
TMS320DM646x DMSoC
Peripheral Component Interconnect (PCI)

User's Guide

Literature Number: SPRUER2B

November 2009

2 SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Preface ... 8
1 Introduction .. 10

1.1 Purpose of the Peripheral ... 10

1.2 Features ... 10

1.3 Features Not Supported .. 11

1.4 Functional Block Diagram ... 11

1.5 Terminology Used in This Document ... 13

1.6 Industry Standard(s) Compliance Statement ... 13

2 Architecture .. 13
2.1 Clocks ... 13

2.2 Signal Descriptions .. 14

2.3 Pin Multiplexing .. 16

2.4 Byte Addressing .. 16

2.5 PCI as Slave .. 17

2.6 PCI as Master .. 25

2.7 Exceptions, Status Reporting, and Interrupts .. 33

2.8 PCI Reset Information ... 36

2.9 PCI Configuration .. 37

3 Registers .. 41
3.1 PCI Configuration Registers .. 41

3.2 PCI Back-End Configuration Registers ... 50

3.3 DM646x DMSoC-To-PCI Address Translation Registers ... 78

3.4 PCI Configuration Hook Registers ... 79

Appendix A Revision History .. 82

3SPRUER2B–November 2009 Table of Contents
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com

List of Figures

1 PCI Block Diagram .. 12

2 PCI Signals... 14

3 PCI to External PCI device... 15

4 Slave Window Configuration ... 18

5 PCI-to-DM646x DMSoC Address Translation ... 20

6 Master Window Configuration ... 26

7 PCI Address Substitution Registers (PCIADDSUB0-PCIADDSUB31) ... 26

8 DM646x DMSoC to PCI Address Translation ... 27

9 Example of DM646x DMSoC to PCI Address Translation ... 27

10 Signal Connections for I2C EEPROM Boot Mode .. 40

11 Vendor ID/Device ID Register (PCIVENDEV) ... 42

12 PCI Command/Status Register (PCICSR) ... 43

13 Class Code/Revision ID Register (PCICLREV) ... 45

14 BIST/Header Type/Latency Timer/Cacheline Size Register (PCICLINE) .. 46

15 Base Address n Register (PCIBARn)... 47

16 Subsystem Vendor ID/Subsystem ID Register (PCISUBID)... 48

17 Capabilities Pointer Register (PCICPBPTR)... 48

18 Maximum Latency/Minimum Grant/Interrupt Pin/Interrupt Line Register (PCILGINT)............................ 49

19 Status Set Register (PCISTATSET) .. 51

20 Status Clear Register (PCISTATCLR).. 53

21 Host Interrupt Enable Set Register (PCIHINTSET) ... 55

22 Host Interrupt Enable Clear Register (PCIHINTCLR) .. 57

23 Back-End Application Interrupt Enable Set Register (PCIBINTSET) ... 59

24 Back-End Application Interrupt Enable Clear Register (PCIBINTCLR) .. 61

25 Vendor ID/Device ID Mirror Register (PCIVENDEVMIR) .. 62

26 Command/Status Mirror Register (PCICSRMIR).. 63

27 Class Code/Revision ID Mirror Register (PCICLREVMIR)... 65

28 BIST/Header Type/Latency Timer/Cacheline Size Mirror Register (PCICLINEMIR) 66

29 Base Address 0 Mask Register (PCIBAR0MSK).. 67

30 Base Address 1 Mask Register (PCIBAR1MSK).. 67

31 Base Address 2 Mask Register (PCIBAR2MSK).. 67

32 Base Address 3 Mask Register (PCIBAR3MSK).. 67

33 Base Address 4 Mask Register (PCIBAR4MSK).. 68

34 Base Address 5 Mask Register (PCIBAR5MSK).. 68

35 Subsystem Vendor ID/Subsystem ID Mirror Register (PCISUBIDMIR) .. 69

36 Capabilities Pointer Mirror Register (PCICPBPTRMIR) .. 69

37 Maximum Latency/Minimum Grant/Interrupt Pin/Interrupt Line Mirror Register (PCILGINTMIR) 70

38 Slave Control Register (PCISLVCNTL)... 71

39 Slave Base Address 0 Translation Register (PCIBAR0TRL) .. 72

40 Slave Base Address 1 Translation Register (PCIBAR1TRL) .. 72

41 Slave Base Address 2 Translation Register (PCIBAR2TRL) .. 72

42 Slave Base Address 3 Translation Register (PCIBAR3TRL) .. 72

43 Slave Base Address 4 Translation Register (PCIBAR4TRL) .. 73

44 Slave Base Address 5 Translation Register (PCIBAR5TRL) .. 73

45 Base Address n Mirror Register (PCIBARnMIR) .. 74

46 Master Configuration/IO Access Data Register (PCIMCFGDAT) ... 75

47 Master Configuration/IO Access Address Register (PCIMCFGADR) .. 75

4 List of Figures SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com

48 Master Configuration/IO Access Command Register (PCIMCFGCMD) ... 76

49 Master Configuration Register (PCIMSTCFG)... 77

50 PCI Address Substitution n Registers (PCIADDSUBn) .. 78

51 Vendor ID/Device ID Program Register (PCIVENDEVPRG) .. 79

52 Class Code/Revision ID Program Register (PCICLREVPRG) .. 80

53 Subsystem Vendor ID/Subsystem ID Program Register (PCISUBIDPRG).. 80

54 Maximum Latency/Minimum Grant Program Register (PCIMAXLGPRG) ... 81

55 Configuration Done Register (PCICFGDONE) .. 81

5SPRUER2B–November 2009 List of Figures
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com

List of Tables

1 PCI Pin Description ... 14

2 PCI Base Addresses .. 17

3 PCI Master Windows.. 25

4 Byte Enables and PCI_AD[1:0] Encodings .. 31

5 PCI Exceptions .. 33

6 PCI Interrupt.. 35

7 PCI Interrupt Status Conditions ... 35

8 PCI Back-End Configuration Registers Default Values .. 38

9 PCI Configuration Registers Default Values ... 38

10 I2C EEPROM Memory Layout... 39

11 PCI Configuration Registers ... 41

12 Vendor ID/Device ID Register (PCIVENDEV) Field Descriptions ... 42

13 PCI Command/Status Register (PCICSR) Field Descriptions ... 43

14 Class Code/Revision ID Register (PCICLREV) Field Descriptions ... 45

15 BIST/Header Type/Latency Timer/Cacheline Size Register (PCICLINE) Field Descriptions.................... 46

16 Base Address n Register (PCIBARn) Field Descriptions .. 47

17 Subsystem Vendor ID/Subsystem ID Register (PCISUBID) Field Descriptions 48

18 Capabilities Pointer Register (PCICPBPTR) Field Descriptions .. 48

19 Maximum Latency/Minimum Grant/Interrupt Pin/Interrupt Line Register (PCILGINT) Field Descriptions 49

20 PCI Back-End Configuration Registers ... 50

21 Status Set Register (PCISTATSET) Field Descriptions .. 51

22 Status Clear Register (PCISTATCLR) Field Descriptions ... 53

23 Host Interrupt Enable Set Register (PCIHINTSET) Field Descriptions... 55

24 Host Interrupt Enable Clear Register (PCIHINTCLR) Field Descriptions .. 57

25 Back-End Application Interrupt Enable Set Register (PCIBINTSET) Field Descriptions......................... 59

26 Back-End Application Interrupt Enable Clear Register (PCIBINTCLR) Field Descriptions 61

27 Vendor ID/Device ID Mirror Register (PCIVENDEVMIR) Field Descriptions 62

28 Command/Status Mirror Register (PCICSRMIR) Field Descriptions ... 63

29 Class Code/Revision ID Mirror Register (PCICLREVMIR) Field Descriptions 65

30 BIST/Header Type/Latency Timer/Cacheline Size Mirror Register (PCICLINEMIR) Field Descriptions 66

31 Base Address n Mask Register (PCIBARnMSK) Field Descriptions ... 68

32 Subsystem Vendor ID/Subsystem ID Mirror Register (PCISUBIDMIR) Field Descriptions...................... 69

33 Capabilities Pointer Mirror Register (PCICPBPTRMIR) Field Descriptions.. 69

34 Maximum Latency/Minimum Grant/Interrupt Pin/Interrupt Line Mirror Register (PCILGINTMIR) Field
Descriptions .. 70

35 Slave Control Register (PCISLVCNTL) Field Descriptions .. 71

36 Slave Base Address n Translation Register (PCIBARnTRL) Field Descriptions.................................. 73

37 Base Address n Mirror Register (PCIBARnMIR) Field Descriptions.. 74

38 Master Configuration/IO Access Data Register (PCIMCFGDAT) Field Descriptions............................. 75

39 Master Configuration/IO Access Address Register (PCIMCFGADR) Field Descriptions 75

40 Master Configuration/IO Access Command Register (PCIMCFGCMD) Field Descriptions 76

41 Master Configuration Register (PCIMSTCFG) Field Descriptions .. 77

42 DM646x DMSoC-to-PCI Address Translation Registers ... 78

43 PCI Address Substitution n Registers (PCIADDSUBn) Field Descriptions .. 78

44 PCI Configuration Hook Registers .. 79

45 Vendor ID/Device ID Program Register (PCIVENDEVPRG) Field Descriptions 79

46 Class Code/Revision ID Program Register (PCICLREVPRG) Field Descriptions 80

6 List of Tables SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com

47 Subsystem Vendor ID/Subsystem ID Program Register (PCISUBIDPRG) Field Descriptions 80

48 Maximum Latency/Minimum Grant Program Register (PCIMAXLGPRG) Field Descriptions 81

49 Configuration Done Register (PCICFGDONE) Field Descriptions .. 81

50 Document Revision History .. 82

7SPRUER2B–November 2009 List of Tables
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Preface
SPRUER2B–November 2009

Read This First

About This Manual

This document describes the peripheral component interconnect (PCI) module in the TMS320DM646x
Digital Media System-on-Chip (DMSoC). The DM646x DMSoC PCI is compliant to the PCI Local Bus
Specification (revision 2.3). See that document for details on the protocol, electrical, and mechanical
specifications of the PCI.

Notational Conventions

This document uses the following conventions.

• Hexadecimal numbers are shown with the suffix h. For example, the following number is 40
hexadecimal (decimal 64): 40h.

• Registers in this document are shown in figures and described in tables.

– Each register figure shows a rectangle divided into fields that represent the fields of the register.
Each field is labeled with its bit name, its beginning and ending bit numbers above, and its
read/write properties below. A legend explains the notation used for the properties.

– Reserved bits in a register figure designate a bit that is used for future device expansion.

Related Documentation From Texas Instruments

The following documents describe the TMS320DM646x Digital Media System-on-Chip (DMSoC). Copies
of these documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the
search box provided at www.ti.com.

The current documentation that describes the DM646x DMSoC, related peripherals, and other technical
collateral, is available in the C6000 DSP product folder at: www.ti.com/c6000.

SPRUEP8 — TMS320DM646x DMSoC DSP Subsystem Reference Guide. Describes the digital signal
processor (DSP) subsystem in the TMS320DM646x Digital Media System-on-Chip (DMSoC).

SPRUEP9 — TMS320DM646x DMSoC ARM Subsystem Reference Guide. Describes the ARM
subsystem in the TMS320DM646x Digital Media System-on-Chip (DMSoC). The ARM subsystem is
designed to give the ARM926EJ-S (ARM9) master control of the device. In general, the ARM is
responsible for configuration and control of the device; including the DSP subsystem and a majority
of the peripherals and external memories.

SPRUEQ0 — TMS320DM646x DMSoC Peripherals Overview Reference Guide. Provides an overview
and briefly describes the peripherals available on the TMS320DM646x Digital Media
System-on-Chip (DMSoC).

SPRAA84 — TMS320C64x to TMS320C64x+ CPU Migration Guide. Describes migrating from the
Texas Instruments TMS320C64x digital signal processor (DSP) to the TMS320C64x+ DSP. The
objective of this document is to indicate differences between the two cores. Functionality in the
devices that is identical is not included.

SPRU732 — TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C64x and TMS320C64x+ digital
signal processors (DSPs) of the TMS320C6000 DSP family. The C64x/C64x+ DSP generation
comprises fixed-point devices in the C6000 DSP platform. The C64x+ DSP is an enhancement of
the C64x DSP with added functionality and an expanded instruction set.

8 Preface SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/c6000
http://www.ti.com/lit/pdf/spruep8
http://www.ti.com/lit/pdf/spruep9
http://www.ti.com/lit/pdf/sprueq0
http://www.ti.com/lit/pdf/spraa84
http://www.ti.com/lit/pdf/spru732
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Related Documentation From Texas Instruments

SPRU871 — TMS320C64x+ DSP Megamodule Reference Guide. Describes the TMS320C64x+ digital
signal processor (DSP) megamodule. Included is a discussion on the internal direct memory access
(IDMA) controller, the interrupt controller, the power-down controller, memory protection, bandwidth
management, and the memory and cache.

9SPRUER2B–November 2009 Read This First
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru871
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

User's Guide
SPRUER2B–November 2009

Peripheral Component Interconnect (PCI)

1 Introduction

This document describes the peripheral component interconnect (PCI) module in the TMS320DM646x
Digital Media System-on-Chip (DMSoC). The DM646x PCI is compliant to the PCI Local Bus Specification
(revision 2.3). See that document for details on the protocol, electrical, and mechanical specifications of
the PCI.

1.1 Purpose of the Peripheral

The DM646x PCI module allows communication with devices compliant to the PCI Local Bus Specification
(revision 2.3) via a 32-bit address/data bus operating at speeds up to 33 MHz and up to 66 MHz (for
DM6467T devices only).

1.2 Features

The PCI module supports the following features:
• PCI Local Bus Specification (revision 2.3) compliant
• Single function PCI interface provided
• 32-bit address/data bus width
• Operation up to 33 MHz and up to 66 MHz (for DM6467T devices only)
• Optimized burst behavior supported for system cache line sizes of 16, 32, 64 and 128 bytes
• PCI is only accessible from the ARM.

The PCI operates as a PCI slave device for configuration cycles and memory cycles. It also acts as a PCI
master device for configuration cycles, IO cycles, and memory accesses to other devices.

As a slave, the PCI includes the following features:
• Response to accesses as a 32-bit agent with medium DEVSEL timing (single wait state)
• Direct support of the Memory Read, Memory Read Multiple, Memory Read Line, Memory Write,

Configuration Read and Configuration Write transactions
• Aliases Memory Write and Invalidate to the Memory Write command
• Support of variable length burst transfers up to a cache line for Memory Read Line transactions
• Support of unlimited length burst transfers for Memory Read Multiple and Memory Write transactions
• Support of single data phase transfers with disconnect for Memory Read, Configuration Read and

Configuration Write transactions
• Support of both immediate or timeout forced delayed transactions for Memory Read, Memory Read

Line, and Memory Read Multiple transactions
• Support of posting of Memory Write transactions
• Support of up to six base address registers (PCIBAR0-PCIBAR5)
• Support of programmable cache line size of 4, 8, 16, 32, 64, or 128 bytes
• Ports provided to set configuration space registers to specific values after reset

10 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Introduction

As a master, the PCI includes the following features:
• Transaction initiation as a 32-bit agent
• Support of the Configuration Read, Configuration Write, IO Read, IO Write, Memory Read, Memory

Read Line, Memory Read Multiple, Memory Write, and Memory Write and Invalidate PCI Bus
commands

• Support of bursts transfers of up to 256 data phases for Memory Read Line, Memory Read Multiple,
and Memory Write transactions

• Support of single data phase transfers for Memory Read transactions
• Automatic selection between Memory Read, Memory Read Line, and Memory Read Multiple based on

the requested transaction length and the cache line size
• Assertion of the PCI_IRDY signal one clock cycle after the PCI_FRAME signal is asserted. For optimal

performance, it does not insert wait states during a burst.

1.3 Features Not Supported

The PCI Module does not support:
• PCI special cycles
• PCI interrupt acknowledge cycles
• PCI lock
• 64-bit bus operation
• Operation at frequencies greater than 33 MHz for DM646x devices (operation up to 66 MHz is

supported for DM6467T devices only)
• Address/data stepping
• Combining (for write posting)
• Collapsing
• Merging
• Cache line wrap accesses
• Reserved accesses
• Message signaled interrupts
• Vital product data
• Slave IO Read and IO Write Transactions
• Accessing the PCI peripheral from the DSP on the DM646x DMSoC

1.4 Functional Block Diagram

The PCI (Figure 1) consists of the following blocks:
• Address decoder
• Slave state machine
• Slave back end interface
• Master back end interface
• Master state machine
• Output multiplexer
• Configuration registers
• Error handler
• Back end registers interface

11SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Error
handler

Master state
machine

Output
mux

Slave state
machine

Address
decode

Configuration
registers Back end

registers
interface

Master
back end
interface

PCI clock domain DM646x DMSoC
peripheral

clock domain

Slave
back end
interface

PCI errors

Control signals

PCI master

Control signals

PCI
address/data

out

PCI interrupts

PCI slave

Control signals

PCI
address/data

in

Master
back end
interface

Interrupt
request

Back end
registers
interface

Slave
back end
interface

Introduction www.ti.com

Figure 1. PCI Block Diagram

1.4.1 Address Decoder

This block latches transaction control information from the PCI bus and decodes that information to
determine if the transaction was targeted to its PCI slave. This block instructs the Slave State machine to
either accept or ignore slave transactions as they are presented on the PCI bus.

1.4.2 Slave State Machine

This block generates and monitors all of the PCI signals necessary for accepting transactions on the bus.
All of the slave PCI protocols handling functions are split between the address decoder and slave state
machine blocks.

1.4.3 Slave Back End PCI Interface

This block accepts transactions from the slave state machine and passes those transactions to the back
end interface. This block performs the asynchronous decoupling between the PCI clock domain and the
peripheral clock domain for slave transactions. It also implements the slave address translation control
registers and performs address translation for slave transactions.

1.4.4 Master Back End PCI Interface

This block accepts bus transactions from the back end interface and passes those transactions on to the
master state machine. It performs the asynchronous decoupling between the peripheral clock domain and
the PCI clock domain for master transactions. This block implements the master address translation
control registers and also performs the address translation for master transactions.

12 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Architecture

1.4.5 Master State Machine

This block generates and monitors all of the PCI signals necessary for initiating transactions on the bus.
The majority of the master PCI protocols handling functions are implemented in this block. This block
responds to transfer requests that are presented to it from the master back end interface.

1.4.6 Output Multiplexer

This block multiplexes the master address, master write data, slave configuration read data, and slave
memory read data on to the PCI_AD[31:0] pins at the appropriate times. This block is controlled by
several of the other blocks in the PCI.

1.4.7 Configuration Registers

This block implements the required PCI configuration registers and some of the back end registers. These
registers control the modes and options in the PCI and provide vital information to the PCI host.

1.4.8 Error Handler

This block monitors for error conditions that may occur on the PCI bus.

1.4.9 Back End Registers Interface

This block implements the asynchronous bridging function that allows DM646x DMSoC masters to access
select PCI configuration registers, the master and slave address translation registers, and other
miscellaneous PCI control/status registers. This block also implements some PCI control/status registers
that reside in the back end peripheral clock domain.

1.5 Terminology Used in This Document

The following is a brief explanation of some terms used in this document:

Term Meaning

Back End The internal infrastructure of the DM646x DMSoC.

Host A PCI-capable device other than the DM646x DMSoC on the system that initially enumerates the PCI
devices on the PCI bus. It is also capable of booting the DM646x DMSoC via the option of a PCI boot.

1.6 Industry Standard(s) Compliance Statement

The PCI module is compliant with the PCI Local Bus Specification (revision 2.3).

2 Architecture

2.1 Clocks

The PCI module uses the following clocks:
• Main PCI clock from the PCI_CLK pin

– 33 MHz from PCI_CLK pin when in 33 MHz mode
– 66 MHz from PCI_CLK pin when in 66 MHz mode (for DM6467T devices only)

• Internal DM646x DMSoC peripheral clock

– Sourced by the DM646x DMSoC PLL controller, see the device-specific data manual for more
information.

– Peripheral clock frequency must not be less than the main PCI clock frequency.

13SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Data/address

Command
byte

enable

PCI_AD[15:0]
PCI_AD[31:16]

PCI_CBE3

PCI_CBE2

PCI_CBE1

PCI_CBE0

PCI_GNT

PCI_REQ
Arbitration

Clock PCI_CLK

PCI_IDSEL
PCI_DEVSEL
PCI_FRAME

PCI_INTA

PCI_PAR
PCI_RST

PCI_IRDY

PCI_STOP

PCI_TRDY

Control

Error
PCI_PERR
PCI_SERR

Architecture www.ti.com

2.2 Signal Descriptions

Figure 2 lists the PCI signals that are used by the PCI. Table 1 shows the PCI pin name with the signal
direction and description.

Figure 2. PCI Signals

Table 1. PCI Pin Description

Pin Name Type (1) Description

PCI_FRAME I/O/Z PCI Cycle Frame

PCI_DEVSEL I/O/Z PCI Device Select

PCI_STOP I/O/Z PCI Transaction Stop Indicator

PCI_CLK I PCI Clock

PCI_CBE[3:0] I/O/Z PCI Command/Byte Enables

PCI_PAR I/O/Z PCI Parity

PCI_PERR I/O/Z PCI Parity Error

PCI_SERR I/O/Z PCI System Error

PCI_IRDY I/O/Z PCI Initiator Ready

PCI_TRDY I/O/Z PCI Target Ready

PCI_REQ O/Z PCI Bus Request

PCI_INTA O/Z PCI Interrupt A

PCI_RST I PCI Reset

PCI_GNT I PCI Bus Grant

PCI_IDSEL I PCI Initialization Device Select

PCI_AD[31:16] I/O/Z PCI Address/Data bus [31:16]

PCI_AD[15:0] I/O/Z PCI Address/Data bus [16:0]
(1) I = Input, O = Output, Z = High impedance.

14 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

L2 MCL2 cache/SRAM

L1P cache/SRAM

L1D cache/SRAM

C64x+ megamodule

L1P MC

L1D MC

IDMA

CPU

EMC

AIM
arbiter

ARM
926 EJ-S

subsystem

RAM0

RAM1

ROM

EDMA
controller

EMIF

External
memory

DM646x DMSoC switch fabric

Master
back end
interface

Slave
back end
interface

Master
state

machine

Slave
state

machine

Output
multiplexer

Address
decoder

PCI module

PCI bus

PCI
host

www.ti.com Architecture

2.2.1 Connecting a Local PCI to an External PCI Device

Figure 3 shows a simplified block diagram of how the PCI module interfaces local ARM master modules
(EDMA controller, CPU, etc.) and other DM646x DMSoC resources (EMIF, DSP and ARM internal
memory, etc.) to external PCI memory and external PCI masters.

Figure 3. PCI to External PCI device

(1) EDMA: Enhanced Direct Memory Access Controller
EMIF: External Memory Interface
EMC: Extended Memory Controller
L1P MC: L1 P Memory Controller
L1D MC: L1D Memory Controller
L2 MC: L2 Memory Controller
IDMA: Internal Direct Memory Access Controller

15SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Architecture www.ti.com

The following steps show how the PCI module interfaces local DM646x DMSoC master modules (EDMA
controller, CPU, ARM, etc.) to external PCI memory:

1. An ARM master initiates a transaction aimed at external PCI memory through the DM646x DMSoC
switch fabric.

2. The address is decoded by the PCI master back end interface.
3. The PCI master back end interface claims the transaction if the DM646x DMSoC address falls within

the master memory map (described in Section 2.6.1).
4. PCI master back end interface translates the DM646x DMSoC address into a PCI address and

generates a request to the master state machine.
5. The master state machine initiates a transaction on the PCI bus using the PCI address.
6. The request is received by the external PCI host, which responds accordingly.

The following steps show how the PCI module interfaces external PCI masters to DM646x DMSoC
resources (EMIF, DSP and ARM internal memory, etc.):

1. External PCI master initiates a transaction on the PCI bus.
2. The PCI address decoder decodes the PCI address of the transaction and instructs the PCI slave state

machine to claim the transaction if the PCI address falls within the slave memory map (described in
Section 2.5.1) assigned to the DM646x DMSoC.

3. The PCI slave state machine forwards the request to the PCI slave back end Interface.
4. PCI slave back end Interface translates the PCI address into a DM646x DMSoC address and places

the DM646x DMSoC address on the DM646x DMSoC switch fabric.
5. All DM646x DMSoC slaves decode the address to determine if they are being accessed. If so, they

respond accordingly. For example, in the case of an external memory access, the EMIF accesses
external memory using the DM646x DMSoC address.

2.3 Pin Multiplexing

On the DM646x DMSoC, the PCI peripheral is pin multiplexed with the asynchronous external memory
interface (EMIF) to accommodate multiple peripheral functions in a smaller possible package. Pin
multiplexing is controlled by using a combination of hardware configuration at device reset and software
programmable register settings. Refer to the device-specific data manual to determine how pin
multiplexing affects the PCI module.

2.4 Byte Addressing

The PCI interface is byte-addressable. It can read and write 8-bit bytes, 16-bit half words, 24-bit words,
and 32-bit words. Words are aligned on an even four-byte boundary, and always start at a byte address
where the two LSBs are 00. Halfwords always start at a byte address where the last LSB is 0. PCI slave
transactions are fully byte-addressable, but PCI master transactions must start on a word-aligned address.

16 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Architecture

2.5 PCI as Slave

2.5.1 Slave Memory-Map

The PCI module on the DM646x DMSoC provides full visibility for a PCI host into the DM646x DMSoC
memory through six sets of PCI slave base address translation registers (PCIBAR0TRL-PCIBAR5TRL)
and PCI base address mask registers (PCIBAR0MSK-PCIBAR5MSK). The ARM can use any of these
sets of registers to map any memory region or memory-mapped registers (MMRs) to the PCI
memory-map. These registers can be configured by software at any time. The default values of these
registers provide the mapping shown in Table 2.

Section 2.5.1.1 and Section 2.5.1.2 explain how to map a region in the PCI host address space to a region
in the DM646x DMSoC memory space by setting up a slave window.

Table 2. PCI Base Addresses

Base Address Window Size (1) Prefetchable (1) Memory Space

0 16 KB Yes ARM TCM RAM 0

1 32 KB No DDR2 Control Registers

2 4 MB No Chip-Level MMRs (2)

3 128 KB Yes GEM L2 RAM

4 8 MB Yes DDR2 Memory

5 8 MB Yes DDR2 Memory
(1) The default values can be changed by the device's PCI bootloader code. Refer to the PCI bootloader code documentation for

more information.
(2) Only certain regions within this 4MB (01C0 0000h-0200 0000h) are accessible. The regions accessible for read and write include

MMRs of McASP0, McASP1, ATA, UART0, UART1, UART2, GPIO, PWM0, PWM1, I2C, SPI, Timer0, Timer1, Timer2, USB,
HPI, EMAC, MDIO, PLLC0, PLLC1, PSC, CRGEN0, CRGEN1, PCI, and System Module Registers. Access to the MMRs of
other peripherals is not supported.

2.5.1.1 Configuring Slave Window Registers

Figure 4 displays a slave window configuration. A slave window maps a region in the DM646x DMSoC
memory space to a region in the PCI address space. This allows a PCI host to access the DM646x
DMSoC memory through the PCI address space. A slave window is configured with the following
registers:
• PCI slave base address translation register (PCIBARnTRL): Configures the starting address of the

window in the DM646x DMSoC address space
• PCI base address register (PCIBARn): Configures the starting address of the slave window in the PCI

address space
• PCI base address mask register (PCIBARnMSK): Configures the size of the window and prefetchability

of the DM646x DMSoC memory region being mapped

PCI supports six slave window configurations with the support of these registers. For more information on
slave access address translation, see Section 2.5.1.2.

17SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

PCI address
translation registers

(0 to 5)

PCI base address
mask registers

(0 to 5)

PCI base address
registers
(0 to 5)

Slave window

DM646x
DMSoC
memory
region

Starting address

Size

PCI
memory
region

Size

Starting address

Architecture www.ti.com

Figure 4. Slave Window Configuration

2.5.1.1.1 Configuration of Base Address Registers (PCIBARn) by PCI Host

The PCI base address registers (PCIBAR0-PCIBAR5) allow the PCI host to map the DM646x DMSoC
address space into the host memory or I/O address space. The base address registers reside in
configuration space and a PCI host normally configures them. The PCI host can access the base address
registers (PCIBAR0-PCIBAR5) by performing a TYPE 0 access in the PCI bus.

The base address registers (PCIBARn) contain the following bit fields:
• ADDR (bits 31-4): These bits specify the base address of the slave window on the PCI address space.
• PREFETCH (bit 3): This bit specifies the prefetchability of the memory space controlled by the base

address register.
• TYPE (bits 2:1): These bits specify whether the base address maps to PCI I/O address space or

memory address space. The DM646x PCI supports only mapping into PCI memory space.
• IOMEM_SP_IND (bit 0): The size of the base address register, either 32 or 64 bits. The DM646x PCI

only supports 32-bit addressing.

Normally, a PCI host configures the ADDR bits of the base address registers during its boot time when it
enumerates all the PCI devices. The write-access of the PCI host to each of the ADDR bits is determined
by the corresponding bit in the address mask (ADDRMASK) bits of the base address mask register
(PCIBARnMSK). A bit in ADDR is read-only to the PCI host when its corresponding bit in ADDRMASK is
cleared. Conversely, a bit in ADDR can be both read and written by the PCI host when its corresponding
bit in ADDRMASK is set. The DM646x DMSoC is required to complete the configuration of the address
mask register before the host attempts to configure the base address registers.

2.5.1.1.2 Configuration of Slave Base Address Translation Registers (PCIBARnTRL) by ARM

The PCI slave base address translation registers (PCIBAR0TRL-PCIBAR5TRL) configure the DM646x
DMSoC side parameters of a slave window. There are six slave base address translation registers
(PCIBAR0TRL-PCIBAR5TRL) that allow six slave windows to be set up. The slave base address
translation registers are configured by the ARM. The slave base address translation registers control the
translation of transaction addresses as they flow from the external PCI bus to the DM646x DMSoC.
Section 2.5.1.2 explains the translation of PCI addresses to DM646x DMSoC addresses.

18 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Architecture

2.5.1.1.3 Configuration of PCI Base Address Mask Registers (PCIBARnMSK) by ARM

The PCI base address mask registers (PCIBAR0MSK-PCIBAR5MSK) configure the size and
prefetchability of a slave window. The base address mask registers are configured by the ARM. The ARM
can access the PCI base address mask registers directly, as they are mapped to the DM646x DMSoC
memory space.

The base address mask registers (PCIBARnMSK) contain the following bit fields:
• ADDRMASK (bits 31-4): These bits control the PCI host write-access of the corresponding bits in the

corresponding PCI configuration base address registers.
• PREFETCH_EN (bit 3): This bit specifies whether or not the memory space controlled by the

corresponding PCI configuration base address register is prefetchable. This bit is reflected in bit 3 of
the corresponding PCI configuration base address register.

The ARM should configure this register before the host attempts to program the base address register.

2.5.1.2 Slave Access Address Translations

Window configurations control the translation of transaction addresses as they flow from the external PCI
bus to the DM646x DMSoC. This translation process uses the contents of the corresponding PCI base
address mask register (PCIBARnMSK) to determine which of the bits in the PCI address should be
modified. Bits 31 to 4 (ADDRMASK) are replaced in the address where the corresponding bit in the base
address mask register is set by the corresponding bit in the slave base address translation register.

The following steps occur during a PCI-to-DM646x DMSoC address translation:

1. During the address phase, the external PCI master places the PCI address on the address bus
PCI_AD[31:0].

2. The PCI finds the appropriate slave window for the address by comparing the address bits given on
PCI_AD[31:N] with the corresponding bits in the base address register of all the slave windows one by
one. The value of N is the number of bits set in the corresponding base address mask register of the
slave window. The minimum value of N is 4. The value of N indicates the number of significant bits in
the PCI address that needs to be decoded. If the address on PCI_AD[31:N] matches the
corresponding bits of the base address register of any one of the slave windows, the PCI claims the
PCI transaction. Otherwise, it ignores the transaction.

3. If the PCI claims the transaction, it generates a DM646x DMSoC address by replacing bits 31:N in the
PCI address with the corresponding bits in the base address translation register of the previously
selected slave window.

19SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

128 0000h

PCIBAR0MSK[31:4]
FFF FC00h

PCIBAR0[31:4]
128 0000h

1=Match

PCIBAR0TRL[31:4]
100 1000h 100 1000h

000 03FFh

000 0080h

100 1080h

PCIBAR0MSK[31:4]
FFF FC00h

Slave window 0

Slave window 1

0=No match

0=No match

Slave window 2

Slave window 3

0=No match

Slave window 4

0=No match

Slave window 5

0=No match

PCI_AD[31:4]
128 0080h

DM646x DMSoC
_ADDR[31:4]
100 1080h

Architecture www.ti.com

Figure 5 gives an example of a PCI-to-DM646x DMSoC address translation using a PCI address of
1280 0800h. In this example, slave window 0 is created using this configuration: PCIBAR0 = 1280 0000h,
PCIBAR0MSK = FFFF C000h, and PCIBAR0TRL = 1001 0000h. With these settings, slave window 0
translates PCI addresses from 1280 0000h to 1280 3FFFh (16KB) to DM646x DMSoC addresses
1001 0000h to 1001 3FFFh. The following is the sequence of events for generating the DM646x DMSoC
address:

1. The external PCI master places the PCI address 1280 0800h on the address bus PCI_AD[31:0].
2. The PCI finds the slave window corresponding to the PCI address by comparing the address given on

PCI_AD[31:4] with the corresponding bits in the PCI base address registers. The PCI base address
mask registers indicate bits in the PCI address that need to be compared.

3. Slave window 0 has PCIBAR0[31:4] set to 1280 000h and PCIBAR0MSK[31:4] = FFFF C00h.
Therefore, the PCI matches the PCI address with slave window 0 and claims transaction.

4. The value of the PCIBAR0MSK[31:4] bits is inverted and ANDed with the PCI address (PCI_AD[31:4]).
The PCIBAR0TRL[31:4] bits are also ANDed with the value of the PCIBAR0MSK[31:4] register. The
resulting values are ORed together to form the DM646x DMSoC address (1001 0800h).

Figure 5. PCI-to-DM646x DMSoC Address Translation

20 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Architecture

2.5.2 Slave Operations

The PCI slave operates in response to transfer requests that are presented on the PCI bus. The PCI slave
was intended to enable high performance read and write performance through the use of delayed
transactions combined with prefetching for reads and posting for writes. The PCI slave supports two
FIFOS/buffers (a read and write) for efficient data transfer. Each buffer holds 16 32-bit words of read or
write data.

2.5.2.1 Slave Configuration Operations

2.5.2.1.1 Configuration Write Transactions

The decoding of and response to a configuration write transaction by the PCI slave depends on the
following:
• PCI_CBE[3:0] must be Bh during the address phase
• PCI_IDSEL must be asserted during the address phase
• PCI_AD[1:0] must be 00b during the address phase

If the above conditions are met, the transaction is decoded as a hit and the PCI slave will assert
PCI_DEVSEL using medium decode timing. PTRDY will be asserted coincident with the assertion of
PCI_DEVSEL. If the master on the PCI bus intends to perform more than a single data phase transaction
(as determined by the state of PCI_FRAME), PCI_STOP will also be asserted coincident with the
assertion of PCI_DEVSEL and PTRDY to signal a disconnect. PCI_STOP will continue to be asserted
until PCI_FRAME is deasserted and PCI_IRDY is asserted in accordance with the PCI specification.

Configuration write transactions will never result in a retry. Because the configuration registers are
included within the PCI, no transactions will occur on any of the back end interfaces as a result of a
configuration write transaction.

2.5.2.1.2 Configuration Read Transactions

Decoding of and response to a configuration read transaction by the PCI slave depends on the following:
• PCI_CBE[3:0] must be Ah during the address phase.
• PCI_IDSEL must be asserted during the address phase.
• PCI_AD[1:0] must be 00b during the address phase.

If the above conditions are met, the transaction is decoded as a hit and the PCI slave will assert
PCI_DEVSEL using medium decode timing. PTRDY will be asserted one cycle following the assertion of
PCI_DEVSEL. If the master on the PCI bus intends to perform more than a single data phase transaction
(as determined by the state of PCI_FRAME), PCI_STOP will also be asserted coincident with the
assertion of PTRDY to signal disconnect. PCI_STOP will continue to be asserted until PCI_FRAME is
deasserted and PCI_IRDY is asserted in accordance with the PCI specification.

Configuration read transactions will never result in a retry. Because the configuration registers are
included within the PCI, no transactions will occur on any of the PCI blocks as a result of a configuration
read transaction.

21SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Architecture www.ti.com

2.5.2.2 Slave Memory Operations

2.5.2.2.1 Memory Write or Memory Write and Invalidate Transactions

The PCI slave treats memory write and memory write and invalidate transactions identically and is
therefore not intended to support cacheable memory spaces.

The decoding of and response to a memory write or a memory write and invalidate transaction by the PCI
slave depends on the following conditions:
• PCI_CBE[3:0] must be 7h (memory write) or Fh (memory write and invalidate) during the address

phase.
• At least one of the 6 base address registers (PCIBAR0-PCIBAR5) must have bit 0 (IOMEM_SP_IND)

cleared to 0.
• The address which is given on PCI_AD[31:N] during the address phase must match the value in the

corresponding bits of one of the memory base address registers. The value of N is based on the base
address mask registers (PCIBAR0MSK-PCIBAR5MSK) and indicates the number of significant bits in
the address to be decoded. The minimum value of N is 4.

• The PCI slave write buffer is empty.
• The address that is given on PCI_AD[1:0] during the address phase must be 00b (linear addressing).

If only the first three of the previous conditions are met, a retry will be issued because the PCI slave write
buffer is not empty. If only the first four conditions are met, a single data phase transfer will be completed
on the PCI bus. This transfer will be identical in behavior to a configuration write transaction. If the byte
enables have at least one byte asserted, a write transaction will initiate on the DM646x DMSoC as soon
as any pending read burst requests have completed. If no byte enables are asserted, the transaction will
be terminated internally in the PCI slave and no DM646x DMSoC transactions will occur. If all of the
above conditions are met, a multi-data phase transfer will be completed. No wait states will be inserted by
the PCI slave via the target ready indicator (PTRDY), but wait states inserted by the master will be
properly handled. The burst will be allowed to continue until one of the following conditions occurs:
• The PCI slave write buffer is almost full.
• A data phase with no asserted byte enables is encountered.
• The burst is about to extend beyond the address boundary of the PCI slave.
• The master ends the transaction.

2.5.2.2.2 Memory Read Transactions

The decoding of and response to a memory read transaction by the PCI slave depends on the following
conditions:
• PCI_CBE[3:0] must be 6h during the address phase.
• At least one of the 6 base address registers (PCIBAR0-PCIBAR5) must have bit 0 (IOMEM_SP_IND)

cleared to 0.
• The address on PCI_AD[31:N] during the address phase must match the value in the corresponding

bits of one of the memory base address registers. The value of N is based on the base address mask
registers (PCIBAR0MSK-PCIBAR5MSK) and indicates the number of significant bits in the address to
be decoded. The minimum value of N is 4.

• A delayed read is not outstanding, or this transaction is a re-request of a pending delayed read request
and the read data is available. A delayed read is a transaction that must complete on the destination
bus before completing on the originating bus.

• The PCI slave write buffer is empty.

If only the first three of the previous conditions are met, a retry will be issued because the delayed
transaction is not ready to complete or the PCI slave write buffer is not empty. If the first four or all of the
conditions are met, a single data phase transfer will be completed on the PCI bus. This transfer will be
similar in behavior to a configuration transaction.

22 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Architecture

If the transaction is not a delayed completion and the byte enables have at least one byte asserted, a
single word read transaction will initiate on the DM646x DMSoC as soon as any pending write burst
requests have completed on the interface. If no byte enables are asserted and the addressed memory
region is not prefetchable, the transaction will be terminated internally in the PCI slave and no DM646x
DMSoC transactions will occur. The byte enables which were presented for the first data phase on the PCI
bus will be inverted and presented as the byte enables for the transfer. The PCI slave can wait up to 12
PCI_CLK cycles for data to be returned from the slave back end interface. If data does not return within
this time, a retry will be issued and the transaction will be tagged as a delayed read. Alternatively, for
performance reasons, if the FORCE_DEL_READ bit (bit 2) in the PCI Slave Control Register
(PCISLVCNTL) is asserted, a retry and delayed read can be immediately forced without waiting for the 12
PCI_CLK cycles.

If the transaction is a delayed completion and the data is available, the transaction will complete
immediately with PTRDY being asserted coincident with PCI_DEVSEL. Only a single-word prefetch is
supported for the memory read command even when it is used within prefetchable memory regions.

2.5.2.2.3 Memory Read Line Transactions

The decoding of and response to a memory read line transaction by the PCI slave depends on the
following conditions:
• PCI_CBE[3:0] must be Eh during the address phase.
• At least one of the 6 base address registers (PCIBAR0-PCIBAR5) must have bit 0 (IOMEM_SP_IND)

cleared to 0.
• The address on PCI_AD[31:N] during the address phase must match the value in the corresponding

bits of one of the memory base address registers. The value of N is based on the base address mask
registers (PCIBAR0MSK-PCIBAR5MSK) and indicates the number of significant bits in the address to
be decoded. The minimum value of N is 4.

• A delayed read is not outstanding, or this transaction is a re-request of a pending delayed read line
request and the read data is available. A delayed read is a transaction that must complete on the
destination bus before completing on the originating bus.

• The PCI slave write buffer is empty.

If only the first three previous conditions are met, a retry will be issued because the delayed transaction is
not ready to complete or the PCI slave buffer is not empty. If the first four or all of the conditions are met,
a burst read operation will be initiated on the DM646x DMSoC as soon as any pending write burst
requests have completed on the interface. The length of the transfer will be the number of words from the
requested address to the end of the cache line, unless this value exceeds the size of the PCI slave read
data FIFO (16 words). If the burst size is larger than the PCI slave read data FIFO, the transfer will be
broken up into 8 word transfers in the same way as the memory read multiple transfers. Since memory
read line transactions are prefetchable, all byte enables are asserted internally during the burst. The PCI
slave can wait up to 12 PCI_CLK cycles for data to be returned from the slave memory slave back end
interface. If data does not return within this time, a retry will be issued and the transaction will be tagged
as a delayed read. Alternatively, for performance reasons, if the FORCE_DEL_READ_LN bit (bit 3) in the
PCI Slave Control Register (PCISLVCNTL) is asserted, a retry and delayed read can be immediately
forced without waiting for the 12 PCI_CLK cycles. If the transaction is a delayed completion and the data
is available, the first data phase of the transaction will complete immediately with PTRDY being asserted
coincident with PCI_DEVSEL. PTRDY will continue to be asserted until all of the prefetched data has
been read or the burst is terminated by the master. If the master attempts to burst beyond the current
cache line, the PCI will assert PCI_STOP on the next to the last data phase in the cache line.

23SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Architecture www.ti.com

2.5.2.2.4 Memory Read Multiple Transactions

The decoding of and response to a memory read multiple transaction by the PCI slave depends on the
following conditions:
• PCI_CBE[3:0] must be Ch during the address phase.
• At least one of the 6 base address registers (PCIBAR0-PCIBAR5) must have bit 0 (IOMEM_SP_IND)

cleared to 0.
• The address on PCI_AD[31:N] during the address phase must match the value in the corresponding

bits of one of the memory base address registers. The value of N is based on the base address mask
registers (PCIBAR0MSK-PCIBAR5MSK) and indicates the number of significant bits in the address to
be decoded. The minimum value of N is 4.

• A delayed read is not outstanding, or this transaction is a re-request of a pending delayed read line
request and the read data is available. A delayed read is a transaction that must complete on the
destination bus before completing on the originating bus.

• The PCI slave write buffer is empty.

If only the first three previous conditions are met, a retry will be issued because the delayed transaction is
not ready to complete or the PCI slave buffer is not empty. If the first four or all of the conditions are met,
a burst read operation will be initiated on the DM646x DMSoC as soon as any pending write burst request
have completed on the interface. The length of the transfer will be 16 words for the initial transfer of a
burst. As memory read multiple transactions are prefetchable, all byte enables are asserted internally
during the burst. The PCI slave can wait up to 12 PCI_CLK cycles for data to be returned from the slave
memory slave back end interface. If data does not return within this time, a retry will be issued and the
transaction will be tagged as a delayed read. Alternatively, for performance reasons, if the
FORCE_DEL_READ_MUL bit (bit 4) in the PCI Slave Control (PCISLVCNTL) is asserted, a retry and
delayed read can be immediately forced without waiting for the 12 PCI_CLK cycles.

If the transaction is a delayed completion and the data is available, the first data phase of the transaction
will complete immediately with PTRDY being asserted coincident with PCI_DEVSEL. PTRDY will continue
to be asserted as long as data is available in the read prefetch buffer or the burst is terminated by the
master. As data is transferred from the read prefetch buffer on to the PCI bus, additional 8 word read
fetches will be performed on the slave memory slave back end interface as buffer space becomes
available.

24 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Architecture

2.6 PCI as Master

2.6.1 Master Memory-Map

The PCI enables the DM646x DMSoC to access the PCI memory through the master memory-map. There
is 256MB of space dedicated for PCI memory in the DM646x DMSoC memory-map. This 256MB space is
divided into 32 windows of 8MB fixed size. These windows are called master windows or PCI address
windows. Each master window can be configured individually to map 8MB of PCI memory to the DM646x
DMSoC address space.

Table 3. PCI Master Windows

Master Window
Number Base Address Register Window Size DM646x DMSoC Memory Range

0 PCIADDSUB0 8MB 3000 0000h - 307F FFFFh

1 PCIADDSUB1 8MB 3080 0000h - 30FF FFFFh

2 PCIADDSUB2 8MB 3100 0000h - 317F FFFFh

3 PCIADDSUB3 8MB 3180 0000h - 31FF FFFFh

4 PCIADDSUB4 8MB 3200 0000h - 327F FFFFh

5 PCIADDSUB5 8MB 3280 0000h - 32FF FFFFh

6 PCIADDSUB6 8MB 3300 0000h - 337F FFFFh

7 PCIADDSUB7 8MB 3380 0000h - 33FF FFFFh

8 PCIADDSUB8 8MB 3400 0000h - 347F FFFFh

9 PCIADDSUB9 8MB 3480 0000h - 34FF FFFFh

10 PCIADDSUB10 8MB 3500 0000h - 357F FFFFh

11 PCIADDSUB11 8MB 3580 0000h - 35FF FFFFh

12 PCIADDSUB12 8MB 3600 0000h - 367F FFFFh

13 PCIADDSUB13 8MB 3680 0000h - 36FF FFFFh

14 PCIADDSUB14 8MB 3700 0000h - 377F FFFFh

15 PCIADDSUB15 8MB 3780 0000h - 37FF FFFFh

16 PCIADDSUB16 8MB 3800 0000h - 387F FFFFh

17 PCIADDSUB17 8MB 3880 0000h - 38FF FFFFh

18 PCIADDSUB18 8MB 3900 0000h - 397F FFFFh

19 PCIADDSUB19 8MB 3980 0000h - 39FF FFFFh

20 PCIADDSUB20 8MB 3A00 0000h - 3A7F FFFFh

21 PCIADDSUB21 8MB 3A80 0000h - 3AFF FFFFh

22 PCIADDSUB22 8MB 3B00 0000h - 3B7F FFFFh

23 PCIADDSUB23 8MB 3B80 0000h - 3BFF FFFFh

24 PCIADDSUB24 8MB 3C00 0000h - 3C7F FFFFh

25 PCIADDSUB25 8MB 3C80 0000h - 3CFF FFFFh

26 PCIADDSUB26 8MB 3D00 0000h - 3D7F FFFFh

27 PCIADDSUB27 8MB 3D80 0000h - 3DFF FFFFh

28 PCIADDSUB28 8MB 3E00 0000h - 3E7F FFFFh

29 PCIADDSUB29 8MB 3800 0000h - 3EFF FFFFh

30 PCIADDSUB30 8MB 3F00 0000h - 3F7F FFFFh

31 PCIADDSUB31 8MB 3F80 0000h - 3FFF FFFFh

25SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

PCI address
substitution registers

(0 to 31)

Fixed starting addresses
for 32 windows in DM646x

DMSoC PCI
memory space

Master window

PCI
memory
region

Starting address

DM646x
DMSoC

PCI
memory
space

Size = 8 MB
(fixed)

Size = 8 MB
(fixed)

Architecture www.ti.com

2.6.1.1 Configuring Master Windows Using Address Substitution Registers (PCIADDSUBn)

Each master window corresponds to 8MB of the DM646x DMSoC PCI memory address space. For
example, window 0 corresponds to DM646x DMSoC addresses 3000 000h-307F FFFFh, and window 1
corresponds to the next 8 MB, 3080 0000h–30FF FFFFh. Each window can map an 8MB of PCI memory
to its corresponding DM646x DMSoC PCI memory address space through its address substitution
register. Figure 6 displays a master window configuration.

Figure 6. Master Window Configuration

There are 32 address substitution registers (PCIADDSUB0-PCIADDSUB31) available in the PCI. Each of
these registers corresponds to a master window. These registers reside in the PCI interface and are
normally programmed by the ARM. Figure 7 shows an example of an address substitution register.

Figure 7. PCI Address Substitution Registers (PCIADDSUB0-PCIADDSUB31)
31 23 22 0

ADD_SUBS Reserved

R/W-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Bits 31-23 (ADD_SUBS) of the register contain the MSBs of the PCI addresses within the corresponding
window. The remaining reserved 23 bits are the size of the window and these bits have no function.
Reads of this field will return 0s. Section 2.6.1.2 explains the translation of addresses as a transaction flow
from the DM646x DMSoC domain to the PCI domain.

26 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

.

.

.

31 28 27 23 22 0

PCIADDSUB31

PCIADDSUB0

DM646x
DMSoC
address

PCI

address

3h

ADD_SUBS

31 23 22 0

FF80 0000h

00 ABCDh

1280 ABCDh

PCIADDSUB0

...
PCIADDSUB31

1280 0000h
PCIADDSUB1
(1280 0000h)

1280 0000h

3080 ABCDh

007F FFFFh

0000 1b

www.ti.com Architecture

2.6.1.2 Master Address Translation

Address translation from the DM646x DMSoC to the PCI domain is done using the address substitution
registers 0 to 31. Figure 8 shows the address just prior to the address translation.

Figure 8. DM646x DMSoC to PCI Address Translation

During the address translation, the upper 4 bits are don’t cares, as they have already been used for the
address decode to reach the DM646x DMSoC PCI memory space. The next 5 bits decide which PCI
address window corresponds to the DM646x DMSoC address. Once the window is determined, the
23 LSBs of the DM646x DMSoC address are allowed to pass through to the PCI address and the upper 9
bits are taken from the ADD_SUBS field of the corresponding PCIADDSUBn register. Figure 9 illustrates
this process.

Figure 9. Example of DM646x DMSoC to PCI Address Translation

27SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Architecture www.ti.com

Figure 9 shows an example of a DM646x DMSoC-to-PCI address translation. In this example, the
DM646x DMSoC address is 3080 ABCDh and the PCIADDSUB1 register is set to 1280 0000h.

1. The 4 MSBs of the address (3h) indicate the DM646x DMSoC PCI memory space is being accessed.
2. The next 5 bits (00001b) determine that the destination is the second 8MB PCI window, signifying that

PCIADDSUB1 will be used. Note that bits 27-3 directly correspond to the PCIADDSUBn used.
3. The upper 9 bits of the address substitution register 1 and the lower 23 bits of the DM646x DMSoC

address are concatenated to form the PCI address (1280 ABCDh).
4. This address is used by the PCI module.

Example 1 details how to perform an EDMA transfer from a DM646x DMSoC source address (for
example, L2 or EMIF) to PCI memory. For the EDMA configuration, see the TMS320DM646x DMSoC
Enhanced Direct Memory Access (EDMA3) Controller User's Guide (SPRUEQ5).

Example 1. Master Memory Write

/* Configure master window */
/* Map external PCI memory (0x12800000) to its corresponding 8MB DM646x DMSoC
* PCI memory address space using following address substitution register PCIADDSUB1
*/
PCIADDSUB1 = 0x12800000; /* PCIADDSUBn, n = 0 to 31 */

...
/* Setup EDMA module and Enable the DMA Region */
/* Setup EDMA PARAM */
/* The OPT register contains following the bit fields

ITCCHEN = 0x0;TCCHEN = 0x0; ITCINTEN = 0x0; TCINTEN = 0x1;
WIMODE = 0x0; TCC = 0x0; TCCMODE = 0x0; FIFOWID = 0x2;
STATIC = 0x0; SYNCDIM = 0x0; DAM = 0x1; SAM = 0x1; */
PARAMSET [paramEntry]. OPT = 0x100203; /* paramEntry can be 0 to 511 */
PARAMSET [paramEntry]. srcAddr = (Uint32)srcAddr; //srcAddr can be L2 or EMIF
PARAMSET [paramEntry]. dstAddr = (Uint32)0x30800000;
PARAMSET [paramEntry]. aCntbCnt = 0x00100004;
PARAMSET [paramEntry]. srcDstBidx = 0x00000004;
PARAMSET [paramEntry]. linkBcntrld = 0x0;
PARAMSET [paramEntry]. srcDstCidx = 0x0;
PARAMSET [paramEntry]. cCnt = 1;
/* Setup EDMA Channel */
/* Enable the Channel */
/* Wait for a transmit completion */
/* Example End */

28 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRUEQ5
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Architecture

Example 2 details how to perform an EDMA transfer from PCI memory to a DM646x DMSoC destination,
such as L2 or EMIF. For the EDMA configuration, see the TMS320DM646x DMSoC Enhanced Direct
Memory Access (EDMA3) Controller User's Guide (SPRUEQ5).

Example 2. Master Memory Read

/* Configure master window */
/* Map external PCI memory (0x12800000) to its corresponding 8MB DM646x DMSoC
* PCI memory address space using following address substitution register PCIADDSUB1
*/
PCIADDSUB1 = 0x12800000; /* PCIADDSUBn, n = 0 to 31 */
...
/* Setup EDMA module and Enable the DMA Region */
/* Setup EDMA PARAM */
/* The OPT register contains following the bit fields
ITCCHEN = 0x0;TCCHEN = 0x0; ITCINTEN = 0x0; TCINTEN = 0x1;
WIMODE = 0x0; TCC = 0x0; TCCMODE = 0x0; FIFOWID = 0x2;
STATIC = 0x0; SYNCDIM = 0x0; DAM = 0x1; SAM = 0x1; */

PARAMSET [paramEntry]. OPT = 0x00100203; /* paramEntry can be 0 to 511 */
PARAMSET [paramEntry]. srcAddr = (Uint32) 0x30800000;
PARAMSET [paramEntry]. dstAddr = (Uint32) dstAddr; //dstAddr can be L2 or EMIF
PARAMSET [paramEntry]. aCntbCnt = 0x00100004;
PARAMSET [paramEntry]. srcDstBidx = 0x00040000;
PARAMSET [paramEntry]. linkBcntrld = 0x0;
PARAMSET [paramEntry]. srcDstCidx = 0x0;
PARAMSET [paramEntry]. cCnt = 1;
/* Setup EDMA Channel */
/* Enable the Channel */
/* Wait for a transmit completion */
/* Example End */

2.6.2 Master Operations

The PCI master operates in response to memory transfer requests that are presented on the master
back-end interface, and to indirect IO and configuration requests that are presented via the master
configuration/IO transaction proxy registers. For memory transactions, the master can be programmed to
only use the basic memory read or write transactions, or can also perform burst transfers as efficiently as
possible by automatically selecting the proper command for memory transactions based on the transaction
length and the cache line size. The PCI master supports two FIFOS/buffers (a read and write) for efficient
data transfer. Each buffer holds 16 32-bit words of read or write data.

2.6.2.1 Master Configuration Operations

During a configuration space access, PCI_AD[31:2] is used to address the PCI device, the function within
the device and a DWORD in the function’s configuration space. PCI_AD[1:0] is ignored. However, you can
set PCI_AD[1:0] to 00 for TYPE 0 access, or set it to 01 for TYPE 1 access.

The byte enables select the bytes within the addressed DWORD. The byte enables allow access to a
byte, word, DWORD, or non-contiguous bytes in the addressed DWORD. In the addressed DWORD, BE0
enables byte 0, BE1 enables the byte 1, and so on.

29SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRUEQ5
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Architecture www.ti.com

2.6.2.1.1 Configuration Write Transactions

The back-end application causes the PCI master to perform a configuration write operation by executing
the following steps:

1. Reading the PCI master configuration/IO access command register (PCIMCFGCMD) and ensuring that
the READY bit (bit 31) is asserted.

2. Writing the data for the configuration write to the PCI master configuration/IO access data register
(PCIMCFGDAT) through the DM646x DMSoC PCI interface.

3. Writing the address for the configuration write to the PCI master configuration/IO access address
register (PCIMCFGADR).

4. Writing to PCIMCFGCMD with the TYPE bit cleared to 0 (configuration transaction), the RD_WR bit
cleared to 0 (write), and the BYTE_EN field set to the desired value.

On the next cycle, PCI_REQ is asserted. Once PCI_GNT is sampled asserted, the master asserts
PCI_FRAME and outputs the write address onto the PCI_AD[31:0] pins and the Configuration Write
command (Bh) onto the PCI_CBE[3:0] pins. On the next cycle, the master asserts PCI_IRDY, deasserts
PCI_FRAME, and outputs the data to be written. The master will never insert wait states during a transfer
but will respond to wait states as controlled by PTRDY. As is required, the master continually checks the
bus for exceptions (master abort, target abort, retry, disconnect, latency timeout, parity error, system error)
while the transfer is ongoing. A ready signal is returned to the DM646x DMSoC PCI Master interface
through the READY bit in PCIMCFGCMD when the transfer is complete.

2.6.2.1.2 Configuration Read Transactions

The back-end application can request that the PCI master to perform a configuration read operation by
doing the following:

1. Reading the PCI master configuration/IO access command register (PCIMCFGCMD) and ensuring that
the READY bit (bit 31) is asserted.

2. Writing the address for the configuration write to the PCI master configuration/IO access address
register (PCIMCFGADR).

3. Writing to PCIMCFGCMD with the TYPE bit cleared to 0 (configuration transaction), the RD_WR bit set
to 1 (read), and the BYTE_EN field set to the desired value.

On the next cycle, PCI_REQ is asserted. Once PCI_GNT is sampled asserted, the master asserts
PCI_FRAME and outputs the read address onto the PCI_AD[31:0] pins and the Configuration Read
command (Ah) onto the PCI_CBE[3:0] pins. On the next cycle, the master asserts PCI_IRDY, and
deasserts PCI_FRAME. The master will never insert wait states during a transfer but will respond to wait
states as controlled by PTRDY. As is required, the master continually checks the bus for exceptions
(master abort, target abort, retry, disconnect, latency timeout, parity error, system error) while the transfer
is ongoing. When the transfer is complete, the data is returned to the PCI Master Configuration/IO Access
Data Register (PCIMCFGDAT) and the READY bit in PCIMCFGCMD is set to 1.

2.6.2.2 Master I/O Operations

In the I/O address space, all 32 PCI_AD lines are used to provide a full byte address. The master that
initiates an I/O transaction is required to ensure that PCI_AD[1:0] indicates the least significant valid byte
for the transaction.

The byte enables indicate the size of the transfer and the affected bytes within the DWORD and must be
consistent with PCI_AD[1:0]. Table 4 lists the valid combinations for PCI_AD[1:0] and the byte enables for
the initial data phase. Byte enables are asserted when 0.

30 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Architecture

Table 4. Byte Enables and PCI_AD[1:0] Encodings

PCI_AD[1:0] Starting Byte Valid BE#[3:0] Combinations

00 Byte 0 xxx0 or 1111

01 Byte 1 xx01 or 1111

10 Byte 2 x011 or 1111

11 Byte 3 0111 or 1111

2.6.2.2.1 I/O Write Transactions

The back-end application can request for the PCI master to perform an I/O write operation by doing the
following:

1. Reading the PCI master configuration/IO access command register (PCIMCFGCMD) and ensuring that
the READY bit (bit 31) is asserted.

2. Writing the data for the configuration write to the PCI master configuration/IO access data register
(PCIMCFGDAT), through the PCI back-end registers interface.

3. Writing the address for the configuration write to the PCI master configuration/IO access address
register (PCIMCFGADR).

4. Writing to PCIMCFGCMD with the TYPE bit cleared to 0 (I/O transaction), the RD_WR bit cleared to 0
(write), and the BYTE_EN field set to the desired value.

When a request is made for I/O write operation, the DM646x DMSoC PCI master interface asserts
PCI_REQ on the PCI bus. Once PCI_GNT is sampled asserted, the master asserts PCI_FRAME and
outputs the write address onto the PCI_AD[31:0] pins and the I/O Write command (3h) onto the
PCI_CBE[3:0] pins. On the next cycle, the master asserts PCI_IRDY, deasserts PCI_FRAME, and outputs
the data to be written. The master will never insert wait states during a transfer but will respond to wait
states as controlled by PTRDY. As is required, the master continually checks the bus for exceptions
(master abort, target abort, retry, disconnect, latency timeout, parity error, system error) while the transfer
is ongoing. A ready signal is returned to the DM646x DMSoC PCI Master interface through the READY bit
in PCIMCFGCMD when the transfer is complete.

2.6.2.2.2 I/O Read Transactions

The back-end application can request for the PCI master to perform an I/O read operation by doing the
following:

1. Reading the PCI master configuration/IO access command register (PCIMCFGCMD) and ensuring that
the READY bit (bit 31) is asserted.

2. Writing the address for the configuration write to the PCI master configuration/IO access address
register (PCIMCFGADR).

3. Writing to PCIMCFGCMD with the TYPE bit cleared to 0 (configuration transaction), the RD_WR bit set
to 1 (read), and the BYTE_EN field set to the desired value.

When a request is made for I/O read operation, the DM646x DMSoC PCI master interface asserts
PCI_REQ on the PCI bus, PCI_REQ is asserted. Once PCI_GNT is sampled asserted, the master asserts
PCI_FRAME and outputs the read address onto the PCI_AD[31:0] pins and the I/O Read command (2h)
onto the PCI_CBE[3:0] pins. On the next cycle, the master asserts PCI_IRDY, and deasserts
PCI_FRAME. The master will never insert wait states during a transfer but will respond to wait states as
controlled by PTRDY. As is required, the master continually checks the bus for exceptions (master abort,
target abort, retry, disconnect, latency timeout, parity error, system error) while the transfer is ongoing.
When the transfer is complete, the data is returned to the PCI Master Configuration/IO Access Data
Register (PCIMCFGDAT) and the READY bit in PCIMCFGCMD is set.

31SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Architecture www.ti.com

2.6.2.3 Master Memory Operations

In the memory access, bits PCI_AD[31:2] are used to address the PCI device, the function within the
device and a DWORD in the function’s memory space. Bits PCI_AD[1:0] are ignored. However, bits
PCI_AD[1:0] indicate the order in which the master is requesting the data to be transferred.

2.6.2.3.1 Memory Write Transactions

The back end application can request for the PCI master to perform a memory write operation by making
a memory write access to PCI master memory map. When a request is made for a memory write
operation, the PCI master asserts PCI_REQ on the PCI bus. Once PCI_GNT is sampled asserted; the
master asserts PCI_FRAME and outputs the write address onto the PCI_AD[31:0] pins and the Memory
Write command (7h) onto the PCI_CBE[3:0] pins. On the next cycle, the master asserts PCI_IRDY and
outputs the first word of data to be written. If the transfer only consists of a single data phase,
PCI_FRAME is deasserted as required by the PCI specification coincident with the assertion of PCI_IRDY.
Otherwise, PCI_FRAME continues to be asserted until the next to the last data phase completes. The
master will never insert wait states during a burst but will respond to wait states as controlled by PTRDY.
As is required, the master continually checks the bus for exceptions (master abort, target abort, retry,
disconnect, latency timeout, parity error, system error) while the transfer is ongoing. As the burst
progresses, an internal ready signal is returned from the master back end interface for each successful
data phase completion until the entire burst is finished.

Section 2.6.1.2 provides an example that describes how to program the EDMA to perform a master
memory write operation.

2.6.2.3.2 Memory Read Transactions

The back end application can request for the PCI master to perform a memory read operation by making a
memory read access to PCI master memory-map.

When a request is made for a memory read operation, PCI_REQ is asserted and the read burst is
performed following the same behavior as for the write burst (no wait states, etc.). During the address
phase, the Memory Read (6h), Memory Read Line (Eh), or Memory Read Multiple command (Ch) is
output on the PCI_CBE[3:0] pins depending on the length of the transfer and the cache line size. The byte
enables that were registered from the master back end interface are inverted and output during the data
phases. Unlike the write burst, the byte enables on the PCI bus will not change as the transaction
progresses. This will not cause problems since bursts are only performed to prefetchable regions of
memory. As the burst progresses, an internal ready signal is returned from the master back end interface
along with the read data for each successful data phase completion until the entire burst is finished.

Section 2.6.1.2 provides an example that describes how to program the EDMA to perform a master
memory read operation.

32 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Architecture

2.7 Exceptions, Status Reporting, and Interrupts

2.7.1 PCI Exceptions

The PCI supports the detection of the error conditions listed in Table 5. The PCI can generate an interrupt
to the Host and ARM for a particular set of error conditions. The status set register (PCISTATSET), host
interrupt enable set register (PCIHINTSET), and back-end application interrupt enable set register
(PCIBINTSET) enable interrupts to the Host and ARM. The PCI also provides the status of these PCI
errors, as described in Section 2.7.2.

Table 5. PCI Exceptions

Exception Name Description

PERR_DET Data parity error. Detected during a read transaction of the PCI bus master and write transaction of a
PCI bus target.

SERR_DET System error. Detected when the PCI has received a target abort while mastering the bus or when an
address parity error is detected on the PCI bus.

MS_ABRT_DET Master Abort. Generated by the PCI master unit in the PCI to indicate that it terminated a transaction
with a master abort.

TGT_ABRT_DET Target Abort. Generated by the PCI slave unit in the PCI to indicate that it has initiated a target abort.

2.7.1.1 Parity Error

If the PCI master is mastering the bus, the master data parity reported (MS_DPAR_REP) bit in the PCI
configuration space command/status register (PCICSR) will be set under either of the following conditions:
• If it detects a parity error during the data phase of a read transaction.
• If it detects that PCI_PERR has been asserted by the target during the data phase of a write

transaction.

The detected parity error (DET_PAR_ERR) bit in PCICSR will be set under any of the following conditions:
• If it is acting as the PCI bus master and it detects a data parity error during a read transaction.
• If it is acting as a PCI bus target and it detects a data parity error during a write transaction.
• If it detects an address parity error.

The PCI will assert PCI_PERR if the parity error response (PAR_ERR_RES) bit in PCICSR is set and the
DET_PAR_ERR bit is set. The assertion of PCI_PERR will remain valid until the second clock after the
cycle in which the error occurred

If a parity error is detected during a transfer involving the PCI, the transaction will be allowed to complete
unless the PCI is the master and a target disconnect is detected (that is, the PCI will not master abort due
to a parity error).

2.7.1.2 System Error

The PCI will set an internal system error flag under any of the following conditions:
• If an address parity error is detected on the PCI bus (even if the PCI is not the target of the

transaction) and the parity error response (PAR_ERR_RES) bit in the PCI configuration space
command/status register (PCICSR) is set.

• If the PCI detected PCI_PERR asserted while mastering the bus.
• If the PCI received a target abort (disconnect without retry) while mastering the bus.

The PCI will assert PCI_SERR if the PCI_SERR enable bit (SERR_N_EN) in PCICSR is set and the
internal system error flag is set. The PCI will halt and wait for software or hardware reset after PCI_SERR
has been asserted. The PCI will set the signaled system error (SIG_SYS_ERR) bit in PCICSR whenever
PCI_SERR is asserted.

33SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Architecture www.ti.com

2.7.1.3 Master Abort Protocol

If a master abort occurs while the PCI is the master, the current transfer will be gracefully terminated on
both the PCI (by de-asserting PCI_FRAME and asserting PCI_IRDY) and back-end buses (by supplying
ready signals through the back-end interface until the burst is completed). Both the received master abort
signal in the PCI command/status register (PCICSR) and the received master abort (RCV_MS_ABRT) bit
in the PCI back-end command/status mirror register (PCICSRMIR) will be set.

2.7.1.4 Target Abort Protocol

If a target abort occurs while the PCI is the master, the current transfer will be gracefully terminated on
both the PCI and back-end buses (in the same way as for the master abort). Both the received target
abort signal in the PCI command/status register (PCICSR) and the received target abort
(RCV_TGT_ABRT) bit in the PCI back-end command/status mirror register (PCICSRMIR) will be set.

2.7.1.5 Retry /Disconnect Protocol

If a transaction is disconnected or retried, the master will unconditionally repeat the transaction starting at
the location of the first remaining uncompleted word. The back-end has no knowledge of retry or
disconnections on the bus.

2.7.2 Status Reporting

The PCI module provides the status of various PCI errors generated or detected by it in the
command/status register (PCICSR) and an internal status register. The PCICSR is in the PCI
configuration register space. An external host can access this register through the TYPE0 configuration
space access. The ARM can access this register through the command/status mirror register
(PCICSRMIR).

The PCICSR provides the status of the following error conditions:
• Detected Parity Error (DET_PAR_ERR)
• Signaled System Error (SIG_SYS_ERR)
• Received Master Abort Error (RCV_MS_ABRT)
• Received Target Abort Error (RCV_TGT_ABRT)
• Signaled Target Abort (SIG_TGT_ABRT)
• Master Data Parity Reported (MS_DPAR_REP)

Status bits in PCICSR cannot be set manually. They are set only by the PCI module. A status bit in this
register can be cleared by writing a 1 to that bit.

The internal status register provides the status of the following PCI interrupt and errors:
• Software interrupts (SOFT_INT)
• Parity Error Detected (PERR_DET)
• System Error Detected (SERR_DET)
• Master Abort Error Detected (MS_ABRT_DET)
• Target Abort Error Detected (TGT_ABRT_DET)

The PCI provides the status set register (PCISTATSET) and the status clear register (PCISTATCLR) to
set and clear the bits in the internal status register. Reading of both these registers returns the value of
the internal status register. The internal status register is internal to the PCI module and is not directly
accessible to an external host. It is also not directly accessible to the ARM.

To clear an error bit in the command/status register the corresponding bit in the internal status register
also needs to be cleared first. The bits in the internal status register can be cleared through the status
clear register (PCISTATCLR). Setting or clearing a bit in the internal status register does not affect the
corresponding bit in the command/status register. Similarly, clearing the command/status register does not
affect the corresponding bit in the internal status register. An interrupt can be generated to an external
host (through the PCI_INTA pin) and to the ARM through the bits of the internal status register provided
the corresponding bit is enabled in the internal host/DM646x DMSoC interrupt enable register.

34 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Architecture

2.7.3 PCI Interrupts

The PCI can generate an interrupt (Table 6) for the status conditions listed in Table 7. When a status
condition is set, PCI can raise an interrupt to the ARM or PCI host or both based on what interrupts have
been enabled for host and back end interface. See Section 2.7.3.1 and Section 2.7.3.2 for enabling
interrupts to host and ARM for a particular set of status conditions.

Table 6. PCI Interrupt

ARM Event Acronym Source

15 PCIINT PCI

Table 7. PCI Interrupt Status Conditions

Interrupt Name Description

INTA A level-sensitive active-low interrupt is generated to the host on the PCI_INTA pin if a bit in the internal
PCI Status Register is asserted and the corresponding bit in the internal Host Interrupt Enable Register
is also asserted, as long as the PCI is in the D0 power state.

PERR_DET A parity error is detected during a read transaction of PCI bus master and write transaction of a PCI bus
target.

SERR_DET A system error is detected when the PCI has received a target abort while mastering the bus, or when
an address parity error is detected on the PCI bus.

MS_ABRT_DET A Master Abort is generated by the PCI master unit in the PCI to indicate that it terminated a transaction
with a master abort.

TGT_ABRT_DET A Target Abort is generated by the PCI slave unit in the PCI to indicate that it has initiated a target abort.

2.7.3.1 DM646x DMSoC-to-Host Interrupts

PCI can raise an interrupt to the host for various status conditions, as described in Table 7. The PCI
includes an internal host interrupt enable register that specifies which status conditions will generate
interrupts to the host. The PCI host interrupt enable register is not directly accessible by the host or the
back-end application. Two registers are provided to set or clear bits in the internal PCI host interrupt
enable register: PCI host interrupt enable set register (PCIHINTSET) and PCI host interrupt enable clear
register (PCIHINTCLR).

An interrupt for a particular status condition can be enabled by setting the corresponding bit in
PCIHINTSET. The interrupt for INTA is enabled by default when PCI is in D0 power state. Reading
PCIHINTSET returns the contents of the internal host interrupt enable register.

An interrupt for a particular status condition can be disabled by setting the corresponding bit in
PCIHINTCLR. Reading PCIHINTCLR returns the bitwise ANDing of the internal PCI status register and
the internal PCI host interrupt enable register. PCIHINTCLR is typically read by the host to determine the
source of an interrupt when the PCI_INTA pin is asserted.

A level-sensitive active-low interrupt is generated to the host on the PCI_INTA pin if a bit in the internal
status register is asserted and the corresponding bit in the internal host interrupt enable register is also
asserted. When an interrupt is raised on PCI_INTA pin, the host can read PCIHINTCLR to determine the
status condition that caused the interrupt.

Software can also use the SOFT_INT bits to interrupt the host via the PCI_INTA pin. Software interrupts
are enabled and disabled by writing to the PCI host interrupt enable register. Setting the corresponding bit
in the internal status register will assert a level sensitive active low interrupt on the PCI_INTA pin. The
ARM or host can clear this interrupt condition by clearing applicable bit in the internal status register.

Interrupt generation on the PCI_INTA pin is enabled only when the PCI is in D0 power state. It is disabled
in the D1, D2, or D3 power states.

35SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Architecture www.ti.com

2.7.3.2 Host-to-DM646x DMSoC Interrupts

PCI can raise an interrupt to back end (ARM) for various status conditions described in Table 7. The PCI
includes an internal PCI back-end interrupt enable register that specifies which status conditions will
generate interrupts to the back end. The PCI back-end interrupt enable register is not directly accessible
by the host or the back end application. Two registers are provided to set or clear bits in the internal PCI
back-end interrupt enable register: back-end application interrupt enable set register (PCIBINTSET) and
back-end application interrupt enable clear register (PCIBINTCLR).

An interrupt for a particular status condition can be enabled by setting the corresponding bit in the
back-end interrupt enable set register (PCIBINTSET). Reading PCIBENTSET returns the contents of the
internal back-end interrupt enable register.

An interrupt for a particular status condition can be disabled by setting the corresponding bit in
PCIBINTCLR. Reading PCIBINTCLR returns the bitwise ANDing of the internal PCI status register and the
internal PCI back-end interrupt enable register. PCIBINTCLR is typically read by the back-end application
to determine the source of an interrupt.

An interrupt signal is generated to the ARM if a bit in the internal status register (PCISTATSET) is
asserted and the corresponding bit in the internal back-end application interrupt enable register
(PCIBINTSET) is also asserted. When an interrupt is raised to the ARM (back-end), the ARM can read
PCISTATCLR to know the status condition that caused the interrupt.

The interrupt request to the ARM is generated through the PCI-to-ARM interrupt (PCIINT) line. This
interrupt can also be forced by setting any of the SOFT_INT bits of the PCI status set register
(PCISTATSET). Note that the SOFT_INT interrupts are independently enabled through the internal PCI
back-end application interrupt enable register.

2.8 PCI Reset Information

2.8.1 PCI Pin Reset

The PCI reset pin (PCI_RST) is the main PCI hardware reset. This resets most of the PCI logic within the
main PCI clock domain. This reset brings PCI-specific registers, sequencers, and signals to a consistent
state.

2.8.2 PCI Register Reset Values

The reset values for some PCI registers are specified in the PCI configuration hook registers (Section 3).
The values in the PCI configuration hook registers are latched to their corresponding PCI registers
following a PCI hardware reset (through the PCI_RST pin). This functionality is implemented mainly to
support PCI autoinitialization, which is described in more detail in Section 2.9.4.

36 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Architecture

2.9 PCI Configuration

The operation of the PCI is configured through the configuration space registers and the back-end
registers.

2.9.1 Programming the PCI Configuration Space Registers

Configuration space registers can be programmed both from the external PCI host and ARM. Normally,
the PCI host programs a part of configuration space registers and ARM programs the remaining part.

A PCI host can control modes and options in PCI by programming the configuration space registers. For
example, the PCI host can program the command/status register (PCICSR) to enable PCI bus master
capability for the DM646x DMSoC and to enable the memory access to DM646x DMSoC. It can program
the base address registers (PCIBAR0-PCIBAR5) to map the DM646x DMSoC memory regions into PCI
address space.

The PCI host can access the configuration space registers by performing a TYPE 0 access in the PCI
bus.

The ARM needs to program a set of registers in the configuration space before the PCI host system
software scans the PCI, as part of enumerating the PCI devices. For example, it needs to program the
vendor ID/device ID register (PCIVENDEV) and the class code/revision ID register (PCICLREV) so that
the PCI host system software can identify the device and load the respective host driver if required. This
can be done automatically using the I2C EEPROM initialization method, as described in Section 2.9.4.

The ARM cannot access the configuration space registers directly. To facilitate access to the configuration
space registers, mirror registers are supported. Updating the mirror registers updates the corresponding
configuration space registers.

2.9.2 Programming the PCI Back-End Registers

The back-end registers include configuration space mirror registers, master and slave address translation
registers, and other miscellaneous PCI control registers. Back-end registers can be programmed from
both the PCI host and the ARM. Normally, the PCI host programs a part of the back-end registers and the
ARM programs the remaining part of the registers. For example, the PCI host may want to program the
host interrupt enable set register (PCIHINTSET) and the host interrupt enable clear register
(PCIHINTCLR) to selectively enable host interrupts.

The PCI host can access the back-end registers through the slave interface supported by PCI, provided
the ARM has mapped those registers to PCI through the slave window base address registers.

The ARM may program the configuration space mirror registers, slave and master address translation
registers, and other miscellaneous configuration registers. The ARM can access all the back-end registers
directly, as these registers are either mapped to DM646x DMSoC memory space or implemented as
MMRs.

The back-end configuration registers have a default value as described in Table 8. These values can be
overwritten by the application software, and, in some cases, by the software routine located in the internal
ROM of the DM646x DMSoC, as explained in Section 2.9.4.

37SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Architecture www.ti.com

2.9.3 PCI Configuration Hook Registers

The reset values of all the PCI back-end configuration registers, listed in Table 8, can be specified through
a set of memory-mapped registers called the configuration hook registers. See Section 3.4 for a list of
configuration hook registers supported. The values in the configuration hook registers are latched to the
actual PCI module registers on a PCI reset (through PCI_RST). The default values in the configuration
hook registers can be overwritten by software. The configuration hook registers are implemented mainly to
support PCI I2C EEPROM autoinitialization, as explained in Section 2.9.4.

Table 8. PCI Back-End Configuration Registers Default Values

Register Default Value

Vendor ID/Device ID Mirror Register DEV_ID = B002h; VEN_ID = 104Ch

Command/Status Mirror Register 0000 0000h

Class Code/Revision ID Mirror Register 1180 0001h

Subsystem Vendor ID/Subsystem ID Mirror Register 0000 0000h

Maximum Latency/Minimum Grant/Interrupt Pin/Interrupt Line Mirror Register 0000 0100h

Base Address 0 Mask Register ADDRMASK = FFF FC00h

Base Address 1 Mask Register ADDRMASK = FFF F800h

Base Address 2 Mask Register ADDRMASK = FFC 0000h

Base Address 3 Mask Register ADDRMASK = FFF E000h

Base Address 4 Mask Register ADDRMASK = FF8 0000h

Base Address 5 Mask Register ADDRMASK = FF8 0000h

Base Address 0 Mirror Register PREFETCH = 1

Base Address 1 Mirror Register PREFETCH = 0

Base Address 2 Mirror Register PREFETCH = 0

Base Address 3 Mirror Register PREFETCH = 1

Base Address 4 Mirror Register PREFETCH = 1

Base Address 5 Mirror Register PREFETCH = 1

Slave Control Register BASEn_EN = 11 1111b

Slave Base Address 0 Translation Register 100 1000h

Slave Base Address 1 Translation Register 200 0000h

Slave Base Address 2 Translation Register 01C 0000h

Slave Base Address 3 Translation Register 118 1800h

Slave Base Address 4 Translation Register 800 0000h

Slave Base Address 5 Translation Register 808 0000h

2.9.4 PCI I2C EEPROM Auto-Initialization

Normally, at boot time, a PCI host provides a PCI reset to all the PCI devices. A host can start accessing
a PCI device once the device completes the PCI reset. So, if any PCI configuration registers need to be
programmed before a host starts accessing the PCI, it should be done before PCI reset is completed.
Table 9 lists the default values for some of the PCI configuration registers. These default values can be
changed by enabling PCI I2C EEPROM auto-initialization.

Table 9. PCI Configuration Registers Default Values

Register Default Value

Vendor ID/Device ID Register DEV_ID = B002h; VEN_ID = 104Ch

Class Code/Revision ID Register CL_CODE = 11 8000h; REV_ID = 01h

Subsystem Vendor ID/Subsystem ID Register 0000 0000h

Maximum Latency/Minimum Grant/Interrupt Pin/Interrupt Line Mirror Register 0000 0100h

38 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Architecture

2.9.4.1 PCI Auto-Initialization from I2C EEPROM

When auto-initialization is used, the PCI configuration registers are programmed by the on-chip ROM Boot
Loader (RBL) with the values stored in an I2C EEPROM.

PCI I2C EEPROM auto-initialization is enabled when in the System Module BOOTCFG register,
BOOTMODE[3:0] = 0011b and PCIEN = 1. If auto-initialization is not enabled, the PCI configuration
registers are left with their default values and the I2C EEPROM is not accessed for PCI configuration
purposes. The function of the BOOTMODE[3:0] and PCIEN pins and the BOOTCFG register is fully
described in the device data manual, refer to that document for more details.

When auto-initialization is enabled, the CONFIG_DONE bit in the configuration done register
(PCICFGDONE) takes a default value of 0. This prevents the PCI from responding to any requests. When
auto-initialization is completed, the RBL sets the CONFIG_DONE bit to 1 to allow the PCI to respond to
requests.

2.9.4.2 I2C EEPROM Memory Map

The on-chip ROM Boot Loader requires big-endian format for the data stored in the I2C EEPROM. Byte
addresses 400h through 41Bh of the I2C EEPROM are reserved for auto-initialization of PCI configuration
registers. The remaining locations are not used for auto-initialization and can be used for storing other
data. Table 10 summarizes the I2C EEPROM memory layout, as required for PCI auto-initialization.

Table 10. I2C EEPROM Memory Layout

Byte Address Contents

400h Vendor ID [15:8]

401h Vendor ID [7:0]

402h Device ID [15:8]

403h Device ID [7:0]

404h Class code [7:0]

405h Revision ID [7:0]

406h Class code [23:16]

407h Class code [15:8]

408h Subsystem vendor ID [15:8]

409h Subsystem vendor ID [7:0]

40Ah Subsystem ID [15:8]

40Bh Subsystem ID [7:0]

40Ch Max_Latency

40Dh Min_Grant

40Eh-419h Reserved (use 00h)

41Ah Checksum [15:8]

41Bh Checksum [7:0]

39SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Pull-up

SCL

SDA

SCL

SDA

Device I2C EEPROM

A2

A1

A0

WP

Low

High

Low

Low

Slave

address = 000b

If present

Architecture www.ti.com

2.9.4.3 I2C EEPROM Checksum

The PCI configuration data contained in the I2C EEPROM is checked against a checksum. The
configuration data bytes are treated as an array of 16-bit words (little-endian format). The checksum is a
16-bit cumulative exclusive-OR (XOR) of the configuration data words, starting with an initial value of
AAAAh. You must ensure that the proper 16-bit checksum value is written to address 419h and 41Ah
when programming the I2C EEPROM.

Checksum = AAAAh XOR Byte0[400h] XOR Byte1[401h] XOR Byte25[419h]

If the I2C EEPROM is not accessed for PCI configuration purposes, then the checksum is not performed.
If the checksum fails, the on-chip ROM bootloader defaults to the UART boot and it does not set the
CONFIG_DONE bit in the configuration done register (PCICFGDONE).

2.9.4.4 ARM I2C EEPROM Interface

For PCI auto-initialization, the ARM supports I2C EEPROMs or devices operating as I2C slaves with the
following features:
• The memory device complies with Philips I2C Bus Specification v 2.1
• The memory device uses two bytes for internal addressing; that is, the read/write bit followed by two

bytes for addressing

During PCI auto-initialization, the ARM acts as the master and the I2C EEPROM acts as the slave.
Figure 10 shows the minimum connection required between the ARM and one I2C EEPROM. The
required pull-ups must be placed on SDA and SCL to ensure that the I2C EEPROM interface works
correctly. The slave address of the I2C EEPROM slave address must be set to 50h.

Figure 10. Signal Connections for I2C EEPROM Boot Mode

Some I2C EEPROMs have a write-protect (WP) feature that prevents unauthorized writes to memory. This
feature is not needed for auto-initialization because the ARM will only read data from the I2C EEPROM.
The write protect feature can be enabled or disabled.

For PCI auto-initialization purposes only byte address 400-401h are used. The remaining locations in the
I2C EEPROM can be used for other purposes.

For detailed information on the I2C, see the TMS320DM646x DMSoC Inter-Integrated Circuit (I2C) Module
User's Guide (SPRUER0).

40 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRUER0
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Registers

3 Registers

There are four types of PCI registers:
• PCI configuration registers - Configuration space registers can be programmed both from the PCI host

and DM646x DMSoC.
• PCI back-end configuration registers - Back-end registers can be programmed both from the PCI host

and the DM646x DMSoC. Normally, the PCI host programs a part of the back-end registers and the
ARM programs the remaining part of the registers.

• DM646x DMSoC-to-PCI address translation registers – These registers are located in the same
address space as the PCI back-end configuration registers, so no new memory space is needed.
These registers are programmed from the ARM.

• PCI configuration hook registers - These registers are located in the same address space as the PCI
back-end configuration registers. These registers can be used to specify the reset value of other PCI
registers and are implemented mainly to support PCI I2C EEPROM autoinitialization.

The following sections describe the various software-accessible registers that are contained within the
PCI.

3.1 PCI Configuration Registers

The DM646x DMSoC supports all standard PCI configuration registers. These registers, which can be
directly accessed by the external PCI host through Type 0 configuration read and write transactions,
contain the standard PCI configuration information (vendor identification, device identification, class code,
revision number, base addresses, etc.). The DM646x DMSoC can access these registers indirectly
through the PCI memory-mapped registers. Depending on the boot and device configuration settings at
device reset, some of the PCI configuration registers can be auto-loaded from an I2C EEPROM at device
reset or can be initialized with default values. If I2C EEPROM auto-initialization is not used, the PCI
configuration registers are initialized with their default values. If auto-initialization is used, the PCI
configuration registers cannot be properly accessed by the host until they are fully read from the I2C
EEPROM. PCI host access to the PCI configuration registers before the completion of auto-initialization
results in a disconnect with retry. For more details, see Section 2.9.4.

Table 11. PCI Configuration Registers

Register (1)

Offset Byte 3 Byte 2 Byte 1 Byte 0 Section

0h Device ID Vendor ID Section 3.1.1

4h PCI Status PCI Command Section 3.1.2

8h Class Code Revision ID Section 3.1.3

Ch Built-In Self-Test Header Type Latency Timer Cache Line Size Section 3.1.4

10h Base Address 0 (8 Mbyte prefetchable) Section 3.1.5

14h Base Address 1 (64 Kbyte prefetchable) Section 3.1.5

18h Base Address 2 (64 Kbyte prefetchable) Section 3.1.5

1Ch Base Address 3 (8 Mbyte prefetchable) Section 3.1.5

20h Base Address 4 (8 Mbyte prefetchable) Section 3.1.5

24h Base Address 5 (8 Mbyte prefetchable) Section 3.1.5

2Ch Subsystem ID Subsystem Vendor ID Section 3.1.6

34h Reserved Capabilities Pointer Section 3.1.7

3Ch Maximum Latency Minimum Grant Interrupt Pin Interrupt Line Section 3.1.8
(1) Shaded registers can be autoloaded from an I2C EEPROM.

41SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Registers www.ti.com

3.1.1 Vendor ID/Device ID Register (PCIVENDEV)

The vendor ID/device ID register (PCIVENDEV) is shown in Figure 11 and described in Table 12.

Figure 11. Vendor ID/Device ID Register (PCIVENDEV)
31 16

DEV_ID

R/W-B002h

15 0

VEN_ID

R/W-104Ch

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 12. Vendor ID/Device ID Register (PCIVENDEV) Field Descriptions

Bit Field Value Description

31-16 DEV_ID B002h Device ID bits. Identifies a specific device from the manufacturer.

15-0 VEN_ID 104Ch Vendor ID bits. Uniquely identifies the manufacturer of the device.

42 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Registers

3.1.2 PCI Command/Status Register (PCICSR)

The PCI command/status register (PCICSR) is shown in Figure 12 and described in Table 13.

Figure 12. PCI Command/Status Register (PCICSR)
31 30 29 28 27 26 25 24

DET_PAR_ERR SIG_SYS_ERR RCV_MS_ABRT RCV_TGT_ABRT SIG_TGT_ABRT DEVSEL_TIM MS_DPAR_REP

R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R-1 R/W1C-0

23 22 21 20 19 18 16

FAST_BTOB_CAP Reserved 66MHZ_CAP (1) CAP_LIST_IMPL INT_STAT Reserved

R-0 R-0 R-0 R-0 R-0 R-0

15 11 10 9 8

Reserved INT_DIS FAST_BTOB_EN SERR_N_EN

R-0 R/W-0 R-0 R/W-0

7 6 5 4 3 2 1 0

WAITCYCLECNTL PAR_ERR_RES VGA_PAL_SNP MEM_WRINV_EN SP_CYCL BUS_MS MEM_SP IO_SP

R-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0

LEGEND: R = Read only; R/W = Read/Write; W1C = Write 1 to clear, write of 0 has no effect; -n = value after reset

(1) This bit is supported on DM6467T devices only; on other DM646x devices, this bit is hardwired to 0.

Table 13. PCI Command/Status Register (PCICSR) Field Descriptions

Bit Field Value Description

31 DET_PAR_ERR 0-1 Detected parity error bit. This bit is set by the PCI to indicate that it detected a parity error,
which was not necessarily reported on PCI_PERR if parity reporting is disabled.

30 SIG_SYS_ERR 0-1 Signaled system error bit. This bit is set by the PCI to indicate that it signaled a system error on
the PCI_SERR pin.

29 RCV_MS_ABRT 0-1 Received master abort bit. This bit is set by the PCI master unit in the PCI to indicate that it
terminated a transaction with a master abort.

28 RCV_TGT_ABRT 0-1 Received target abort bit. This bit is set by the PCI master unit in the PCI to indicate that it has
received a target abort when acting as a bus master.

27 SIG_TGT_ABRT 0-1 Signaled target abort bit. This bit is set by the PCI slave unit in the PCI to indicate that it has
initiated a target abort.

26-25 DEVSEL_TIM 1 DEVSEL timing bits. This bit indicates the decode response time capability of the device. The
PCI decode logic supports medium DEVSEL timing; therefore, these bits are hardwired to 01.

24 MS_DPAR_REP 0-1 Master data parity reported bit. This bit is set by the PCI master unit in the PCI when all of the
following conditions are met.

1. The PCI asserted PCI_PERR or observed PCI_PERR asserted.
2. The PCI master unit was the bus master during the observed PCI_PERR assertion.
3. The PAR_ERR_RES bit is set.

23 FAST_BTOB_CAP 0 Fast back-to-back capable bit. This bit indicates that the device is capable of performing fast
back-to-back transactions. The PCI does not support fast back-to-back transactions; therefore,
this bit is hardwired to 0.

22 Reserved 0 Reserved

21 66MHZ_CAP 66MHz capable bit. This bit indicates whether or not the interface is capable of meeting the
66 MHz PCI timing requirements. This bit is supported on DM6467T devices only. For other
DM646x devices, 66 MHz operation is not supported and this bit is hardwired to 0.

0 Not capable of operating in 66 MHz mode.

1 Capable of operating in 66 MHz mode.

20 CAP_LIST_IMPL 0 Capabilities list implemented bit. This bit indicates whether or not the interface provides at least
one capabilities list.

19 INT_STAT 0 Interrupt status bit. This bit indicates the current interrupt status for the function as generated by
the interrupt registers in the back end interface. If this bit is set and INT_DIS is cleared, the
PCI_INTA pin will be asserted low. INT_DIS has no effect on the value of this bit.

18-11 Reserved 0 Reserved.

43SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Registers www.ti.com

Table 13. PCI Command/Status Register (PCICSR) Field Descriptions (continued)

Bit Field Value Description

10 INT_DIS PCI_INTA disable bit. Controls whether or not the device can assert the PCI_INTA pin. This bit
is a disable for the output driver on the PCI_INTA pin.

0 Interrupt condition appears on the external PCI_INTA pin.

1 Interrupt condition does not appear on the external PCI_INTA pin.

9 FAST_BTOB_EN 0 Fast back-to-back enable bit. Controls whether or not the device is allowed to perform
back-to-back writes to different targets. The PCI will not perform fast back-to-back transactions;
therefore, this bit is hardwired to 0.

8 SERR_N_EN PCI_SERR enable bit. This bit is an enable for the output driver on the PCI_SERR pin.

0 If this bit is cleared and a system error condition is set inside the PCI, the error signal does not
appear on the PCI_SERR pin.

1 The error signal appears on the PCI_SERR pin.

7 WAITCYCLECNTL 0 Waite cycle control bit. Indicates whether or not the device performs address stepping. The PCI
does not support address stepping; therefore this bit is hardwired to 0.

6 PAR_ERR_RES Parity error response bit. Controls whether or not the device responds to detected parity errors.

0 The PCI sets the detected parity error bit (DET_PAR_ERR) when an error is detected, but does
not assert PCI_PERR and continues normal operation.

1 The PCI responds normally to parity errors.

5 VGA_PAL_SNP 0 VGA palette snoop bit. This bit is not applicable for the PCI and is hardwired to 0.

4 MEM_WRINV_EN Memory write and invalidate enable bit. This bit enables the device to use the Memory Write
and Invalidate command.

0 The PCI does not attempt to use the Memory Write and Invalidate command.

1 The PCI uses the Memory Write and Invalidate command.

3 SP_CYCL Special cycle bit. Controls the device's response to special cycle commands.

0 The device ignores all special cycle commands.

1 The device monitors special cycle commands.

2 BUS_MS Bus master bit. This bit enables the device to act as a PCI bus master.

0 The device does not act as a master on the PCI bus.

1 The device acts as a master on the PCI bus.

1 MEM_SP Memory access bit. This bit enables the device to respond to memory accesses within its
address space.

0 The PCI does not respond to memory-mapped accesses.

1 The PCI responds to memory-mapped accesses.

0 IO_SP IO access bit. This bit enables the device to respond to I/O accesses within its address space.
The PCI does not support I/O accesses as a slave; therefore, this bit is hardwired to 0.

44 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Registers

3.1.3 Class Code/Revision ID Register (PCICLREV)

The class code/revision ID register (PCICLREV) is shown in Figure 13 and described in Table 14.

Figure 13. Class Code/Revision ID Register (PCICLREV)
31 24 23 16

BASE_CLASS SUB_CLASS

R-11h R-80h

15 8 7 0

REG_LVL REV_ID

R-0 R-1

LEGEND: R = Read only; -n = value after reset

Table 14. Class Code/Revision ID Register (PCICLREV) Field Descriptions

Bit Field Value Description

31-24 BASE_CLASS 0-FFh Base class bits.

23-16 SUB_CLASS 0-FFh Sub-class bits.

15-8 REG_LVL 0-FFh Register-level programming interface bits.

7-0 REV_ID 0-FFh Revision ID bits. Identifies a revision of the specific device.

45SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Registers www.ti.com

3.1.4 BIST/Header Type/Latency Timer/Cacheline Size Register (PCICLINE)

The built-in self-test/header type/latency timer/cache line size register (PCICLINE) is register is shown in
Figure 14 and described in Table 15.

Figure 14. BIST/Header Type/Latency Timer/Cacheline Size Register (PCICLINE)
31 24 23 16

BIST HDR_TYPE

R-0 R-0

15 8 7 0

LAT_TMR CACHELN_SIZ

R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 15. BIST/Header Type/Latency Timer/Cacheline Size Register (PCICLINE) Field Descriptions

Bit Field Value Description

31-24 BIST 0 Built-in self test bits. Hardwired to 0.

23-16 HDR_TYPE 0-FFh Header type bits. Identifies the layout of bytes 10 through 3F and if the device is single or
multi-function.

15-8 LAT_TMR 0-FFh Latency timer bits. These bits are provided so that the host can restrict the continued usage of
the PCI bus by a master involved in a multiple data cycle transaction after its PCI_GNT has
been removed. The host is required to write a value into this register indicating the maximum
number of PCI cycles for which the master can hold the bus (beginning from the assertion of
PCI_FRAME). If PCI_GNT is never removed during the transaction, the value in the latency
timer value will not be used. Since the PCI will support transactions with multiple data cycles,
the latency timer register is implemented. The latency timer register is initialized with all zeroes
at reset. This register is not cleared on software reset.

7-0 CACHELN_SIZ 0-FFh Cache line size bits. These bits are provided so that the host can inform the device of the cache
line size in units of 32-bit words. This value is used by the PCI as a master device to determine
whether to use Memory Write, Memory Write and Invalidate, Read, Read Line, or Read Multiple
commands for accessing memory. This value is also used by the slave state machine to
determine the size of prefetches that are performed on the Slave Back End Interface.
Supported values for these bits are as follows; writing an unsupported value to these bits
results in the value cleared to 0, as specified in the PCI Local Bus Specification.

0h Disabled

1h-3h Unsupported value

4h Cache Line is 16 bytes

5h-7h Unsupported value

8h Cache Line is 32 bytes

9h-Fh Unsupported value

10h Cache Line is 64 bytes

11h-1Fh Unsupported value

20h Cache Line is 128 bytes

21h-FFh Unsupported value

46 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Registers

3.1.5 Base Address Registers (PCIBAR0-PCIBAR5)

The base address n register (PCIBARn) is shown in Figure 15 and described in Table 16.

Figure 15. Base Address n Register (PCIBARn)
31 16

ADDR

R/W-0

15 4 3 2 1 0

ADDR PREFETCH TYPE IOMEM_SP_IND

R/W-0 R-0 or 1 (1) R-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

(1) Reflects the value that is input from the PREFETCH_EN bit in the base address n mask register (PCIBARnMSK).

Table 16. Base Address n Register (PCIBARn) Field Descriptions

Bit Field Value Description

31-4 ADDR 0-FFF FFFFh Address bits. These bits can be written by the host to allow initialization of the base
address at startup. The writeability of individual bits is determined by the corresponding bit
in the base address n mask register (PCIBARnMSK).

3 PREFETCH 0-1 Prefetchable bit. Specifies whether or not the memory space controlled by this base
address register is prefetchable. This bit reflects the value that is input from the
PREFETCH_EN bit in the base address n mask register (PCIBARnMSK).

2-1 TYPE 0 Type bits. Indicates the size of the base address register/decoder. This version of the PCI
only supports 32-bit addressing, so these bits are hardwired to 0.

0 IOMEM_SP_IND 0 IO/Memory space indicator bit. Indicates whether the base address maps into the host's
memory or I/O space. This version of the PCI only supports memory-mapped base
address registers, so this bit is hardwired to 0.

47SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Registers www.ti.com

3.1.6 Subsystem Vendor ID/Subsystem ID Register (PCISUBID)

The subsystem vendor ID/subsystem ID register (PCISUBID) is shown in Figure 16 and described in
Table 17.

Figure 16. Subsystem Vendor ID/Subsystem ID Register (PCISUBID)
31 16

SUBSYS_ID

R-0

15 0

SUBSYS_VEN_ID

R-0

LEGEND: R = Read only; -n = value after reset

Table 17. Subsystem Vendor ID/Subsystem ID Register (PCISUBID) Field Descriptions

Bit Field Value Description

31-16 SUBSYS_ID 0-FFFFh Subsystem ID bits. Identifies the board level device. The subsystem ID is specified by the
board level manufacturer. The actual value is usually loaded through a serial EEPROM
interface.

15-0 SUBSYS_VEN_ID 0-FFFFh Subsystem vendor ID bits. Identifies the board level manufacturer. The subsystem vendor
ID is specified by the PCI Special Interest Group. The actual value is usually loaded through
a serial EEPROM interface.

3.1.7 Capabilities Pointer Register (PCICPBPTR)

The capabilities pointer register (PCICPBPTR) is shown in Figure 17 and described in Table 18.

Figure 17. Capabilities Pointer Register (PCICPBPTR)
31 16

Reserved

R-0

15 8 7 0

Reserved CAP

R-0 R-40h

LEGEND: R = Read only; -n = value after reset

Table 18. Capabilities Pointer Register (PCICPBPTR) Field Descriptions

Bit Field Value Description

31-8 Reserved 0 Reserved

7-0 CAP 0-FFh Capabilities pointer bits. Specifies the address in configuration space where the first entry in the
capabilities list is located.

48 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Registers

3.1.8 Maximum Latency/Minimum Grant/Interrupt Pin/Interrupt Line Register (PCILGINT)

The maximum latency/minimum grant/interrupt pin/interrupt line register (PCILGINT) is shown in Figure 18
and described in Table 19.

Figure 18. Maximum Latency/Minimum Grant/Interrupt Pin/Interrupt Line Register (PCILGINT)
31 24 23 16

MAX_LAT MIN_GRNT

R-0 R-0

15 8 7 0

INT_PIN INT_LINE

R-1 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 19. Maximum Latency/Minimum Grant/Interrupt Pin/Interrupt Line Register (PCILGINT)
Field Descriptions

Bit Field Value Description

31-24 MAX_LAT 0-FFh Maximum latency bits. Specifies how often the device needs to gain access to the PCI bus in 0.25 μsec
units. This field reflects the value which is input on the maximum latency port on the PCI module.

23-16 MIN_GRNT 0-FFh Minimum grant bits. Specifies the length of the burst period for the device needs in 0.25 μsec units. This
field reflects the value which is input from the minimum grant port on the PCI module.

15-8 INT_PIN 1 Interrupt pin bits. Specifies the interrupt pin the device uses. This bit is hardwired to 1h in the PCI to
indicate that interrupt A will be used.

7-0 INT_LINE 0-FFh Interrupt line bits. This value is written by the host and indicates to which input of the system interrupt
controller the PCI interrupt pin is connected. These bits are not cleared on software reset.

49SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Registers www.ti.com

3.2 PCI Back-End Configuration Registers

The back-end configuration registers provide the back-end application access to control and status
information within the PCI. The ARM can access all of the PCI configuration registers through the PCI
memory-mapped registers. An external PCI host can indirectly access the PCI memory-mapped registers
through base address registers. Portions of the back-end configuration registers are located inside the
peripheral clock domain and the remaining registers are located inside the PCI clock (PCI_CLK) domain.
Table 20 lists the registers that are located in the peripheral clock domain. Registers in the PCI clock
domain can only be accessed if both the PCI and peripheral clocks are running. Registers in the
peripheral clock domain can be accessed even if the PCI clock is not running.

Table 20. PCI Back-End Configuration Registers

Offset Acronym Register Description Section

10h PCISTATSET (1) Status Set Register Section 3.2.1

14h PCISTATCLR (1) Status Clear Register Section 3.2.2

20h PCIHINTSET (1) Host Interrupt Enable Set Register Section 3.2.3

24h PCIHINTCLR (1) Host Interrupt Enable Clear Register Section 3.2.4

30h PCIBINTSET (1) Back End Application Interrupt Enable Set Register Section 3.2.5

34h PCIBINTCLR (1) Back End Application Interrupt Enable Clear Register Section 3.2.6

100h PCIVENDEVMIR Vendor ID/Device ID Mirror Register Section 3.2.7

104h PCICSRMIR Command/Status Mirror Register Section 3.2.8

108h PCICLREVMIR Class Code/Revision ID Mirror Register Section 3.2.9

10Ch PCICLINEMIR BIST/Header Type/Latency Timer/Cacheline Size Mirror Register Section 3.2.10

110h PCIBAR0MSK Base Address 0 Mask Register Section 3.2.11

114h PCIBAR1MSK Base Address 1 Mask Register Section 3.2.11

118h PCIBAR2MSK Base Address 2 Mask Register Section 3.2.11

11Ch PCIBAR3MSK Base Address 3 Mask Register Section 3.2.11

120h PCIBAR4MSK Base Address 4 Mask Register Section 3.2.11

124h PCIBAR5MSK Base Address 5 Mask Register Section 3.2.11

12Ch PCISUBIDMIR Subsystem Vendor ID/Subsystem ID Mirror Register Section 3.2.12

134h PCICPBPTRMIR Capabilities Pointer Mirror Register Section 3.2.13

13Ch PCILGINTMIR Maximum Latency/Minimum Grant/Interrupt Pin/Interrupt Line Mirror Register Section 3.2.14

180h PCISLVCNTL Slave Control Register Section 3.2.15

1C0h PCIBAR0TRL Slave Base Address 0 Translation Register Section 3.2.16

1C4h PCIBAR1TRL Slave Base Address 1 Translation Register Section 3.2.16

1C8h PCIBAR2TRL Slave Base Address 2 Translation Register Section 3.2.16

1CCh PCIBAR3TRL Slave Base Address 3 Translation Register Section 3.2.16

1D0h PCIBAR4TRL Slave Base Address 4 Translation Register Section 3.2.16

1D4h PCIBAR5TRL Slave Base Address 5 Translation Register Section 3.2.16

1E0h PCIBAR0MIR Base Address 0 Mirror Register Section 3.2.17

1E4h PCIBAR1MIR Base Address 1 Mirror Register Section 3.2.17

1E8h PCIBAR2MIR Base Address 2 Mirror Register Section 3.2.17

1ECh PCIBAR3MIR Base Address 3 Mirror Register Section 3.2.17

1F0h PCIBAR4MIR Base Address 4 Mirror Register Section 3.2.17

1F4h PCIBAR5MIR Base Address 5 Mirror Register Section 3.2.17

300h PCIMCFGDAT Master Configuration/IO Access Data Register Section 3.2.18.1

304h PCIMCFGADR Master Configuration/IO Access Address Register Section 3.2.18.2

308h PCIMCFGCMD Master Configuration/IO Access Command Register Section 3.2.18.3

310h PCIMSTCFG Master Configuration Register Section 3.2.19
(1) These PCI Back End Configuration Registers are located in the peripheral clock domain. Registers in the peripheral clock

domain can be accessed even if the PCI clock (PCI_CLK) is not running. Other registers in the PCI Back End Configuration
Registers are located in the PCI clock domain, and can only be accessed if both the PCI and the peripheral clocks are running.

50 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Registers

3.2.1 Status Set Register (PCISTATSET)

The PCI includes an internal status register that is not directly writable by the DM646x DMSoC for
software simplification. As a result, two registers, the status set register (PCISTATSET) and the status
clear register (PCISTATCLR), are provided to set or clear bits in the internal status register.

PCISTATSET and PCISTATCLR both return the contents of the internal status register during reads.
Writing a 1 to any of the bits in PCISTATSET sets the corresponding bit in the internal status register.
Writing a 1 to any of the bits in PCISTATCLR clears the corresponding bit in the internal status register as
long as the corresponding condition that sets that bit is not also asserted.

Bits in the status register cannot be cleared unless the underlying condition that caused the bit to be set
has also been cleared. This is important for the PCI_INTA, PCI_PERR, and PCI_SERR interrupts that are
generated and accessed on a level-sensitive external pin. Additionally, there is a synchronization delay of
3 peripheral clocks present between the time that a level-sensitive status condition is cleared in the PCI
clock domain and when that condition will be cleared in the peripheral clock domain. Interrupt service
routines need to be designed to include this delay.

The PCISTATSET is shown in Figure 19 and described in Table 21.

Figure 19. Status Set Register (PCISTATSET)
31 30 28 27 26 25 24

Reserved Reserved SOFT_INT3 SOFT_INT2 SOFT_INT1 SOFT_INT0

R-0 R-0 R/W1S-0 R/W1S-0 R/W1S-0 R/W1S-0

23 8

Reserved

R-0

7 6 5 4 3 2 1 0

Reserved PERR_DET SERR_DET Reserved MS_ABRT_DET TGT_ABRT_DET Reserved

R-0 R/W1S-0 R/W1S-0 R-0 R/W1S-0 R/W1S-0 R-0

LEGEND: R = Read only; R/W = Read/Write; W1S = Write 1 to set, write of 0 has no effect; -n = value after reset

Table 21. Status Set Register (PCISTATSET) Field Descriptions

Bit Field Value Description

31 Reserved 0 Reserved

30-28 Reserved 0 Reserved

27-24 SOFT_INTn Software interrupt set bits. Writing a 1 to these bits sets the corresponding software interrupt. If the
corresponding bit in the PCI host interrupt enable register is also set to 1, an interrupt is generated
to the host via the PCI_INTA pin. The host-to-ARM interrupt (INT) is also generated if the
corresponding bit in the PCI back end application interrupt enable register is set to 1.

0 A write of 0 is ignored.

1 Generate software interrupt.

23-7 Reserved 0 Reserved

6 PERR_DET Parity error detect bit. Writing a 1 to this bit sets a parity error.

0 A write of 0 is ignored.

1 Set parity error.

5 SERR_DET System error detect bit. Writing a 1 to this bit sets a system error.

0 A write of 0 is ignored.

1 Set the system error.

4-3 Reserved 0 Reserved

51SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Registers www.ti.com

Table 21. Status Set Register (PCISTATSET) Field Descriptions (continued)

Bit Field Value Description

2 MS_ABRT_DET Master abort detect bit. Writing a 1 to this bit sets master abort.

0 A write of 0 is ignored.

1 Set the master abort error.

1 TGT_ABRT_DET Target abort detect bit. Writing a 1 to this bit sets target abort.

0 A write of 0 is ignored.

1 Set the target abort error.

0 Reserved 0 Reserved

52 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Registers

3.2.2 Status Clear Register (PCISTATCLR)

The PCI includes an internal status register that is not directly writable by the DM646x DMSoC for
software simplification. As a result, two registers, the status set register (PCISTATSET) and the status
clear register (PCISTATCLR), are provided to set or clear bits in the internal status register.

PCISTATSET and PCISTATCLR both return the contents of the internal status register during reads.
Writing a 1 to any of the bits in PCISTATSET sets the corresponding bit in the internal status register.
Writing a 1 to any of the bits in PCISTATCLR clears the corresponding bit in the internal status register as
long as the corresponding condition that sets that bit is not also asserted.

Bits in the status register cannot be cleared unless the underlying condition that caused the bit to be set
has also been cleared. This is important for the PCI_INTA, PCI_PERR, and PCI_SERR interrupts that are
generated and accessed on a level-sensitive external pin. Additionally, there is a synchronization delay of
3 peripheral clocks present between the time that a level-sensitive status condition is cleared in the PCI
clock domain and when that condition will be cleared in the peripheral clock domain. Interrupt service
routines need to be designed to include this delay.

The PCISTATCLR is shown in Figure 20 and described in Table 22.

Figure 20. Status Clear Register (PCISTATCLR)
31 30 28 27 26 25 24

INT Reserved SOFT_INT3 SOFT_INT2 SOFT_INT1 SOFT_INT0

R-0 R-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0

23 8

Reserved

R-0

7 6 5 4 3 2 1 0

Reserved PERR_DET SERR_DET Reserved MS_ABRT_DET TGT_ABRT_DET Reserved

R-0 R/W1C-0 R/W1C-0 R-0 R/W1C-0 R/W1C-0 R-0

LEGEND: R = Read only; R/W = Read/Write; W1C = Write 1 to clear, write of 0 has no effect; -n = value after reset

Table 22. Status Clear Register (PCISTATCLR) Field Descriptions

Bit Field Value Description

31 Reserved 0 Reserved.

30-28 Reserved 0 Reserved

27-24 SOFT_INTn Software interrupt clear bits. Writing a 1 to these bits clears the corresponding software interrupt.

0 A write of 0 is ignored.

1 Clear software interrupt.

23-7 Reserved 0 Reserved

6 PERR_DET Parity error detect bit. Writing 1 to this bit clears the parity error.

0 A write of 0 is ignored.

1 Clears the parity error.

5 SERR_DET System error detect bit. Writing 1 to this bit clears the system error.

0 A write of 0 is ignored.

1 Clears the system error.

4-3 Reserved 0 Reserved

2 MS_ABRT_DET Master abort detect bit. Writing 1 to this bit clears the master abort error.

0 A write of 0 is ignored.

1 Clears the master abort error.

53SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Registers www.ti.com

Table 22. Status Clear Register (PCISTATCLR) Field Descriptions (continued)

Bit Field Value Description

1 TGT_ABRT_DET Target abort detect bit. Writing 1 to this bit clears the target abort error.

0 A write of 0 is ignored.

1 Clears the target abort error.

0 Reserved 0 Reserved

54 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Registers

3.2.3 Host Interrupt Enable Set Register (PCIHINTSET)

The PCI includes an internal host interrupt enable register that for software simplification is not directly
writable by the host. As a result, two registers, the host interrupt enable set register (PCIHINTSET) and
the host interrupt enable clear register (PCIHINTCLR), are provided to set or clear bits in the internal host
interrupt enable register.

The host uses the internal host interrupt enable register to configure on which status conditions an
interrupt will be generated to the host. A level-sensitive active-low interrupt is generated to the host on the
PCI_INTA pin if a bit in the internal status register is asserted and the corresponding bit in the internal
host interrupt enable register is also asserted, as long as the PCI is in the D0 power state. Interrupt
generation on the PCI_INTA pin is disabled whenever the PCI is in the D1, D2, or D3 power states.

Writing a 1 to any of the bits in PCIHINTSET sets the corresponding bit in the internal host interrupt
enable register. Writing a 1 to any of the bits in PCIHINTCLR clears the corresponding bit in the internal
host interrupt enable register.

Reading PCIHINTSET returns the internal host interrupt enable register contents. Reading from
PCIHINTCLR returns the masked host status that is the bitwise ANDing of the internal status register and
the internal host interrupt enable register. PCIHINTCLR is typically read by the host to determine the
interrupt source when the PCI_INTA pin is asserted. An external PCI host can indirectly access the PCI
memory-mapped registers through base address registers.

The PCIHINTSET is shown in Figure 21 and described in Table 23.

Figure 21. Host Interrupt Enable Set Register (PCIHINTSET)
31 28 27 26 25 24

Reserved SOFT_INT3 SOFT_INT2 SOFT_INT1 SOFT_INT0

R-0 R/W1S-0 R/W1S-0 R/W1S-0 R/W1S-0

23 8

Reserved

R-0

7 6 5 4 3 2 1 0

Reserved PERR_DET SERR_DET Reserved MS_ABRT_DET TGT_ABRT_DET Reserved

R-0 R/W1S-0 R/W1S-0 R-0 R/W1S-0 R/W1S-0 R-0

LEGEND: R = Read only; R/W = Read/Write; W1S = Write 1 to set, write of 0 has no effect; -n = value after reset

Table 23. Host Interrupt Enable Set Register (PCIHINTSET) Field Descriptions

Bit Field Value Description

31-28 Reserved 0 Reserved

27-24 SOFT_INTn Software interrupt enable bits. Writing a 1 to these bits enables the corresponding software
interrupt. When the corresponding bit in the internal Status Register is set to 1, an interrupt is
generated to the host via the PCI_INTA pin.

0 A write of 0 is ignored.

1 Enables software interrupt.

23-7 Reserved 0 Reserved

6 PERR_DET Parity error detect enable bit. Writing 1 to this bit enables the parity error detection.

0 A write of 0 is ignored.

1 Enables the parity error.

5 SERR_DET System error detect enable bit. Writing 1 to this bit enables the system error detection.

0 A write of 0 is ignored.

1 Enables the system error.

4-3 Reserved 0 Reserved

55SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Registers www.ti.com

Table 23. Host Interrupt Enable Set Register (PCIHINTSET) Field Descriptions (continued)

Bit Field Value Description

2 MS_ABRT_DET Master abort detect enable bit. Writing 1 to this bit enables the master abort detection.

0 A write of 0 is ignored.

1 Enables the master abort detection.

1 TGT_ABRT_DET Target abort detect enable bit. Writing 1 to this bit enables the target abort detection.

0 A write of 0 is ignored.

1 Enables the target abort detection.

0 Reserved 0 Reserved

56 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Registers

3.2.4 Host Interrupt Enable Clear Register (PCIHINTCLR)

The PCI includes an internal host interrupt enable register that for software simplification is not directly
writable by the host. As a result, two registers, the host interrupt enable set register (PCIHINTSET) and
the host interrupt enable clear register (PCIHINTCLR), are provided to set or clear bits in the internal host
interrupt enable register.

The host uses the internal host interrupt enable register to configure on which status conditions an
interrupt will be generated to the host. A level-sensitive active-low interrupt is generated to the host on the
PCI_INTA pin if a bit in the internal status register is asserted and the corresponding bit in the internal
host interrupt enable register is also asserted, as long as the PCI is in the D0 power state. Interrupt
generation on the PCI_INTA pin is disabled whenever the PCI is in the D1, D2, or D3 power states.

Writing a 1 to any of the bits in PCIHINTSET sets the corresponding bit in the internal host interrupt
enable register. Writing a 1 to any of the bits in PCIHINTCLR clears the corresponding bit in the internal
host interrupt enable register.

Reading PCIHINTSET returns the internal host interrupt enable register contents. Reading from
PCIHINTCLR returns the masked host status that is the bitwise ANDing of the internal status register and
the internal host interrupt enable register. PCIHINTCLR is typically read by the host to determine the
interrupt source when the PCI_INTA pin is asserted. An external PCI host can indirectly access the PCI
memory-mapped registers through base address registers.

The PCIHINTCLR is shown in Figure 22 and described in Table 24.

Figure 22. Host Interrupt Enable Clear Register (PCIHINTCLR)
31 28 27 26 25 24

Reserved SOFT_INT3 SOFT_INT2 SOFT_INT1 SOFT_INT0

R-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0

23 8

Reserved

R-0

7 6 5 4 3 2 1 0

Reserved PERR_DET SERR_DET Reserved MS_ABRT_DET TGT_ABRT_DET Reserved

R-0 R/W1C-0 R/W1C-0 R-0 R/W1C-0 R/W1C-0 R-0

LEGEND: R = Read only; R/W = Read/Write; W1C = Write 1 to clear, write of 0 has no effect; -n = value after reset

Table 24. Host Interrupt Enable Clear Register (PCIHINTCLR) Field Descriptions

Bit Field Value Description

31-28 Reserved 0 Reserved

27-24 SOFT_INTn Software interrupt disable bits. Writing a 1 to these bits disables the corresponding software
interrupt.

0 A write of 0 is ignored.

1 Disables software interrupt.

23-7 Reserved 0 Reserved

6 PERR_DET Parity error detect disable bit. Writing 1 to this bit disables the parity error detection.

0 A write of 0 is ignored.

1 Disables the parity error.

5 SERR_DET System error detect disable bit. Writing 1 to this bit disables the system error detection.

0 A write of 0 is ignored.

1 Disables the system error.

4-3 Reserved 0 Reserved

2 MS_ABRT_DET Master abort detect disable bit. Writing 1 to this bit disables the master abort detection.

0 A write of 0 is ignored.

1 Disables the master abort detection.

57SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Registers www.ti.com

Table 24. Host Interrupt Enable Clear Register (PCIHINTCLR) Field Descriptions (continued)

Bit Field Value Description

1 TGT_ABRT_DET Target abort detect disable bit. Writing 1 to this bit disables the target abort detection.

0 A write of 0 is ignored.

1 Disables the target abort detection.

0 Reserved 0 Reserved

58 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Registers

3.2.5 Back-End Application Interrupt Enable Set Register (PCIBINTSET)

The PCI includes an internal back-end application interrupt enable register that is not directly writable by
the back-end application for software simplification. As a result, two registers, the back-end application
interrupt enable set register (PCIBINTSET) and the back-end application interrupt enable clear register
(PCIBINTCLR) are provided to set or clear bits in the internal back-end application interrupt enable
register.

Writing a 1 to any of the bits in PCIBINTSET sets the corresponding bit in the internal back-end
application interrupt enable register. Writing a 1 to any of the bits in PCIBINTCLR clears the
corresponding bit in the internal back-end application interrupt enable register.

Reading PCIBINTSET returns the internal back-end application interrupt enable register contents. Reading
from PCIBINTCLR returns the masked back-end application status that is the bitwise ANDing of the
internal status register and the internal back-end application interrupt enable register. PCIBINTCLR is
typically read by the back-end application to determine the source of a back-end interrupt.

NOTE: Clearing the INT bit of the internal back-end application interrupt enable register will not
gate all interrupts to the ARM. An interrupt will be generated to the ARM via the INT interrupt
line, if any bit in the internal back-end application interrupt enable is set to 1 and the
corresponding bit in the internal status register is also set to 1.

The PCIBINTSET is shown in Figure 23 and described in Table 25.

Figure 23. Back-End Application Interrupt Enable Set Register (PCIBINTSET)
31 30 28 27 26 25 24

Reserved Reserved SOFT_INT3 SOFT_INT2 SOFT_INT1 SOFT_INT0

R-0 R-0 R/W1S-0 R/W1S-0 R/W1S-0 R/W1S-0

23 8

Reserved

R-0

7 6 5 4 3 2 1 0

Reserved PERR_DET SERR_DET Reserved MS_ABRT_DET TGT_ABRT_DET Reserved

R-0 R/W1S-0 R/W1S-0 R-0 R/W1S-0 R/W1S-0 R-0

LEGEND: R = Read only; R/W = Read/Write; W1S = Write 1 to set, write of 0 has no effect; -n = value after reset

Table 25. Back-End Application Interrupt Enable Set Register (PCIBINTSET)
Field Descriptions

Bit Field Value Description

31 Reserved 0 Reserved.

30-28 Reserved 0 Reserved

27-24 SOFT_INTn Software interrupt enable bits. Writing a 1 to these bits enables the corresponding software
interrupt. When the corresponding bit in the internal Status Register is set to 1, an interrupt is
generated to the ARM via the INT interrupt line.

0 A write of 0 is ignored.

1 Enables software interrupt.

23-7 Reserved 0 Reserved

6 PERR_DET Parity error detect enable bit. Writing 1 to this bit enables the parity error detection.

0 A write of 0 is ignored.

1 Enables the parity error.

5 SERR_DET System error detect enable bit. Writing 1 to this bit enables the system error detection.

0 A write of 0 is ignored.

1 Enables the system error.

59SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Registers www.ti.com

Table 25. Back-End Application Interrupt Enable Set Register (PCIBINTSET)
Field Descriptions (continued)

Bit Field Value Description

4-3 Reserved 0 Reserved

2 MS_ABRT_DET Master abort detect enable bit. Writing 1 to this bit enables the master abort detection.

0 A write of 0 is ignored.

1 Enables the master abort detection.

1 TGT_ABRT_DET Target abort detect enable bit. Writing 1 to this bit enables the target abort detection.

0 A write of 0 is ignored.

1 Enables the target abort detection.

0 Reserved 0 Reserved

60 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Registers

3.2.6 Back-End Application Interrupt Enable Clear Register (PCIBINTCLR)

The PCI includes an internal back-end application interrupt enable register that is not directly writable by
the back-end application for software simplification. As a result, two registers, the back-end application
interrupt enable set register (PCIBINTSET) and the back-end application interrupt enable clear register
(PCIBINTCLR) are provided to set or clear bits in the internal back-end application interrupt enable
register.

Writing a 1 to any of the bits in PCIBINTSET sets the corresponding bit in the internal back-end
application interrupt enable register. Writing a 1 to any of the bits in PCIBINTCLR clears the
corresponding bit in the internal back-end application interrupt enable register.

Reading PCIBINTSET returns the internal back-end application interrupt enable register contents. Reading
from PCIBINTCLR returns the masked back-end application status that is the bitwise ANDing of the
internal status register and the internal back-end application interrupt enable register. PCIBINTCLR is
typically read by the back-end application to determine the source of a back-end interrupt.

NOTE: Clearing the INT bit of the internal back-end application interrupt enable register will not
gate all interrupts to the ARM. An interrupt will be generated to the ARM via the INT interrupt
line, if any bit in the internal back-end application interrupt enable is set to 1 and the
corresponding bit in the internal status register is also set to 1.

The PCIBINTCLR is shown in Figure 24 and described in Table 26.

Figure 24. Back-End Application Interrupt Enable Clear Register (PCIBINTCLR)
31 30 28 27 26 25 24

Reserved Reserved SOFT_INT3 SOFT_INT2 SOFT_INT1 SOFT_INT0

R-0 R-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0

23 8

Reserved

R-0

7 6 5 4 3 2 1 0

Reserved PERR_DET SERR_DET Reserved MS_ABRT_DET TGT_ABRT_DET Reserved

R-0 R/W1C-0 R/W1C-0 R-0 R/W1C-0 R/W1C-0 R-0

LEGEND: R = Read only; R/W = Read/Write; W1C = Write 1 to clear, write of 0 has no effect; -n = value after reset

Table 26. Back-End Application Interrupt Enable Clear Register (PCIBINTCLR)
Field Descriptions

Bit Field Value Description

31 Reserved 0 Reserved.

30-28 Reserved 0 Reserved

27-24 SOFT_INTn Software interrupt disable bits. Writing a 1 to these bits disables the corresponding software
interrupt.

0 A write of 0 is ignored.

1 Disables software interrupt.

23-7 Reserved 0 Reserved

6 PERR_DET Parity error detect disable bit. Writing 1 to this bit disables the parity error detection.

0 A write of 0 is ignored.

1 Disables the parity error.

5 SERR_DET System error detect disable bit. Writing 1 to this bit disables the system error detection.

0 A write of 0 is ignored.

1 Disables the system error.

61SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Registers www.ti.com

Table 26. Back-End Application Interrupt Enable Clear Register (PCIBINTCLR)
Field Descriptions (continued)

Bit Field Value Description

4-3 Reserved 0 Reserved

2 MS_ABRT_DET Master abort detect disable bit. Writing 1 to this bit disables the master abort detection.

0 A write of 0 is ignored.

1 Disables the master abort detection.

1 TGT_ABRT_DET Target abort detect disable bit. Writing 1 to this bit disables the target abort detection.

0 A write of 0 is ignored.

1 Disables the target abort detection.

0 Reserved 0 Reserved

3.2.7 Vendor ID/Device ID Mirror Register (PCIVENDEVMIR)

The vendor ID/device ID mirror register (PCIVENDEVMIR) is used to initialize the vendor ID and/or device
ID in the configuration space vendor ID/device ID register (PCIVENDEV) prior to enabling configuration
accesses. The PCIVENDEVMIR is typically written by either an EEPROM controller or an on-chip CPU.
The PCIVENDEVMIR is shown in Figure 25 and described in Table 27.

Figure 25. Vendor ID/Device ID Mirror Register (PCIVENDEVMIR)
31 16

DEV_ID

R/W-B002h

15 0

VEN_ID

R/W-104Ch

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 27. Vendor ID/Device ID Mirror Register (PCIVENDEVMIR) Field Descriptions

Bit Field Value Description

31-16 DEV_ID B002h Device ID bits. Identifies a specific device from the manufacturer.

15-0 VEN_ID 104Ch Vendor ID bits. Uniquely identifies the manufacturer of the device.

62 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Registers

3.2.8 Command/Status Mirror Register (PCICSRMIR)

The command/status mirror register (PCICSRMIR) initializes certain bits in the configuration space
command/status register (PCICSR) prior to enabling configuration accesses. The PCICSRMIR is typically
written by either an EEPROM controller or an on-chip CPU. The PCICSRMIR can also be used by the
back-end application to directly query the status of the PCI. The PCICSRMIR is shown in Figure 26 and
described in Table 28.

Figure 26. Command/Status Mirror Register (PCICSRMIR)
31 30 29 28 27 26 25 24

DET_PAR_ERR SIG_SYS_ERR RCV_MS_ABRT RCV_TGT_ABRT SIG_TGT_ABRT DEVSEL_TIM MS_DPAR_REP

R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R-0 R-1 R/W1C-0

23 22 21 20 19 18 16

FAST_BTOB_CAP Reserved 66MHZ_CAP (1) CAP_LIST_IMPL INT_STAT Reserved

R-0 R-0 R/W-0 R/W-0 R-0 R-0

15 11 10 9 8

Reserved INT_DIS FAST_BTOB_EN SERR_N_EN

R-0 R/W-0 R-0 R/W-0

7 6 5 4 3 2 1 0

Reserved PAR_ERR_RES VGA_PAL_SNP MEM_WRINV_EN SP_CYCL BUS_MS MEM_SP IO_SP

R-0 R/W-0 R-0 R/W-0 R-0 R/W-0 R/W-0 R-0

LEGEND: R = Read only; R/W = Read/Write; W1C = Write 1 to clear, write of 0 has no effect; -n = value after reset

(1) This bit is supported on DM6467T devices only; on other DM646x devices, this bit is hardwired to 0.

Table 28. Command/Status Mirror Register (PCICSRMIR) Field Descriptions

Bit Field Value Description

31 DET_PAR_ERR 0-1 Detected parity error bit. This bit is set by the PCI to indicate that it detected a parity error,
which was not necessarily reported on PCI_PERR if parity reporting is disabled.

30 SIG_SYS_ERR 0-1 Signaled system error bit. This bit is set by the PCI to indicate that it signaled a system error
on the PCI_SERR pin.

29 RCV_MS_ABRT 0-1 Received master abort bit. This bit is set by the PCI master unit in the PCI to indicate that it
terminated a transaction with a master abort.

28 RCV_TGT_ABRT 0-1 Received target abort bit. This bit is set by the PCI master unit in the PCI to indicate that it has
received a target abort when acting as a bus master.

27 SIG_TGT_ABRT 0-1 Signaled target abort bit. This bit is always 0 because the PCI cannot issue a target abort.

26-25 DEVSEL_TIM 1 DEVSEL timing bits. This bit indicates the decode response time capability of the device. The
PCI decode logic supports medium DEVSEL timing; therefore, these bits are hardwired to 01.

24 MS_DPAR_REP 0-1 Master data parity reported bit. This bit is set by the PCI master unit in the PCI when all of the
following conditions are met:

1. The PCI asserted PCI_PERR or observed PCI_PERR asserted
2. The PCI master unit was the bus master during the observed PCI_PERR assertion
3. The Parity Error Response bit (PAR_ERR_RES) is set

23 FAST_BTOB_CAP 0 Fast back to back capable bit. This bit indicates that the device is capable of performing fast
back to back transactions. The PCI does not support fast back to back transactions; therefore,
this bit is hardwired to 0.

22 Reserved 0 Reserved

21 66MHZ_CAP 66MHz capable bit. This bit indicates whether or not the interface is capable of meeting the
66 MHz PCI timing requirements. This bit is supported on DM6467T devices only. For other
DM646x devices, 66 MHz operation is not supported and this bit is hardwired to 0.

0 Not capable of operating in 66 MHz mode.

1 Capable of operating in 66 MHz mode.

20 CAP_LIST_IMPL 0-1 Capabilities list implemented bit. This bit indicates whether or not the interface provides at
least one capabilities list.

63SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Registers www.ti.com

Table 28. Command/Status Mirror Register (PCICSRMIR) Field Descriptions (continued)

Bit Field Value Description

19 INT_STAT 0 Interrupt status bit. This bit indicates the current interrupt status for the function as generated
by the interrupt registers in the back end interface. If this bit is set and INT_DIS is cleared, the
PCI_INTA pin will be asserted low. INT_DIS has no effect on the value of this bit.

18-11 Reserved 0 Reserved

10 INT_DIS 0-1 Interrupt disable bit. This bit controls whether or not the device can assert the PCI_INTA pin.
This bit is a disable for the output driver on the PCI_INTA pin. If this bit is set, the interrupt
condition will not appear on the external PCI_INTA pin.

9 FAST_BTOB_EN 0 Fast back to back enable bit. This bit controls whether or not the device is allowed to perform
back to back writes to different targets. The PCI will not perform fast back to back
transactions; therefore, this bit is hardwired to a 0.

8 SERR_N_EN 0-1 SERR_N enable bit. This bit is an enable for the output driver on the PCI_SERR pin. If this bit
is cleared, and a system error condition is set inside the PCI, the error signal will not appear
on the external PCI_SERR pin.

7 Reserved 0 Reserved

6 PAR_ERR_RES 0-1 Parity error response bit. This bit controls whether or not the device responds to detected
parity errors. If this bit is set, the PCI will respond normally to parity errors. If this bit is cleared,
the PCI will set its Detected Parity Error status bit (DET_PAR_ERR) when an error is
detected, but does not assert PCI_PERR and continues normal operation.

5 VGA_PAL_SNP 0 VGA Palette Snoop bit. This bit is not generally applicable for the PCI and is hardwired to a 0.

4 MEM_WRINV_EN 0-1 Memory write and invalidate enable bit. This bit enables the device to use the Memory Write
and Invalidate command. If this bit is cleared, the PCI will not attempt to use the Memory
Write and Invalidate command.

3 SP_CYCL 0-1 Special cycle bit. This bit controls the device's response to special cycle commands. If this bit
is cleared, the device will ignore all special cycle commands. If this bit is set to 1, the device
can monitor special cycle commands.

2 BUS_MS 0-1 Bus master bit. This bit enables the device to act as a PCI bus master. If this bit is cleared, the
device will not act as a master on the PCI bus.

1 MEM_SP 0-1 Memory access bit. This bit enables the device to respond to memory accesses within its
address space. If this bit is cleared, the PCI will not respond to memory mapped accesses.

0 IO_SP 0 IO access bit. This bit enables the device to respond to I/O accesses within its address space.
The PCI does not support IO accesses as a slave; therefore, this bit is hardwired to 0.

64 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Registers

3.2.9 Class Code/Revision ID Mirror Register (PCICLREVMIR)

The class code/revision ID mirror register (PCICLREVMIR) is used to initialize the class code and revision
ID in the configuration space class code/revision ID register (PCICLREV) prior to enabling configuration
accesses. The PCICLREVMIR is typically written by either an EEPROM controller or an on-chip CPU. The
PCICLREVMIR is shown in Figure 27 and described in Table 29.

Figure 27. Class Code/Revision ID Mirror Register (PCICLREVMIR)
31 24 23 16

BASE_CLASS SUB_CLASS

R/W-11h R/W-80h

15 8 7 0

REG_LVL REV_ID

R/W-0 R/W-1

LEGEND: R = Read only; -n = value after reset

Table 29. Class Code/Revision ID Mirror Register (PCICLREVMIR) Field Descriptions

Bit Field Value Description

31-24 BASE_CLASS 0-FFh Base class bits.

23-16 SUB_CLASS 0-FFh Sub-class bits.

15-8 REG_LVL 0-FFh Register-level programming interface bits.

7-0 REV_ID 0-FFh Revision ID bits. Identifies a revision of the specific device.

65SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Registers www.ti.com

3.2.10 BIST/Header Type/Latency Timer/Cacheline Size Mirror Register (PCICLINEMIR)

The built-in self-test/header type/latency timer/cache line size mirror register (PCICLINEMIR) is used to
set latency timer and cacheline size. The PCICLINEMIR is shown in Figure 28 and described in Table 30.

Figure 28. BIST/Header Type/Latency Timer/Cacheline Size Mirror Register (PCICLINEMIR)
31 24 23 16

BIST HDR_TYPE

R-0 R-0

15 8 7 0

LAT_TMR CACHELN_SIZ

R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 30. BIST/Header Type/Latency Timer/Cacheline Size Mirror Register (PCICLINEMIR)
Field Descriptions

Bit Field Value Description

31-24 BIST 0 Built-in self test bits. Hardwired to 0.

23-16 HDR_TYPE 0-FFh Header type bits. Identifies the layout of bytes 10 through 3F and if the device is single or
multi-function.

15-8 LAT_TMR 0-FFh Latency timer bits. These bits are provided so that the host can restrict the continued usage of
the PCI bus by a master involved in a multiple data cycle transaction after its PCI_GNT has
been removed. The host is required to write a value into this register indicating the maximum
number of PCI cycles for which the master can hold the bus (beginning from the assertion of
PCI_FRAME). If PCI_GNT is never removed during the transaction, the value in the latency
timer value will not be used. Since the PCI will support transactions with multiple data cycles,
the latency timer register is implemented. The latency timer register is initialized with all zeroes
at reset. This register is not cleared on software reset.

7-0 CACHELN_SIZ 0-FFh Cache line size bits. These bits are provided so that the host can inform the device of the cache
line size in units of 32-bit words. This value is used by the PCI as a master device to determine
whether to use Memory Write, Memory Write and Invalidate, Read, Read Line, or Read Multiple
commands for accessing memory. This value is also used by the slave state machine to
determine the size of prefetches that are performed on the Slave Back End Interface.
Supported values for these bits are as follows; writing an unsupported value to these bits
results in the value cleared to 0, as specified in the PCI Local Bus Specification.

0h Disabled

1h-3h Unsupported value

4h Cache Line is 16 bytes

5h-7h Unsupported value

8h Cache Line is 32 bytes

9h-Fh Unsupported value

10h Cache Line is 64 bytes

11h-1Fh Unsupported value

20h Cache Line is 128 bytes

21h-FFh Unsupported value

66 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Registers

3.2.11 Base Address Mask Registers (PCIBAR0MSK-PCIBAR5MSK)

The base address n mask register (PCIBARnMSK) controls the size and prefetchability of the PCI
configuration base address n register (PCIBARn). The base address mask registers are shown in
Figure 29 through Figure 34 and described in Table 31.

Figure 29. Base Address 0 Mask Register (PCIBAR0MSK)
31 16

ADDRMASK

R/W-FFF FC00h

15 4 3 2 0

ADDRMASK PREFETCH_EN Reserved

R/W-FFF FC00h R/W-1 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 30. Base Address 1 Mask Register (PCIBAR1MSK)
31 16

ADDRMASK

R/W-FFF F800h

15 4 3 2 0

ADDRMASK PREFETCH_EN Reserved

R/W-FFF F800h R/W-1 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 31. Base Address 2 Mask Register (PCIBAR2MSK)
31 16

ADDRMASK

R/W-FFC 0000h

15 4 3 2 0

ADDRMASK PREFETCH_EN Reserved

R/W-FFC 0000h R/W-1 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 32. Base Address 3 Mask Register (PCIBAR3MSK)
31 16

ADDRMASK

R/W-FFF E000h

15 4 3 2 0

ADDRMASK PREFETCH_EN Reserved

R/W-FFF E000h R/W-1 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

67SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Registers www.ti.com

Figure 33. Base Address 4 Mask Register (PCIBAR4MSK)
31 16

ADDRMASK

R/W-FF8 0000h

15 4 3 2 0

ADDRMASK PREFETCH_EN Reserved

R/W-FF8 0000h R/W-1 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 34. Base Address 5 Mask Register (PCIBAR5MSK)
31 16

ADDRMASK

R/W-FF8 0000h

15 4 3 2 0

ADDRMASK PREFETCH_EN Reserved

R/W-FF8 0000h R/W-1 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 31. Base Address n Mask Register (PCIBARnMSK) Field Descriptions

Bit Field Value Description

31-4 ADDRMASK 0-FFF FFFFh Address mask bits. These bits control the writeability of the corresponding bits in the
corresponding base address n mirror register (PCIBARnMIR).

3 PREFETCH_EN 0-1 Prefetchable bit enable. Specifies whether or not the memory space controlled by the
corresponding base address n mirror register (PCIBARnMIR) is prefetchable. This bit is
reflected in the PREFETCH bit in the corresponding PCIBARnMIR.

2-0 Reserved 0 Reserved

68 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Registers

3.2.12 Subsystem Vendor ID/Subsystem ID Mirror Register (PCISUBIDMIR)

The subsystem vendor ID/subsystem ID mirror register (PCISUBIDMIR) is shown in Figure 35 and
described in Table 32.

Figure 35. Subsystem Vendor ID/Subsystem ID Mirror Register (PCISUBIDMIR)
31 16

SUBSYS_ID

R/W-0

15 0

SUBSYS_VEN_ID

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 32. Subsystem Vendor ID/Subsystem ID Mirror Register (PCISUBIDMIR) Field Descriptions

Bit Field Value Description

31-16 SUBSYS_ID 0-FFFFh Subsystem ID bits. Identifies the board level device.

15-0 SUBSYS_VEN_ID 0-FFFFh Subsystem Vendor ID bits. Identifies the board level manufacturer.

3.2.13 Capabilities Pointer Mirror Register (PCICPBPTRMIR)

The capabilities pointer mirror register (PCICPBPTRMIR) is shown in Figure 36 and described in Table 33.

Figure 36. Capabilities Pointer Mirror Register (PCICPBPTRMIR)
31 16

Reserved

R-0

15 8 7 0

Reserved CAP

R-0 R-40h

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 33. Capabilities Pointer Mirror Register (PCICPBPTRMIR) Field Descriptions

Bit Field Value Description

31-8 Reserved 0 Reserved

7-0 CAP 0-FFh Capabilities pointer bits. Specifies the address in configuration space where the first entry in the
capabilities list is located.

69SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Registers www.ti.com

3.2.14 Maximum Latency/Minimum Grant/Interrupt Pin/Interrupt Line Mirror Register (PCILGINTMIR)

The maximum latency/minimum grant/interrupt pin/interrupt line mirror register (PCILGINTMIR) is shown in
Figure 37 and described in Table 34.

Figure 37. Maximum Latency/Minimum Grant/Interrupt Pin/Interrupt Line Mirror Register
(PCILGINTMIR)

31 24 23 16

MAX_LAT MIN_GRNT

R/W-0 R/W-0

15 8 7 0

INT_PIN INT_LINE

R-1 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 34. Maximum Latency/Minimum Grant/Interrupt Pin/Interrupt Line Mirror Register
(PCILGINTMIR) Field Descriptions

Bit Field Value Description

31-24 MAX_LAT 0-FFh Maximum latency bits. Specifies how often the device needs to gain access to the PCI bus in 0.25 μsec
units.

23-16 MIN_GRNT 0-FFh Minimum grant bits. Specifies the length of the burst period for the device needs in 0.25 μsec units.

15-8 INT_PIN 1 Interrupt pin bits. Specifies the interrupt pin the device uses. This bit is hardwired to 1h in the PCI to
indicate that interrupt A will be used.

7-0 INT_LINE 0-FFh Interrupt line bits. This value is written by the host and indicates to which input of the system interrupt
controller the PCI interrupt pin is connected.

70 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Registers

3.2.15 Slave Control Register (PCISLVCNTL)

The slave control register (PCISLVCNTL) is shown in Figure 38 and described in Table 35.

Figure 38. Slave Control Register (PCISLVCNTL)
31 24

Reserved

R-0

23 22 21 20 19 18 17 16

Reserved BASE5_EN BASE4_EN BASE3_EN BASE2_EN BASE1_EN BASE0_EN

R-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

15 8

Reserved

R-0

7 5 4 3 2 1 0

Reserved FORCE_DEL_READ_MUL FORCE_DEL_READ_LN FORCE_DEL_READ DIS_SLV_TOUT CFG_DONE

R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 35. Slave Control Register (PCISLVCNTL) Field Descriptions

Bit Field Value Description

31-22 Reserved 0 Reserved

21-16 BASEn_EN Base address enable bits. This bit enables/disables the corresponding base address n
register. When BASEn_EN is cleared to 0 (disabled) any host accesses targeted at the
slave memory window covered by the base address register is ignored. Host writes to the
base address registers are not affected by BASEn_EN.

0 Disable base address n register.

1 Enable base address n register.

15-5 Reserved 0 Reserved

4 FORCE_DEL_READ_MUL Force Delayed Read Multiple bit.

0 Slave should respond with normal 16 clock cycle timeout and retry mechanism for
Memory Read Multiple transactions

1 Slave should immediately respond with a retry whenever a Memory Read Multiple
transaction is decoded for this slave. This bit overrides the DIS_SLV_TOUT bit for
Memory Read Multiple transactions.

3 FORCE_DEL_READ_LN Force Delayed Read Line bit.

0 Slave should respond with normal 16 clock cycle timeout and retry mechanism for
Memory Read Line transactions

1 Slave should immediately respond with a retry whenever a Memory Read Line transaction
is decoded for this slave. This bit overrides the DIS_SLV_TOUT bit for Memory Read Line
transactions.

2 FORCE_DEL_READ Force Delayed Read bit.

0 Slave should respond with normal 16 clock cycle timeout and retry mechanism for
Memory Read transactions

1 Slave should immediately respond with a retry whenever a Memory Read transaction is
decoded for this slave. This bit overrides DIS_SLV_TOUT for Memory Read transactions.

1 DIS_SLV_TOUT Disable Slave timeout bit.

0 Slave responds with normal 16 clock cycle timeout mechanism

1 Slave will insert wait states on the PCI bus indefinitely until the access is ready to
complete

0 CFG_DONE Configuration done bit. Indicates if the configuration registers have been loaded with their
proper reset values.

0 Configuration registers are being loaded. No access allowed into PCI interface.

1 Configuration registers loading is complete. PCI interface will accept accesses.

71SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Registers www.ti.com

3.2.16 Slave Base Address Translation Registers (PCIBAR0TRL-PCIBAR5TRL)

The slave base address n translation register (PCIBARnTRL) controls the translation of transaction
addresses as they flow from the PCI bus to the back-end interface. The translation registers are
programmed with a value that replaces the most significant portion of the PCI address as it is converted to
a DM646x DMSoC address. The slave base address translation registers are shown in Figure 39 through
Figure 44 and described in Table 36.

Figure 39. Slave Base Address 0 Translation Register (PCIBAR0TRL)
31 16

TRANS_ADDR

R/W-100 1000h

15 4 3 0

TRANS_ADDR Reserved

R/W-100 1000h R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 40. Slave Base Address 1 Translation Register (PCIBAR1TRL)
31 16

TRANS_ADDR

R/W-200 0000h

15 4 3 0

TRANS_ADDR Reserved

R/W-200 0000h R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 41. Slave Base Address 2 Translation Register (PCIBAR2TRL)
31 16

TRANS_ADDR

R/W-W-01C 0000h

15 4 3 0

TRANS_ADDR Reserved

R/W-W-01C 0000h R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 42. Slave Base Address 3 Translation Register (PCIBAR3TRL)
31 16

TRANS_ADDR

R/W-118 1800h (1)

15 4 3 0

TRANS_ADDR Reserved

R/W-118 1800h (1) R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

(1) This is not a supported memory address range in DM646x devices and needs to be reprogrammed before being used.

72 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Registers

Figure 43. Slave Base Address 4 Translation Register (PCIBAR4TRL)
31 16

TRANS_ADDR

R/W-800 0000h

15 4 3 0

TRANS_ADDR Reserved

R/W-800 0000h R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 44. Slave Base Address 5 Translation Register (PCIBAR5TRL)
31 16

TRANS_ADDR

R/W-808 0000h

15 4 3 0

TRANS_ADDR Reserved

R/W-808 0000h R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 36. Slave Base Address n Translation Register (PCIBARnTRL) Field Descriptions

Bit Field Value Description

31-4 TRANS_ADDR 0-FFF FFFFh Translation address bits. These address bits replace the address bits of a PCI slave
transaction. The ADDRMASK bits of the base address n mask registers (PCIBARnMSK)
specify which bits are replaced in the original PCI address.

3-0 Reserved 0 Reserved

73SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Registers www.ti.com

3.2.17 Base Address Mirror Registers (PCIBAR0MIR-PCIBAR5MIR)

The base address n mirror register (PCIBARnMIR) is shown in Figure 45 and described in Table 37.

Figure 45. Base Address n Mirror Register (PCIBARnMIR)
31 16

ADDR (1)

R/W-0

15 4 3 2 1 0

ADDR (1) PREFETCH TYPE IOMEM_SP_IND

R/W-0 R-0 or 1 (2) R-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

(1) The access type of this field depends on the address mask bits (ADDRMASK) in the base address n mask register (PCIBARnMSK).
(2) Reflects the value that is input from the PREFETCH_EN bit in the base address n mask register (PCIBARnMSK).

Table 37. Base Address n Mirror Register (PCIBARnMIR) Field Descriptions

Bit Field Value Description

31-4 ADDR 0-FFF FFFFh Address bits. These bits can be written by the host to allow initialization of the base
address at startup. The writeability of individual bits is determined by the corresponding bit
in the base address n mask register (PCIBARnMSK).

3 PREFETCH 0-1 Prefetchable bit. Specifies whether or not the memory space controlled by this base
address register is prefetchable. This bit reflects the value that is input from the
PREFETCH_EN bit in the base address n mask register (PCIBARnMSK).

2-1 TYPE 0 Type bits. Indicates the size of the base address register/decoder. This version of the PCI
only supports 32-bit addressing, so these bits are hardwired to 0.

0 IOMEM_SP_IND 0 IO/Memory Space Indicator bit. Indicates whether the base address maps into the host's
memory or I/O space. This version of the PCI only supports memory-mapped base
address registers, so this bit is hardwired to 0.

74 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Registers

3.2.18 Master Configuration/IO Transaction Proxy Registers

The master configuration/IO access registers cause the PCI Master to generate configuration or IO
transactions. By using an indirect access method (or proxy), the entire configuration and IO space can be
addressed, which otherwise would be impossible. For write transactions, the software should write to the
data register, then the address register, and then the command register. For read transactions, the
software should write to the address register and then the command register. The transaction will start
when the command register is written.

3.2.18.1 Master Configuration/IO Access Data Register (PCIMCFGDAT)

When requesting a configuration or IO access, software either writes the data into the master
configuration/IO access data register (PCIMCFGDAT) for a write or reads the data from PCIMCFGDAT for
a read. The PCIMCFGDAT is shown in Figure 46 and described in Table 38.

Figure 46. Master Configuration/IO Access Data Register (PCIMCFGDAT)
31 0

DATA

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 38. Master Configuration/IO Access Data Register (PCIMCFGDAT) Field Descriptions

Bit Field Value Description

31-0 DATA 0-FFFF FFFFh Data bits. Software writes the data into this register for a configuration/IO write or reads the data
from this register for a configuration/IO read.

3.2.18.2 Master Configuration/IO Access Address Register (PCIMCFGADR)

When requesting a configuration or IO access, software writes the desired address for the transaction into
the master configuration/IO access address register (PCIMCFGADR). The PCIMCFGADR is shown in
Figure 47 and described in Table 39.

Figure 47. Master Configuration/IO Access Address Register (PCIMCFGADR)
31 0

ADDR

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 39. Master Configuration/IO Access Address Register (PCIMCFGADR) Field Descriptions

Bit Field Value Description

31-0 ADDR 0-FFFF FFFFh Address bits. The address bits provide the address for configuration/IO transactions. Bits 1-0 are
ignored for a configuration transaction. Software must ensure that bits 1-0 of the address
correspond to the BYTE_EN bits in the master configuration/IO access command register
(PCIMCFGCMD) for IO transactions, thus ensuring that the access is valid on the PCI bus.

75SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Registers www.ti.com

3.2.18.3 Master Configuration/IO Access Command Register (PCIMCFGCMD)

The back-end application will program the master configuration/IO access command register
(PCIMCFGCMD) to start a configuration read or write. The READY bit should be checked to determine if
the previous transaction is complete. The PCIMCFGCMD is shown in Figure 48 and described in
Table 40.

Figure 48. Master Configuration/IO Access Command Register (PCIMCFGCMD)
31 30 16

READY Reserved

R-1 R-0

15 8 7 4 3 2 1 0

Reserved BYTE_EN Rsvd TYPE Rsvd RD_WR

R-0 R/W-0 R-0 R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 40. Master Configuration/IO Access Command Register (PCIMCFGCMD) Field Descriptions

Bit Field Value Description

31 READY Ready bit. The READY bit should be checked to determine if the previous transaction is complete.

0 Register is not ready to accept a new command.

1 Register is ready to accept a new command.

30-8 Reserved 0 Reserved

7-4 BYTE_EN 0-Fh Byte enable bits. Determines which bytes within the addressed DWORD are being accessed. Byte
enables indicate the size of the transfer and must be consistent with bits 1-0 of the address that is
specified in the master configuration/IO access address register (PCIMCFGADR).

3 Reserved 0 Reserved

2 TYPE Type bit. Sets configuration or IO transaction.

0 Configuration transaction

1 IO transaction

1 Reserved 0 Reserved

0 RD_WR Read/write bit. Set read or write operation.

0 Write

1 Read

76 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Registers

3.2.19 Master Configuration Register (PCIMSTCFG)

The master configuration register (PCIMSTCFG) is shown in Figure 49 and described in Table 41.

Figure 49. Master Configuration Register (PCIMSTCFG)
31 16

Reserved

R-0

15 11 10 9 8

Reserved CFG_FLUSH_IF_NOT_ENABLED IO_FLUSH_IF_NOT_ENABLED MEM_FLUSH_IF_NOT_ENABLED

R-0 R/W-0 R/W-0 R/W-0

7 3 2 1 0

Reserved SW_MEM_RD_MULT_EN SW_MEM_RD_LINE_EN SW_MEM_RD_WRINV_EN

R-0 R/W-1 R/W-1 R/W-1

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 41. Master Configuration Register (PCIMSTCFG) Field Descriptions

Bit Field Value Description

31-11 Reserved 0 Reserved

10 CFG_FLUSH_IF_NOT_ENABLED Configuration flush bit. Controls whether or not the Master will flush
configuration transactions from the proxy registers, if the Master is not enabled
(BUS_MS = 0 in command/status register).

0 Master does not flush configuration transactions from the proxy registers.

1 Master flushes configuration transactions from the proxy registers.

9 IO_FLUSH_IF_NOT_ENABLED IO flush bit. Controls whether or not the Master will flush I/O transactions from
the proxy registers, if the Master is not enabled (BUS_MS = 0 in
command/status register).

0 Master does not flush I/O transactions from the proxy registers.

1 Master flushes I/O transactions from the proxy registers.

8 MEM_FLUSH_IF_NOT_ENABLED Memory flush bit. Controls whether or not the Master will flush transactions on
the PCIM interface, if the Master is not enabled (BUS_MS = 0 in
command/status register).

0 Master does not flush transactions on the PCIM interface.

1 Master flushes transactions on the PCIM interface.

7-3 Reserved 0 Reserved

2 SW_MEM_RD_MULT_EN Memory read multiple enable bit. Controls whether or not the Master command
generation logic is permitted to use the Memory Read Multiple command.

0 Master will not generate Memory Read Multiple transactions.

1 Master is enabled to generate Memory Read Multiple transactions for
appropriate length bursts.

1 SW_MEM_RD_LINE_EN Memory read line enable bit. Controls whether or not the Master command
generation logic is permitted to use the Memory Read Line command.

0 Master will not generate Memory Read Line transactions.

1 Master is enabled to generate Memory Read Line transactions for appropriate
length bursts.

0 SW_MEM_WRINV_EN Memory write invalid enable bit. Controls whether or not the Master command
generation logic is permitted to use the Memory Write and Invalidate
command.

0 Master will not generate Memory Write and Invalidate transactions.

1 Master is enabled to generate Memory Write and Invalidate transactions for
appropriate length bursts.

77SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Registers www.ti.com

3.3 DM646x DMSoC-To-PCI Address Translation Registers

The DM646x DMSoC-to-PCI address translation registers (Table 42) are used for address translation from
the DM646x DMSoC to PCI domain. Using these 32 registers, the master windows can be configured.
Each of these 32 registers correspond to 1/32 of the 256 MB addressable PCI space.

Table 42. DM646x DMSoC-to-PCI Address Translation Registers

Offset Acronym Register Description Section

314h-390h PCIADDSUB[0-31] Address Substitution [0-31] Registers Section 3.3.1

3.3.1 PCI Address Substitution Registers (PCIADDSUB0-PCIADDSUB31)

The PCI address substitution register (PCIADDSUBn) is shown in Figure 50 and described in Table 43.

Figure 50. PCI Address Substitution n Registers (PCIADDSUBn)
31 23 22 16

ADD_SUBS Reserved

R/W-0 R-0

15 0

Reserved

R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 43. PCI Address Substitution n Registers (PCIADDSUBn) Field Descriptions

Bit Field Value Description

31-23 ADD_SUBS 0-1FFh Address substitution bits. Substitutes the 9 MSBs of the DM646x DMSoC address during DM646x
DMSoC-to-PCI transactions.

22-0 Reserved 0 Reserved

78 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Registers

3.4 PCI Configuration Hook Registers

All the PCI back-end configuration registers (Section 3.2) are hooked up to a set of memory-mapped
registers called the configuration hook registers, listed in Table 44. The values in these hook registers are
latched to the actual PCI registers on PCI reset. The default values in these hook registers can be
overwritten by software. These registers are implemented mainly to support PCI I2C EEPROM
autoinitialization, as discussed in Section 2.9.4.

Table 44. PCI Configuration Hook Registers

Offset Acronym Register Description Section

394h PCIVENDEVPRG Vendor ID/Device ID Program Register Section 3.4.1

39Ch PCICLREVPRG Class Code/Revision ID Program Register Section 3.4.2

3A0h PCISUBIDPRG Subsystem Vendor ID/Subsystem ID Program Register Section 3.4.3

3A4h PCIMAXLGPRG Maximum Latency/Minimum Grant Program Register Section 3.4.4

3ACh PCICFGDONE Configuration Done Register Section 3.4.5

3.4.1 Vendor ID/Device ID Program Register (PCIVENDEVPRG)

The vendor ID/device ID program register (PCIVENDEVPRG) provides the default values for the vendor
ID/device ID mirror register (PCIVENDEVMIR). PCIVENDEVPRG is shown in Figure 51 and described in
Table 45.

Figure 51. Vendor ID/Device ID Program Register (PCIVENDEVPRG)
31 0

VENDOR_DEVICE_ID_PROG

R/W-B002 104Ch

LEGEND: R/W = Read/Write; -n = value after reset

Table 45. Vendor ID/Device ID Program Register (PCIVENDEVPRG) Field Descriptions

Bit Field Value Description

31-0 VENDOR_DEVICE_ID_PROG 0-FFFF FFFFh Vendor device ID program bits. Default values for the VEN_ID and DEV_ID bits
in the vendor ID/device ID mirror register (PCIVENDEVMIR).

79SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

Registers www.ti.com

3.4.2 Class Code/Revision ID Program Register (PCICLREVPRG)

The class code/revision ID program register (PCICLREVPRG) provides default values for the class
code/revision ID mirror register (PCICLREVMIR). The PCICLREVPRG is shown in Figure 52 and
described in Table 46.

Figure 52. Class Code/Revision ID Program Register (PCICLREVPRG)
31 0

CLASS_CODE_REV_ID_PROG

R/W-1180 0001h

LEGEND: R/W = Read/Write; -n = value after reset

Table 46. Class Code/Revision ID Program Register (PCICLREVPRG) Field Descriptions

Bit Field Value Description

31-0 CLASS_CODE_REV_ID_PROG 0-FFFF FFFFh Class code revision ID program bits. Default values for the CL_CODE
and REV_ID bits in the class code/revision ID mirror register
(PCICLREVMIR).

3.4.3 Subsystem Vendor ID/Subsystem ID Program Register (PCISUBIDPRG)

The subsystem vendor ID/subsystem ID program register (PCISUBIDPRG) provides default values for the
subsystem vendor ID/subsystem ID mirror register (PCISUBIDMIR). The PCISUBIDPRG is shown in
Figure 53 and described in Table 47.

Figure 53. Subsystem Vendor ID/Subsystem ID Program Register (PCISUBIDPRG)
31 0

SUBSYS_VENDOR_ID_SUBSYS_ID_PROG

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 47. Subsystem Vendor ID/Subsystem ID Program Register (PCISUBIDPRG)
Field Descriptions

Bit Field Value Description

31-0 SUBSYS_VENDOR_ID_SUBSYS_ID_PROG 0-FFFF FFFFh Subsystem vendor ID and subsystem ID program bits. Default
values for the SUBSYS_VEN_ID and SUBSYS_ID bits in the
subsystem vendor ID/subsystem ID mirror register
(PCISUBIDMIR).

80 Peripheral Component Interconnect (PCI) SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com Registers

3.4.4 Maximum Latency/Minimum Grant Program Register (PCIMAXLGPRG)

The maximum latency/minimum grant program register (PCIMAXLGPRG) provides the default values for
the maximum latency/minimum grant/interrupt pin/interrupt line mirror register (PCILGINTMIR). The
PCIMAXLGPRG is shown in Figure 54 and described in Table 48.

Figure 54. Maximum Latency/Minimum Grant Program Register (PCIMAXLGPRG)
31 16

Reserved

R-0

15 0

MAX_LAT_MIN_GRANT_PROG

R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 48. Maximum Latency/Minimum Grant Program Register (PCIMAXLGPRG)
Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved

15-0 MAX_LAT_MIN_GRANT_PROG 0-FFFFh Maximum latency and minimum grant program bits. Default values for the
MAX_LAT and MIN_GRNT bits in the maximum latency/minimum grant/interrupt
pin/interrupt line mirror register (PCILGINTMIR).

3.4.5 Configuration Done Register (PCICFGDONE)

Some of the PCI registers can be autoinitialized by the DM646x DMSoC ROM code after reset. When
autoinitialization is selected, accesses to the PCI are held off until the CONFIG_DONE bit in the PCI
configuration done register (PCICFGDONE) is 1. After initialization is done, the software will set this bit to
1. The PCICFGDONE is shown in Figure 55 and described in Table 49.

Figure 55. Configuration Done Register (PCICFGDONE)
31 8

Reserved

R-0

7 1 0

Reserved CONFIG_DONE

R-0 R/W-0 (1)

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

(1) This bit defaults to 0 and the boot code needs to set this bit to 1.

Table 49. Configuration Done Register (PCICFGDONE) Field Descriptions

Bit Field Value Description

31-1 Reserved 0 Reserved

0 CONFIG_DONE Configuration done bit. Holds off accesses to the PCI until configuration by the DM646x DMSoC
ROM code is complete.

0 Configuration in progress, accesses to the PCI are not permitted.

1 Configuration complete, accesses to the PCI are allowed.

81SPRUER2B–November 2009 Peripheral Component Interconnect (PCI)
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

www.ti.com

Appendix A Revision History

Table 50 lists the changes made since the previous version of this document.

Table 50. Document Revision History

Reference Additions/Modifications/Deletions

Section 1.1 Changed paragraph.

Section 1.2 Changed fourth bullet in first paragraph.

Section 1.3 Changed fifth bullet.

Section 2.1 Added second subbullet to first bullet.

Figure 12 Added footnote to 66MHZ_CAP bit.

Added footnote.

Table 13 Changed Description of 66MHZ_CAP bit.

Figure 26 Added footnote to 66MHZ_CAP bit.

Added footnote.

Table 28 Changed Description of 66MHZ_CAP bit.

82 Revision History SPRUER2B–November 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUER2B

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DLP® Products www.dlp.com Broadband www.ti.com/broadband
DSP dsp.ti.com Digital Control www.ti.com/digitalcontrol
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Military www.ti.com/military
Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork
Power Mgmt power.ti.com Security www.ti.com/security
Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony
RFID www.ti-rfid.com Video & Imaging www.ti.com/video
RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/broadband
http://dsp.ti.com
http://www.ti.com/digitalcontrol
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/military
http://logic.ti.com
http://www.ti.com/opticalnetwork
http://power.ti.com
http://www.ti.com/security
http://microcontroller.ti.com
http://www.ti.com/telephony
http://www.ti-rfid.com
http://www.ti.com/video
http://www.ti.com/lprf
http://www.ti.com/wireless

	TMS320DM646x DMSoCPeripheral Component Interconnect (PCI)
	Table of Contents
	Preface
	1 Introduction
	1.1 Purpose of the Peripheral
	1.2 Features
	1.3 Features Not Supported
	1.4 Functional Block Diagram
	1.4.1 Address Decoder
	1.4.2 Slave State Machine
	1.4.3 Slave Back End PCI Interface
	1.4.4 Master Back End PCI Interface
	1.4.5 Master State Machine
	1.4.6 Output Multiplexer
	1.4.7 Configuration Registers
	1.4.8 Error Handler
	1.4.9 Back End Registers Interface

	1.5 Terminology Used in This Document
	1.6 Industry Standard(s) Compliance Statement

	2 Architecture
	2.1 Clocks
	2.2 Signal Descriptions
	2.2.1 Connecting a Local PCI to an External PCI Device

	2.3 Pin Multiplexing
	2.4 Byte Addressing
	2.5 PCI as Slave
	2.5.1 Slave Memory-Map
	2.5.1.1 Configuring Slave Window Registers
	2.5.1.2 Slave Access Address Translations

	2.5.2 Slave Operations
	2.5.2.1 Slave Configuration Operations
	2.5.2.2 Slave Memory Operations

	2.6 PCI as Master
	2.6.1 Master Memory-Map
	2.6.1.1 Configuring Master Windows Using Address Substitution Registers (PCIADDSUBn)
	2.6.1.2 Master Address Translation

	2.6.2 Master Operations
	2.6.2.1 Master Configuration Operations
	2.6.2.2 Master I/O Operations
	2.6.2.3 Master Memory Operations

	2.7 Exceptions, Status Reporting, and Interrupts
	2.7.1 PCI Exceptions
	2.7.1.1 Parity Error
	2.7.1.2 System Error
	2.7.1.3 Master Abort Protocol
	2.7.1.4 Target Abort Protocol
	2.7.1.5 Retry /Disconnect Protocol

	2.7.2 Status Reporting
	2.7.3 PCI Interrupts
	2.7.3.1 DM646x DMSoC-to-Host Interrupts
	2.7.3.2 Host-to-DM646x DMSoC Interrupts

	2.8 PCI Reset Information
	2.8.1 PCI Pin Reset
	2.8.2 PCI Register Reset Values

	2.9 PCI Configuration
	2.9.1 Programming the PCI Configuration Space Registers
	2.9.2 Programming the PCI Back-End Registers
	2.9.3 PCI Configuration Hook Registers
	2.9.4 PCI I2C EEPROM Auto-Initialization
	2.9.4.1 PCI Auto-Initialization from I2C EEPROM
	2.9.4.2 I2C EEPROM Memory Map
	2.9.4.3 I2C EEPROM Checksum
	2.9.4.4 ARM I2C EEPROM Interface

	3 Registers
	3.1 PCI Configuration Registers
	3.1.1 Vendor ID/Device ID Register (PCIVENDEV)
	3.1.2 PCI Command/Status Register (PCICSR)
	3.1.3 Class Code/Revision ID Register (PCICLREV)
	3.1.4 BIST/Header Type/Latency Timer/Cacheline Size Register (PCICLINE)
	3.1.5 Base Address Registers (PCIBAR0-PCIBAR5)
	3.1.6 Subsystem Vendor ID/Subsystem ID Register (PCISUBID)
	3.1.7 Capabilities Pointer Register (PCICPBPTR)
	3.1.8 Maximum Latency/Minimum Grant/Interrupt Pin/Interrupt Line Register (PCILGINT)

	3.2 PCI Back-End Configuration Registers
	3.2.1 Status Set Register (PCISTATSET)
	3.2.2 Status Clear Register (PCISTATCLR)
	3.2.3 Host Interrupt Enable Set Register (PCIHINTSET)
	3.2.4 Host Interrupt Enable Clear Register (PCIHINTCLR)
	3.2.5 Back-End Application Interrupt Enable Set Register (PCIBINTSET)
	3.2.6 Back-End Application Interrupt Enable Clear Register (PCIBINTCLR)
	3.2.7 Vendor ID/Device ID Mirror Register (PCIVENDEVMIR)
	3.2.8 Command/Status Mirror Register (PCICSRMIR)
	3.2.9 Class Code/Revision ID Mirror Register (PCICLREVMIR)
	3.2.10 BIST/Header Type/Latency Timer/Cacheline Size Mirror Register (PCICLINEMIR)
	3.2.11 Base Address Mask Registers (PCIBAR0MSK-PCIBAR5MSK)
	3.2.12 Subsystem Vendor ID/Subsystem ID Mirror Register (PCISUBIDMIR)
	3.2.13 Capabilities Pointer Mirror Register (PCICPBPTRMIR)
	3.2.14 Maximum Latency/Minimum Grant/Interrupt Pin/Interrupt Line Mirror Register (PCILGINTMIR)
	3.2.15 Slave Control Register (PCISLVCNTL)
	3.2.16 Slave Base Address Translation Registers (PCIBAR0TRL-PCIBAR5TRL)
	3.2.17 Base Address Mirror Registers (PCIBAR0MIR-PCIBAR5MIR)
	3.2.18 Master Configuration/IO Transaction Proxy Registers
	3.2.18.1 Master Configuration/IO Access Data Register (PCIMCFGDAT)
	3.2.18.2 Master Configuration/IO Access Address Register (PCIMCFGADR)
	3.2.18.3 Master Configuration/IO Access Command Register (PCIMCFGCMD)

	3.2.19 Master Configuration Register (PCIMSTCFG)

	3.3 DM646x DMSoC-To-PCI Address Translation Registers
	3.3.1 PCI Address Substitution Registers (PCIADDSUB0-PCIADDSUB31)

	3.4 PCI Configuration Hook Registers
	3.4.1 Vendor ID/Device ID Program Register (PCIVENDEVPRG)
	3.4.2 Class Code/Revision ID Program Register (PCICLREVPRG)
	3.4.3 Subsystem Vendor ID/Subsystem ID Program Register (PCISUBIDPRG)
	3.4.4 Maximum Latency/Minimum Grant Program Register (PCIMAXLGPRG)
	3.4.5 Configuration Done Register (PCICFGDONE)

	Appendix A Revision History

