black background surface that fades off and re-appears over varying location.

• TransMosquito: - illustrates the usage of transparency (colorkey) feature of the display driver. On
executing this application, the bug moves around on the screen (displayed on the OSD window 0)
without the black background.

• YUV_Overlay: - illustrates the usage of overlay surfaces on the YUV surface.

The IR driver for this platform is a Window CE dynamic-link library (DM644xIR.dll), which is a custom
implementation using Windows CE layered driver architectures MDD and PDD:

SPRUEV9–March 2007 TMS320DM644x DVEVM Windows CE v5.0 BSP 29
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

6.6.2 Source Code Path

Drivers

• Model Device Driver layer (MDD): a library (LayoutManager.lib) which takes care all the hardware
independent functionalities

• Platform Dependent Driver layer (PDD): a layer implemented specifically for the DAVINCI, which is
linked to the MDD library to create the driver DLL.

The following sections describe IR driver components and their functions.

The IR remote driver gets the data from MSP430 (triggered by the remote commander) and returns the
appropriate event and scan-code to the MDD. The MDD further converts the scan codes to virtual scan
key codes and posts the message to GWES.

The input system loads the keyboard driver at boot time. When the input system starts, it retrieves the
name of the keyboard driver dynamic-link library (DLL) from the
[HKEY_LOCAL_MACHINE\Hardware\DeviceMap\KEYBD\Drivername] registry key.

Table 13. IR-Remote Key Mapping

Remote Key Key Code

Record Not mapped currently

Stop VK_CANCEL

PAUSE VK_PAUSE

REWIND VK_PRIOR

PLAY VK_PLAY

FORWARD VK_NEXT

INPUT Not mapped currently

0 VK_F12

1 VK_F11

2 Not mapped currently

3 VK_F2

4 VK_F3

5 VK_F5

6 VK_DELETE

7 VK_F10

8 VK_F4

9 VK_LMENU

ENTER VK_ENTER

PREV.CHAN VK_BACK

SUBTITLE VK_ESCAPE

CODE Not mapped Currently

SLEEP Not mapped Currently

MENU Not mapped Currently

INFO/SELECT VK_LWIN

CHAN+ VK_UP

CHAN- VK_DOWN

VOLUME+ VK_RIGHT

VOLUME- VK_LEFT

MUTE VK_TAB

The source code for this driver implementation is located in the path:

$(_WINCEROOT)\PLATFORM\DAVINCI\SRC\ Drivers \IR

The sources file in this path builds the DLL named Dm644xIr.dll in the path:

30 TMS320DM644x DVEVM Windows CE v5.0 BSP SPRUEV9–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

6.6.3 CEC Entries

6.6.4 Build Options

6.6.5 Registry File

6.6.6 Driver Testing

6.7 ATA/CF Driver

Drivers

$(WINCEROOT)\PLATFORM\DAVINCI\TARGET\ARMV4I\$(WINCEDEBUG)

This driver is identified as IR Remote under the path Catalog → Third Party → BSPs → Davinci:ARMV4I
→ Device Drivers → IR Remote.

Including this component into the OS design ensures the IR remote driver is built while building the OS
image.

Including this component defines the following sysgen variables:

• BSP_USE_IR = 1

The default sources and the makefile are located in the path illustrated in Section 6.6.2. This sources file
enables the IR remote driver.

This driver implementation expects the configuration information to be available in the registry. Table 14
identifies the various keys corresponding to this driver and their significance. The sample registry file
Dm644xIR.REG used for configuring the IR remote driver is located in the path:

$(_WINCEROOT)\PLATFORM\DAVINCI\SRC\DRIVERS\IR

Table 14. Registry Keys for IR Remote Driver

Sl. No Key Name Value Type Current Value Description

1 Layout File STRING Dm644xIr.dll Specifies the layout to be used

2 Layout File STRING US Specifies the text used by the layout

3 DriverName DWORD Dm644xIr.dll Specifies the driver which needs to be loaded

4 Order DWORD 0 Specifies the order in which the driver has to be
loaded

This implementation of the driver is tested using a custom sample application. The sample application
source is found in the following path:

$(_WINCEROOT)\PLATFORM\DAVINCI\Src\APPS\RemoteKeyTest

This sample application processes IR remote key presses and shows the virtual key code of each key
press as a text string on the video display.

Table 15. Terms and Acronyms

Number Term Description

1 ATA AT Attachment

2 CETK Windows CE Test Kit

3 CF Compact Flash

4 DLL Dynamic Link Library

5 DMA Direct Memory Access

6 FAT File Allocation Table

7 PIO Programmed Input Output

SPRUEV9–March 2007 TMS320DM644x DVEVM Windows CE v5.0 BSP 31
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

6.7.1 Overview and Features

6.7.2 Source Code Path

6.7.3 CEC Entries

Drivers

Table 15. Terms and Acronyms (continued)

Number Term Description

8 UDMA Ultra Direct Memory Access

The CF/ATA driver is provided as a standard Windows CE block driver and uses the Windows CE
standard partition manager. It supports only the FAT file System. This implementation of the ATA driver
has support for both the UDMA and multiword DMA modes of operation, which are dynamically selected
to the highest mode supported by the device attached. The driver queries the device (during initialization)
for the various modes supported by the device.

The same sources (DLL) may be used for both CF and hard disk configured by means of registry. The
driver supports a registry key ForcePIOMode to make the device operate in PIO mode, even if it supports
DMA.

The driver advertises itself as the power management aware driver under the class
PMCLASS_BLOCK_DEVICE. It supports the following power states.

• D0 (Full On): In this mode, clocks for CF/ATA Controller and the devices are turned ON.
• D1: In this mode, the device is put into the IDLE state.
• D2: In this mode, the device is put to STANDBY state.
• D4 (Full OFF): In this mode, the clock and power is turned OFF to both CF/ATA Controller and the

device

The source code for this driver implementation is located in the path:

$(_WINCEROOT)\PLATFORM\DAVINCI\Src\Drivers\ATA

These sources build the DLL named Dm644xAta.dll in the path:

$(WINCEROOT)\PLATFORM\DAVINCI\TARGET\ARMV4I\$(WINCEDEBUG)

This driver is identified as Dm644x ATA Driver under the path Catalog → Third Party → BSPs →
Davinci:ARMV4I → Device Drivers → Storage Devices → Dm644x ATA Driver.

Including this component into the OS design ensures the ATA driver is built while building the OS image.

Including this component define the following sysgen variables:

• BSP_ATA = 1
• BSP_USE_CF =

Also include the following components in the workspace:

• Catalog → Core OS → Windows CE devices → File Systems and Data Store → Storage Manager →
Partition Driver

• Catalog → Core OS → Windows CE devices → File Systems and Data Store → Storage Manager →
FAT File System

• Catalog → Core OS → Windows CE device → File Systems and Data Store ↑ Storage Manager →
Storage Manager Control Panel Applet

TMS320DM644x DVEVM Windows CE v5.0 BSP32 SPRUEV9–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

6.7.4 Build Options

6.7.5 Registry File

6.7.6 Driver Testing

Drivers

The default sources and the makefile is located in the path illustrated in Section 6.5.2.

The default registry settings enable the ATA driver. The environment variable BSP_USE_CF must be set
to enable the CF card driver. Setting this environment variable to 1, enables the registry profiles for CF
card and hence causes the driver to initialize the CF memory card.

To select the CF driver, open the build release directory command prompt and execute the command set
BSP_USE_CF=1 and execute the command makeimg. To get back to the ATA driver, unset the variable
using command set BSP_USE_CF= and execute makeimg. Alternatively, the environment variable can
also set using the Platform Builder’s Platform Settings option.

This driver implementation expects the configuration information to be available in the registry. Table 16
identifies the various keys corresponding to this driver and their significance. The sample registry file for
configuring the ATA driver is located in the path:

$(_WINCEROOT)\PLATFORM\DAVINCI\SRC\DRIVERS\ATA\ATA.REG

Table 16. Registry Keys for ATA Driver

Sl. No Key Name Value Type Current Value Description

1 Index DWORD 1 Used as an index to the device

2 Dll String Dm644xAta Name of the DLL

3 Prefix String DSK 3-letter prefix used by the driver

4 Order DWORD 4 Order in which this dll needs to be loaded.

5 HddDmaAreaBase DWORD 86500000 Physical address of the SDRAM region reserved
for HDD driver for DMA buffers. This must be
consistent with the config.bib settings.

6 Profile String CF or HDD Profile to be used by this dll.

7 ForcePIOMode DWORD 0 or 1 Forces the driver to operate in PIO mode only.

8 Iclass String {A4E7EDDA-E575- Interface class
4252-9D6B-

4195D48BB865}.

9 Folder String Compact Flash" or Name of the folder to be displayed
"Hard Disk

10 DefaultFileSystem String FATFS Indicates the default file system to load

11 AutoMount DWORD 1 Indicates whether the drive needs to be mounted
to boot time

12 AutoPart DWORD 1 Flag to partitions the store with largest creatable
partition automatically

13 AutoFormat DWORD 1 Formats a store automatically when the store is
unformatted

14 FileSystem String fatfsd.dll File system driver currently being used.

15 PartitionDriver String mspart.dll Indicates the default partition driver to load

16 MountFlags DWORD 0 Flags on how the partition is mounted

17 Flags DWORD 00000024 Flag used by the file system driver.

This implementation of the driver is tested using the following CETK test cases:

• Storage device block driver read/write test
• Storage device block driver benchmark test
• Storage device block driver API test
• File system driver test

SPRUEV9–March 2007 TMS320DM644x DVEVM Windows CE v5.0 BSP 33
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

6.8 SPI Driver

6.8.1 Overview and Features

6.8.2 Source Code Path

6.8.3 CEC Entries

6.8.4 Build Options

6.8.5 Registry File

Drivers

All the test cases are passing. However, the following observations were made:

• While carrying out the tests for CF memory card, one of the tests [ID 5012] fails while executing all the
tests continuously. However, while executing this test case individually, it passes.

• While carrying out the block-device driver performance tests, the size of the storage needs to limited to
64 Mbytes. This limitation is due to the CETK restriction.

The SPI driver for this platform is a Window CE stream interface driver dynamic-link library
(Dm644xSpi.dll), which is implemented using Windows CE driver model architectures MDD and PDD:

• MDD: (Model Device Driver layer) a library, which is custom, defined.
• PDD: (Platform Dependent Driver layer) a layer implemented specifically for the DAVINCI, which is

linked to the MDD library to create the driver DLL.

The following sections describe SPI driver components and their functions.

The device manager uses the registry key, [HKEY_LOCAL_MACHINE \Drivers\BuiltIn\SPI] to load the
driver, Dm644xSpi.DLL.

As a streams model driver, the prefix registry entry under [HKEY_LOCAL_MACHINE \Drivers\BuiltIn\SPIn]
defines the prefix to be used with all exported routines. The device manager uses this prefix to create the
routine name, SPI_Init (), and calls it to let the driver perform its specific initialization. This routine, along
with all other high-level SPI_xxx () routines, are located in the SPI MDD layer. This driver supports the
following feature:

• Custom IOCTL to configure data format, interrupts, etc.

The source code for this driver implementation is located in the path:

$(_WINCEROOT)\PLATFORM\DAVINCI\SRC\DM644X\SPI

These sources build the DLL named Dm644xUart.dll in the path:

$(WINCEROOT)\PLATFORM\DAVINCI\TARGET\ARMV4I\$(WINCEDEBUG)

This driver is identified as SPI0 Dm644x under the path Catalog → Third Party → BSPs →
Davinci:ARMV4I → Device Drivers → SPI0 DM644x.

Including this component into the OS design ensures the SPI driver is built while building the OS image.

• BSP_USE_SPI=1

The default sources and the makefile are located in the path illustrated in Section 6.8.2. This sources file
enables the SPI driver to configure the SPI hardware in following manner.

• By default SPI will be configured in 3-pin mode.
• The SPI_USE_4PIN flag can be set for using the SPI in 4-pin mode.

This driver implementation expects the configuration information to be available in the registry. Table 17
identifies the various keys corresponding to this driver and their significance. The sample registry file for
configuring the SPI driver is located in the path
$(_WINCEROOT)\PLATFORM\DAVINCI\SRC\DM644x\SPI\ SpiDrv.reg.

TMS320DM644x DVEVM Windows CE v5.0 BSP34 SPRUEV9–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

6.8.6 Driver Testing

6.9 NDIS Miniport Driver

6.9.1 Overview and Features

6.9.2 Source Code Path

Drivers

Table 17. Registry Keys for SPI Driver

Sl. No Key Name Value Type Current Value Description

1 Prefix STRING SPI Specifies the device prefix

2 Prefix STRING Dm644xSpi.dll Specifies the Dll name to be loaded

3 Order DWORD 0 Order as per which the driver needs to be loaded

4 Index DWORD 0 Index of the driver

5 DeviceArrayIndex DWORD 0 Hardware index used by the driver

This implementation of the driver is tested using the sample application provided. The sample application
puts the SPI in loopback mode and does a write and read call.

There are no CETK test suites available for testing the SPI driver. The application used to test the SPI
driver can be located at $(_WINCEROOT)\PLATFORM\DAVINCI\SRC\APPS\SPIAPP. This application
puts the device in loop back mode, writes data and reads it back. All required configurations are done
using custom IOCTL calls. This application needs to be built using the command line build method. To run
the application give s Spitest.exe on CE target shell or go to Target → Run Programs and select the
Spitest.exe and run it. This test application does the following:

• Writes a pre-defined data to the SPI transmit port.
• Reads the SPI port back for any data on the port.
• Compares the data read against the original data written.
• Pints the success or failure message.

The Windows CE protocol drivers and NDIS wrapper use this particular miniport driver for providing
networking capabilities to the DM644x EVM. This miniport driver implements the media access layer
(MAC) sub layer of data link layer according to the OSI model.

The DM644x miniport EMAC driver is being surrounded by the NDIS wrapper and uses the NDIS library
functions. This driver code implements the support functions expected by the NDIS wrapper, to use the
EMAC Ethernet controller for its functionality. The NDIS wrapper forms the glue between the protocol
driver and the network controller.

The driver configures the EMAC controller of the DM644x SoC to enable the channel 0 for its operations.
This driver initializes the Intel PHY (on-board connected to DMSoC via MII interface) for its operation. It
supports dynamic link status detection and its associated event handling. A dedicated EMACINT is
provided for CPU through hardware IRQ 13.

This driver implementation requires a physical memory of size 0x000E0000 to be reserved for its
operation. The base address of this physical memory region (reserved for NDIS buffers) may be changed
by means of the registry. However, this needs to be synchronized with the value configured in the
config.bib file.

The source code for this driver implementation is located in the path:

$(_WINCEROOT)\PLATFORM\DAVINCI\SRC\DM644X\EMACMiniport

These sources build the DLL named Dm644xEmacMiniport.dll in the path:

$(WINCEROOT)\PLATFORM\DAVINCI\TARGET\ARMV4I\$(WINCEDEBUG)

This DLL statically links to the following libraries:

SPRUEV9–March 2007 TMS320DM644x DVEVM Windows CE v5.0 BSP 35
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

6.9.3 CEC Entries

6.9.4 Build Options

6.9.5 Registry File

6.9.6 Driver Testing

Drivers

• NDIS.lib: Microsoft provided NDIS library.
• COREDLL.lib: Basic operating system (OS) module that provides core functionality to other modules.
• CEDDK.lib: For Windows CE device driver kit specific system calls.

This driver is identified as DM644x EMAC Miniport under the path Catalog → Third Party → BSPs →
Davinci:ARMV4I → Device Drivers → Networking → Local Area Networking (LAN) devices → DM644x
EMAC Miniport.

Including this component into the OS design ensures the EMAC miniport driver is built while building the
OS image.

Including this component defines the following environment variables:

• IMGNOKITL = 1
• BSP_NOETHER =
• BSP_NOSHAREETH=1
• BSP_NIC_DM644XEMAC =1
• IMGNOSHAREETH =1

The default sources and the Makefile are located in the path illustrated in Section 6.9.2.

This sources file enables the EMAC miniport driver to configure it in following manner.

• NDIS_MINIPORT_DRIVER is defined to receive appropriate miniport structure information.
• This EMAC mini-port driver conforms to NDIS 5.1 specification.

This driver implementation expects the configuration information to be available in the registry. Table 18
identifies the various keys corresponding to this driver and their significance. The sample registry file for
configuring this driver is located in the path:

$(_WINCEROOT)\PLATFORM\DAVINCI\SRC\DM644x\EMACMiniport\ DM644xEmacMiniport.reg /

Table 18. Registry Entries for EMAC NDIS Miniport Driver

Sl. No Key Name Value Type Current Value Description

1 DisplayName STRING DM644x EMAC Specifies the Name.
Miniport Driver

2 Group STRING NDIS Specifies the group to which it belongs.

3 InterruptNumber DWORD 0D Hardware IRQ line of EMAC controller to CPU.

4 InterruptNumber DWORD 85F10000 Physical address of the SDRAM region reserved
for buffers for NDIS operation. This must
correspond to the address kept reserved in
config.bib file.

This implementation of NDIS mini-port driver is verified for its functionality using the custom methods.
Currently, the driver is being tested in the following manner.

1. Ping from host to the DEVEM board. This has been verified for ping packet lengths of up to 30,000
bytes.

2. Ping from DVEVM to any other host PC on the network. This has been verified for ping packet lengths
of up to 1472 bytes. However, in the debug builds, this has been verified for up to 5000 bytes.

3. Telnet to the DEVEM using the other host PC. This is confirmed by executing commands on the Telnet

36 TMS320DM644x DVEVM Windows CE v5.0 BSP SPRUEV9–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

6.10 DSP/BIOS Link Driver

6.11 VPFE Driver

6.11.1 Overview and Features

6.11.2 Source Code Path

6.11.3 CEC Entries

6.11.4 Build Options

6.11.5 Registry File

Drivers

command.
4. FTP files of varying sizes from the DEVEM to the host PC. The file sizes of up to 112 Mbytes have

been verified.
5. FTP files of varying sizes from the host PC to the DVEVM. The file sizes of up to 112 Mbytes have

been verified.

One card and Two card CETK tests are being carried out using the procedure illustrated in the URL:
http://msdn2.microsoft.com/en-us/library/ms836786.aspx .

Please refer to TMS320DM644x DVEVM Windows CE v5.0 BSP DSP/BIOS Link Users Guide
(SPRUEW0), for more details on this driver.

The driver for VPFE is implemented using the stream interface driver architecture. Currently the driver
utilizes only CCDC subsection of the VPFE module.

The device manager uses the registry key, [HKEY_LOCAL_MACHINE \Drivers\BuiltIn\Camera] to load the
driver, Dm644xVpfe.DLL.

As a streams model driver, the prefix registry entry under [HKEY_LOCAL_MACHINE
\Drivers\BuiltIn\CAMn] defines the prefix to be used with all exported routines. The device manager uses
this prefix to create the routine name, CAM_Init (), and calls it to let the driver perform its specific
initialization. This routine, along with all other high-level CAM_xxx () routines, are located in the VPFE
driver.

The following sections describe VPFE driver components and their functions.

The source code for this driver implementation is located in the path:

$(_WINCEROOT)\PLATFORM\DAVINCI\SRC\Drivers\VPFE

These sources build the DLL named Dm644xVpfe.dll in the path:

$(WINCEROOT)\PLATFORM\DAVINCI\TARGET\ARMV4I\$(WINCEDEBUG)

This driver is identified as VPFE Driver under the path Catalog → Third Party → BSPs → Davinci:ARMV4I
→ Device Drivers.

Including this component into the OS design ensures the VPFE driver is built while building the OS image.

Including this component defines the following sysgen variables:

• BSP_VPFE_FUNCTION=1

There are no compile time switch options supported in this release of the driver.

This driver implementation expects the configuration information to be available in the registry. Table 19
identifies the various keys corresponding to this driver and their significance. The sample registry file for
configuring the VPFE driver is located in the path:

SPRUEV9–March 2007 TMS320DM644x DVEVM Windows CE v5.0 BSP 37
Submit Documentation Feedback

http://msdn2.microsoft.com/en-us/library/ms836786.aspx
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

6.11.6 Driver Testing

6.12 7.12 SD Host Controller

Drivers

$(_WINCEROOT)\PLATFORM\DAVINCI\SRC\Drivers\VPFE\ Dm644xVpfe.reg

Table 19. Registry Keys for VPFE Driver

Sl. No Key Name Value Type Current Value Description

1 Prefix STRING CAM Specifies the device prefix

2 Dll STRING Dm644xVpfe.dll Specifies the Dll name to be loaded

3 Order DWORD 10 Order as per which the driver needs to be
loaded

4 Index DWORD 1 Index of the driver

5 CameraDmaBufferBase DWORD 86800000 Physical address of the base of SDRAM
region reserved for VPFE driver DMA buffer.
This must be consistent with the config.bib
settings.

6 CameraDmaBufferSize DWORD 00400000 Size of the SDRAM region reserved for VPFE
DMA buffer.

This implementation of the driver is tested using the sample application provided. The sample application
obtains the captured frame from VPFE driver and displays it using Video1 of VPBE subsystem.

There are no CETK test suites available for testing VPFE driver. The application used to test the VPFE
driver can be located at $(_WINCEROOT)\PLATFORM\DAVINCI\SRC\APPS\VPFE. All required
configurations are done using custom IOCTL calls. This application needs to be built using the command
line build method. To run the application give s vpfeTest.exe on CE target shell or go to Target → Run
Programs and select the vpfeTest.exe and run it. This test application does the following.

1. Maps the memory allocated for driver operation (memory for Video1 frame buffer and buffers for
storing the captured frames).

2. After call to CreateFile of CAM1, the application initializes the driver. This includes configuring the
video mode, registering the video capture buffers with the driver using call to DeviceIoControl with
IOCTL_CAM_REGISTER_BUFF. After this call, app should not access the video capture buffers
(Driver will be using it).

3. Calls DeviceIoControl with IOCTL_VIDEO_START_STREAMING for starting capture
4. Waits for a captured frame using call to DeviceIoControl with IOCTL_CAM_DEQUEUE_BUFF. When

this call unblocks, the app understands that a new frame is available and the buffer in which the frame
is available is passed to the application. Now the app can access buffer.

5. Copies the frame from capture video buffer to frame buffer memory.
6. Calls DeviceIoControl With IOCTL_CAM_ENQUEUE_BUFF, which informs the driver that the app

does not need the buffer any more and the driver can use it. After this call, the app should not access
that buffer.

Table 20. Terms and Acronyms

Number Term Description

1 SDHC Secure Digital Host Controller

2 SD Secure Digital Card

3 MMC Multimedia Memory Card

4 SDIO Secure Digital Input Output

TMS320DM644x DVEVM Windows CE v5.0 BSP38 SPRUEV9–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

6.12.1 Overview and Features

6.12.2 Source Code Path

6.12.3 CEC Entries

6.12.4 Build Options

6.12.5 Registry File

Drivers

The secure digital (SD) card host controller driver controls the host controller hardware and conforms to a
host controller software interface that the bus driver uses to communicate and set operating parameters.
The host controller driver uses an API set exported by the bus driver for registering and unregistering. The
SD card stack uses a dynamic architecture that allows host controller drivers to register or unregister at
any time. The host controller driver interface provides a hardware abstraction layer between the bus driver
and the host controller implementation.

The DaVinci SD host controller driver requires the services of the SD bus library, SD host controller
library, and the SD memory library to generate a working SD host controller driver. The main features of
the SD host controller driver are that it supports both the SD and the MMC cards. This driver supports
configuring the SD bus in both 4-bit mode for the SD card and in 1-bit mode for the MMC card. The driver
implementation also supports the hot-plugging feature. This is more of a storage medium used for copying
any data content. Once the driver comes up, the SD card or MMC card can be seen as driver (normally
seen as storage card folder) when the windows explorer is opened.

The source code for this driver implementation is located in the path:

$(_WINCEROOT)\PLATFORM\DAVINCI\SRC\DRIVERS\SDHC

. These sources build the DLL named Dm644xSDIO.dll in the path:

$(WINCEROOT)\PLATFORM\DAVINCI\TARGET\ARMV4I\$(_WINCEDEBUG)

This driver is identified as DM644x SD MMC Driver under the path Catalog → Third Party → BSPs →
Davinci:ARMV4I → Device Drivers → Storage Devices → DM644x SD MMC Driver. Including this
component into the OS design ensures the SDHC driver is built while building the OS image.

Including this component defines the following sysgen variables:

• BSP_SDMMC=1

The default sources and the Makefile is located in the path illustrated in Section 6.12.2. This sources file
enables the SD MMC card driver to configure in following manner.

Table 21 identifies the list of build flags supported.

Table 21. Build Options for SD/MMC Card Driver

Sl. No Build Flags Description

1 SDIO_GPIO_WORKAROUND Defining this flag enables the code implementing for work around for
proper functioning of the SD card driver with IR included in the image.
Both the IR and SDMMC use the same MSP interrupt.

This driver implementation expects the configuration information to be available in the registry. Table 22
identifies the various keys corresponding to this driver and their significance. The sample registry file for
configuring the SD\MMC driver is located in the path:

$(_WINCEROOT)\PLATFORM\DAVINCI\SRC\DRIVERS\SDHC\SDHC.REG

SPRUEV9–March 2007 TMS320DM644x DVEVM Windows CE v5.0 BSP 39
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

6.12.6 Driver Testing

6.13 NAND Flash Media Driver

6.13.1 Overview and Features

6.13.2 Source Code Path

6.13.3 CEC Entries

Drivers

Table 22. Registry Keys for SD/MMC Card Driver

Sl. No Key Name Value Type Current Value Description

1 Order DWORD 21 Order in which the DLL loads

2 Dll String DM644xSDIO.dll Name of the DLL

3 Prefix String SHC Prefix used by the driver

4 IClass Multi_Sz A32942B7-920C-486b- Interface class
B0E6-92A702A99B35

5 DmaPhysicalBase DWORD 86680000 Memory reserved of DMA area.

This implementation of the driver is tested using the following CETK test cases:

• All storage device block driver read/write test cases
• All storage device block driver benchmark test cases
• All storage device block driver API test cases
• File system driver test

All the above said test cases are passing. While some of the test cases may fail at specific instances, in
other iterations, the same test cases pass.

The test cases for Benchmark sometimes throw out unexpected results, such as the Clientside.exe
unloading, and tests not completing. However, this scenario needs to thoroughly test to conclude the
problem.

The NAND flash media driver (FMD) is a device driver that performs the actual input and output of data to
NAND flash memory device. This FMD contains all of the device-specific code necessary for read, write
and erase commands to the flash memory device. The FMD is linked with the Flash abstraction layer
(FAL) to create a block driver that a file system such as FAT can use. The FMD is also linked with the
boot-loader so that the boot loader can create partitions and flash a run-time image into a specific partition
(BINFS).

The following sections describe NAND FMD driver components and their functions.

The device manager uses the registry key, [HKEY_LOCAL_MACHINE \Drivers\BuiltIn\FlashDisk] to load
the driver, Dm644xNand.dll.

The source code for this driver implementation is located in the path:

$(_WINCEROOT)\PLATFORM\DAVINCI\SRC\COMMON\NAND

These sources build the DLL named Dm644xNand.dll in the path:

$(WINCEROOT)\PLATFORM\DAVINCI\TARGET\ARMV4I\$(WINCEDEBUG)

This driver is identified as Dm644x Nand Fmd under the path Catalog → Third Party → BSPs →
Davinci:ARMV4I → Device Drivers → Storage Devices.

Including this component into the OS design ensures the NAND FMD is built while building the OS image.

Including this component defines the following sysgen variables:

40 TMS320DM644x DVEVM Windows CE v5.0 BSP SPRUEV9–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

6.13.4 Build Options

6.13.5 Registry File

6.13.6 Driver Testing

Drivers

• BSP_NAND_DRIVER = 1
• SYSGEN_STOREMGR = 1
• SYSGEN_FATFS = 1
• SYSGEN_MSPART = 1
• SYSGEN_STOREMGR_CPL = 1

The default sources and the Makefile are located in the path illustrated in Section 6.13.2.

This driver implementation expects the configuration information to be available in the registry. Table 23
identifies the various keys corresponding to this driver and their significance. The sample registry file for
configuring the NAND FMD is located in the path:

$(_WINCEROOT)\PLATFORM\DAVINCI\SRC\COMMON\NAND\DLL\ Dm644xNand.reg.

Table 23. Registry Keys for NAND FMD

Sl. No Key Name Value Type Current Value Description

1 Index DWORD 1 Specifies the device prefix

2 Dll STRING Dm644xNand Specifies the Dll name to be loaded

3 Prefix STRING DSK Specifies the device prefix

4 Order DWORD 0 Order by which the driver gets loaded

5 Profile STRING FlashDisk Profile to be used by this dll.

6 IClass STRING {A4E7EDDA-E575- Interface class
4252-9D6B-

4195D48BB865}

7 Folder STRING NAND Flash Name of the folder to be displayed

8 DefaultFileSystem STRING FATFS Indicates the default file system to load

9 AutoMount DWORD 1 Indicates whether the drive needs to be
mounted to boot time

10 AutoPart DWORD 1 Flag to partitions the store with largest
creatable partition automatically

11 AutoFormat DWORD 1 Formats a store automatically when the store is
unformatted

12 FileSystem STRING fatfsd.dll File system driver currently being used.

13 PartitionDriver STRING mspart.dll Indicates the default partition driver to load

This implementation of the driver is tested using the following CETK test cases:

• Storage device block driver read/write test
• Storage device block driver benchmark test
• Storage device block driver API test
• Flash memory read/write and performance test

All the test cases are passing. However, the following observation was made.

• The CETK for storage block driver benchmark may overwrite the file system information (if any
existing). This could lead to some test cases failing randomly. If the read/write happens in that sector,
then the test case may fail saying media is write-protected.

SPRUEV9–March 2007 TMS320DM644x DVEVM Windows CE v5.0 BSP 41
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

6.14 USB Function Controller Driver

6.14.1 Overview and Features

6.14.2 Source Code Path

6.14.3 CEC Entries

Drivers

Table 24. Terms and Acronyms

Number Term Description

1 CETK Windows CE Test Kit

2 EVM Evaluation Module

3 SDRAM Synchronous Dynamic Random Access Memory

4 USB Universal Serial Bus

5 OTG On-The-Go

6 MSC Mass Storage Class

7 RAS Remote Access Server

8 BOT Bulk-only Transport

9 CBW Command Block Wrapper

10 CSW Command Status Wrapper

Windows CE 5.0 provides well-defined driver architecture to support the USB function controller and the
various class drivers on top of it.

USB function controller drivers are layered drivers and consist of an MDD and a PDD. The PDD abstracts
a USB function controller and the MDD provides a function driver with the ability to configure and access
the underlying USB function controller.

The PDD Layer abstracts the USB controller, supports configuration of the USB function hardware and
provides an event-based notification to the MDD layer.

The USB function controller driver, MDD, exposes a bus interface, which is implemented in the MDD. This
allows USB function client drivers to be loaded as stream interface drivers. The MDD layer exposes a
stream-driver interface and maintains the context information for each underlying PDD.

On the DaVinci EVM, the USB function driver initializes the USB controller in device mode and configures
the USB controller in full-speed mode. It supports the access to the registers using both Indexed and flat
addressing modes.

The source code for this driver implementation is located in the path:

$(_WINCEROOT)\PLATFORM\DAVINCI\SRC\Drivers\USBFN

These sources build the DLL named Dm644xUsbFn.dll in the path:

$(WINCEROOT)\PLATFORM\DAVINCI\TARGET\ARMV4I\$(_WINCEDEBUG)

This driver is identified as USB Function Driver under the path Catalog → Third Party → BSPs →
Davinci:ARMV4I → Device Drivers → USB Function Bus Drivers → USB Function Driver.

Including this component defines the following sysgen variables:

• BSP_USB_FUNCTION=1
• BSP_NOUSB=
• SYSGEN_USBFN_STORAGE=1

TMS320DM644x DVEVM Windows CE v5.0 BSP42 SPRUEV9–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

6.14.4 Build Options

6.14.5 Registry File

Drivers

The default sources and the makefile are located in the path illustrated in Section 6.14.2. This sources file
enables the USB function driver to configure the USB controller in following manner:

• USB controller access with index addressing mode
• USB controller access with flat addressing mode

Table 25. Build Options for Function Controller Driver

Sl. No Build Flags Description

1 USB_EARLY_HANDSHAKE Defining this flag enables the sending of USB control handshakes from
the USB interrupt handler routines itself rather than waiting for the
MDD layer to invoke the ControlStatusHandShake routine. This flag is
defined by default for better response times during USB transactions.

2 MUSB_FLAT_REG_MODEL Defining this flag causes the driver to address the USB controller
registers in flat addressing mode. By default, this flag is not defined
and hence the driver uses indexed addressing mode.

3 CPPI_DMA_SUPPORT This flag is defined by default and enables the CPPI DMA support for
both transmit and receive paths in the driver.

This driver implementation expects the configuration information to be available in the registry. Table 26
identifies the various keys corresponding to this driver and their significance. The sample registry file for
configuring the display driver is located in the path:

$(_WINCEROOT)\PLATFORM\DAVINCI\SRC\DM644x\USBFN\DM644xUsbFn.REG

Table 26. Registry Keys for USB Function Controller Driver

Sl. No Key Name Value Type Current Value Description

1 InterfaceType DWORD 0 Type of the interface.

2 InterfaceType STRING UFN Prefix used by the driver

3 Dll STRING Dm644xUsbFn.dll Name of the driver DLL

4 Order DWORD 10 Load Order of the USB function driver.

5 Priority256 DWORD 0x64 Priority of the interrupt service thread
maintained by the USB function driver

6 MemBase MULTI_SZ 01C64000, Specifies a range of memory addresses used
01C64400 by the USB function driver to access the

hardware registers.

7 MemLen MULTI_SZ 300, 300 Specifies the length of the above memory
ranges that needs to be virtually mapped by
the driver for register access.

8 Irq DWORD 0C Specifies the physical interrupt number of USB
on the platform

9 BusIoctl DWORD 2a0048 Specifies the default IOCTL routine to be
invoked during startup of the driver

10 Iclass MULTI_SZ Specifies the Iclass interface for the driver

11 TxDmaBuffer DWORD 86700000 This key defines the SDRAM memory region
which is utilized by the USB function driver as
DMA buffer area.

12 TxDmaBuffSize DWORD 4000 This key defines the SDRAM memory region
length which is utilized by the USB function
driver.

SPRUEV9–March 2007 TMS320DM644x DVEVM Windows CE v5.0 BSP 43
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

6.14.6 USB Mass Storage Client Driver Registry Settings

6.14.7 Driver Testing

6.14.7.1 USB Mass Storage

6.14.7.2 USB Mass Storage Hardware Detection on Host PC

Drivers

Table 27. Registry for MSC Client Driver

Sl. No Key Name Value Type Current Value Description

1 Dll STRING usbmsfn.dll Davinci EVM generic mass storage

2 InterfaceSubClass DWORD 06 Interface sub-class code used by the client
driver

3 InterfaceProtocol DWORD 50 Interface protocol code reserved for USB mass
storage

4 DeviceName STRING DSK1: Name of the block device which is to be
presented as USB mass storage device

5 FriendlyName STRING Mass Storage Friendly name of the client driver

6 idVendor DWORD 0451 Vendor ID for the USB mass storage. This is
set to Texas Instruments vendor ID

7 Manufacturer STRING Texas Instruments Name of the manufacturer

8 idProduct DWORD 0xFFFF Product ID for the USB mass storage

9 Product STRING Davinci EVM Generic Name of the USB mass storage device as
Mass Storage seen by the host PC

10 bcdDevice DWORD 0 Device ID used by the USB mass storage

The Windows CE 5.0 Test Kit does not include any test cases for the USB function driver.

The mass storage driver has been tested with the RAMDISK driver and hard disk on the DVEVM by these
methods:

• Transfer of files of varying sizes from host PC to the USB mass storage.
• Transfer of files of varying sizes from USB mass storage to host PC.

On certain Windows 2000 host PCs, the USB mass storage device is detected during the initial plug-in
sequence and also the driver is automatically detected and the drive-loaded.

However, on those host PCs which do not have the recent service packs installed, the host Windows take
you through a series of steps to recognize the new hardware. This was observed during the initial testing.

This section explains the steps involved in setting up the USB mass storage on the host PC. When the
DaVinci EVM, loaded with USB driver is plugged into the USB port on the host PC, we observe the
following dialog on the host.

The host declares the Davinci EVM as New USB Hardware and prompts you to point to the appropriate
driver.

44 TMS320DM644x DVEVM Windows CE v5.0 BSP SPRUEV9–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

Drivers

1. Press the Next button to continue with the hardware installation process.

2. As shown in the New Hardware Wizard, select the Search for a suitable driver option and press the
Next button.

SPRUEV9–March 2007 TMS320DM644x DVEVM Windows CE v5.0 BSP 45
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

Drivers

3. Select the Specify a location option and press the Next button.

4. Point to your WINNT\SYSTEM32 installation path to pick up the default Microsoft USB drivers and
press OK button.

46 TMS320DM644x DVEVM Windows CE v5.0 BSP SPRUEV9–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

Drivers

5. The installation process detects the default Microsoft host module usbstor.inf from your Windows 2000
installation.

6. Since the usbstor.inf does not have any reference to our USB mass storage device, the above dialog
will be displayed. Press the Yes button to continue with the installation.

SPRUEV9–March 2007 TMS320DM644x DVEVM Windows CE v5.0 BSP 47
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

Drivers

7. Press the Finish button to complete the installation process.

8. Press the Finish button again, which now installs the USB disk drive on the host PC.

48 TMS320DM644x DVEVM Windows CE v5.0 BSP SPRUEV9–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

6.14.7.3 USB Mass Storage Conformance Tests

Drivers

9. On certain PCs, another dialog box appears prompting for the Generic Volume. Press the Yes button
and Finish button later, to complete the volume mount.

Since there are no standard Windows CE test kit tests for the USB function controller, this release of the
USB mass storage has been tested with the USB Mass Storage Compliance tests as specified by the
USB organization.

The USB organization has the Universal Serial Bus Mass Storage Class Compliance Test Specification
document at the following URL: http://www.usb.org/developers/devclass_docs/MSC-compliance-0_9a.pdf.

Some of the most important test cases mentioned in the above link are executed against this USB mass
storage driver. Please note that this would require the USB Sniffer to be installed in the host PC.

Table 28. Mass Storage Conformance Tests

Sl. No Test Description Test Status Remarks

1 Device must have a serial number (if Pass This information can be retrieved from the device
the device supports a BOT interface, descriptor sent by the device to the host.
bInterfaceProtocol = 0x50).

2 Devices must support at least one data Pass This information can be retrieved from the interface
interface (InterfaceClass = 0x08). descriptor sent by the device to the host.

3 Data interface SubClass code must be Pass This information can be retrieved from the interface
valid (0x01 – 0x06). descriptor sent by the device to the host.

4 Data interface protocol code must be Pass This information can be retrieved from the interface
0x50 (BOT interface), or 0x00 or 0x01 descriptor sent by the device to the host.
(CB/CBI interface).

5 Data interface protocol code must be Pass This information can be retrieved from the interface
0x50 (BOT interface), or 0x00 or 0x01 descriptor and the EndPoint descriptor sent by the device
(CB/CBI interface). to the host.

6 The CB/CBI device must not be Pass This information can be retrieved from the device
high-speed device. descriptor sent by the device to the host.

7 The CSW must be 13 bytes long. Pass This information can be retrieved from the command status
response sent by the device to host.

8 The CSW signature must be Pass This information can be retrieved from the command status
0x53425355. response sent by the device to host.

9 The tag field of a CSW must match the Pass This information can be retrieved from the command block
tag of the associated CBW. wrapper sent by host and command status wrapper sent by

device to host.

SPRUEV9–March 2007 TMS320DM644x DVEVM Windows CE v5.0 BSP 49
Submit Documentation Feedback

http://www.usb.org/developers/devclass_docs/MSC-compliance-0_9a.pdf
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

6.15 USB Host Controller Driver

6.15.1 Overview and Features

6.15.2 Source Code Path

6.15.3 CEC Entry

Drivers

Table 28. Mass Storage Conformance Tests (continued)

Sl. No Test Description Test Status Remarks

10 The CSW status value must be 0x00, Pass This information can be retrieved from the command status
0x01, or 0x02. response sent by the device to host.

11 If the CSW status value is 0x00 or Pass This information can be retrieved from the command status
0x01, the residue must be less than or response sent by the device to host.
equal to the transfer length.

12 The interface must respond properly to Pass The status responses sent by the device to the host can
Get_Status requests at all times. verify this information.

13 The interface shall be capable of Pass The same can be verified from the enumeration logs seen
responding to commands without on the debug Window
failure immediately following
configuration.

Table 29. Terms and Acronyms

Number Term Description

1 CETK Windows CE Test Kit

2 EVM Evaluation Module

3 USB Universal Serial Bus

4 OTG On-The-Go

5 MSC Mass Storage Class

Windows CE 5.0 provides well-defined driver architecture to support the USB host controller and the
various class drivers on top of it.

The source code for this driver implementation is located in the path:

$(_WINCEROOT)\PLATFORM\DAVINCI\SRC\Drivers\USBH

These sources build the DLL named DM644xUsbh.dll in the path:

$(WINCEROOT)\PLATFORM\DAVINCI\TARGET\ARMV4I\$(_WINCEDEBUG)

This driver is identified as USB Host Driver under the path Catalog → Third Party → BSPs →
Davinci:ARMV4I → Device Drivers → USB Host → USB Host Controller →b USB Host Driver.

Including this component into the OS design ensures the display driver is built while building the OS
image.

Including this component defines the following sysgen variables:

• SYSGEN_USB_HID=1
• SYSGEN_MSPART= 1
• SYSGEN_STOREMGR=1
• SYSGEN_USB_HID_CLIENTS=1
• SYSGEN_USB_STORAGE=1
• SYSGEN_STOREMGR_CPL=1
• SYSGEN_FATFS=1

50 TMS320DM644x DVEVM Windows CE v5.0 BSP SPRUEV9–March 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

www.ti.com

6.15.4 Build Options

6.15.5 Registry File

6.15.6 Driver Testing

7 DirectShow Filters

8 Known Issues/Caveats

9 References

DirectShow Filters

• BSP_USB_HOST=1

This driver does not support any compile time configuration options.

The sample registry file for configuring the display driver is located in the path:

$(_WINCEROOT)\PLATFORM\DAVINCI\SRC\Drivers\USBH\Dm644xUsbh.REG

Table 30. USB Host Controller Driver Registry

Sl. No Key Name Value Type Current Value Description

1 Order DWORD 6 Order in which the DLL loads

2 Dll String Dm644xUsbh.dll Name of the DLL

3 Prefix String HCD Prefix used by the driver

4 Index DWORD 1 Instance index for the USB Host controller
driver

The USB host driver supports only the following devices:

• USB keybaord
• USB mouse
• USB mass storage

Please refer to Section 7 for more details on using the DirectShow filters and the related components.

The following issues are prevalent in this release of the board support package.

• This version of BSP does not provide support for the KITL connection over serial connection.
• This release of the BSP uses the UART port as a debug port and does not allow the serial port to be

used by the applicaton.
• The EVM board has only one external USB port. This port may be either configured as the USB host

port or as the USB function port. Therefore, any OS configuration would have either a USB host
controller driver or USB function controller driver, but not both.

• The EMIF bus on the DVEVM is being shared by the following peripherals. Since there is a difference
in the initialization sequence for each of these peripherals, only one of the following drivers may be
included in the given OS configuration.

– ATA hard disk driver
– Compact flash controller driver
– NAND flash media driver

A. Microsoft Platform Builder 5.0 On-Line Help
B. DaVinci Evaluation Module – Technical Reference; Rev.A; January 2006.

SPRUEV9–March 2007 TMS320DM644x DVEVM Windows CE v5.0 BSP 51
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEV9

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Low Power www.ti.com/lpw Telephony www.ti.com/telephony
Wireless

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://interface.ti.com
http://www.ti.com/digitalcontrol
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti.com/lpw
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

	Table of Contents
	Preface
	1 Components of BSP
	1.1 Bootloader
	1.2 OEM Adaptation Layer
	1.3 Drivers
	1.4 Codec Engine
	1.5 DirectShow Filters
	1.6 Catalog Components

	2 Installation
	2.1 3.1 Installation Using the Zip Archive
	2.2 Distribution Archive

	3 BSP Configuration Files
	3.1 DAVINCI.bat
	3.2 DAVINCI.cec

	4 Building BSP
	4.1 Windows CE OS Image Build Process
	4.1.1 Steps Involved in Creating a Mobile Hand Held Image Configuration

	5 Memory Mapping
	6 Drivers
	6.1 I2C Driver
	6.1.1 Overview and Features
	6.1.2 Source Code Path
	6.1.3 CEC Entries
	6.1.4 Build Options
	6.1.5 Registry File
	6.1.6 Driver Testing

	6.2 Serial Driver
	6.2.1 Overview and Features
	6.2.2 Source Code Path
	6.2.3 CEC Entries
	6.2.4 Build Options
	6.2.5 Registry File
	6.2.6 Driver Testing

	6.3 EDMA APIs
	6.3.1 Overview and Features
	6.3.2 Source Code Path
	6.3.3 CEC Entries
	6.3.4 Build Options
	6.3.5 Registry File
	6.3.6 Driver Testing

	6.4 Audio Driver
	6.4.1 Overview and Features
	6.4.2 Source Code Path
	6.4.3 CEC Entry Details
	6.4.4 Build Options
	6.4.5 Registry File
	6.4.6 Driver Testing
	6.4.6.1 WavRec Test Application
	6.4.6.2 Wavplay test Application

	6.5 VPBE/Display
	6.5.1 Overview and Features
	6.5.2 Source Code Path
	6.5.3 CEC Entries
	6.5.4 Build Options
	6.5.5 Registry File
	6.5.6 Driver Testing
	6.5.7 Sample Applications

	6.6 IR-Remote Driver
	6.6.1 Overview and Features
	6.6.2 Source Code Path
	6.6.3 CEC Entries
	6.6.4 Build Options
	6.6.5 Registry File
	6.6.6 Driver Testing

	6.7 ATA/CF Driver
	6.7.1 Overview and Features
	6.7.2 Source Code Path
	6.7.3 CEC Entries
	6.7.4 Build Options
	6.7.5 Registry File
	6.7.6 Driver Testing

	6.8 SPI Driver
	6.8.1 Overview and Features
	6.8.2 Source Code Path
	6.8.3 CEC Entries
	6.8.4 Build Options
	6.8.5 Registry File
	6.8.6 Driver Testing

	6.9 NDIS Miniport Driver
	6.9.1 Overview and Features
	6.9.2 Source Code Path
	6.9.3 CEC Entries
	6.9.4 Build Options
	6.9.5 Registry File
	6.9.6 Driver Testing

	6.10 DSP/BIOS Link Driver
	6.11 VPFE Driver
	6.11.1 Overview and Features
	6.11.2 Source Code Path
	6.11.3 CEC Entries
	6.11.4 Build Options
	6.11.5 Registry File
	6.11.6 Driver Testing

	6.12 7.12 SD Host Controller
	6.12.1 Overview and Features
	6.12.2 Source Code Path
	6.12.3 CEC Entries
	6.12.4 Build Options
	6.12.5 Registry File
	6.12.6 Driver Testing

	6.13 NAND Flash Media Driver
	6.13.1 Overview and Features
	6.13.2 Source Code Path
	6.13.3 CEC Entries
	6.13.4 Build Options
	6.13.5 Registry File
	6.13.6 Driver Testing

	6.14 USB Function Controller Driver
	6.14.1 Overview and Features
	6.14.2 Source Code Path
	6.14.3 CEC Entries
	6.14.4 Build Options
	6.14.5 Registry File
	6.14.6 USB Mass Storage Client Driver Registry Settings
	6.14.7 Driver Testing
	6.14.7.1 USB Mass Storage
	6.14.7.2 USB Mass Storage Hardware Detection on Host PC
	6.14.7.3 USB Mass Storage Conformance Tests

	6.15 USB Host Controller Driver
	6.15.1 Overview and Features
	6.15.2 Source Code Path
	6.15.3 CEC Entry
	6.15.4 Build Options
	6.15.5 Registry File
	6.15.6 Driver Testing

	7 DirectShow Filters
	8 Known Issues/Caveats
	9 References

