
TMS320C645x/C647x DSP
Bootloader

User's Guide

Literature Number: SPRUEC6G

March 2006–Revised June 2011

2 SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

Contents

Preface ... 7
1 Introduction .. 9

1.1 Bootloader Features .. 9

1.2 Terms and Abbreviations ... 9

2 C6454/C6455 Bootloader Operation ... 11
2.1 Bootloader Initialization ... 11

2.2 Boot Mode Selection .. 12

2.3 Boot Mode Options .. 12
2.3.1 Direct Execution From External Asynchronous Memory - No Boot 12
2.3.2 Host Boot Mode (HPI/PCI) .. 12

2.3.2.1 PCI Auto-Initialization ... 13
2.3.3 EMIFA Boot Mode .. 13
2.3.4 I2C EEPROM Boot Mode ... 14

2.3.4.1 I2C EEPROM Data Blocking ... 14
2.3.4.2 C6454/55 Boot Parameter Structure .. 15

2.3.5 I2C Slave Boot Mode .. 16
2.3.6 SRIO Boot Mode ... 16

2.4 C6454/55 Bootloader Versions ... 18
2.4.1 Determining the Bootloader Version ... 18
2.4.2 Differences Between Bootloader Versions .. 18

3 C6457 Bootloader Operation ... 19
3.1 Bootloader Operation .. 19

3.2 Boot Mode Selection .. 20

3.3 Boot Mode Options .. 20
3.3.1 No Boot Mode .. 20
3.3.2 I2C Master Mode ... 21

3.3.2.1 I2C Boot Parameter Structure ... 21
3.3.3 I2C Slave Boot Mode .. 23
3.3.4 HPI Boot Mode ... 23
3.3.5 EMIFA Boot Mode .. 25
3.3.6 EMAC Boot Mode .. 25

3.3.6.1 Ethernet-Ready Announcement Format .. 27
3.3.6.2 EMAC Boot Table Frame Format .. 27

3.3.7 SRIO Boot Mode ... 28
3.3.7.1 SRIO Boot Parameter Structure ... 29

3.4 C6457 Bootloader Version .. 29

4 C6472 Bootloader Operation ... 30
4.1 Bootloader Operation .. 30

4.2 Boot Mode Selection .. 32

4.3 Boot Mode Options .. 33
4.3.1 No Boot Mode .. 33
4.3.2 HPI Boot Mode ... 33
4.3.3 I2C EEPROM Boot Mode ... 33

3SPRUEC6G–March 2006–Revised June 2011 Table of Contents
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

www.ti.com

4.3.3.1 I2C EEPROM Data Blocking ... 35
4.3.3.2 I2C Boot Parameter Structure ... 35

4.3.4 UTOPIA Boot Mode .. 36
4.3.4.1 UTOPIA Boot Parameter Structure .. 36

4.3.5 EMAC Boot Mode .. 36
4.3.5.1 EMAC Boot Parameter Structure .. 37
4.3.5.2 Ethernet-Ready Announcement Format .. 38
4.3.5.3 EMAC Boot Table Frame Format .. 39

4.3.6 SRIO Boot Mode ... 40
4.3.6.1 SRIO Boot Parameter Structure ... 40

4.4 C6472 Bootloader Version .. 40

5 C6474 Bootloader Operation ... 41
5.1 Bootloader Initialization ... 41

5.2 Multicore Considerations of Bootloading ... 42

5.3 Boot Mode Selection .. 43

5.4 Boot Mode Options .. 43
5.4.1 No Boot .. 43
5.4.2 I2C EEPROM Boot Mode ... 43

5.4.2.1 I2C EEPROM Data Blocking ... 43
5.4.2.2 I2C Boot Parameter Structure ... 44

5.4.3 EMAC Boot Mode .. 45
5.4.3.1 EMAC Boot Parameter Structure .. 46

5.4.4 SRIO Boot Mode ... 47
5.4.4.1 SRIO Boot Parameter Structure ... 48

5.5 C6474 Bootloader Version .. 49

6 Creating Boot Images .. 50
6.1 Host/PCI Boot .. 50

6.1.1 PCI Auto-Initialization .. 50

6.2 I2C Boot ... 50
6.2.1 Boot Parameter Table ... 50

6.2.1.1 Boot Parameter Example for Setting Up Boot Table Download 50
6.2.1.2 Boot Parameter Example for Setting Up Boot Configuration Table Download 51

6.2.2 Boot Table ... 51
6.2.2.1 Boot Table Structure .. 52
6.2.2.2 Code and Data Sections in the Boot Table .. 52
6.2.2.3 Creating the Boot Table ... 52

6.2.3 Boot Configuration Table .. 53
6.2.4 Creating the Combined EEPROM Image ... 54

6.3 EMAC Boot ... 55

7 Bootloader Expansion .. 56
7.1 Second Stage Bootloader .. 56

7.2 Boot to DDR2 Memory .. 56
7.2.1 Create a Boot Table Mapped to DDR2 Memory ... 56
7.2.2 Create a DDR2 Configuration Table ... 57
7.2.3 Create the Combined EEPROM Image ... 58
7.2.4 Perform the Boot Test ... 59

Appendix A Revision History .. 61

4 Contents SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

www.ti.com

List of Figures

1 Signal Connections for I2C EEPROM Boot Mode .. 14

2 Program Flow for No-Boot Mode .. 21

3 Boot Code Flow for HPI Boot Mode .. 24

4 Creating an I2C EEPROM Image Containing the Application Program ... 54

5 Creating an I2C EEPROM Image Containing Boot Configuration and Application Program.................... 55

6 I2C Tables Illustration... 58

List of Tables

1 C6454/55 Bootloader Initialization .. 11

2 C6454/55 Cache Settings .. 11

3 Boot Mode Selection Options .. 12

4 I2C EEPROM Memory Layout... 13

5 C6454/55 I2C EEPROM Block Format ... 14

6 C6454/55 I2C Boot Parameter Table ... 15

7 C6454/55 SRIO Boot Configurations ... 17

8 Differences Between C6454/55 Bootloader Versions .. 18

9 C6457 Bootloader Initialization .. 19

10 L2 Memory Map for Bootloader Code .. 19

11 C6457 Boot Mode Selection ... 20

12 I2C Boot Parameter Block Format .. 22

13 C6457 Extended Boot Mode ... 22

14 Boot-Table Processing Status Values and Enumeration... 23

15 EMAC Boot Configuration .. 25

16 C6457 EMAC Boot Parameter Structure ... 25

17 EMAC Boot Table Frame Format ... 27

18 C6457 SRIO Boot Configuration .. 28

19 C6457 SRIO Boot Parameter Block .. 29

20 C6472 Bootloader Initialization .. 30

21 C6472 Cache Settings .. 30

22 C6472 Boot Mode Selection ... 32

23 C6472 I2C EEPROM Common Block Format ... 35

24 C6472 Extended Boot Mode ... 35

25 C6472 I2C Boot Parameter Table .. 35

26 UTOPIA Boot Parameter Table.. 36

27 C6472 EMAC Boot Parameter Table ... 37

28 EMAC Boot Table Frame Format ... 39

29 C6472 SRIO Boot Configurations ... 40

30 C6472 SRIO Boot Parameter Table .. 40

31 C6474 Bootloader Initialization .. 41

32 C6474 Cache Settings .. 41

33 L2 Memory Map for Bootloader Code .. 42

34 C6474 Boot Mode Selection ... 43

35 C6474 I2C EEPROM Common Block Format ... 44

36 C6474 Extended Boot Mode ... 44

37 C6474 I2C Boot Parameter Table... 44

38 C6474 EMAC Boot Parameter Table ... 46

39 C6474 SRIO Boot Configurations ... 48

5SPRUEC6G–March 2006–Revised June 2011 List of Figures
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

www.ti.com

40 C6474 SRIO Boot Parameter Table .. 48

41 Differences Between C6474 Bootloader Versions .. 49

42 Boot Parameter Table Example for Boot Table Load .. 51

43 Boot Parameter Table Example for Boot Configuration Load ... 51

44 Boot Configuration Table Example.. 53

45 C645x/C647x Bootloader Revision History .. 61

6 List of Tables SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

Preface
SPRUEC6G–March 2006–Revised June 2011

Read This First

About This Manual

This document describes the features of the on-chip bootloader provided with the following
TMS320C645x/C647x Digital Signal Processors (DSPs): C6454, C6455, C6457, C6472, and C6474.

This document contains preliminary data current as of the publication date and is subject to change
without notice.

Important Notice Regarding Bootloader Program Contents:

Texas Instruments may periodically update the bootloader code supplied in the ROM to correct known
problems, provide additional features or improve functionality. These changes may be made without notice
as needed. Although changes to the ROM code preserve functional compatibility with prior versions, the
locations of functions within the main bootloader code may change. You should avoid calling these
functions directly as the code may change in the future.

Related Documentation From Texas Instruments

The following documents describe the TMS320C6000™ devices and related support tools. Copies of
these documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the
search box provided at www.ti.com.

SPRU732 — TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C64x and TMS320C64x+ digital
signal processors (DSPs) of the TMS320C6000 DSP family. The C64x/C64x+ DSP generation
comprises fixed-point devices in the C6000 DSP platform. The C64x+ DSP is an enhancement of
the C64x DSP with added functionality and an expanded instruction set.

SPRU198 — TMS320C6000 Programmer's Guide. Describes ways to optimize C and assembly code for
the TMS320C6000™ DSPs and includes application program examples.

SPRU871 — TMS320C64x+ Megamodule Reference Guide. Describes the TMS320C64x+ digital signal
processor (DSP) megamodule. Included is a discussion on the internal direct memory access
(IDMA) controller, the interrupt controller, the power-down controller, memory protection, bandwidth
management, and the memory and cache.

SPRU974 —TMS320C645x DSP Inter-Integrated Circuit (I2C) Module User's Guide. This document
describes the inter-integrated circuit (I2C) module in the TMS320C645x digital signal processors
(DSPs).

SPRU976 —TMS320C645x DSP Serial RapidIO (SRIO) User’s Guide. This document describes the
Serial RapidIO® (SRIO) peripheral on the TMS320C645x digital signal processors (DSPs).

SPRU975 —TMS320C645x DSP Ethernet Media Access Controller (EMAC)/ Management Data
Input/Output (MDIO) User's Guide. This document provides a functional description of the
Ethernet Media Access Controller (EMAC) and Physical layer (PHY) device Management Data
Input/Output (MDIO) module integrated with TMS320C645x digital signal processors (DSPs).

SPRUGK3 — TMS320C6457 DSP Inter-Integrated Circuit (I2C) Module User's Guide. This document
describes the inter-integrated circuit (I2C) module in the TMS320C6457 digital signal processors
(DSPs).

SPRUGK4 —TMS320C6457 DSP Serial RapidIO (SRIO) User's Guide. This document describes the
Serial RapidIO (SRIO) peripheral on the TMS320C6457 digital signal processors (DSPs).

7SPRUEC6G–March 2006–Revised June 2011 Preface
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru732
http://www.ti.com/lit/pdf/spru198
http://www.ti.com/lit/pdf/SPRU871
http://www.ti.com/lit/pdf/SPRU974
http://www.ti.com/lit/pdf/SPRU976
http://www.ti.com/lit/pdf/SPRU975
http://www.ti.com/lit/pdf/SPRUGK3
http://www.ti.com/lit/pdf/SPRUGK4
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

Related Documentation From Texas Instruments www.ti.com

SPRUGK9 —TMS320C6457 DSP Ethernet Media Access Controller (EMAC)/ Management Data
Input/Output (MDIO) User's Guide. This document provides a functional description of the
Ethernet Media Access Controller (EMAC) and Physical layer (PHY) device Management Data
Input/Output (MDIO) module integrated with the TMS320C6457 digital signal processors (DSPs).

SPRUFX0 — TMS320C6472 DSP Technical Reference Manual. This document provides a functional
description of the peripherals on the TMS320C6472 digital signal processors (DSPs).

SPRUG22 — TMS320C6474 DSP Inter-Integrated Circuit (I2C) Module User's Guide. This document
describes the inter-integrated circuit (I2C) module in the TMS320C6474 digital signal processors
(DSPs).

SPRUG23 — TMS320C6474 DSP Serial RapidIO (SRIO) User's Guide. This document describes the
Serial RapidIO (SRIO) on the TMS320C6474 digital signal processors (DSPs).

SPRUG08 — TMS320C6474 DSP Ethernet Media Access Controller (EMAC)/ Management Data
Input/Output (MDIO) User's Guide. This document provides a functional description of the
Ethernet Media Access Controller (EMAC) and Physical layer (PHY) device Management Data
Input/Output (MDIO) module integrated with the TMS320C6474 digital signal processors (DSPs).

TMS320C6000, Code Composer Studio are trademarks of Texas Instruments.
RapidIO is a registered trademark of RapidIO Trade Association.
All other trademarks are the property of their respective owners.

8 Read This First SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRUGK9
http://www.ti.com/lit/pdf/SPRUFX0
http://www.ti.com/lit/pdf/SPRUG22
http://www.ti.com/lit/pdf/SPRUG23
http://www.ti.com/lit/pdf/SPRUG08
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

User's Guide
SPRUEC6G–March 2006–Revised June 2011

TMS320C645x/C647x Bootloader

1 Introduction

This section provides a description of the features of the on-chip bootloader provided with the following
TMS320C645x/C647x Digital Signal Processors (DSPs): C6454, C6455, C6457, C6472, and C6474.

This document should be used in conjunction with the device-specific data manuals and user's guides for
peripherals used during the boot. This document covers non-secure booting only.

1.1 Bootloader Features

The bootloader is DSP code that transfers application code from an external source into internal or
external program memory after the DSP is taken out of reset. The bootloader allows application code to
reside in slow non-volatile external memory and be transferred to high-speed internal memory for
execution, or to be transferred from a host processor to the DSP after the DSP is taken out of reset. The
bootloader is permanently stored in the ROM of the DSP starting at byte address 0x00100000 for C6454,
C6455 and C6472, 0x3C000000 for C6457 and C6474 devices.

To accommodate different system requirements, the bootloader offers a variety of methods (boot modes)
to transfer the application into DSP memory. The following is a list of the available boot modes and a
summary of their functional operation:

• Direct execution from internal memory (L2), No boot: The CPU executes directly out of L2 (operation is
invalid if there is no valid code in L2). Typically only used during debug on emulator.

• Host boot (HPI/PCI): In this mode, the bootloader waits until the code to be executed is loaded into
on-chip memory by a host device via the HPI or the PCI. Code execution begins when the host
indicates to the bootloader that the application has been loaded.

• EMIF boot from 8-bit external asynchronous memory: The code executes out of external memory.
• Master I2C boot: The application is loaded from an I2C EEPROM, one section at a time, using a boot

table to determine the length and the starting address for each section.
• Slave I2C boot: An external I2C master sends the application to the DSP, also using a boot table.
• Serial RapidIO® (SRIO) boot: An external host loads the application via the SRIO peripheral, using

directIO protocol. A doorbell interrupt is used to indicate that the code has been loaded.
• EMAC boot: An external host loads the application via EMAC peripheral.
• UTOPIA boot: An external host loads the application via UTOPIA peripheral.

1.2 Terms and Abbreviations

1X mode — 1 Tx and 1 Rx differential pair

CPPI — Communications Port Programming Interface

DDR2 — Double Data Rate 2

DIX — Digital, Intel, and Xerox

DSK — Developer Starter Kit

EEPROM — Electrically Erasable Programmable ROM

EMAC — Ethernet Media Access Control

EMIF — External Memory Interface

9SPRUEC6G–March 2006–Revised June 2011 TMS320C645x/C647x Bootloader
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

Introduction www.ti.com

GEL — Gain Extension Language used in Code Composer Studio™

GMII — Gigabit Media Independent Interface

HPI — Host Port Interface

I2C — Inter-Integrated Circuit

L2 — Level 2

MAC — Media Access Control

MII — Media Independent Interface

PCI — Peripheral Component Interconnect

PDMA — Packet Direct Memory Access

PHY — Physical Layer Device

RMII — Reduced Media-Independent Interface

SERDES — Serializer/Deserializer

S3MII — Source Synchronous Serial Media Independent Interface

SGMII — Serial Gigabit Media Independent Interface

SMII — Serial Media Independent Interface

SRIO — Serial RapidIO

UTOPIA — Universal Test and Operations Physical Interface for ATM

10 TMS320C645x/C647x Bootloader SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

www.ti.com C6454/C6455 Bootloader Operation

2 C6454/C6455 Bootloader Operation

The structure and operation of the C6454/55 bootloader are described in the following sections.

2.1 Bootloader Initialization

When the bootloader begins execution, the program performs some initialization of the DSP prior to
loading code. Table 1 describes the DSP resources that are configured by the bootloader. Table 2 lists the
cache settings while L2 cache is always disabled.

Table 1. C6454/55 Bootloader Initialization

Resource Initialization Value

Interrupts Interrupts are left enabled (GIE=1). PCI and SRIO boot interrupts are enabled, with the interrupt mux
registers configured to route the PCI and SRIO interrupts to the core. ISTP (the vector table pointer) is set to
point into the ROM at 0x103c00. After the interrupt arrives, the ISTP and interrupt mux registers are restored
to their default values.

Memory L2 Memory, from 009F F080h to 009F FFFFh for C6455 and from 008F F080h to 008F FFFFh for C6454, is
reserved during the boot and can be reclaimed by application after the boot.

PLL1 Controller For SRIO and PCI boot, the bootloader configures the PLL1 Controller such that CLKIN1 is multiplied by 15.
For all other boot modes, the PLL1 Controller is in Bypass mode. The PLL1 Controller configuration is not
changed when the bootloader exits.

Peripheral Powerup Peripherals are enabled as required by the bootloader in the selected mode. Peripherals are not disabled
when the bootloader exits.

Registers The state of all CPU registers, with the exception of the PC, must be considered random on bootloader exit.

Table 2. C6454/55 Cache Settings

BOOTMODE[3:0] Boot Description L1P/L1D Cache Settings

0 No boot If PCI_EEAI = 1, 0 KB
If PCI_EEAI = 0, 32 KB by default. However, without valid code in L2, PC
may branch into the ROM and cache defaults settings may be overwritten.

1 HPI/PCI boot 32KB

2 EMIFA fast boot 32KB

3 Reserved N/A

4 EMIFA ROM boot 32KB

From 5 to 15 Other boots 0 KB

After the initialization is performed, the bootloader loads the on-chip RAM according to the boot mode
selected, and then causes the DSP to begin execution of the loaded code. At that point, the boot load
process is complete. Whenever the DSP is reset, the CPU starts execution of the bootloader again, and
the entire boot load process is repeated.

The following sections describe the various C6454/55 boot modes and boot tables in detail.

11SPRUEC6G–March 2006–Revised June 2011 TMS320C645x/C647x Bootloader
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

C6454/C6455 Bootloader Operation www.ti.com

2.2 Boot Mode Selection

The desired boot mode is selected by setting the four boot mode select pins BOOTMODE[3:0], which are
sampled during reset. The BOOTMODE pins are shared with EMIFA address pins [19:16].

Table 3 describes the available boot mode options and their corresponding BOOTMODE pin
configurations.

Table 3. Boot Mode Selection Options

BOOTM3 BOOTM2 BOOTM1 BOOTM0 Boot Mode Source See

0 0 0 0 No boot, execution begins from the base of L2 Section 2.3.1
(0x800000)

0 0 0 1 Host boot (HPI) Section 2.3.2

0 0 1 0 Reserved -

0 0 1 1 Reserved -

0 1 0 0 EMIFA ROM boot Section 2.3.3

0 1 0 1 Master I2C boot Section 2.3.4

0 1 1 0 Slave I2C boot Section 2.3.5

0 1 1 1 Host boot (PCI) Section 2.3.2

1 X 0 0 Serial RapidIO boot, Configuration 0 (4 1x ports) (1) Section 2.3.6

1 X 0 1 Serial RapidIO boot, Configuration 1 (1 4x port) (1) Section 2.3.6

1 X 1 0 Serial RapidIO boot, Configuration 2 (1 4x port) (1) Section 2.3.6

1 X 1 1 Serial RapidIO boot, Configuration 3 (1 4x port) (1) Section 2.3.6
(1) SRIO boot applies to C6455 only, reserved for C6454.

2.3 Boot Mode Options

2.3.1 Direct Execution From External Asynchronous Memory - No Boot

When BOOTMODE[3:0] = 0000b, the no boot option is selected. In this mode, the bootloader program
does not execute. The DSP begins execution at the base of internal L2 memory at byte address
0x800000.

2.3.2 Host Boot Mode (HPI/PCI)

In host boot mode, an external host can load code and data directly into the DSP memory while the CPU
waits. Host boot does not use a boot table. The code and/or data sections are directly loaded to the
desired locations by the host. When the host has finished loading the application, it generates a host
interrupt (HPI or PCI), the CPU then begins executing at the base of L2.

An HPI host can use the DSPINT bit of the Host Port Interface Control register (HPIC) to generate an
interrupt to the CPU while a PCI host can use the DSPINT bit of the PCI Status Set register
(PCISTATSET). In the case of PCI, the DSPINT bit of the Back End Application Interrupt Enable register
must also be set to 1.

If PCI boot is selected, the bootloader configures the PLL1 Controller such that CLKIN1 is multiplied by
15. More specifically, PLLM is set to 0Eh (x15) and RATIO is set to 0 (÷1) in the PLL1 Multiplier Control
register (PLLM) and PLL1 Pre-Divider register (PREDIV), respectively.

12 TMS320C645x/C647x Bootloader SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

www.ti.com C6454/C6455 Bootloader Operation

2.3.2.1 PCI Auto-Initialization

If PCI auto-initialization through I2C EEPROM is enabled through the PCI_EEAI configuration pin,
regardless of the selected boot mode, the on-chip bootloader also powers-on the PCI and I2C peripherals,
initializes the I2C interface, and reads the PCI configuration values and a 16-bit checksum from an I2C
EEPROM (starting at I2C address 0x400). Table 4 shows the register layout in I2C EEPROM. If the
checksum verification passes, the bootloader writes the values read from I2C EEPROM into the
appropriate PCI Hook Configuration registers and PCI Back End Configuration registers (back end
registers written to only after power-on reset). Additional details about auto-initialization and PCI reset can
be found in the TMS320C645x DSP Peripheral Component Interconnect (PCI) User's Guide (SPRUE60).

Table 4. I2C EEPROM Memory Layout

Byte Address Contents

0x400 Vendor ID [15:8]

0x401 Vendor ID [7:0]

0x402 Device ID [15:8]

0x403 Device ID [7:0]

0x404 Class code [7:0]

0x405 Revision ID [7:0]

0x406 Class code [23:16]

0x407 Class code [15:8]

0x408 Subsystem vendor ID [15:8]

0x409 Subsystem vendor ID [7:0]

0x40a Subsystem ID [15:8]

0x40b Subsystem ID [7:0]

0x40c Max_Latency

0x40d Min_Grant

0x40e Reserved (use 0x00)

0x40f Reserved (use 0x00)

0x410 Reserved (use 0x00)

0x411 Reserved (use 0x00)

0x412 Reserved (use 0x00)

0x413 Reserved (use 0x00)

0x414 Reserved (use 0x00)

0x415 Reserved (use 0x00)

0x416 Reserved (use 0x00)

0x417 Reserved (use 0x00)

0x418 Reserved (use 0x00)

0x419 Reserved (use 0x00)

0x41a Checksum [15:8]

0x41b Checksum [7:0]

2.3.3 EMIFA Boot Mode

In EMIFA boot mode, the bootloader simply branches to the base address of EMIFA CE3 (0xB000 0000).
Interrupts are disabled.

13SPRUEC6G–March 2006–Revised June 2011 TMS320C645x/C647x Bootloader
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRUE60
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

Pull-up

SCL

SDA

SCL

SDA

Device I2C EEPROM

A2

A1

A0

WP

Low

High

Low

Low

Slave

address = 000b

If present

C6454/C6455 Bootloader Operation www.ti.com

2.3.4 I2C EEPROM Boot Mode

This section assumes familiarity with the I2C operation using the master receiver and master transmitter
modes. For detailed information on the I2C, see the TMS320C645x DSP Inter-Integrated Circuit (I2C)
Module User's Guide (SPRU974).

The bootloader supports boot from I2C EEPROMs or devices operating as I2C slaves that emulate the
appropriate format. The bootloader has the following requirements for the I2C EEPROMs:

• The memory device complies with Philips I2C Bus Specification v 2.1.
• The memory device uses two bytes for internal addressing.
• The memory device has the capability to auto-increment its internal address counter such that the

contents of the memory device can be read sequentially.

In I2C boot mode, the DSP acts as the master and the I2C EEPROM acts as the slave. Figure 1 shows
the minimum connection required between the DSP and one I2C EEPROM. The required pull-ups must be
placed on SDA and SCL to ensure that the I2C EEPROM interface works correctly.

Figure 1. Signal Connections for I2C EEPROM Boot Mode

Some I2C EEPROMs have a write-protect (WP) feature that prevents unauthorized writes to memory. This
feature is not needed for boot loading purposes because the DSP only reads data from the I2C
EEPROMs. The write protect feature can be enabled or disabled without impacting bootloader operation.

The bootloader requires the I2C EEPROM slave address to be 0x50. Other EEPROM slave addresses
can then be used as specified in the boot parameter table loaded from the initial EEPROM.

The frequency of the I2C bus is initially set to CLKIN1/6600. For example, with a CLKIN1 frequency of 50
MHz, the serial clock frequency would be set to 7.57 kHz. Subsequently, the bootloader reads the actual
CPU frequency and desired I2C frequency values from boot parameters (see Table 6) and reprograms the
I2C.

2.3.4.1 I2C EEPROM Data Blocking

All data stored on the I2C EEPROM are stored in blocks. Each block has a maximum length of 128 bytes,
including the 4 byte block header. shows the format of the block.

Table 5. C6454/55 I2C EEPROM Block Format

Offset (bytes) Size (bytes) Name Value

0 2 Block size The size of the block, including the header.

2 2 Checksum The ones complement check sum, including the block size and
checksum fields. Valid checksum values are 0 and -0.

4-126 0-124 Data Data

The bootloader reads data from the I2C EEPROM in blocks. If the checksum shows a failure, the block is
re-read until the checksum is valid. A value of 0 in the checksum field disables the checksum check.

14 TMS320C645x/C647x Bootloader SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRU974
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

www.ti.com C6454/C6455 Bootloader Operation

2.3.4.2 C6454/55 Boot Parameter Structure

The I2C boot sequence begins with the DSP reading a block of boot parameters from the I2C EEPROM.
The boot parameter table complies with I2C EEPROM data blocking format. The boot parameters begin at
EEPROM address 0, and a boot parameter block consists of 128 bytes. The DSP calculates the address
of boot parameter block to load based on the value of the CFGGP[2:0] bits of the Device Status Register
(DEVSTAT) as follows: address = 0x80 * CFGGP[2:0]. This allows the DSP to read one of eight possible
boot parameter blocks. The values in this block determine how the boot process proceeds. Table 6 shows
the structure of these boot parameters. Each value is 2 bytes, and the bytes must be stored in big endian
format (most significant byte at the lowest address), regardless of the endianness setting of the processor.
The structure has a total length of 26 bytes.

Table 6. C6454/55 I2C Boot Parameter Table

Offset (byte) Field Value

4 Boot mode The boot mode that is used by the bootloader

0x0-0xF See Table 3.

0x100 I2C Master Write (extended mode)

6 Options I2C options:

Bits 01-00 Boot table type

00 Boot parameter mode

01 Boot table mode

10 Boot configuration mode

11 Slave receive boot

Bits 04-02 EEPROM type

00 24C00 to 24C16A

01 24C32 to 24C1024

10 24CW256

11 Reserved

8 Device address (LSW) For further I2C boot, the lower 16 bits of the address in the I2C EEPROM

10 Device address (MSW) For further I2C boot, the upper 16 bits of the address in the I2C EEPROM. This is
an abstraction; this value is used as the I2C EEPROM slave address (default 0x50).

12 Broadcast address If the boot mode is master broadcast, the boot tables are read from the I2C
EEPROM and are re-sent to this slave address (default 0x0).

14 Slave address The address used by the DSP as its local slave address

16 CPU frequency (MHz) The actual CPU frequency as measured from SYSREFCLK of the PLL1 Controller.
This parameter configures the I2C clock. Note that the PLL1 Controller is
programmed by the bootloader for some boot modes (see Table 1).

18 I2C clock frequency (kHz) The desired I2C serial clock frequency

20 Next device address (LSW) If options indicate a boot configuration table load, this address is used as the
address in the I2C ROM to find the next boot parameter table to load.

22 Next device address (MSW) The upper 16 bits of the address, used as the slave address of the I2C EEPROM

24 Address delay Delay between address write and read from I2C EEPROM (in cycles)

The two LSBs of the options field (offset 6 bytes) define what the bootloader expects to find in the I2C
EEPROM at the offset specified by the Device Address (LSW), and how it should proceed. A value of 0
indicates another boot parameter table. A value of 1 indicates a boot table (i.e., a table which contains
initialized code and data sections, see Section 6.2.2). A value of 2 indicates a boot configuration table
(table used to configure registers, see Section 6.2.3). A value of 3 is reserved, and the remaining bits
must be set to 0.

After the DSP reads and remembers the boot parameter table, the bootloader performs a boot re-entry.
On this pass the code executes based on the values provided by the boot parameter table.

If the options indicate a boot table is loading, then the bootloader reads from the I2C EEPROM address
specified in the boot table until the end of the table is reached (i.e., until all code and data sections are
loaded), and immediately begin execution of the loaded code by branching to the entry point specified at
the beginning of the boot table (see Section 6.2.2.1).

15SPRUEC6G–March 2006–Revised June 2011 TMS320C645x/C647x Bootloader
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

C6454/C6455 Bootloader Operation www.ti.com

If the options indicate a boot configuration table is loading, then the bootloader reads from the specified
I2C EEPROM address until the end of the boot configuration table. This typically initializes various
registers (see Section 6.2.3). The next device address previously read from the boot parameter block is
copied into device address, the boot options are cleared, and the bootloader performs a boot re-entry.
This directs the ROM to read the I2C EEPROM at the specified device address, which should have
another boot parameter table.

2.3.5 I2C Slave Boot Mode

In the I2C slave boot mode, the DSP is programmed as an I2C slave and waits for an I2C Master to send
data, using a standard boot table format.

The procedure is the same as Section 2.3.4, except for how the DSP receives data. In this case, rather
than performing a master address write followed by a master data read, the DSP configures its I2C
interface for slave reads, its device address to the default slave address (0x4), and polls for receiver
ready, reading one byte at a time.

This boot mode can be used when it is desired to boot multiple DSPs at the same time from the same I2C
EEPROM. One DSP is configured for I2C Master Write (in the Options boot parameters field), and the
remaining DSPs are configured for I2C slave boot mode. The slave DSPs come out of reset first, followed
by the master DSP. The master DSP reads from I2C EEPROM and re-transmits to the broadcast address
(default 0x4). Therefore, all DSPs boot at the same time. In some cases, if in the design, another I2C
master is booting the slave C6454/55 DSP through the I2C. Then, the I2C master needs to act similarly to
a C6454/55 DSP during I2C boot. First, the I2C bus on the master side needs to be configured to have
the exact same frequency as the I2C module within the DSP. Second, the I2C master needs to send 6
bytes (count does not include slave address) to the slave DSP before sending the boot table:

04 xx xx yy yy zz zz

Where:

04 = the slave address for the C6454/55 DSP in slave I2C boot mode

xx xx = length

yy yy = checksum

zz zz = boot option

For example:

04 00 06 00 00 00 01 ← Order: slave address, length, checksum, boot option

Length = 6

Checksum = 0 (not used)

Boot option = 1 (for telling the slave DSP that the next coming data is the boot table);
for other options, see the Options field in Table 6.

2.3.6 SRIO Boot Mode

In the SRIO boot mode, an external host can load code and data directly into the DSP memory while the
CPU waits, similar to the HPI/PCI boot mode. The code and/or data sections are directly loaded to the
desired locations, using the directIO model. When the host has finished loading the application, it signals
through a doorbell interrupt and the CPU then begins executing at the base of L2.

The on-chip bootloader first configures the PLL1 Controller such that CLKIN1 is multiplied by 15. It then
determines the SRIO boot configuration (0, 1, 2 or 3) and initializes and enables required blocks of the
SRIO peripheral.

The SRIO boot configuration is determined by the BOOTMODE[1:0] pins (see Table 3). In boot
configuration 0, the SRIO peripheral is configured as four 1x ports and the boot is performed on port 0. In
the remaining configurations, the SRIO peripheral is configured as a single 1x/4x port.

16 TMS320C645x/C647x Bootloader SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

www.ti.com C6454/C6455 Bootloader Operation

The logical layer local device ID within the Serial RapidIO network is configured using BOOTMODE[2] as
the address MSB and configuration pins CFGGP[2:0] as the three LSBs. If BOOTMODE[2]:CFGGP[2:0] is
0b1111, the default value of the device ID is 0xFF or 0xFFFF, and it must be configured/assigned by the
host (maintenance packet to DEVICEID_REG1); otherwise, device ID = 2 + BOOTMODE[2]:CFGGP[2:0].

In the SRIO boot configuration 0, the bootloader configures the SRIO peripheral in the following sequence:

1. Peripheral blocks (registers BLKn_EN, GBL_EN): Blocks 0, 1, 2 and 5 are enabled (MMRs, LSU, MAU
and Port 0, respectively). Global enable is also set.

2. PLL (register CFG0_CNTL): Multiplier is set to 10x, loop bandwidth to 1/12th of the reference clock,
and the PLL is enabled. A delay of 1usec follows PLL enabling.

3. Receiver (registers CFGRXn_CNTL): Half rate, 10-bit width, set comma aligned, set normal polarity,
etc.

4. Transmitter (registers CFGTXn_CNTL): Half rate, 10-bit width, set common mode, set output swing,
set emphasis, set normal polarity, etc.

5. Processing Element Feature CAR (register PE_FEAT): 34-bit address, extended features pointer valid;
common transport large systems support.

6. Source/Destination Operations CAR (registers SRC_OP, DEST_OP): All source operations, all
destination operations, except atomic.

7. Maintenance block header (register SP_MB_HEAD): General endpoint device with software assisted
error recovery.

8. Input/Output Port Enable (registers SPn_CTL).
9. Base ID: Same as the local Device ID.
10. IP-Level Port Mode (register SP_IP_MODE): 4 ports (1x mode each), Port-Write disabled, Packet

accepted by the Phy layer with any DestID and forwarded to the logical layer.
11. Packet Forwarding (registers PF_16B_CNTLn, PF_8B_CNTLn): Disabled.
12. Doorbell interrupt routing (register DOORBELL0_ICRR): Routed to INTDST4.
13. Prescaler for physical layer timers (register IP_PRESCAL): 333 MHz.
14. Check Port OK: Continue if the port is initialized and is exchanging error-free control symbols with the

attached device; otherwise, record an error in setting up the peripheral.
15. Boot Complete (register SP_PER_SET_CNTL): Writes to read-only registers are disabled after this

point.
16. Assert Peripheral Enable (PCR register) to enable logical layer data flow.
17. Clear any pending interrupts (register ICRR).

Registers not mentioned above retain their default values.

In the SRIO boot configurations 1-3, the initialization is the same as in SRIO boot configuration 0, except
for the registers that configure the SERDES ports.

Table 7 lists the required SerDES reference clock and associated link rate settings.

Table 7. C6454/55 SRIO Boot Configurations

Boot Configuration SerDes Reference Clock SRIO Link Rate

SRIO boot configuration 0 125 MHz 1.25 Gbps

SRIO boot configuration 1 156.25 MHz 3.125 Gbps

SRIO boot configuration 2 125 MHz 3.125 Gbps

SRIO boot configuration 3 312.5 MHz 3.125 Gbps

17SPRUEC6G–March 2006–Revised June 2011 TMS320C645x/C647x Bootloader
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

C6454/C6455 Bootloader Operation www.ti.com

2.4 C6454/55 Bootloader Versions

2.4.1 Determining the Bootloader Version

The boot ROM can be identified by reading the ROM signature. The ROM address may very from one
bootloader address to the next (see Table 8). The signature is a string of characters, stored one byte per
32 bit word. If the ROM boot executes this signature is copied as a packed byte string (order depends on
the endianness configuration) to L2 at 0x9ff040.

2.4.2 Differences Between Bootloader Versions

Different versions of the on-chip bootloader exit on silicon revision 1.1 and 2.0 of the C6454/55 DSP.
Table 8 summarizes the differences between two versions.

Table 8. Differences Between C6454/55 Bootloader Versions

Feature C6454/55 Silicon Revision 1.1 C6454/55 Silicon Revision 2.0

Signature v2.2 Wed Jul 27 17:25:44 2005 v2.3 Wed Feb 01 13:37:24 2006
i2c pci_eeai Serial RapidIO i2c pci_eeai Serial RapidIO

Starting address of the 0x103aa0 0x103b30
signature string in ROM

I2C address delay Not programmable Programmable (see Table 6)

SRIO PLL Function not available to second stage bootloaders Function available to second stage bootloaders
or boot configuration tables and boot configuration tables

EMIF boot EMIF boot with PCI auto-initialization enabled is EMIF boot with PCI auto-initialization enabled is
not supported supported

SERDES in SRIO boot Only SERDES 0 configured All SERDES (0-3) configured
configuration 0

Default I2C frequency 15*(CLKIN1/6600) if PCI auto-initialization is CLKIN1/6600
(see Section 2.3.4) enabled, CLKIN1/6600 otherwise

18 TMS320C645x/C647x Bootloader SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

www.ti.com C6457 Bootloader Operation

3 C6457 Bootloader Operation

This section describes the structure and operation of the C6457 bootloader. The bootloader code is
executed in the L3 ROM. All boot modes on C6457 are ROM based; i.e., execution is transferred to the L3
ROM base when the DSP is released from reset and, depending on the boot pins strapped, the relevant
boot mode is executed.

3.1 Bootloader Operation

When the bootloader begins execution, the program performs some DSP initialization prior to loading the
code. Table 9 describes the DSP resources that are configured by the bootloader.

Table 9. C6457 Bootloader Initialization

Resource Initialization Value

Interrupts Interrupts are left disabled (GIE=0) except for NO BOOT, HPI, and SRIO boot modes. When interrupts are
enabled, the interrupt mux registers are configured to route the correct system event to the core. ISTP
(vector table pointer) is set to point to the start of L3 ROM (0x3C000000) and the IER mask is set to enable
the correct interrupts (Reset and NMI interrupts are always enabled). After interrupt, the ISTP and GIE are
restored to their default values.

Memory L1P/L1D is set to all cache. L2 memory from byte address 0x009FA000 - 0x009FFFFF (20480 bytes) is
reserved for use as scratch memory during the boot process and can be reclaimed by the application after
the boot.

PLL1 Controller For I2C, HPI, SRIO, and MAC boot modes, the PLL1 is set to x16 mode.

Peripheral Powerup Peripherals are powered up as required by the bootloader in the selected mode. Peripherals are not
powered down when the bootloader exits. HPI, EMAC, and EMIFA modules need to be powered on.

Registers The state of all CPU registers, with the exception of PC, must be considered random on bootloader exit.

L2 is configured as RAM only (no cache). The boot code uses a portion of L2 during the boot process
(see the shaded area in Table 10). When the boot is complete, the application can reclaim this reserved
memory.

Table 10. L2 Memory Map for Bootloader Code

Memory Range Size (bytes) Description

0x800000 - 0x9F9FFF Not used by boot code. Application can use this space to download code
and data sections.

0x9FA000 - 0x9FDFFF 16K Allocated for storing received EMAC packets. In addition, it is used to
store SRIO and HPI boot packets when boot table processing is selected
for these modes.

0x9FE000 - 0x9FE7FF 2K Allocated as stack by boot code.

0x9FE800 - 0x9FE8FF 256 Used by boot code to store boot parameters.

0x9FE900 - 0x9FEAFF 512 Allocated for un-initialized data structures used by the boot code.

0x9FEB00 - 0x9FFAFF 4K Used for boot table processing by the boot code

0x9FFB00 - 0x9FFBFF 256 Boot version string

0X9FFC00 - 0x9FFDFF 512 Boot Statistics/diagnostics

0X9FFF00 - 0x9FFF0F 16 Boot ROM table pointers

0X9FFFFC - 0x9FFFFF 4 Application entry point (boot exit address)

19SPRUEC6G–March 2006–Revised June 2011 TMS320C645x/C647x Bootloader
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

C6457 Bootloader Operation www.ti.com

3.2 Boot Mode Selection

The boot mode is selected by setting the boot mode pins BOOTMODE[3:0], which are latched during
reset. The configuration pins GPIO[13:9] are mapped to CFGGP[4:0] which are are referred to as
CFG[3:0] in Table 11 and throughout this chapter for the C6457 device.

Table 11. C6457 Boot Mode Selection

BOOTMODE[3:0] Description CFG[3:0] See

0 No boot None Section 3.3.1

1 I2C Master (device address 0x50) First EEPROM boot parameter block Section 3.3.2
address

2 I2C Master (device address 0x51) First EEPROM boot parameter block Section 3.3.2
address

3 I2C Slave 3:0 + 1= Device ID Section 3.3.3

4 HPI 3:0 = 2 boot table loading mode, Section 3.3.4
otherwise direct loading mode

5 EMIFA None Section 3.3.5

6 EMAC Master 3:0 Device ID Section 3.3.6

7 EMAC Slave 3:0 Device ID Section 3.3.6

8 EMAC Forced 3:0 Device ID Section 3.3.6

9 Reserved N/A -

10 RapidIO Configuration 0 3:0 Node (0xF for default) Section 3.3.7

11 RapidIO Configuration 1 3:0 Node (0xF for default) Section 3.3.7

12 RapidIO Configuration 2 3:0 Node (0xF for default) Section 3.3.7

13 RapidIO Configuration 3 3:0 Node (0xF for default) Section 3.3.7

14-15 Reserved N/A -

3.3 Boot Mode Options

3.3.1 No Boot Mode

The C6457 device no boot mode is similar to the C6454/55 device's process, described in Section 2.3.1,
with the following differences:

1. No-boot mode is ROM based instead of completely hardware based.
2. The bootloader puts the DSP in sleep state until an interrupt arrives. The boot code sets the IER mask

to 0xFF and GIE=1 prior to entering sleep state.

The boot ROM code flow is shown in Figure 2.

20 TMS320C645x/C647x Bootloader SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

boot_chaining()

Prepare DSP
for “idle”

DSP in Sleep State

Interrupt Occurs

Restore Pre-
Idle Settings

Branch to Boot
Exit Address

1. Save ISTP value
2. Set ISTP to vector table location
3. Clear pending interrupts
4. Set interrupt enable mask
5. Enable global interrupts

1. Restore ISTP value
2. Disable global interrupts

1. Set boot exit address
2. Perform cleanup
3. Branch to boot exit address

www.ti.com C6457 Bootloader Operation

Figure 2. Program Flow for No-Boot Mode

The following points should be noted for no-boot mode usage:

• No-boot mode is usually selected when the user wants to download the application using an emulator
in conjunction with Code Composer Studio (CCStudio). In this usage case, when CCStudio connects to
the DSP, it brings the DSP out of the sleep state and PC execution is halted. CCStudio downloads the
application image in DSP memory and the start address for execution is set to the application entry
point (CCStudio uses the default entry point _c_int00). Application code execution starts when the user
invokes the CCStudio Run command.

• The other usage option is a host that downloads the application to L2 (using an emulation protocol like
RTDX) and provides an NMI to the DSP so that the application execution can start. The entry point to
the application is always the L2 base. The application must be linked so that the entry point for the
application is the L2 base (_cint_00 should be mapped to 0x0080000).

3.3.2 I2C Master Mode

The C6457 device I2C master boot process is similar to the C6454/55 device's process, described in
Section 2.3.4 and Section 2.3.5, with the following differences:

1. The PLL1 multiplier is set to 16.
2. The C6457 device supports both slave device addresses 0x50 and 0x51
3. Changes in the I2C boot parameter block format.

3.3.2.1 I2C Boot Parameter Structure

Parameter blocks read from the EEPROM override the default settings stored in ROM. In addition, they
allow the boot modes to be chained (e.g., I2C master boot followed by I2C master write boot or I2C
master boot followed by SRIO boot mode). This gives the user flexibility to choose the settings.
BOOTMODE[3:0] pins must be set to I2C master boot mode for a parameter block to be read. It is
mandatory that the first block read in I2C master boot mode is a parameter block.

There are three different formats for parameter blocks: I2C, SRIO, and EMAC. These allow the user to
customize settings for I2C, SRIO, and EMAC boot modes.

21SPRUEC6G–March 2006–Revised June 2011 TMS320C645x/C647x Bootloader
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

C6457 Bootloader Operation www.ti.com

Table 12. I2C Boot Parameter Block Format

Address
Offset
(bytes) Name Value Default Value (in ROM)

0 Length Length of the table, in bytes. 30 bytes (size of I2C param block)

2 Checksum 1s complement checksum, 0 for disabled 0
checksum.

4 Boot mode Boot modes as shown in Table 13. BOOTMODE[3:0] translated to values in
Table 13.

6 Port Physical port number, always 0. 0

8 Software PLL Software PLL multiply factor, not used. 16

10 Option 0b000 - Boot Parameter mode 0b000 when BOOTMODE[3:0] is I2C master
boot mode

0b001 - Boot Table mode 0b001 when BOOTMODE[3:0] is I2C slave
boot mode

0b010 - Boot Config mode

0b011 - Slave boot

0b100 - Master broadcast boot

0b101-0b111 - Reserved

12 Device address I2C data address, LSW. DEVNUM[3:0] * 0x80
(low)

14 Device address Slave device address on I2C bus address. 0x50 or 0x51 depending on I2C boot mode
(high)

16 Broadcast In I2C master write mode, the I2C data is sent 0
address to this address (after I2C EEPROM read).

18 Device ID The address of this device on the I2C Bus 0x04 when BOOTMODE[3:0] is I2C master
(used for slave boot only). boot mode

CFG[3:0] + 1 when BOOTMODE[3:0] is I2C
slave boot mode

20 Core frequency, The frequency of the CPU core. 800
MHz

22 I2C bus The desired I2C bus frequency. Used only if 10
frequency, kHz the device is an I2C master.

24 Next device Used only if options specifiy boot configuration 0
address (low) mode. The address of the next boot parameter

table on the I2C EEPROM.

26 Next device Slave device address on I2C bus address. 0
address (high)

28 Address delay Delay to use (usec) between when the 0x200
address field is written to the I2C EEPROM
and the subsequent data read.

Table 13. C6457 Extended Boot Mode

Extended Boot Mode Value Boot Type

0x100 Reserved

0x101 I2C Master

0x102 I2C Slave

0x103 I2C Master Write

0x104 Reserved

0x105 EMAC

0x106 RapidIO

0x107 No boot

0x108 HPI

0x109 EMIFA

22 TMS320C645x/C647x Bootloader SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

www.ti.com C6457 Bootloader Operation

3.3.3 I2C Slave Boot Mode

The C6457 device I2C slave boot process is similar to the C6454/55 device's process, described in
Section 2.3.5, with the following difference:

1. Device ID, which is I2C device address as a slave, is CFG[3:0] + 1.

3.3.4 HPI Boot Mode

The C6457 device HPI boot process is similar to the C6454/55 device's process, described in
Section 2.3.2, with the following differences:

1. The HPI is ROM based instead of completely hardware based.
2. The PLL1 multiplier is set to 16.
3. Direct and boot-table loading are supported.

The boot code allows two bootloading modes for HPI: direct bootloading and boot-table processing. The
HPI boot mode is used by the host as follows:

• Direct HPI bootloading mode involves the host making direct write accesses to DSP memory. The DSP
de-asserts the HINT line to indicate that it is ready and then enters the sleep state. The host then
starts to make direct writes of the application code and data sections to DSP memory. The host can
also modify the default entry point of the application (default entry point is 0x800000) by writing to the
boot exit address in scratch memory (for details, see Table 10). When the host is finished writing the
application to DSP memory, it asserts the DSPINT event. This brings the DSP out of the sleep state
and starts execution at the address specified in the boot exit address. Since the HPI can only make
32-bit aligned accesses, the application data and code sections need to be 32-bit aligned.

• HPI boot-table loading mode involves the host writing boot-table blocks to the DSP boot-table buffer
located in scratch memory (for details, see Table 10) and the DSP processing the boot-table blocks.
The host and DSP follow a handshake procedure in order to ensure that the boot-table blocks are
correctly processed. The DSP de-asserts the HINT line to indicate to the host that it is ready, clears
the status bit in the boot-table buffer, and then enters the sleep state. The host then writes a boot-table
block to the boot-table buffer and asserts the DSPINT line. The DSPINT event wakes the DSP from
the sleep state and processes the boot-table block in the boot-table buffer. When processing on the
boot-table block is complete, the DSP updates the status field in the boot-table buffer (for status
values, see Table 14). The DSP de-asserts the HINT line indicating to the host that it is ready. The
host should check the status of the previous block and, if the status is OK, it writes the next boot-table
block and the process repeats. The sequence is terminated when the last boot-table block containing
the termination sequence is passed to the DSP for processing. The DSP updates the boot exit address
to the entry point of the application, updates the status field, performs cleanup, and branches to the
boot exit address.

Table 14. Boot-Table Processing Status Values and
Enumeration

Status Value Status Enumeration

0x0000 Previous boot-table block OK.

0x0001 Previous boot-table block checksum failed.

0x0002 Previous boot-table block had invalid header
length.

23SPRUEC6G–March 2006–Revised June 2011 TMS320C645x/C647x Bootloader
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

boot_chaining()

Setup Environment
for HPI Boot

Read HPI Boot Mode
from CFG Pins

HPI
mode == btbl

Mode
?

No Yes

Load Default Boot
Exit Address

Setup Boot-Table
Processing Environment

Send Interrupt to Host
Indicating DSP is Ready

Set up DSP for “idle”

DSP in Sleep State

DSP “wakes” up

Clear DSPINT
Restore Pre-Idle Settings

HPI
mode == btbl

Mode
?

Yes

No

Process Data in
Boot-Table Buffer

Boot
Exit Address

== 0 ?

No

Yes

Branch to Boot
Exit Address

1. Configure interrupt routing for DSPINT
2. Configure HPI peripheral

1. Configure RAM pointers for boot-
table processing

2. Initialize status field in boot-table buffer

1. Save ISTP value
2. Set ISTP to vector table location
3. Clear pending interrupts
4. Set interrupt enable mask
5. Enable global interrupts

Host operations in direct boot mode

1. Host writes to DSP memory for direct mode
2. Host writes to DSPINT field in HPIC register

1. Invoke boot-table processing for btbl buffer
2. Update status field in btbl buffer

Host operations in boot-table mode

1. Host checks if status field in
btbl buffer is OK

2. Host writes to btbl buffer
3. Host writes to DSPINT fields in

HPI register

1. Clear DSPINT in HPIC register
2. Restore ISTP value
3. Disable global interrupts

1. Perform cleanup
2. Branch to boot exit address

C6457 Bootloader Operation www.ti.com

• The boot-table mode requires the DSP to process every boot-table block. Therefore, the direct HPI
bootloading mode is faster. However, the boot-table loading mode can accommodate sections that are
aligned on any byte boundary.

• The HPI boot mode cannot be customized (using parameter block read using I2C master boot mode)
since the boot code does not configure the HPI peripheral.

Figure 3. Boot Code Flow for HPI Boot Mode

24 TMS320C645x/C647x Bootloader SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

www.ti.com C6457 Bootloader Operation

3.3.5 EMIFA Boot Mode

The C6457 device EMIFA boot process is similar to the C6454/55 device's process, described in
Section 2.3.3, with the following difference:

1. EMIFA is powered up by the boot code by programming the power-sleep controller (PSC).

3.3.6 EMAC Boot Mode

The bootloader configures the EMAC peripheral if it is enabled in bit 5 of Options in the EMAC boot
parameter table, opens a transmit and receive channel, configures Rx Communications Port Programming
Interface (CPPI), and also routes EMAC Rx interrupt to 4, and Tx interrupt to 5. Then the bootloader
transmits an Ethernet-ready frame out if it is enabled in bit 4 of Options. When an EMAC Rx interrupt
happens, the bootloader processes the received packet and passes the boot tables into memory. As a
result of Efusing, the MAC address is stored in registers 0x02880834 and 0x02880838. When the end of
the boot table is reached, it clears the Rx Channel 0 head description pointer to disable reception and exit
boots, and jumps to application.

The Ethernet peripheral is configured to accept a combination of a single MAC address and broadcast
packets, as defined by the Ethernet boot parameter table. The peripheral rejects packets not matching the
MAC addresses selected without a record of the drop.

Local L2 memory is allocated for the received packets. The 16K bytes start from 0x9FA000.

TI DSP Ethernet boot can be used in two modes: default mode and I2C customized mode. Both modes
have the same fundamental boot protocols. The default mode is used as a first level bootloader and
resides in internal ROM. The I2C customized mode resides in internal ROM, but the MAC parameters
reside on the EEPROM and are easily modified, which means you first boot through I2C and then jump to
EMAC boot. The I2C customized mode refers to using the EMAC parameter from the I2C EEPROM
EMAC parameter table values, which are customized, rather than the values inside the boot ROM.

In boot parameter tables, there is a common field called bootmode. By using the bootmode field, you can
first run the I2C master boot, and then jump to other boot modes (see Table 35 and Table 36).

Table 15. EMAC Boot Configuration

EMAC Boot SGMII Reference Clock
Configuration Advertised Ability Auto-negotiation (RIOSGMIICLK Pin) SERDES Line Rate

Master mode 1Gbps, full duplex Enabled 125 MHz 1.25 Gbps

Slave mode 1Gbps, full duplex Enabled 125 MHz 1.25 Gbps

Forced mode 1Gbps, full duplex Disabled 125 MHz 1.25 Gbps

Table 16. C6457 EMAC Boot Parameter Structure

Address Offset Default Value in
(bytes) Name Value ROM

0 Length Length of the table, in bytes. 56 bytes (size of
MAC param block)

2 Checksum 1s complement checksum, 0 for disabled checksum. 0

4 Boot mode Boot modes, as shown in Table 13, should be 0x0105 for BOOTMODE[4:0]
MAC boot. translated to values

shown in Table 13

6 Port Physical port number, always 0. 0

8 Software PLL Software PLL multiply factor, not used. 16

25SPRUEC6G–March 2006–Revised June 2011 TMS320C645x/C647x Bootloader
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

C6457 Bootloader Operation www.ti.com

Table 16. C6457 EMAC Boot Parameter Structure (continued)

Address Offset Default Value in
(bytes) Name Value ROM

10 Options Bits 2:0 110: SGMII mode 110

Others: reserved

Bit 3 0: Full duplex 0

1: Half duplex

Bit 4 0: Send Ethernet ready 0

1: Suppress Ethernet ready

Bit 5 0: Initialize MAC peripheral 0

1: No peripheral initialization

Bit 6 0: Flow control disabled 0

1: Flow control enabled

12 MAC addr high 16 most significant bits of MAC address. E-fuse

14 MAC addr med 16 next most significant bits of MAC address. E-fuse

16 MAC addr low 16 least significant bits of MAC address. E-fuse

18 Multi addr high 16 most significant bits of multicast MAC address. 0XFFFF

20 Multi addr med 16 next most significant bits of multicast MAC address. 0XFFFF

22 Multi addr low 16 least significant bits of multicast MAC address. 0XFFFF

24 UDP src port 16 bit UDP source port to accept during boot. 0 indicates 0
accept any source port.

26 UDP dest port Destination UDP port used for Ethernet-ready frame. 9 (discard)

28 Dev ID 12 ASCII characters (digits) specifying device ID. ASCII 00

30 Dev ID 34 ASCII characters (digits) specifying device ID. ASCII 0, ASCII
CFG[3:0]

32 Host MAC high 16 most significant bits of host MAC address used in 0XFFFF
Ethernet-ready frame.

34 Host MAC med 16 next most significant bits of host MAC address. 0XFFFF

36 Host MAC low 16 least significant bits of host MAC address. 0XFFFF

38 CPSGMII configuration Bit 3:0 CPSGMII configuration index to point to Default value in
table already stored in the ROM. ROM

Bit 4 0: Use configuration index in bit 3:0 0

1: Use direct configurations

Bit 5 0: Configure CPSGMII 0

1: Do not configure CPSGMII

40 CPSGMII control Control register, bit 15:0. 0x0000

42 CPSGMII MR_ADV_ABILITY register, bit 15:0. 0x0000
MR_ADV_ABILITY

44 CPSGMII TX_CFG high TX_CFG register, bit 31:16. 0x0000

46 CPSGMII TX CFG low TX_CFG register, bit 15:0. 0x0000

48 CPSGMII RX_CFG high RX_CFG register, bit 31:16. 0x0000

50 CPSGMII RX_CFG low RX_CFG register, bit 15:0. 0x0000

52 CPSGMII AUX_CFG high AUX_CFG register, bit 31:16. 0x0000

54 CPSGMII AUX_CFG low AUX_CFG register, bit 15:0. 0x0000

26 TMS320C645x/C647x Bootloader SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

www.ti.com C6457 Bootloader Operation

3.3.6.1 Ethernet-Ready Announcement Format

The Ethernet-ready announcement frame is made in the form of a BOOTP request so it can use a
standard format. No response is processed for this message and it is constructed in such a way that most
if not all BOOTP and DHCP servers discard it. The announcement frame is sent only once; no
re-transmission is done.

The frame uses the DIX MAC header format. The MAC header contains:
Destination MAC address = H-MAC addr (from boot

params, normally FF:FF:FF:FF:FF:FF)
Source MAC address == this devices MAC addr (from

boot params)
Type = IPV4 (0x800)

The IPV4 header contains:
Version = 4
Header length = 0
TOS = 0
Len = 328 (300 BOOTP + 8 UDP + 20 IP)
ID = 0x0001 Flags + Fragment offset = 0TTL = 0x10
Protocol = UDP (17)
Header checksum = 0xA9A5
SRC IP = 0.0.0.0
DEST IP = 0.0.0.0

The UDP header contains:
Source port = BOOTP client (68 decimal)
Destination port = BOOTP server (67 decimal).
Length = 308 (300 BOOTP + 8 UDP)
Checksum = 0 (not calculated)

The BOOTP Payload contains:
Opcode = Request (1)
HW Type = Ethernet (1)
HW Addr Len = 6
Hop Count = 0
Transaction ID = 0x12345678
Number of seconds = 1
Client IP = 0.0.0.0
Your IP = 0.0.0.0
Server IP = 0.0.0.0
Gateway IP = 0.0.0.0
Client HW Addr = this device's MAC address
Server hostname = "ti-boot-table-svr"
Filename = 'ti-boot-table-XXXX" (where XXXX

is the 4 character device ID from boot params)
Vendor info = all zeros

3.3.6.2 EMAC Boot Table Frame Format

The Ethernet boot table frame has a format as shown in Table 17.

Table 17. EMAC Boot Table Frame Format

Ethernet Header, one of the following types:
DIX Ethernet (DMAC, SMAC, type: 14 bytes)
802.3 w/ SNAP/LLC (DMAC, SMAC, len, LLC, SNAP: : 22 bytes)
DIX Ethernet w/ VLAN (18 bytes)
802.3 w/ VLAN and SNAP/LLC (26 bytes)

IPV4 (20 to 84 bytes)

UDP (8 bytes)

Boot Table Frame Header (4 bytes)

Boot Table Frame Payload (min 4 bytes, max limited by max Ethernet frame - previous headers)

27SPRUEC6G–March 2006–Revised June 2011 TMS320C645x/C647x Bootloader
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

C6457 Bootloader Operation www.ti.com

The boot table frame header has the following format.

Word 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Address

0 Magic Number (0x544B)

1 Opcode (0x01) Sequence Number

The boot table format is encapsulated in Ethernet frames with IPV4 and UDP headers. The following
paragraphs describe the Ethernet frames which are accepted. Frames not matching the criteria specified
below are silently discarded and subsequent frames are processed.
• Frames using both DIX and 802.3 MAC header formats are accepted as are frames with and without

VLAN tags. Any source MAC address is acceptable. A destination MAC address of this device (as
specified in boot params) or the M-MAC specified in the boot params is accepted. VLAN fields (other
than type/len) are ignored. If 802.3 format MAC format is used, the SNAP/LLC header is verified and
skipped. The type field selects IPV4 type (0x0800).

• The IPV4 header validates the Version 4 (IPV6 is not supported), flag and fragment fields, and protocol
(UDP) field. The header length field is parsed in order to properly skip header option words. Any
source and destination IP addresses are accepted.

• The UDP header validates that the source and destination port numbers match those specified in the
boot parameters. If the boot parameter source port field is 0 then the source port is accepted. The
UDP header length is sanity tested against the (appropriately adjusted) frame length. If the UDP length
is too long for the frame or is not a multiple of 2, the frame is discarded. The UDP checksum is verified
and the frame with incorrect UDP checksum is discarded if the UDP checksum field is non-zero.

• The following checks are performed on the boot table frame header. The magic number field and
opcode fields are compared to the expected values. The sequence number field is compared to the
expected value. The expected value for sequence number is 0 for the first frame processed and it
increments by one for each processed frame. The sequence number must be allowed to flip over when
the maximum is reached, meaning that the sequence number value 0 is expected after reception of
sequence number 256.

• The boot table frame payload (which is a multiple of 4 bytes in length) is processed by the boot-table
processing function.

3.3.7 SRIO Boot Mode

In the SRIO boot mode, an external host can load code and data directly into the DSP memory while the
CPU waits. The code and/or data sections are directly loaded to the desired locations, using the directIO
model. When the host has finished loading the application, it signals, through a doorbell interrupt, and the
CPU then begins executing at the base of L2. The C6457 device SRIO boot process is similar to the
C6454/55 device's process, described in Section 2.3.4 and Section 2.3.5, with the following differences:

1. The PLL1 multiplier is set to 16.
2. The C6457 device supports customized SRIO boot parameters tables through I2C.
3. The prescaler setting (IP_PRESCAL register) for physical layer timers changed from 0x21 to 0x08.
4. The SERDES reference clock and SRIO link rates are different for different SRIO boot configurations

(see Table 18).
5. The C6457 device uses CFG[3:0] + 2 as the device ID.
6. SRIO lane 0 must be connected to another SRIO device for SRIO configurations 0-3.
7. Doorbell interrupt routing (register DOORBELL0_ICRR): Routed to INTDST0.

Table 18. C6457 SRIO Boot Configuration

SerDes Reference Clock
Boot Configuration Port Configuration (RIOSGMIICLK Pin) Link Rate

SRIO boot configuration 0 4 1x ports 125 MHz 1.25 Gbps

SRIO boot configuration 1 1 4x port 125 MHz 3.125 Gbps

SRIO boot configuration 2 1 4x port 156.25 MHz 1.25 Gbps

SRIO boot configuration 3 1 4x port 156.25 MHz 3.125 Gbps

28 TMS320C645x/C647x Bootloader SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

www.ti.com C6457 Bootloader Operation

3.3.7.1 SRIO Boot Parameter Structure

Table 19. C6457 SRIO Boot Parameter Block

Default Value in
Offset Name Value ROM

0 Length Length of the table, in bytes. 24 bytes (size of
RIO param block)

2 Checksum 1s complement checksum, 0 for disabled checksum. 0

4 Boot mode Boot modes, as shown in Table 13, should be 0x0106 for SRIO BOOTMODE[4:0]
boot. translated to values

shown in Table 13

6 Port Physical port number, always 0. 0

8 Software PLL Software PLL multiply factor, not used. 16

10 Options Bit 0 0: Transmit disabled 0

1: Transmit enabled

Bit 1 0: Master Mode 0

1: Boot Table mode

Bit 2 0: Configure port 0

1: Don't configure port

12 Config index Base configuration index. 0:1x port, 1:4x port

14 Node ID 8-/16-bit node identification. CFG[3:0] + 2

16 SERDES reference SERDES reference clock frequency. From Boot mode
clock (MHz)

18 Link rate (Mbps) Data link rate (megabits per second). From Boot mode

20 Packet forward low Packet forward range low value. 0

22 Packet forward high Packet forward range high. 0

3.4 C6457 Bootloader Version

The bootloader version can be identified at the address reserved in scratch memory (see Table 10). The
bootloader version for silicon v1.0 is v1.5 Wed Dec 12 14:57:46 2007 i2c mac rapidio. The bootloader
version for silicon v1.2 is v1.6 Tue Oct 28 11:15:10 2008 i2c mac rapidio.

There are two known issues in the v1.5 bootloader:

1. The BOOTP packet is not sent out in the EMAC boot mode.
2. In SRIO boot mode when 4x mode falls back to 1x mode in certain hardware configurations, the boot

does not operate correctly. The workaround is: after the host sends the application image, the host
needs to write an application entry point to 0x9FFFFC and then, send the doorbell interrupt.

These problems have been fixed in the v1.6 bootloader.

29SPRUEC6G–March 2006–Revised June 2011 TMS320C645x/C647x Bootloader
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

C6472 Bootloader Operation www.ti.com

4 C6472 Bootloader Operation

This section describes the structure and operation of the C6472 bootloader.

4.1 Bootloader Operation

When the bootloader begins execution, the program performs some initialization of the DSP prior to
loading code. Table 20 describes the DSP resources that are configured by the bootloader. Table 21 lists
the cache settings while L2 cache is always disabled.

Table 20. C6472 Bootloader Initialization

Resource Initialization Value

Interrupts Interrupts are left disabled (GIE=0). For Serial RapidIO and UTOPIA boot interrupts are enabled, with the
interrupt mux registers configured to route the Serial RapidIO interrupt to the core. ISTP (the vector table
pointer) is set to point into the ROM. After the interrupt arrives the ISTP and interrupt mux registers are
restored to their default values. ISTP (the vector table pointer) is set to the base of ROM address,
0x00100000.

Memory L2 Memory from byte address 0x8969c0 to 0x897fff is reserved for core 0 during the boot and can be
reclaimed by application after the boot.

PLL1 Controller PLL1 setting is based on the configuration pin CFGGP4, refer to

Peripheral Powerup Peripherals are powered up as required by the boot loader in the selected mode. Peripherals are not
powered down when the boot loader exits. I2C is on always on power domain, HPI, UTOPIA, EMAC and
SRIO need to be powered on.

Registers The state of all CPU registers, with the exception of the PC, must be considered random on boot loader exit.

Table 21. C6472 Cache Settings

BOOTMODE[3:0] Boot Description L1P/L1D Cache Settings

0 No boot 32 KB

1 HPI 32 KB

From 2 to 14 Other boots L1P 32 KB, L1D 16 KB

15 Reserved N/A

After the initialization is performed, the bootloader loads the on-chip RAM according to the boot mode
selected, and then causes the DSP to begin execution of the loaded code. At that point, the boot load
process is complete. Whenever the DSP is reset, the CPU starts execution of the bootloader again, and
the entire boot load process is repeated.

A chip-level register, BOOT_COMPLETE_STAT, in the C6472 device serves two purposes:

1. Controlling the reset release of the individual cores by boot software, boot controller, or host in both
global boot and local boot.

2. Signaling the boot process completion. BOOT_COMPLETE_STAT is cleared by POR, RESET and
other device resets. LRESET does not affect BOOT_COMPLETE_STAT. For the BCx bits, writing 1
sets the bit and writing a 0 has no effect.

For global boot after POR/RESET/other device resets, the output of the 6 LSBs of
BOOT_COMPLETE_STAT drives the status of the BOOTACTIVE pin, which indicates when all of the
cores have been released from reset. BCx bits indicate when the individual core has been released from
reset.

The BOOTACTIVE output is used to indicate all cores have been advanced from the reset state to some
operation but does not indicate whether the operation beyond that is good. Additional ways of signaling for
all resets (POR, RESET, LRESET, etc.) should be defined by the application such as using GPIOs to
communicate to a host that the core(s) has advanced past reset and is ready for the next step or has
completed initialization and is ready to receive commands.

For local boot after local reset, BOOT_COMPLETE_STAT may not be as useful as for global boot. When
LRESET is applied to a single core there is typically no loading of the memory as is performed when POR,
RESET and other device resets (except no-boot mode) are applied and there is not an analogous boot
active state. When the core that has been given an LRESET is released and begins execution, it executes
from previously initialized memory. There are two cases to consider at this point: immediate boot (no boot

30 TMS320C645x/C647x Bootloader SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

www.ti.com C6472 Bootloader Operation

local mode) and host boot (local mode). For immediate boot, if it is important for the system to know that
the core is proceeding normally following an LRESET. Then the code that is executed should include
some signaling methods such as using a GPIO to indicate that it is executing "normally." This is system
dependent as a message on an application interface (like Ethernet) may be more appropriate than a GPIO
assertion. For host boot, since the host may want to initialize the local memory of the core before
releasing the reset, it is important to understand the reset state by the host when LRESET has been
applied to a core. The response to the assertion of the LRESET is given through RESET_STAT by the
core. In this case, the host should monitor RESET_STAT through HPI.

The following sections describe the various C6472 boot modes and boot tables in detail.

31SPRUEC6G–March 2006–Revised June 2011 TMS320C645x/C647x Bootloader
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

C6472 Bootloader Operation www.ti.com

4.2 Boot Mode Selection

The desired boot mode is selected by setting the three boot mode select pins BOOTMODE[3:0], which are
sampled during reset. The BOOTMODE pins are shared with GP[9:6], and configuration pins CFGGP[4:0]
are shared with GP[14:10]. CFGGP[4:0] is referred to as CFG[4:0] in Table 22.

Table 22 shows the available boot mode options and their corresponding BOOTMODE pin configurations
for the C6472 device.

Table 22. C6472 Boot Mode Selection

BOOTMODE[3:0] Description CFG[4:0] See

0 No boot None Section 4.3.2

1 Host (HPI) None Section 4.3.2

2 I2C (address 0x50) 4: x9(0), x19(1) Section 4.3.3

3:0: Boot param index

3 I2C (address 0x51) 4: x9(0), x19(1) Section 4.3.3

3:0: Boot param index

4 I2C Slave 4: x9(0), x19(1) Section 4.3.3

3:0:Unused

5 UTOPIA 8 bit Pllx10 Phy ID Section 4.3.4

6 UTOPIA 8 bit Pllx20 Phy ID Section 4.3.4

7 UTOPIA 16 bit Pllx10 Phy ID Section 4.3.4

8 UTOPIA 16 bit Pllx20 Phy ID Section 4.3.4

9 MAC Port 0 4: x10(0), x20(1) Section 4.3.5

3:0: Device ID (when RMII is selected, 3:
controls speed - 1 for 100 Mbs, 0 for 10 Mbps
- and Device ID[3] is 0)

10 MAC Port 1 4: x10(0), x20(1) Section 4.3.5

3:0: Device ID (when RMII is selected, 3:
controls speed - 1 for 100 Mbs, 0 for 10 Mbps
- and Device ID[3] is 0)

11 RapidIO boot configuration 0 4: x10(0), x20(1) Section 4.3.6

3:0: Node (0xf for default)

12 RapidIO boot configuration 1 4: x10(0), x20(1) Section 4.3.6

3:0: Node (0xf for default)

13 RapidIO boot configuration 2 4: x10(0), x20(1) Section 4.3.6

3:0: Node (0xf for default)

14 RapidIO boot configuration 4 4: x10(0), x20(1) Section 4.3.6

3:0: Node (0xf for default)

15 Reserved N/A N/A

32 TMS320C645x/C647x Bootloader SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

www.ti.com C6472 Bootloader Operation

4.3 Boot Mode Options

4.3.1 No Boot Mode

The C6472 device no boot option is the same as the C6454/55 device's process described in
Section 2.3.1.

4.3.2 HPI Boot Mode

If HPI boot is selected after global reset, all C64x+ megamodule cores are internally "held in reset" while
the remainder of the device (including all memory subsystems of the C64x+ megamodule) is released
from reset. During this period, an external host can initialize the C6472 device memory space (shared
memory as well as the C64x+ megamodule memory), as necessary through an HPI interface, including
internal configuration registers such as those that control the DDR2 or other peripherals. Once the host is
finished with all necessary initialization, it must write a 1 to bit fields BC0 through BC5 of the
BOOT_COMPLETE_STAT register (inside the Boot Controller) indicating boot complete of the
corresponding C64x+ megamodule. This transition causes the Boot Controller to bring the C64x+
megamodule core out of the "held-in-reset" state. The CPU then begins execution from the internal L2
SRAM address programmed in the DSP_BOOT_ADDRx register (default is base L2). All memory may be
written to and read by the host. This allows for the host to verify what it sends to the DSP, if required.

For the C6472 device, only the HPI peripheral can be used for host boot. PLL1, which provides CPU/6
clock to the HPI module, will initially be running in bypass mode. Therefore, the HPI interface will be very
slow and HRDY must be observed. Initial HPI accesses can configure PLL1 for full-speed operation to
make HPI accesses shorter.

4.3.3 I2C EEPROM Boot Mode

The C6472 device I2C EEPROM boot mode is similar to the C6454/55 device's process, described in
Section 2.3.4 and Section 2.3.5, with the following differences:

1. PLL1 is set up to either *9 or *19 mode.
2. The C6472 device supports both I2C address 0x50 and 0x51.
3. Changes in I2C EEPROM common block and I2C boot parameter tables.
4. The C6472 device has 6 cores while the C6454/55 device only has one. Core 0 executes the ROM

boot code. Secondary cores can be loaded by using the global address for download. Secondary cores
can be booted by setting the execution start address in the boot address registers (one per core), then
setting the boot complete bits for the cores to begin execution. The execution address register requires
that the execution start be aligned on a 22 bit boundary. Writing to the boot address and boot complete
registers can be done using standard boot tables.

Writing to the boot address and boot complete registers can be done using standard boot tables or core 0
to execute a subprogram at the beginning of the application. In Example 1, core 0 sets the boot address
for core 1 and core 2, then indicates that boot is complete for core 1 and core 2.

33SPRUEC6G–March 2006–Revised June 2011 TMS320C645x/C647x Bootloader
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

C6472 Bootloader Operation www.ti.com

Example 1. Booting With Core 0

; Boot complete & boot address registers
BOOT_COMPLETE .equ 0x02AB0004
DSP_BOOT_ADDR1 .equ 0x02AB0224
DSP_BOOT_ADDR2 .equ 0x02AB0244
DSP_BOOT_ADDR3 .equ 0x02AB0264
DSP_BOOT_ADDR4 .equ 0x02AB0284
DSP_BOOT_ADDR5 .equ 0x02AB02A4

; Boot entry address for core 1 & 2
BOOT_ENTRY_ADDR1 .equ 0x810000
BOOT_ENTRY_ADDR2 .equ 0x820000

MVKL DSP_BOOT_ADDR1, A1
MVKH DSP_BOOT_ADDR1, A1
MVKL BOOT_ENTRY_ADDR1, B1
MVKH BOOT_ENTRY_ADDR1, B1

SHR B1,10,B1
STW B1, *A1

MVKL DSP_BOOT_ADDR2, A1
MVKH DSP_BOOT_ADDR2, A1
MVKL BOOT_ENTRY_ADDR2, B1
MVKH BOOT_ENTRY_ADDR2, B1

SHR B1,10,B1
STW B1, *A1

MVKL BOOT_COMPLETE, A1
MVKH BOOT_COMPLETE, A1
MVK 0x07, B1 ; core 0, 1, 2 complete , 0x3f for all 6 cores
STW B1, *A1

34 TMS320C645x/C647x Bootloader SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

www.ti.com C6472 Bootloader Operation

4.3.3.1 I2C EEPROM Data Blocking

Table 23. C6472 I2C EEPROM Common Block Format

Offset (bytes) Size (bytes) Name Value

0 2 Block size The size of the block including the header

2 2 Checksum The ones complement checksum, including the block size and
checksum fields. Valid checksum values are 0 and -0

4 2 Bootmode Extended boot mode as shown in Table 24

6 2 Port Physical port number. Refer to the example used for EMAC
boot.

8 2 sw PLL Software PLL multiplier factor

10 - 126 0 - 118 Data

Table 24. C6472 Extended Boot Mode

Extended Boot Mode Value Boot Type

0x100 Reserved

0x101 I2C Master

0x102 I2C Slave

0x103 I2C Master Write

0x104 UTOPIA

0x105 MAC

0x106 Serial RapidIO

0x107 Sleep

0x108 HPI

The extended boot modes applies to all boot modes.

4.3.3.2 I2C Boot Parameter Structure

Table 25. C6472 I2C Boot Parameter Table

Offset (bytes) Name Value Default Value (Cold
Boot)

10 Option 0b000 - Boot parameter mode 0b000

0b001 - Boot table mode

0b010 - Boot configuration mode

0b011 - Slave boot

0b100 - Master broadcast boot

0b101-0b111 - Reserved

12 Dev addr (low) I2C data address, LSW CFG[3:0] *0x80

14 Dev addr (high) I2C data address, MSW (I2C bus address) 0x50 or 0x51 (from
boot mode)

16 Broadcast address If I2C master mode, the I2C data is sent to this address (after I2C 0
EEPROM read).

18 Device ID The address of this device on the I2C Bus (used for slave boot only) 0x4

20 Core freq MHz The frequency of the CPU core 50

22 I2C bus freq kHz The desired I2C bus frequency. Used only if the device is an I2C 10
master.

24 Next dev addr (low) Used only if options specify boot configuration mode. The address of 0
the next boot parameter table on the I2C EEPROM.

26 Next dev addr (high) The most significant word of the next boot parameter table 0

28 Address delay Delay to use (usec) between when the address field is written to the 0x200
I2C EEPROM and the subsequent data read

35SPRUEC6G–March 2006–Revised June 2011 TMS320C645x/C647x Bootloader
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

C6472 Bootloader Operation www.ti.com

4.3.4 UTOPIA Boot Mode

The bootloader configures the port, setup timer and then sleep until interrupt. Check for cell, if a cell is
found then send the payload to boot table process, if end of boot table reached, disable all Rx PDMA
channels, disable timer and then exit boot loader.

If hardware configuration is enabled in boot params, the peripheral is configured as a UTOPIA slave
(which is the only option available) and big Endian. All received cells are accepted and routed to PDMA
channel 8. PDMA channel 8 routes the cells to the 16 kByte of addressable memory in L1D. The actual
number of cells which can be buffered varies by the cell size parameter in the boot parameter table, and
ranges from 256 to 292 cells. UTOPIA PDMA interrupts are routed to the DSP at full and half buffer
marks. The DSP configures local timer 0 to interrupt the DSP every 50 μs for 16-bit mode, 100 μs for 8-bit
mode. The timer counters are based on the boot parameter field core_freq_MHz.

Each UTOPIA cell contains 32 byte payload, immediately followed by the 32-bit magic value 0x54492164.
The cell is searched from the end of the cell payload towards the start. Cells which do not have the magic
number are discarded (and counted). The payload is passed to the boot table processing function.

4.3.4.1 UTOPIA Boot Parameter Structure

Table 26. UTOPIA Boot Parameter Table

Offset (bytes) Name Value Default

10 Options Bit 0 0 - multi PHY 0

1 - single PHY

Bit 1 0 - 8 bit UTOPIA From boot mode

1 - 16 bit UTOPIA

Bit 2 0 - initialize Port 0

1 - Skip port initialization

12 Cell size (bytes) Physical cell size 53 (8 bit port)

54 (16 bit port)

14 Bus Width (bits) UTOPIA bus width From boot mode

16 Slave ID Slave ID used in multi PHY mode CFG[4:0]

18 Core freq (MHz) Core frequency (after PLL configuration) 500

4.3.5 EMAC Boot Mode

The bootloader configures the EMAC peripheral if it is enabled in bit 5 of Options in the EMAC boot
parameter table, opens a transmit and receive channel, configures Rx Communications Port Programming
Interface (CPPI), and also routes EMAC Rx interrupt to 4, and Tx interrupt to 5. Then the bootloader
transmits an Ethernet-ready frame out if it is enabled in bit 4 of Options. When an EMAC Rx interrupt
happens, the bootloader processes the received packet and passes the boot tables into memory. As a
result of Efusing, the MAC address is stored in registers 0x02A8 0700 and 0x02A8 0704. When the end of
the boot table is reached, it clears the Rx Channel 0 head description pointer to disable reception and exit
boots, and jumps to application.

The Ethernet peripheral is configured to accept a combination of a single MAC address and broadcast
packets, as defined by the Ethernet boot parameter table. The peripheral rejects packets not matching the
MAC addresses selected without a record of the drop.

The boot code configures the selected MAC port as determined by the macsel pins read from the devstat
register.

Local L1D memory is allocated for the received packets. The 16K bytes start from 0xf00000 are divided
into 10 packet buffers, each of size 1600 bytes. The CPPI is allocated in the dedicated CPPI memory area
for the port.

36 TMS320C645x/C647x Bootloader SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

www.ti.com C6472 Bootloader Operation

TI DSP Ethernet boot can be used in two modes: default mode and I2C customized mode. Both modes
have the same fundamental boot protocols. The default mode is used as a first level bootloader and
resides in internal ROM. The I2C customized mode resides in internal ROM, but the MAC parameters
reside on the EEPROM and are easily modified, which means you first boot through I2C and then jump to
EMAC boot. The I2C customized mode refers to using the EMAC parameter from the I2C EEPROM
EMAC parameter table values, which are customized, rather than the values inside the boot ROM.

In boot parameter tables, there is a common field called bootmode. By using the bootmode field, you can
first run the I2C master boot, and then jump to other boot modes (see Table 23 and Table 24).

4.3.5.1 EMAC Boot Parameter Structure

Table 27. C6472 EMAC Boot Parameter Table

Offset (bytes) Name Value Default

10 Options Bits 2:0 000: MII mode

001: RMII mode auto-negotiation

010: GMII mode From MACSEL

011: RGMII mode

100: SMII mode

101: S3MII mode

110: RMII mode 10 Mbps

111: RMII mode 100 Mbps

Bit 3 0: Full duplex 0

1: Half duplex

Bit 4 0: Send Ethernet ready 0

1: Suppress Ethernet ready

Bit 5 0: Initialize MAC peripheral 0

1: No peripheral initialization

Bit 6 0: Flow control disabled 0

1: Flow control enabled

12 MAC addr high 16 Most significant bits of MAC address (1) e-fuse

14 MAC addr med 16 next most significant bits of MAC address e-fuse

16 MAC addr low 16 least significant bits of MAC address e-fuse

18 Multi addr high 16 most significant bits of multicast MAC address (2) 0xffff

20 Multi addr med 16 next most significant bits of multicast MAC address 0xffff

22 Multi addr low 16 least significant bits of multicast MAC address 0xffff

24 UDP src port 16 bit UDP source port to accept during boot. 0 indicates to accept 0
any source port

26 UDP dest port Destination UDP port used for Ethernet-ready frame 9 (discard)

28 Dev id 12 ASCII characters (digits) specifying device id ASCII "00"
30 Dev id 34 ASCII characters (digits) specifying device id ASCII "0", ASCII

cfg[3:0]

32 Host MAC high 16 most significant bits of host MAC address used in Ethernet-ready 0xffff
frame

34 Host MAC med 16 next most significant bits of host MAC address 0xffff

36 Host MAC low 16 least significant bits of host MAC address 0xffff
(1) A value of 0 for MAC address indicates that the e-fuse value is used.
(2) A value of 0 for Multi cast address means the e-fuse multicast value is used (if available).

37SPRUEC6G–March 2006–Revised June 2011 TMS320C645x/C647x Bootloader
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

C6472 Bootloader Operation www.ti.com

4.3.5.2 Ethernet-Ready Announcement Format

The Ethernet-ready announcement frame is made in the form of a BOOTP request so it can use a
standard format. No response is processed for this message and it is constructed in such a way that most
if not all BOOTP and DHCP servers discard it. The announcement frame is sent only once; no
re-transmission is done.

The frame uses the DIX MAC header format. The MAC header contains:
Destination MAC address = H-MAC addr (from boot

params, normally FF:FF:FF:FF:FF:FF)
Source MAC address == this devices MAC addr (from

boot params)
Type = IPV4 (0x800)

The IPV4 header contains:
Version = 4
Header length = 0
TOS = 0
Len = 328 (300 BOOTP + 8 UDP + 20 IP)
ID = 0x0001 Flags + Fragment offset = 0TTL = 0x10
Protocol = UDP (17)
Header checksum = 0xA9A5
SRC IP = 0.0.0.0
DEST IP = 0.0.0.0

The UDP header contains:
Source port = BOOTP client (68 decimal)
Destination port = BOOTP server (67 decimal).
Length = 308 (300 BOOTP + 8 UDP)
Checksum = 0 (not calculated)

The BOOTP Payload contains:
Opcode = Request (1)
HW Type = Ethernet (1)
HW Addr Len = 6
Hop Count = 0
Transaction ID = 0x12345678
Number of seconds = 1
Client IP = 0.0.0.0
Your IP = 0.0.0.0
Server IP = 0.0.0.0
Gateway IP = 0.0.0.0
Client HW Addr = this device's MAC address
Server hostname = "ti-boot-table-svr"
Filename = 'ti-boot-table-XXXX" (where XXXX

is the 4 character device ID from boot params)
Vendor info = all zeros

38 TMS320C645x/C647x Bootloader SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

www.ti.com C6472 Bootloader Operation

4.3.5.3 EMAC Boot Table Frame Format

The Ethernet boot table frame has a format as shown in Table 28.

Table 28. EMAC Boot Table Frame Format

Ethernet Header, one of the following types:
DIX Ethernet (DMAC, SMAC, type: 14 bytes)
802.3 w/ SNAP/LLC (DMAC, SMAC, len, LLC, SNAP: : 22 bytes)
DIX Ethernet w/ VLAN (18 bytes)
802.3 w/ VLAN and SNAP/LLC (26 bytes)

IPV4 (20 to 84 bytes)

UDP (8 bytes)

Boot Table Frame Header (4 bytes)

Boot Table Frame Payload (min 4 bytes, max limited by max Ethernet frame - previous headers)

The boot table frame header has the following format.

Word 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Address

0 Magic Number (0x544B)

1 Opcode (0x01) Sequence Number

The boot table format is encapsulated in Ethernet frames with IPV4 and UDP headers. The following
paragraphs describe the Ethernet frames which are accepted. Frames not matching the criteria specified
below are silently discarded and subsequent frames are processed.

• Frames using both DIX and 802.3 MAC header formats are accepted as are frames with and without
VLAN tags. Any source MAC address is acceptable. A destination MAC address of this device (as
specified in boot params) or the M-MAC specified in the boot params is accepted. VLAN fields (other
than type/len) are ignored. If 802.3 format MAC format is used, the SNAP/LLC header is verified and
skipped. The type field selects IPV4 type (0x0800).

• The IPV4 header validates the Version 4 (IPV6 is not supported), flag and fragment fields, and protocol
(UDP) field. The header length field is parsed in order to properly skip header option words. Any
source and destination IP addresses are accepted.

• The UDP header validates that the source and destination port numbers match those specified in the
boot parameters. If the boot parameter source port field is 0 then the source port is accepted. The
UDP header length is sanity tested against the (appropriately adjusted) frame length. If the UDP length
is too long for the frame or is not a multiple of 2, the frame is discarded. The UDP checksum is verified
and the frame with incorrect UDP checksum is discarded if the UDP checksum field is non-zero.

• The following checks are performed on the boot table frame header. The magic number field and
opcode fields are compared to the expected values. The sequence number field is compared to the
expected value. The expected value for sequence number is 0 for the first frame processed and it
increments by one for each processed frame. The sequence number must be allowed to flip over when
the maximum is reached, meaning that the sequence number value 0 is expected after reception of
sequence number 256.

• The boot table frame payload (which is a multiple of 4 bytes in length) is processed by the boot-table
processing function.

39SPRUEC6G–March 2006–Revised June 2011 TMS320C645x/C647x Bootloader
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

C6472 Bootloader Operation www.ti.com

4.3.6 SRIO Boot Mode

The C6472 device SRIO boot mode is similar to the C6454/55 device's process, described in
Section 2.3.6, with the following differences:

1. PLL1 is set up to either *10 or *20 mode.
2. Peripheral is configured as two serial ports, 1X mode.
3. The C6472 device supports customized SRIO boot parameter tables through I2C.
4. Prescaler setting (Register IP_PRESCAL) for physical layer timers changed from 0x21 to 0x08.
5. The C6472 device uses CFG[3:0] + 2 as the device ID, but the C6454/55 device uses

BOOTMODE[2]:CFG[2:0] + 2 as the device ID.
6. The C6472 device has 6 cores while the C6454/55 device has only one. Core 0 executes the ROM

boot code. Secondary cores can be loaded by using the global address for download. Secondary cores
can be booted by setting the execution start address in the boot address registers (one per core), then
setting the boot complete bits for the cores to begin execution. The execution address register requires
that the execution start be aligned on a 22 bit boundary. Writing to the boot address and boot complete
registers can be done using standard boot tables.

7. Doorbell interrupt routing (register DOORBELL0_ICRR): Routed to INTDST0.

Table 29 lists the required SerDes reference clock and associated link rate settings.

Table 29. C6472 SRIO Boot Configurations

Boot Configuration SerDes Reference Clock SRIO Link Rate

SRIO boot configuration 0 125 MHz 1.25 Gbps

SRIO boot configuration 1 125 MHz 3.125 Gbps

SRIO boot configuration 2 156.25 MHz 1.25 Gbps

SRIO boot configuration 3 156.25 MHz 3.125 Gbps

4.3.6.1 SRIO Boot Parameter Structure

Table 30. C6472 SRIO Boot Parameter Table

Offset (bytes) Name Value Default

10 Options Bit 0 0: Transmit disabled 0

1: Transmit enabled

Bit 1 0: Master Mode 0

1: Reserved

Bit 2 0: Configure port 0

1: Don't configure port

12 Configuration Base configuration index From boot mode
index

14 Node ID 8/16 bit node identification CFG[3:0] + 2

16 SERDES Ref SERDES reference clock frequency in units of hundredths of megahertz; From boot mode
Clock (MHz*100) i.e., a value of 1 MHz would have a value of 100.

18 Link rate (Mbps) Data link rate (mega bits per second) From boot mode

20 Packet forward Packet forward range low value 0
low

22 Packet forward Packet forward range high 0
high

4.4 C6472 Bootloader Version

The bootloader version can be identified at byte address 0x0010 9190. The signature for C6472 silicon
revision 1.0 is v3.10 Thu Nov 16 16:17:31 2006 i2c mac utopia rapidio.

40 TMS320C645x/C647x Bootloader SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

www.ti.com C6474 Bootloader Operation

5 C6474 Bootloader Operation

This section describes the structure and operation of the C6474 bootloader.

5.1 Bootloader Initialization

When the bootloader begins execution, the program performs some initialization of the DSP prior to
loading code. Table 31 describes the DSP resources that are configured by the bootloader. Table 32 lists
the cache settings while L2 cache is always disabled.

Table 31. C6474 Bootloader Initialization

Resource Initialization Value

Interrupts Interrupts are left disabled (GIE=0). For Serial RapidIO boot interrupts are enabled, with the interrupt mux
registers configured to route the RapidIO interrupt to the core. ISTP (the vector table pointer) is set to point
into the ROM. After the interrupt arrives the ISTP and interrupt mux registers are restored to their default
values. ISTP (the vector table pointer) is set to the L3 ROM base address, 0x3C000000.

Memory L2 Memory from byte address 0x10880000 to 0x10885FFF and 0x108FFFF8 to 0x108FFFFF is reserved for
core 0 during the boot and can be reclaimed by application after the boot.

PLL1 Controller For all bootmodes, the PLL is set to x16 mode.

Peripheral Powerup Peripherals are powered up as required by the boot loader in the selected mode. Peripherals are not
powered down when the boot loader exits. I2C and EMAC are on always on power domain, only SRIO need
to be powered on.

Registers The state of all CPU registers, with the exception of the PC, must be considered random on boot loader exit.

Table 32. C6474 Cache Settings

BOOTMODE[3:0] Boot Description L1P/L1D Cache Settings

0 No boot 32 KB

From 1 to 6 I2C and EMAC boots 32 KB

7 Reserved N/A

From 8 to 11 SRIO boots 32 KB

From 12 to 15 Reserved N/A

After the initialization is performed, the bootloader loads the on-chip RAM according to the boot mode
selected, and then causes the DSP to begin execution of the loaded code. At that point, the boot load
process is complete. Whenever the DSP is reset, the CPU starts execution of the bootloader again, and
the entire boot load process is repeated.

L2 is configured as RAM only (no cache). The boot code uses a portion of L2 during the boot process
(see the shaded area in Table 33). When the boot is complete, the application can reclaim this reserved
memory.

41SPRUEC6G–March 2006–Revised June 2011 TMS320C645x/C647x Bootloader
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

C6474 Bootloader Operation www.ti.com

Table 33. L2 Memory Map for Bootloader Code

Memory Range Size (bytes) Description

0x10880000 - 0x10883FFF 16K Allocated for storing received EMAC packets. In addition, it is used to
store SRIO boot packets when boot table processing is selected for these
modes.

0x10884000 - 0x108847FF 2K Allocated as stack by boot code.

0x10884800 - 0x108848FF 256 Used by boot code to store boot parameters.

0x10884900 - 0x10884AFF 512 Allocated for un-initialized data structures used by the boot code.

0x10884B00 - 0x10885AFF 4K Used for boot table processing by the boot code.

0x10885B00 - 0x10885BFF 256 Boot version string.

0X10885C00 - 0x10885DFF 512 Boot statistics/diagnostics.

0X10885E00 - 0x10885EFF 256 Boot progress.

0x10885F00 – 0x10885F0F 16 Boot ROM table pointers.

0x108FFFF8 - 0x108FFFFB 4 Flag for core 0 to bring core 1 and 2 out of reset.

0X108FFFFC - 0x108FFFFF 4 Application entry point (boot exit address).

5.2 Multicore Considerations of Bootloading

The C6474 device contains three C64x+ Megamodule cores, and during boot, Core 0 begins executing
first after reset and keeps Core 1 and Core 2 in reset. Following reset, Core 0 begins executing from the
L3 ROM base address, and is responsible for performing the boot process (e.g., from I2C ROM, Ethernet,
or RapidIO), after which Core 0 brings the other C64x+ Megamodule cores out of reset by setting to 1 the
EVTPULSE4 bit (bit 4) of the C64x+ Megamodule Core 0's EVTASRT register. This process is valid only
once: writing 1, then writing 1 again will not bring Core 1 and 2 out of reset again. Then, the C64x+
Megamodule Core 0 begins execution from the entry address defined in the boot table. Core 1 and 2
begin execution from their L2 RAMs' base address, 0x800000. If the content in 0x800000 for Core 1 and
Core 2 is zero, Core 0 puts in IDLE code instead to make sure Core 1 and 2 stay in IDLE when those
cores are released out of reset.

42 TMS320C645x/C647x Bootloader SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

www.ti.com C6474 Bootloader Operation

5.3 Boot Mode Selection

The desired boot mode is selected by setting the three boot mode select pins BOOTMODE[3:0], which are
sampled during reset.

Table 34 shows the available boot mode options and their corresponding BOOTMODE pin configurations
for the C6474 device.

Table 34. C6474 Boot Mode Selection

BOOTMODE[3:0] Description DEVNUM[3:0] See

0 No boot None Section 5.4.1

1 I2C (address 0x50) Boot param index Section 5.4.2

2 I2C (address 0x51) Boot param index Section 5.4.2

3 I2C Slave None Section 5.4.2

4 EMAC (Master) Device ID Section 5.4.3

5 EMAC (Slave) Device ID Section 5.4.3

6 EMAC (Forced Mode) Device ID Section 5.4.3

7 Reserved N/A -

8 RapidIO boot configuration 0 3:0: Node (0xf for default) Section 5.4.4

9 RapidIO boot configuration 1 3:0: Node (0xf for default) Section 5.4.4

10 RapidIO boot configuration 2 3:0: Node (0xf for default) Section 5.4.4

11 RapidIO boot configuration 3 3:0: Node (0xf for default) Section 5.4.4

12 to 15 Reserved N/A -

5.4 Boot Mode Options

5.4.1 No Boot

The C6474 device no boot option is the same as the C6454/55 device's process described in
Section 2.3.1.

5.4.2 I2C EEPROM Boot Mode

The boot process is similar to the C6454/55 process, described in Section 2.3.4 and Section 2.3.5, with
the following differences:

1. PLL1 is set up to *16 mode.
2. The C6474 device supports both I2C address 0x50 and 0x51.
3. Changes in I2C EEPROM common block and I2C boot parameter tables.
4. The C6474 device has 3 cores while the C6454/55 devices only have one. For the C6474 device, core

0 executes the ROM boot code, secondary cores can be loaded by using the global address for
download. At the end of boot, for the silicon revision 1.x device, core 0 always releases core 1 and 2
out of reset; for the silicon revision 2.x device, the bootloader checks address 0x108FFFF8, if it is 0
(the default value), core 0 releases core 1 and 2 out of reset, if it has no 0 values, core 0 does not take
core 1 and core 2 out of reset. Afterwards, core 0 runs from its base of L2 RAM. Core 1 and core 2 run
from the base address of L2 RAM (i.e., 0x800000), if they are taken out of reset. If the content in
0x800000 for core 1 or 2 is zero; core 0 puts IDLE code in core 1 or core 2 local L2 base addresses to
make sure core 1 or 2 stay in IDLE when that core is released out of reset.

5.4.2.1 I2C EEPROM Data Blocking

All data stored on the I2C EEPROM are stored in blocks. Each block has a maximum length of 128 bytes,
including the 10 byte block header. Table 35 shows the format of the block.

43SPRUEC6G–March 2006–Revised June 2011 TMS320C645x/C647x Bootloader
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

C6474 Bootloader Operation www.ti.com

Table 35. C6474 I2C EEPROM Common Block Format

Offset (bytes) Size (bytes) Name Value

0 2 Block size The size of the block including the header.

2 2 Checksum The ones complement checksum, including the block size and checksum
fields. Valid checksum values are 0 and -0.

4 2 Bootmode Extended boot mode as shown in Table 36

6 2 Port Physical port number, always 0 for C6474.

8 2 sw PLL Software PLL multiplier factor. Ignored, and multiplier is always set to x16.

10 - 126 0 - 118 Data

The bootloader reads data from the I2C EEPROM in blocks. If the checksum shows a failure, the block is
re-read until the checksum is valid. A value of 0 in the checksum field disables the checksum check.

Table 36. C6474 Extended Boot Mode

Extended Boot Mode Value Boot Type

0x100 Reserved

0x101 I2C Master

0x102 I2C Slave

0x103 I2C Master Write

0x104 Reserved

0x105 EMAC

0x106 Serial RapidIO

The extended boot modes applies to EMAC and SRIO boot as well.

5.4.2.2 I2C Boot Parameter Structure

The I2C boot sequence begins with the DSP reading a block of boot parameters from the I2C EEPROM.
The boot parameter table complies with I2C EEPROM data blocking format. The boot parameters begin at
EEPROM address 0, and a boot parameter block consists of 128 bytes. The DSP calculates the address
of boot parameter block to load based on the value of the DEVNUM[3:0] bits of the Device Status Register
(DEVSTAT) as follows: address = 0x80 * DEVNUM[3:0]. This allows the DSP to read one of eight possible
boot parameter blocks. The values in this block determine how the boot process proceeds. Table 37
shows the structure of these boot parameters. Each value is 2 bytes, and the bytes must be stored in big
endian format (most significant byte at the lowest address), regardless of the endianness setting of the
processor. The structure has a total length of 30 bytes.

Table 37. C6474 I2C Boot Parameter Table

Default Value
Offset (bytes) Name Value (Cold Boot)

10 Option 0b000 - Boot Parameter mode

0b001 - Boot Table mode

0b010 - Boot Configuration mode 0b000

0b011 - Slave boot

0b100 - Master broadcast boot

0b101-0b111 - Reserved

12 Dev addr (low) I2C data address, LSW DEVNUM[3:0]*0x80

14 Dev addr (high) I2C data address, MSW (I2C bus address) 0x50 or 0x51 (from
boot mode)

16 Broadcast address If I2C master mode, the I2C data is sent to this address (after I2C 0
EEPROM read).

18 Device ID The address of this device on the I2C Bus (used for slave boot only) 0x4

20 Core freq MHZ The frequency of the CPU core 800

22 I2C bus freq kHz The desired I2C bus frequency. Used only if the device is an I2C 10
master.

44 TMS320C645x/C647x Bootloader SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

www.ti.com C6474 Bootloader Operation

Table 37. C6474 I2C Boot Parameter Table (continued)

Default Value
Offset (bytes) Name Value (Cold Boot)

24 Next dev addr (low) Used only if options specify boot configuration mode. The address of 0
the next boot parameter table on the I2C EEPROM.

26 Next dev addr (high) The most significant word of the next boot parameter table. 0

28 Address delay Delay to use (usec) between when the address field is written to the 0x200
I2C EEPROM and the subsequent data read.

The three LSBs of the option field (offset 10 bytes) define what the bootloader expects to find in the I2C
EEPROM at the offset specified by the Device Address (LSW), and how it should proceed. A value of 0
indicates another boot parameter table. A value of 1 indicates a boot table (i.e., a table which contains
initialized code and data sections, see Section 6.2.2). A value of 2 indicates a boot configuration table
(table used to configure registers, see Section 6.2.3). A value of 3 indicates slave boot and a value of 4
indicates master broadcast mode.

After the DSP reads and remembers the boot parameter table, the bootloader performs a boot re-entry.
On this pass the code executes based on the values provided by the boot parameter table.

If the options indicate a boot table is loading, then the bootloader reads from the I2C EEPROM address
specified in the boot table until the end of the table is reached (i.e., until all code and data sections are
loaded), and immediately begin execution of the loaded code by branching to the entry point specified at
the beginning of the boot table (see Section 6.2.2.1).

If the options indicate a boot configuration table is loading, then the bootloader reads from the specified
I2C EEPROM address until the end of the boot configuration table. This typically initializes various
registers (see Section 6.2.3). The next device address previously read from the boot parameter block is
copied into device address, the boot options are cleared, and the bootloader performs a boot re-entry.
This directs the ROM to read the I2C EEPROM at the specified device address, which should have
another boot parameter table.

5.4.3 EMAC Boot Mode

The EMAC boot process is similar to the C6457 process, described in Section 3.3.6, with the following
differences:

1. PLL1 is set up to *16 mode.
2. The C6474 device supports SGMII only and has a different interrupt handler.
3. Changes in EMAC boot parameter tables.
4. The C6474 device allocates 16K bytes start from L2 memory 0x10880000 received packets.
5. The C6474 device has only one EMAC port.
6. The C6474 device has 3 cores while the C6457 device only has one and the boot controller is

different. For the C6474 device, core 0 executes the ROM boot code, secondary cores can be loaded
by using the global address for download. At the end of boot, for the silicon revision 1.x device, core 0
always releases core 1 and 2 out of reset; for the silicon revision 2.x device, the bootloader checks
address 0x108FFFF8, if it is 0 (the default value), core 0 releases core 1 and 2 out of reset, if it has no
0 values, core 0 does not take core 1 and core 2 out of reset. Afterwards, core 0 runs from its base of
L2 RAM. Core 1 and core 2 run from the base address of L2 RAM (i.e., 0x800000), if they are taken
out of reset. If the content in 0x800000 for core 1 or 2 is zero; core 0 puts IDLE code in core 1 or core
2 local L2 base addresses to make sure core 1 or 2 stay in IDLE when that core is released out of
reset.

7. As a result of Efusing, the MAC address is stored in register 0x0288 0834 and 0x0288 0838 instead.

45SPRUEC6G–March 2006–Revised June 2011 TMS320C645x/C647x Bootloader
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

C6474 Bootloader Operation www.ti.com

5.4.3.1 EMAC Boot Parameter Structure

Table 38. C6474 EMAC Boot Parameter Table

Offset (bytes) Name Value Default

10 Options Bits 2:0 110: SGMII mode 110

Others: Reserved

Bit 3 0: Full duplex 0

1: Half duplex

Bit 4 0: Send Ethernet ready 0

1: Suppress Ethernet ready

Bit 5 0: Initialize MAC peripheral 0

1: No peripheral initialization

Bit 6 0: Flow control disabled 0

1: Flow control enabled

12 MAC addr high 16 Most significant bits of MAC address (1) e-fuse

14 MAC addr med 16 next most significant bits of MAC address e-fuse

16 MAC addr low 16 least significant bits of MAC address e-fuse

18 Multi addr high 16 most significant bits of multicast MAC address (2) 0xffff

20 Multi addr med 16 next most significant bits of multicast MAC address 0xffff

22 Multi addr low 16 least significant bits of multicast MAC address 0xffff

24 UDP src port 16 bit UDP source port to accept during boot. 0 indicates to accept 0
any source port

26 UDP dest port Destination UDP port used for Ethernet-ready frame 9 (discard)

28 Dev id 12 ASCII characters (digits) specifying device id ASCII "00"
30 Dev id 34 ASCII characters (digits) specifying device id ASCII "0", ASCII

DEVNUM[3:0]

32 Host MAC high 16 most significant bits of host MAC address used in Ethernet-ready 0xffff
frame

34 Host MAC med 16 next most significant bits of host MAC address 0xffff

36 Host MAC low 16 least significant bits of host MAC address 0xffff
(1) A value of 0 for MAC address indicates that the e-fuse value is used.
(2) A value of 0 for Multicast address means the e-fuse multicast value is used (if available).

46 TMS320C645x/C647x Bootloader SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

www.ti.com C6474 Bootloader Operation

Table 38. C6474 EMAC Boot Parameter Table (continued)

Offset (bytes) Name Value Default

38 CPSGMII Config Bit 3:0 CPSGMII configuration index to point to table From boot table
already stored in the ROM. (3)

Bit 4 0: Use configuration index in bit 3:0 0

1: Use direct configurations

Bit 5 0: Configure PSGMII 0

1: Don't configure CPSGMII

40 CPSGMMI control Control register, bit 15:0 0x0000

42 CPSGMII Mr_Adv_Ability register, bit 15:0 0x0000
Mr_Adv_Ability

44 CPSGMII Tx_Cfg TX_Cfg register, bit 31:16 0x0000
high

46 CPSGMII Tx_Cfg Tx_Cfg register, bit 15:0 0x0000
low

48 CPSGMII Rx_Cfg Rx_Cfg register, bit 31:16 0x0000
high

50 CPSGMII Rx_Cfg Rx_Cfg register, bit 15:0 0x0000
low

52 CPSGMII Aux_Cfg Aux_Cfg register, bit 31:16 0x0000
high

54 CPSGMII Aux_Cfg Aux_Cfg register, bit 15:0 0x0000
low

(3) The following table has been defined:

const sgmiiConfig_t sgmiiConfigTbl[DEVICE_SGMII_N_CFG_TABLES] = {
{

0x00000021, /* Control: enable auto-negotiation and master mode */
0x00009801, /* Mr_Adv_Ability: advertise fullduplex gigabit */
0x00000a21, /* Tx_Cfg */
0x00081021, /* Rx_Cfg */
0x0000000b /* Aux_Cfg */

},
{

0x00000001, /* Control: enable auto-negotiation and slave mode */
0x00000001, /* Mr_Adv_Ability: MAC to PHY Configuration reg */
0x00000a21, /* Tx_Cfg */
0x00081021, /* Rx_Cfg */
0x0000000b /* Aux_Cfg */

},
{

0x00000020, /* Control: force link, no auto-negotiation */
0x00009801, /* Mr_Adv_Ability: advertise fullduplex gigabit */
0x00000a21, /* Tx_Cfg */
0x00081021, /* Rx_Cfg */
0x0000000b /* Aux_Cfg */

}
};

The EMAC master boot uses table 0, slave boot uses table 1, and force mode uses table 2.

5.4.4 SRIO Boot Mode

In the SRIO boot mode, an external host can load code and data directly into the DSP memory while the
CPU waits. The code and/or data sections are directly loaded to the desired locations, using the directIO
model. When the host has finished loading the application, it signals through a doorbell interrupt and the
CPU then begins executing at the base of L2. The C6474 device SRIO boot process is similar to the
C6454/55 device's process, described in Section 2.3.6, with the following differences:

1. PLL1 is set up to *16 mode.
2. The peripheral is configured as two serial ports, 1X mode.
3. The C6474 device supports customized SRIO boot parameter tables through I2C.
4. Prescaler setting (register IP_PRESCAL) for physical layer timers changed from 0x21 to 0x08.

47SPRUEC6G–March 2006–Revised June 2011 TMS320C645x/C647x Bootloader
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

C6474 Bootloader Operation www.ti.com

5. The C6474 device has 3 cores while the C6454/55 devices only have one. For the C6474 device, core
0 executes the ROM boot code, secondary cores can be loaded by using the global address for
download. At the end of boot, for the silicon revision 1.x device, core 0 always releases core 1 and 2
out of reset; for the silicon revision 2.x device, the bootloader checks address 0x108FFFF8, if it is 0
(the default value), core 0 releases core 1 and 2 out of reset, if it has no 0 values, core 0 does not take
core 1 and core 2 out of reset. Afterwards, core 0 runs from its base of L2 RAM. Core 1 and core 2 run
from the base address of L2 RAM (i.e., 0x800000), if they are taken out of reset. If the content in
0x800000 for core 1 or 2 is zero; core 0 puts IDLE code in core 1 or core 2 local L2 base addresses to
make sure core 1 or 2 stay in IDLE when that core is released out of reset.

6. The recommended SERDES reference clock and SRIO link rate is different.
7. The C6474 device uses DEVNUM[3:0] + 2 as the default node ID when DEVNUM[3:0] is not 0xF.

When DEVNUM[3:0] is 0xF, then the default node ID is either 0xFF or 0xFFFF.
8. Doorbell interrupt routing (register DOORBELL0_ICRR): Routed to INTDST0.

Table 39 lists the required SERDES reference clock and associated link rate settings.

Table 39. C6474 SRIO Boot Configurations

Boot Configuration SerDes Reference Clock SRIO Link Rate

SRIO boot configuration 0 125 MHz 1.25 Gbps

SRIO boot configuration 1 125 MHz 3.125 Gbps

SRIO boot configuration 2 156.25 MHz 1.25 Gbps

SRIO boot configuration 3 156.25 MHz 3.125 Gbps

TI DSP SRIO boot can be used in two modes: default mode and I2C customized mode. Both modes have
the same fundamental boot protocols. The default mode is used as a first-level bootloader and resides in
internal ROM. The I2C customized mode resides in internal ROM, but the SRIO parameters reside on the
EEPROM and are easily modified, which means you first boot through I2C and then jump to SRIO boot.
The I2C customized mode refers to using the SRIO parameter from the I2C EEPROM SRIO parameter
table values, which are customized, rather than the values inside the boot ROM. In boot parameter tables,
there is a common field called bootmode. By using the bootmode field, you can first run the I2C master
boot, and then jump to other boot modes (see Table 35 and Table 36).

5.4.4.1 SRIO Boot Parameter Structure

Table 40. C6474 SRIO Boot Parameter Table

Offset (bytes) Name Value Default

10 Options Bit 0 0: Transmit disabled 0

1: Transmit enabled

Bit 1 0: Master Mode 0

1: Boot Table Mode

Bit 2 0: Configure port 0

1: Don't configure port

12 Configuration index Base configuration index From boot mode

14 Node ID 8/16 bit node identification DEVNUM[3:0] + 2

16 SERDES Ref Clock SERDES reference clock frequency in MHz From boot mode

18 Link rate (Mbps) Data link rate (mega bits per second) From boot mode

20 Packet forward low Packet forward range low value 0

22 Packet forward high Packet forward range high 0

48 TMS320C645x/C647x Bootloader SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

www.ti.com C6474 Bootloader Operation

5.5 C6474 Bootloader Version

The bootloader version can be identified at byte address 0x3C0075F0 from ROM. The signatures for
C6474 silicon revisions 1.2, 1.3, and 2.1 are shown in Table 41.

Table 41. Differences Between C6474 Bootloader Versions

Silicon Revision

1.2 and 1.3 2.1

Signature v1.5 Tue Feb 27 13:47:44 2007 i2c mac rapidio v1.7 Fri Aug 08 11:57:28 2008 i2c mac rapidio

Signature Address 0x3C0075F0 0x3c006780

Big Endian I2C boot Working Working

BOOTP packet in the Ethernet-ready announcement packet was sent Ethernet-ready announcement packet is sent out
EMAC boot out after link is up. after link is up also after correct PLL lock status of

SGMII register is obtained.

I2C Slave boot Won't work Working

Core 1 and core 2 reset Core 0 takes core 1 and core 2 out of reset at the Adding options so that core 0 does not take core 1
control end of boot. and core 2 out of reset after boot.

If address 0x108FFFF8 has non-zero values, then
core 0 does not take core 1 and core 2 out of reset
at the end of boot.

Otherwise, core 0 takes core 1 and core 2 out of
reset at the end of boot.

SRIO DEV_ID Default values Programmed SRIO register offset 0x1000 and
0x1004 so that SRIO host can differentiate different
endpoints during system exploration.

49SPRUEC6G–March 2006–Revised June 2011 TMS320C645x/C647x Bootloader
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

Creating Boot Images www.ti.com

6 Creating Boot Images

6.1 Host/PCI Boot

If the DSP is configured for Host or PCI boot, the host is expected to load code and initialized data directly
into the DSP's memory space, and to send an interrupt to the DSP indicating the completion of the load.
This causes the on-chip bootloader to transfer program control to the base of L2.

The application image which is to be loaded by the host is typically in a C header format. For each
section, the following information exists:
• Destination address in the DSP's memory space.
• Length of the section.
• Actual section data, in a form of an initialized array.

The method of creating such an image, starting with an .out file, is described in Using OFD Utility to
Create a DSP Boot Image (SPRAA64). The method involves using the hex6x and ofd6x tools, which are
part of the C6000 code generation tool suite.

6.1.1 PCI Auto-Initialization

As previously discussed in , if PCI auto-initialization through EEPROM is enabled (PCI_EEAI configuration
pin), then it is also necessary to program the required initialization values into an I2C EEPROM. This
section of I2C EEPROM is called the PCI Configuration Block. It starts at I2C EEPROM byte address
0x400. describes the memory map for the I2C EEPROM.

6.2 I2C Boot

In the I2C EEPROM boot process, as described in Section 2.3.4, the bootloader starts by reading one of
the eight possible boot parameter blocks (at I2C EEPROM address 0x80*CFGGP[2:0] for C645x/C6472
devices; 0x80*DEVNUM[3:0] for C6474 device). Depending on the value of the Options field in this boot
parameter block (see Table 6 and Table 37), the bootloader continues either by reading and processing a
boot configuration (to reprogram certain registers and memory locations), or by reading the actual
application in the form of a boot table. In the first case, the initial boot parameter set is typically configured
to point to a second boot parameter set which is loaded after boot configuration is processed. This second
parameter set typically indicates a boot table load (meaning the actual application), after which the
bootloader transfers control to the application code starting at the entry point specified by the boot table
itself.

This section describes how each of the three types of tables (boot parameters, boot table and boot
configuration table) are generated and how they are combined into a single I2C EEPROM image.
Examples of a few typical boot scenarios are also given.

6.2.1 Boot Parameter Table

Table 6 and Table 37 show the required format for the boot parameter table. The following sections
describe some examples.

6.2.1.1 Boot Parameter Example for Setting Up Boot Table Download

Table 42 shows an example of boot parameter entries used for boot table load. The options field is set to
01b, indicating the boot table mode. The LSW portion of the device address (offset 8) points to the start
address of the boot table at EEPROM address 0x80. This example assumes that the I2C EEPROM only
contains the parameter set at EEPROM address 0x0, and the actual application boot table which starts at
the next 128-byte block; i.e., at EEPROM address 0x80. The MSW portion of the device address is the
default I2C EEPROM bus address, 0x50.

50 TMS320C645x/C647x Bootloader SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRAA64
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

www.ti.com Creating Boot Images

Table 42. Boot Parameter Table Example for Boot Table Load

Offset (byte) Field Value

0 Length 26

2 Checksum 0 (check disabled)

4 Boot mode 5 (I2C boot)

6 Options 01 (Boot Table Mode)

8 Device address (LSW) 0x80

10 Device address (MSW) 0x50

12 Broadcast address 0 (not used)

14 Slave address 0 (not used)

16 CPU frequency (MHz) 50 (PLL1 Controller is in Bypass mode)

18 I2C clock frequency (kHz) 50

20 Next device address (LSW) 0 (not used)

22 Next device address (MSW) 0 (not used)

24 Address delay 0

6.2.1.2 Boot Parameter Example for Setting Up Boot Configuration Table Download

A boot configuration is used if certain peripherals must be programmed with values that differ from their
reset values prior to loading an application. For example, if the application needs to be loaded into DDR
memory, then a boot configuration load can be used to program DDR registers and enable the DDR
peripheral. Table 43 shows an example of boot parameter entries used for boot configuration load. This
example assumes that the boot configuration starts at address 0x400 in the EEPROM (at the end of the
parameter block), and that the boot parameters for the subsequent boot table block start at address 0x80.

Table 43. Boot Parameter Table Example for Boot Configuration Load

Offset (byte) Field Value

0 Length 26

2 Checksum 0 (check disabled)

4 Boot mode 5 (I2C boot)

6 Options 02 (Boot Configuration Mode)

8 Device address (LSW) 0x400

10 Device address (MSW) 0x50

12 Broadcast address 0 (not used)

14 Slave address 0 (not used)

16 CPU frequency (MHz) 50 (PLL1 Controller is in Bypass mode)

18 I2C clock frequency (kHz) 50

20 Next device address (LSW) 0x80

22 Next device address (MSW) 0x50

24 Address delay 0

6.2.2 Boot Table

The boot table is a block of data that contains the code and data sections to be loaded by the bootloader,
as well as other information such as the entry point address. The boot table is created by the hex
conversion utility (a standard component of the TMS320C6000 Assembly Language Tools), based on the
COFF (common object file format) output of the linker for the application code. The hex conversion utility
provides several output options, including industry-standard ASCII formats that can be used to program
parallel or serial EEPROMs, and formats that can be used in code for a host to transmit the boot table to
the DSP. Section 6.2.2.2 and Section 6.2.2.3 detail the role of the hex conversion utility in creating the
boot table.

51SPRUEC6G–March 2006–Revised June 2011 TMS320C645x/C647x Bootloader
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

Creating Boot Images www.ti.com

6.2.2.1 Boot Table Structure

The boot table format is as follows:

• A 32-bit header record indicating where the bootloader should branch after it has completed copying
the data

• For each COFF section

– 32-bit Section byte count
– 32-bit Section address (destination address for the copy)
– The data to be copied

• A 32-bit Termination record (0x00000000)

6.2.2.2 Code and Data Sections in the Boot Table

Code and data sections are inserted into the boot table automatically by the hex conversion utility. The
hex conversion utility uses information embedded by the linker in the .out file to determine each section's
destination address and length. Adding these sections to the boot table requires no special intervention by
the user. The hex conversion utility adds all initialized sections in the application to the boot table. The
remaining information included in this section describes the format of the sections in the boot table.

Each section is added to the boot table with the same format. The first entry is a 32-bit count representing
the length of the section in bytes. The next entry is a 32-bit destination address, where the first byte of the
section is copied.

The bootloader continues to read and copy these sections until it encounters a section whose byte count
is zero. This is the indication of the end of the boot table and the bootloader then branches to the entry
point address (specified at the beginning of the boot table) and begins execution of the application.

6.2.2.3 Creating the Boot Table

To create the boot table, use the following steps:

1. Use the hex conversion utility (hex6x.exe) revision 6.0A or later. Earlier versions may not support the
boot table features correctly.

2. Use the -boot option to cause the hex conversion utility to create a boot table.
3. Specify the romwidth and memwidth to both be 32 bits.
4. Specify the entry point using the -e entry_point_address option. The entry point is the address to

which the bootloader transfers execution when the boot load is complete.
5. Specify the desired output format. See the TMS320C6000 Assembly Language Tools v 6.1 User's

Guide (SPRU186) for detailed information on the available hex conversion utility output formats.
6. Specify the output filename using the -o output_filename option. If you do not specify an output

filename, the hex conversion utility creates a default filename based on the output format.
7. Specify the endianness to match the compilation, -order L for little endian, -order M for big endian.
8. Correct any sections that are not multiples of 32 bits. The C compiler always generates sections whose

lengths are multiples of 32 bits. This may not be the case for any sections declared in assembly. For
little endian systems, the byte order must be swapped for these remaining bytes.

Section 6.2.2.3.1 shows an example of how to set the hex conversion utility options to create a boot table.

52 TMS320C645x/C647x Bootloader SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRU186
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

www.ti.com Creating Boot Images

6.2.2.3.1 Example - Creating a Boot Table for ASCII Output

To create a boot table for the application my_app.out with the following conditions:

• Little endian compilation.
• Desired output is ASCII format in a file called my_app.hex.

Use the following options on the hex conversion utility command line or command file:
-boot ; option to create a boot table
-a ; ASCII format
-e _c_int00 ; Standard entry point for C library
-order L ; Little endian format
-memwidth32 ; memory width
-romwidth32 ; rom width
-o my_app.hex ; specify the output filename
my_app.out ; specify the input file

For detailed information on the C6x hex conversion utility, see the TMS320C6000 DSP Assembly
Language Tools User's Guide (SPRU186).

6.2.3 Boot Configuration Table

The boot configuration tables provide a read/modify/write capability to any memory on the DSP. Each
table entry has three elements that are each 32 bits wide. The first element is the address to be modified,
the second element is the set mask, and the third element is the clear mask. The bootloader reads the
specified address. Any bits that are set in the set mask are set, any that are set in the clear mask are
cleared, and any that are set in both are toggled. If both the set mask and the clear mask are 0, then the
value in the address field is branched via a standard function call, with the return address stored in
register B3.

Boot configuration tables are typically used to configure additional peripherals prior to the I2C boot
process, but they can be used to poke a small program into memory and execute it as well.

The boot configuration table is terminated when all three fields are zero.

An example of a boot configuration table with three entries is shown in Table 44.

Table 44. Boot Configuration Table Example

Offset Data Operation

0x0 0x0093001C Set 16 MSBs and clear 16 LSBs at address 0x0093001c

0x4 0xFFFF0000

0x8 0x0000FFFF

0xC 0x00930010 Toggle bits 0,8,16 and 24 at address 0x930010

0x10 0x01010101

0x14 0x01010101

0x18 0x00930018 Branch to function at address 0x00930018

0x1C 0x00000000

0x20 0x00000000

0x24 0x00000000 Termination

0x28 0x00000000

0x2C 0x00000000

53SPRUEC6G–March 2006–Revised June 2011 TMS320C645x/C647x Bootloader
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRU186
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

File headers

Section headers

Section 1 data

Section 2 data

...

Section n data

Relocation info

Symbol table

String table

32 bits

Entry point

Section 1 size

Section 1 dest

Section 1 data

Section 2 data

Section 2 dest

Section 2 size

...

Section n data

Section n dest

Section n size

0x00000000

32 bits

len chksum

.btbl

(first 124 bytes)

len chksum

.btbl

(next 124 bytes)

...

len chksum

.btbl
(last <= 124

bytes)

32 bits

...

.out .btbl .btbl.i2c
hex6x

-boot

-a

Create

128-byte

sections

with headers

param
len

param
checksum

mode
boot

options

(LSW)
devAddr

(MSW)
devAddr

address
broadcast

address
slave

I2C KHzCPU MHz

Next
devAddr
(LSW)

Next
devAddr
(MSW)

delay
addr

32 bits

.btbl.i2c

Offset 0x80*

CFGGP[2:0]:

Offset

devAddr:

.i2crom
Add boot

parameter

block

Creating Boot Images www.ti.com

6.2.4 Creating the Combined EEPROM Image

As seen in the previous sections, the overall I2C EEPROM image consists of a single or multiple boot
parameter sets, a boot table, and optionally, single or multiple boot configuration blocks. When the
individual files are merged, the offsets in the combined file need to be consistent with the values of Device
Address and Next Device Address. A few examples are shown in Figure 4 and Figure 5.

For the most part, this process can be done using existing tools (such as hex6x) or manually (such as
creating boot parameters or boot configuration, or determining proper file offsets), although the process
can be tedious if too many components are involved. The one step that is more involved is segmentation
of boot tables (or an exceptionally long boot configuration) into 128-byte sections. This is required for I2C
bootloader operation, as per Section 2.3.4.1 and Section 5.4.2.1. Also, a tool is needed to compute
checksums, if used.

Figure 4. Creating an I2C EEPROM Image Containing the Application Program

A The boot parameter table in this figure applies to the C6454/55 device only.

54 TMS320C645x/C647x Bootloader SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

devaddr(LSW)=0x400

bootmode=5

len=26

broadcast=0x0

CPU MHz=50

next devaddr(L)=0x80

I2C KHz=50

next devaddr(M)=0x50

Slave=0x0

Options=2

chksum

devaddr(MSW)=0x50

addrDelay=0

....

I2C KHzCPU MHz

next devaddr(L)=0x0

addrDelay=0x0

next devaddr(M)=0x0

broadcast=0

bootmode=5

len=26

devaddr(LSW)=0x480 devaddr(MSW)=0x50

Slave=0x0

Options=1

chksum

....

Boot configuration
application.bc.i2c

application.btbl.i2c
Boot table

Offset 0:
(parameter set 0)

Offset 0x80:
(parameter set 1)

Offset 0x100:
(parameter set 2)

Offset 0x400

Offset 0x480

len chksum

(<128 bytes)
boot configuration

.bc.i2c

32 bits

(first 124 bytes)
.btbl

length chksum

chksumlength

(next 124 bytes)
.btbl

....

chksum

(last <= 124 bytes)
.btbl

length

32 bits

.btbl.i2c

www.ti.com Creating Boot Images

Figure 5. Creating an I2C EEPROM Image Containing Boot Configuration and Application Program

A The boot parameter table in this figure applies to the C6454/55 device only.

6.3 EMAC Boot

Boot image should be created according to Table 17.

55SPRUEC6G–March 2006–Revised June 2011 TMS320C645x/C647x Bootloader
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

Bootloader Expansion www.ti.com

7 Bootloader Expansion

7.1 Second Stage Bootloader

In some cases, you may want to boot the DSP through a peripheral which is not supported by the
available boot modes and the on-chip bootloader. For example, you may want to do an Ethernet boot via
an EMAC peripheral. First, an Ethernet bootloader is loaded via a Master I2C boot and then it executes,
causing the rest of the application to be loaded via the EMAC peripheral. Alternatively, there may be a
need to customize the functionality provided by the on-chip ROM bootloader. This can be accomplished
using a Second Stage bootloader, which can be loaded via any of the supported bootmodes. The second
stage bootloader should use the same structures (boot parameters tables and boot tables) as the on-chip
ROM bootloader.

7.2 Boot to DDR2 Memory

In some cases, user may want to boot the application into DDR2 memory. This can be done by using a
boot configuration table. The basic idea is to enable DDR2 and program DDR2 memory controller
registers before the actual boot table process happens. Similar ideas apply to the C6474 device, but note
that the memory map may be different. The following code is an example that works on the C6454/55
DSK. For more details, if needed, see Section 6.2.

7.2.1 Create a Boot Table Mapped to DDR2 Memory

This is application dependent. The following is an example that helps for a quick test.
.data
.def someData

someData .word 01234ABCDh

.def byte1

.sect ".byte1"
byte1: .byte 0x12

.def byte2

.sect ".byte2"
byte2: .byte 0x12, 0x34

.text

.def _c_int00

myConst .equ 011223344h

_c_int00:

MVKL.S1 myConst, A1
MVKH.S1 myConst, A1

MVKL.S1 byte1, A2
MVKH.S1 byte1, A2
LDB.D1 *A2, B2

MVKL.S1 byte2, A3
MVKH.S1 byte2, A3
LDB.D1 *A3++, B3
LDB.D1 *A3, B4

etrap:

BNOP.S1 etrap, 5

56 TMS320C645x/C647x Bootloader SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

www.ti.com Bootloader Expansion

The corresponding link command file is as follows:
/* Object file */
example.obj

/* Linker options */
-c
-a

MEMORY
{

PAGE 0:

TEXT : origin = 0xE0000000, length = 0x0040
DATA : origin = 0xE0000100, length = 0x0004

BYTE1 : origin = 0xE0000200, length = 0x0001
BYTE2 : origin = 0xE0000300, length = 0x0002

}

SECTIONS
{

.text > TEXT PAGE 0

.data > DATA PAGE 0

.byte1 > BYTE1 PAGE 0

.byte2 > BYTE2 PAGE 0
}

7.2.2 Create a DDR2 Configuration Table

DDR2 memory controller configuration may need to be changed based on the real DDR2 memory used.
0x00640000 /* length, checksum */
0x02AC002C /* PERCFG1 *
0x00000002 /* DDR2CTL =1, enable DDR2 */
0xFFFFFFFD /* clear mask */
0x78000008 /* SDCFG */
0x00D38822 /* Unlock boot + timing, CAS4, 4 banks, 10 bit column */
0xFF2C77DD /* clear mask */
0x7800000C /* SDRFC */
0x000007A2 /* Refresh */
0xFFFFF85D /* clear mask */
0x78000010 /* SDTIM1 */
0x3EDB4B91 /* Timing 1 */
0xC124B46E /* clear mask */
0x78000014 /* SDTIM2 */
0x00A2C722 /* Timing 2 */
0xFF5D38DD /* clear mask */
0x780000E4 /* DMCCTL */
0x00000005 /* PHY read latency for CAS 4 is 4 + 2 - 1 */
0xFFFFFFFA /* clear mask */
0x78000008 /* SDCFG */
0x00538822 /* Lock, CAS4, 4 banks, 10 bit column, lock timing */
0xFFAC77DD /* clear mask */
0x00000000 /* last element */
0x00000000 /* last element */
0x00000000 /* last element */

57SPRUEC6G–March 2006–Revised June 2011 TMS320C645x/C647x Bootloader
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

Boot Parameter Table

(Boot Option = 2 = Boot Config Mode)

Boot Config Table

Boot Tables

Boot Parameter Table

(Boot Option = 1 = Boot Table Mode)

Bootloader Expansion www.ti.com

The functionality of the above boot configuration table is exactly the same as the following code which can
be put into a .GEL file.
#define PERCFG1 0x02AC002C /* Peripheral configuration 1 */

#define DDR_BASE_ADDR (0x78000000)

#define DDR_MIDR (*(int*)(DDR_BASE_ADDR + 0x00000000))
#define DDR_SDCFG (*(int*)(DDR_BASE_ADDR + 0x00000008))
#define DDR_SDRFC (*(int*)(DDR_BASE_ADDR + 0x0000000C))
#define DDR_SDTIM1 (*(int*)(DDR_BASE_ADDR + 0x00000010))
#define DDR_SDRIM2 (*(int*)(DDR_BASE_ADDR + 0x00000014))
#define DDR_DDRPHYC (*(int*)(DDR_BASE_ADDR + 0x000000E4))

init_DDR2()
{

/* Enable the DDR2 Memory Controller */
*(int *)PERCFG1 = 0x00000002;

/* Unlock boot+timing,CAS4,4 banks, 10 bit column */
DDR_SDCFG = 0x00D38822;
DDR_SDRFC = 0x000007A2; /* Refresh */
DDR_SDTIM1 = 0x3EDB4B91; /* Timing 1 */
DDR_SDRIM2 = 0x00A2C722; /* Timing 2 */
DDR_DDRPHYC = 0x00000005; /* PHY read latency for CAS 4 is 4 + 2 - 1 */
/* Lock, CAS4, 4 banks, 10 bit column, lock timing*/
DDR_SDCFG = 0x00538822;

}

NOTE: This example assumes DDR2 is implemented as 128M bytes starting from 0xE0000000.
For different boards with different DDR2 memory, suggest first use .GEL file to verify whether
the DDR2 memory is programmed correctly or not by writing the DDR2 memory in Code
Composer Studio.

7.2.3 Create the Combined EEPROM Image

Create the final I2C EEPROM data file, which includes boot parameter table, boot configuration table and
finally boot tables. For example, logically it is something like Figure 6.

Figure 6. I2C Tables Illustration

58 TMS320C645x/C647x Bootloader SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

www.ti.com Bootloader Expansion

7.2.4 Perform the Boot Test

To perform the boot test, program I2C EEPROM with the image in Figure 6, power off the target board,
select boot mode to be 5, and then power on. The boot tables should be in DDR2 memory now and the
expected result is:
A1 = 0x11223344
B2 = 0x12
B3 = 0x12
B4 = 0x34

59SPRUEC6G–March 2006–Revised June 2011 TMS320C645x/C647x Bootloader
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

60 TMS320C645x/C647x Bootloader SPRUEC6G–March 2006–Revised June 2011
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

www.ti.com Appendix A

Appendix A Revision History

This revision history highlights the technical changes made to the document in this revision.

Table 45. C645x/C647x Bootloader Revision History

See Additions/Modifications/Deletions

Section 2.3.5 Modified I2C slave address to 0x4

Section 3.2 Modified first paragraph

Table 25 Modified Default Value for DeviceID to 0x4

Table 37 Modified Default Value for DeviceID to 0x4

61SPRUEC6G–March 2006–Revised June 2011 Revision History
Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUEC6G

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications

Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers

Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps

DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy

DSP dsp.ti.com Industrial www.ti.com/industrial

Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical

Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and www.ti.com/automotive
Automotive

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com Wireless www.ti.com/wireless-apps

RF/IF and ZigBee® Solutions www.ti.com/lprf

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/communications
http://amplifier.ti.com
http://www.ti.com/computers
http://dataconverter.ti.com
http://www.ti.com/consumer-apps
http://www.dlp.com
http://www.ti.com/energy
http://dsp.ti.com
http://www.ti.com/industrial
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/security
http://logic.ti.com
http://www.ti.com/space-avionics-defense
http://power.ti.com
http://www.ti.com/automotive
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/wireless-apps
http://www.ti.com/lprf
http://e2e.ti.com

	TMS320C645x/C647x DSPBootloader
	Table of Contents
	Preface
	1 Introduction
	1.1 Bootloader Features
	1.2 Terms and Abbreviations

	2 C6454/C6455 Bootloader Operation
	2.1 Bootloader Initialization
	2.2 Boot Mode Selection
	2.3 Boot Mode Options
	2.3.1 Direct Execution From External Asynchronous Memory - No Boot
	2.3.2 Host Boot Mode (HPI/PCI)
	2.3.2.1 PCI Auto-Initialization

	2.3.3 EMIFA Boot Mode
	2.3.4 I2C EEPROM Boot Mode
	2.3.4.1 I2C EEPROM Data Blocking
	2.3.4.2 C6454/55 Boot Parameter Structure

	2.3.5 I2C Slave Boot Mode
	2.3.6 SRIO Boot Mode

	2.4 C6454/55 Bootloader Versions
	2.4.1 Determining the Bootloader Version
	2.4.2 Differences Between Bootloader Versions

	3 C6457 Bootloader Operation
	3.1 Bootloader Operation
	3.2 Boot Mode Selection
	3.3 Boot Mode Options
	3.3.1 No Boot Mode
	3.3.2 I2C Master Mode
	3.3.2.1 I2C Boot Parameter Structure

	3.3.3 I2C Slave Boot Mode
	3.3.4 HPI Boot Mode
	3.3.5 EMIFA Boot Mode
	3.3.6 EMAC Boot Mode
	3.3.6.1 Ethernet-Ready Announcement Format
	3.3.6.2 EMAC Boot Table Frame Format

	3.3.7 SRIO Boot Mode
	3.3.7.1 SRIO Boot Parameter Structure

	3.4 C6457 Bootloader Version

	4 C6472 Bootloader Operation
	4.1 Bootloader Operation
	4.2 Boot Mode Selection
	4.3 Boot Mode Options
	4.3.1 No Boot Mode
	4.3.2 HPI Boot Mode
	4.3.3 I2C EEPROM Boot Mode
	4.3.3.1 I2C EEPROM Data Blocking
	4.3.3.2 I2C Boot Parameter Structure

	4.3.4 UTOPIA Boot Mode
	4.3.4.1 UTOPIA Boot Parameter Structure

	4.3.5 EMAC Boot Mode
	4.3.5.1 EMAC Boot Parameter Structure
	4.3.5.2 Ethernet-Ready Announcement Format
	4.3.5.3 EMAC Boot Table Frame Format

	4.3.6 SRIO Boot Mode
	4.3.6.1 SRIO Boot Parameter Structure

	4.4 C6472 Bootloader Version

	5 C6474 Bootloader Operation
	5.1 Bootloader Initialization
	5.2 Multicore Considerations of Bootloading
	5.3 Boot Mode Selection
	5.4 Boot Mode Options
	5.4.1 No Boot
	5.4.2 I2C EEPROM Boot Mode
	5.4.2.1 I2C EEPROM Data Blocking
	5.4.2.2 I2C Boot Parameter Structure

	5.4.3 EMAC Boot Mode
	5.4.3.1 EMAC Boot Parameter Structure

	5.4.4 SRIO Boot Mode
	5.4.4.1 SRIO Boot Parameter Structure

	5.5 C6474 Bootloader Version

	6 Creating Boot Images
	6.1 Host/PCI Boot
	6.1.1 PCI Auto-Initialization

	6.2 I2C Boot
	6.2.1 Boot Parameter Table
	6.2.1.1 Boot Parameter Example for Setting Up Boot Table Download
	6.2.1.2 Boot Parameter Example for Setting Up Boot Configuration Table Download

	6.2.2 Boot Table
	6.2.2.1 Boot Table Structure
	6.2.2.2 Code and Data Sections in the Boot Table
	6.2.2.3 Creating the Boot Table

	6.2.3 Boot Configuration Table
	6.2.4 Creating the Combined EEPROM Image

	6.3 EMAC Boot

	7 Bootloader Expansion
	7.1 Second Stage Bootloader
	7.2 Boot to DDR2 Memory
	7.2.1 Create a Boot Table Mapped to DDR2 Memory
	7.2.2 Create a DDR2 Configuration Table
	7.2.3 Create the Combined EEPROM Image
	7.2.4 Perform the Boot Test

	Appendix A Revision History

