
TMS320C645x DSP
Inter-Integrated Circuit (I2C) Module

User's Guide

Literature Number: SPRU974A

December 2005–Revised October 2009

2 SPRU974A–December 2005–Revised October 2009
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

Preface ... 6
1 Introduction .. 7

1.1 Purpose of the Peripheral .. 7

1.2 Features .. 7

1.3 Functional Block Diagram .. 8

1.4 Industry Standard(s) Compliance Statement .. 8

2 Peripheral Architecture .. 9
2.1 Bus Structure .. 9

2.2 Clock Generation .. 10

2.3 Clock Synchronization ... 11

2.4 Signal Descriptions .. 11

2.5 START and STOP Conditions ... 12

2.6 Serial Data Formats ... 13

2.7 Operating Modes ... 14

2.8 NACK Bit Generation .. 15

2.9 Arbitration ... 16

2.10 Reset Considerations .. 16

2.11 Initialization ... 17

2.12 Interrupt Support ... 17

2.13 DMA Events Generated by the I2C Module .. 17

2.14 Emulation Considerations ... 18

2.15 I2C Bus Hang Caused by Reset ... 18

3 Registers .. 19
3.1 I2C Own Address Register (ICOAR) .. 20

3.2 I2C Interrupt Mask Register (ICIMR) .. 21

3.3 I2C Interrupt Status Register (ICSTR) .. 22

3.4 I2C Clock Divider Registers (ICCLKL and ICCLKH) .. 25

3.5 I2C Data Count Register (ICCNT) ... 27

3.6 I2C Data Receive Register (ICDRR) .. 28

3.7 I2C Slave Address Register (ICSAR) ... 29

3.8 I2C Data Transmit Register (ICDXR) ... 30

3.9 I2C Mode Register (ICMDR) ... 31

3.10 I2C Interrupt Vector Register (ICIVR) ... 35

3.11 I2C Extended Mode Register (ICEMDR) ... 36

3.12 I2C Prescaler Register (ICPSC) ... 37

Appendix A I2C Lockup Issue ... 38
Appendix B Revision History .. 42

3SPRU974A–December 2005–Revised October 2009 Table of Contents
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

www.ti.com

List of Figures

1 I2C Module Block Diagram ... 8

2 Multiple I2C Modules Connected ... 9

3 Clocking Diagram for the I2C Module .. 10

4 Synchronization of Two I2C Clock Generators During Arbitration .. 11

5 Bit Transfer on the I2C-Bus .. 12

6 I2C Module START and STOP Conditions .. 12

7 I2C Module Data Transfer.. 13

8 I2C Module 7-Bit Addressing Format (FDF = 0, XA = 0 in ICMDR) .. 13

9 I2C Module 10-Bit Addressing Format With Master-Transmitter Writing to Slave-Receiver (FDF = 0,
XA = 1 in ICMDR) ... 14

10 I2C Module Free Data Format (FDF = 1 in ICMDR).. 14

11 I2C Module 7-Bit Addressing Format With Repeated START Condition (FDF = 0, XA = 0 in ICMDR)........ 14

12 Arbitration Procedure Between Two Master-Transmitters ... 16

13 I2C Own Address Register (ICOAR).. 20

14 I2C Interrupt Mask Register (ICIMR).. 21

15 I2C Interrupt Status Register (ICSTR) .. 22

16 Roles of the Clock Divide-Down Values (ICCL and ICCH) .. 25

17 I2C Clock Low-Time Divider Register (ICCLKL) .. 25

18 I2C Clock High-Time Divider Register (ICCLKH) ... 26

19 I2C Data Count Register (ICCNT)... 27

20 I2C Data Receive Register (ICDRR).. 28

21 I2C Slave Address Register (ICSAR)... 29

22 I2C Data Transmit Register (ICDXR) ... 30

23 I2C Mode Register (ICMDR) ... 31

24 Block Diagram Showing the Effects of the Digital Loopback Mode (DLB) Bit..................................... 34

25 I2C Interrupt Vector Register (ICIVR)... 35

26 I2C Extended Mode Register (ICEMDR) ... 36

27 I2C Prescaler Register (ICPSC) ... 37

28 Example I2C Interface .. 38

29 Normal Read Cycle ... 39

30 Bus-Hang Read Cycle .. 39

31 I2C Master Bus Hang ... 40

32 Multiple Master Bus Hang .. 40

4 List of Figures SPRU974A–December 2005–Revised October 2009
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

www.ti.com

List of Tables

1 Operating Modes of the I2C Module .. 15

2 Generating a NACK Bit ... 15

3 Descriptions of the I2C Interrupt Events.. 17

4 Inter-Integrated Circuit (I2C) Registers ... 19

5 I2C Own Address Register (ICOAR) Field Descriptions ... 20

6 I2C Interrupt Mask Register (ICIMR) Field Descriptions ... 21

7 I2C Interrupt Status Register (ICSTR) Field Descriptions.. 22

8 I2C Clock Low-Time Divider Register (ICCLKL) Field Descriptions .. 25

9 I2C Clock High-Time Divider Register (ICCLKH) Field Descriptions ... 26

10 I2C Data Count Register (ICCNT) Field Descriptions .. 27

11 I2C Data Receive Register (ICDRR) Field Descriptions ... 28

12 I2C Slave Address Register (ICSAR) Field Descriptions .. 29

13 I2C Data Transmit Register (ICDXR) Field Descriptions... 30

14 I2C Mode Register (ICMDR) Field Descriptions... 31

15 Master-Transmitter/Receiver Bus Activity Defined by RM, STT, and STP Bits 33

16 How the MST and FDF Bits Affect the Role of TRX Bit .. 34

17 I2C Interrupt Vector Register (ICIVR) Field Descriptions .. 35

18 I2C Extended Mode Register (ICEMDR) Field Descriptions... 36

19 I2C Prescaler Register (ICPSC) Field Descriptions... 37

20 C645x I2C Revision History.. 42

5SPRU974A–December 2005–Revised October 2009 List of Tables
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

Preface
SPRU974A–December 2005–Revised October 2009

Read This First

About This Manual

This document describes the inter-integrated circuit (I2C) module in the TMS320C645x Digital Signal
Processor (DSP). The I2C provides an interface between the C645x device and other devices compliant
with Philips Semiconductors Inter-IC bus (I2C-bus) specification version 2.1 and connected by way of an
I2C-bus. This document assumes the reader is familiar with the I2C-bus specification.

Notational Conventions

This document uses the following conventions.

• Hexadecimal numbers are shown with the suffix h. For example, the following number is 40
hexadecimal (decimal 64): 40h.

• Registers in this document are shown in figures and described in tables.

– Each register figure shows a rectangle divided into fields that represent the fields of the register.
Each field is labeled with its bit name, its beginning and ending bit numbers above, and its
read/write properties below. A legend explains the notation used for the properties.

– Reserved bits in a register figure designate a bit that is used for future device expansion.

Related Documentation From Texas Instruments

The following documents describe the C6000™ devices and related support tools. Copies of these
documents are available on the Internet. Tip: Enter the literature number in the search box provided at
www.ti.com.

SPRU189 — TMS320C6000 DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C6000 digital signal processors
(DSPs).

SPRU198 — TMS320C6000 Programmer's Guide. Describes ways to optimize C and assembly code for
the TMS320C6000™ DSPs and includes application program examples.

SPRU301 — TMS320C6000 Code Composer Studio Tutorial. Introduces the Code Composer Studio™
integrated development environment and software tools.

SPRU321 — Code Composer Studio Application Programming Interface Reference Guide.
Describes the Code Composer Studio™ application programming interface (API), which allows you
to program custom plug-ins for Code Composer.

SPRU871 — TMS320C64x+ Megamodule Reference Guide. Describes the TMS320C64x+ digital signal
processor (DSP) megamodule. Included is a discussion on the internal direct memory access
(IDMA) controller, the interrupt controller, the power-down controller, memory protection, bandwidth
management, and the memory and cache.

C6000, TMS320C6000, Code Composer Studio are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

6 Preface SPRU974A–December 2005–Revised October 2009
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru189
http://www.ti.com/lit/pdf/spru198
http://www.ti.com/lit/pdf/spru301
http://www.ti.com/lit/pdf/spru321
http://www.ti.com/lit/pdf/SPRU871
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

User's Guide
SPRU974A–December 2005–Revised October 2009

C645x I2C Module

1 Introduction

This document describes the inter-integrated circuit (I2C) module in the TMS320C645x Digital Signal
Processor (DSP). This document assumes the reader is familiar with the I2C-bus specification.

1.1 Purpose of the Peripheral

The I2C module provides an interface between the C645x device and other devices compliant with the
I2C-bus specification and connected by way of an I2C-bus. External components attached to this 2-wire
serial bus can transmit and receive up to 8-bit wide data to and from the device through the I2C module.

1.2 Features

The I2C module has the following features:

• Compliance with the Philips Semiconductors I2C-bus specification (version 2.1):

– Support for byte format transfer
– 7-bit and 10-bit addressing modes
– General call
– START byte mode
– Support for multiple master-transmitters and slave-receivers mode
– Support for multiple slave-transmitters and master-receivers mode
– Combined master transmit/receive and receive/transmit mode
– I2C data transfer rate of from 10 kbps up to 400 kbps (Philips I2C rate)

• 2 to 7 bit format transfer
• Free data format mode
• One read DMA event and one write DMA event that can be used by the DMA
• Seven interrupts that can be used by the CPU
• Interface to V-bus (32-bit synchronously slave bus)
• Module enable/disable capability

7SPRU974A–December 2005–Revised October 2009 C645x I2C Module
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

ICXSR ICDXR

ICRSR ICDRR

Clock
synchronizer

Prescaler

Noise filters

Arbitrator

I2C INT

ICREVT

EDMA bus

Interrupt
to CPU

Sync events to
EDMA controller

SDA

SCL

Control/status
registers

CPU

EDMA
controller

I2C module

ICXEVT

Introduction www.ti.com

1.3 Functional Block Diagram

A block diagram of the I2C module is shown in Figure 1. Detailed information about the architecture of the
I2C module is in Section 2.

Figure 1. I2C Module Block Diagram

1.4 Industry Standard(s) Compliance Statement

The I2C module is compliant with the Philips Semiconductors Inter-IC bus (I2C-bus) specification version
2.1.

8 C645x I2C Module SPRU974A–December 2005–Revised October 2009
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

TI DSP

I2C

I2C

EPROM

I2C

I2C

TI DSP

VDD

Pull-up
resistors

Serial data (SDA)
Serial clock (SCL)

controller

www.ti.com Peripheral Architecture

2 Peripheral Architecture

The I2C module consists of the following primary blocks:

• A serial interface: one data pin (SDA) and one clock pin (SCL)
• Data registers to temporarily hold receive data and transmit data traveling between the SDA pin and

the CPU or the EDMA controller
• Control and status registers
• An EDMA bus interface to enable the CPU and the EDMA controller to access the I2C module

registers
• A clock synchronizer to synchronize the I2C input clock (from the clock generator) and the clock on the

SCL pin, and to synchronize data transfers with masters of different clock speeds
• A prescaler to divide down the input clock that is driven to the I2C module
• A noise filter on each of the two pins, SDA and SCL
• An arbitrator to handle arbitration between the I2C module (when it is a master) and another master
• Interrupt generation logic, so that an interrupt can be sent to the CPU
• EDMA event generation logic, so that activity in the EDMA controller can be synchronized to data

reception and data transmission in the I2C module

Figure 1 shows the four registers used for transmission and reception. The CPU or the EDMA controller
writes data for transmission to ICDXR and reads received data from ICDRR. When the I2C module is
configured as a transmitter, data written to ICDXR is copied to ICXSR and shifted out on the SDA pin one
bit a time. When the I2C module is configured as a receiver, received data is shifted into ICRSR and then
copied to ICDRR.

2.1 Bus Structure

Figure 1 shows how the I2C module is connected to the I2C bus. The I2C bus is a multi-master bus that
supports a multi-master mode. This allows more than one device capable of controlling the bus that is
connected to it. Each I2C device is recognized by a unique address and can operate as either transmitter
or receiver depending on the function of the device. In addition to being a transmitter or receiver, devices
connected to the I2C bus can also be considered as master or slave when performing data transfers. Note
that a master device is the device that initiates a data transfer on the bus and generates the clock signals
to permit that transfer. During this transfer, any device addressed by this master is considered a slave.
Figure 2 shows an example of multiple I2C modules connected for a two-way transfer from one device to
other devices.

Figure 2. Multiple I2C Modules Connected

9SPRU974A–December 2005–Revised October 2009 C645x I2C Module
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

module clock frequency �
I2C input clock frequency

(IPSC � 1)

master clock frequency �
module clock frequency

(ICCL � 6) � (ICCH � 6)

PLL1

ICCHIPSC

I2C input clock ÷ ÷ input clock

Module clock
for I2C module operation

Master clock
on SCL pin

I2C module

ICCL,

To I2C-buscontroller

Peripheral Architecture www.ti.com

2.2 Clock Generation

The I2C module is recommended to operate with a module clock in a range of 7 to 12 MHz. This clock is
generated via the I2C prescaler block. The I2C prescaler register (ICPSC) is used to divide-down the input
clock to obtain a clock within the specified range for the I2C module.

As shown in Figure 3, the PLL1 receives a signal from an external clock source and produces an I2C input
clock with a programmed frequency. The clock is then divided twice more inside the I2C module to
produce to the module clock and the master clock.

The module clock determines the frequency at which the I2C module operates. Figure 3 shows how this
clock is generated. A programmable prescaler in the I2C module divides down the I2C input clock to
produce the module clock. To specify the divide-down value, initialize the IPSC field of the I2C prescaler
register (ICPSC). The resulting frequency is:

The prescaler must be initialized only while the I2C module is in the reset state (IRS = 0 in ICMDR). The
prescaled frequency takes effect only when IRS is changed to 1. Changing the IPSC value while IRS = 1
has no effect.

The master clock appears on the SCL pin when the I2C module is configured to be a master on the
I2C-bus. This clock controls the timing of communication between the I2C module and a slave. As shown
in Figure 3, a second clock divider in the I2C module divides down the module clock to produce the
master clock. The clock divider uses the ICCL value of ICCLKL to divide-down the low portion of the
module clock signal and uses the ICCH value of ICCLKH to divide-down the high portion of the module
clock signal. The resulting frequency is:

Figure 3. Clocking Diagram for the I2C Module

10 C645x I2C Module SPRU974A–December 2005–Revised October 2009
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

Wait
state Start HIGH

period

SCL from
device #1

SCL from
device #2

Bus line
SCL

www.ti.com Peripheral Architecture

2.3 Clock Synchronization

Under normal conditions, only one master device generates the clock signal, SCL. During the arbitration
procedure, however, there are two or more masters and the clock must be synchronized so that the data
output can be compared. Figure 4 illustrates the clock synchronization. The wired-AND property of SCL
means that a device that first generates a low period on SCL (device #1) overrules the other devices. At
this high-to-low transition, the clock generators of the other devices are forced to start their own low
period. The SCL is held low by the device with the longest low period. The other devices that finish their
low periods must wait for SCL to be released, before starting their high periods. A synchronized signal on
SCL is obtained, where the slowest device determines the length of the low period and the fastest device
determines the length of the high period.

If a device pulls down the clock line for a longer time, the result is that all clock generators must enter the
wait state. In this way, a slave slows down a fast master and the slow device creates enough time to store
a received data word or to prepare a data word to be transmitted.

Figure 4. Synchronization of Two I2C Clock Generators During Arbitration

2.4 Signal Descriptions

For data communication, the I2C module has a serial data pin (SDA) and a serial clock pin (SCL), as
shown in Figure 1. These two pins carry information between the C645x device and other devices
connected to the I2C-bus. The SDA and SCL pins both are bidirectional. They each must be connected to
a positive supply voltage using a pull-up resistor. When the bus is free, both pins are high. The driver of
these two pins has an open-drain configuration to perform the required wired-AND function.

For additional timing and electrical specifications for these pins, see the device-specific data manual.

2.4.1 Input and Output Voltage Levels

One clock pulse is generated by the master device for each data bit transferred. Due to a variety of
different technology devices that can be connected to the I2C-bus, the levels of logic 0 (low) and logic 1
(high) are not fixed and depend on the associated power supply level. For details, see the device-specific
data manual.

11SPRU974A–December 2005–Revised October 2009 C645x I2C Module
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

Data line
stable data

Change of data
allowed

SDA

SCL

SDA

SCL

START
condition (S) condition (P)

STOP

Peripheral Architecture www.ti.com

2.4.2 Data Validity

The data on SDA must be stable during the high period of the clock (see Figure 5). The high or low state
of the data line, SDA, can change only when the clock signal on SCL is low.

Figure 5. Bit Transfer on the I2C-Bus

2.5 START and STOP Conditions

START and STOP conditions can be generated by the I2C module when the module is configured to be a
master on the I2C-bus. As shown in Figure 6:

• The START condition is defined as a high-to-low transition on the SDA line while SCL is high. A
master drives this condition to indicate the start of a data transfer.

• The STOP condition is defined as a low-to-high transition on the SDA line while SCL is high. A master
drives this condition to indicate the end of a data transfer.

Figure 6. I2C Module START and STOP Conditions

After a START condition and before a subsequent STOP condition, the I2C-bus is considered busy, and
the bus busy (BB) bit of ICSTR is 1. Between a STOP condition and the next START condition, the bus is
considered free, and BB is 0.

For the I2C module to start a data transfer with a START condition, the master mode (MST) bit and the
START condition (STT) bit in ICMDR must both be 1. For the I2C module to end a data transfer with a
STOP condition, the STOP condition (STP) bit must be set to 1. When BB is set to 1 and STT is set to 1,
a repeated START condition is generated. For a description of ICMDR (including the MST, STT, and STP
bits), see Section 3.9.

12 C645x I2C Module SPRU974A–December 2005–Revised October 2009
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

SDA

SCL

MSB

Acknowledgement
bit from slave

(No-)Acknowledgement
bit from receiver

1 2 7 8 9 1 2 8 9

Slave address

ACK
START

condition (S)
STOP

condition (P)R/W ACK

Data

S Slave address R/W ACK Data ACK Data ACK P

7 n n1 1 1 1 1 1

www.ti.com Peripheral Architecture

2.6 Serial Data Formats

Figure 7 shows an example of a data transfer on the I2C-bus. The I2C module supports 1-bit to 8-bit data
values. Figure 7 is shown in an 8-bit data format (BC = 000 in ICMDR). Each bit put on the SDA line
equates to 1 pulse on the SCL line and the data is always transferred with the most-significant bit (MSB)
first. The number of data values that can be transmitted or received is unrestricted; however, the
transmitters and receivers must agree on the number of data values being transferred. The I2C module
supports the following data formats.

• 7-bit addressing mode
• 10-bit addressing mode
• Free data format mode

Figure 7. I2C Module Data Transfer

2.6.1 7-Bit Addressing Format

In the 7-bit addressing format (Figure 8), the first byte after a START condition (S) consists of a 7-bit slave
address followed by a R/W bit. The R/W bit determines the direction of the data:

• R/W = 0: The master writes (transmits) data to the addressed slave.
• R/W = 1: The master reads (receives) data from the slave.

An extra clock cycle dedicated for acknowledgment (ACK) is inserted after the R/W bit. If the ACK bit is
inserted by the slave, it is followed by n bits of data from the transmitter (master or slave, depending on
the R/W bit). n is a number from 1 to 8 determined by the bit count (BC) bits of ICMDR. After the data bits
have been transferred, the receiver inserts an ACK bit. To select the 7-bit addressing format, write 0 to the
expanded address enable (XA) bit of ICMDR.

Figure 8. I2C Module 7-Bit Addressing Format (FDF = 0, XA = 0 in ICMDR)

n = The number of data bits (from 1 to 8) specified by the bit count (BC) field of ICMDR.

2.6.2 10-Bit Addressing Format

The 10-bit addressing format (Figure 9) is like the 7-bit addressing format, but the master sends the slave
address in two separate byte transfers. The first byte consists of 11110b, the two MSBs of the 10-bit slave
address, and R/W = 0 (write). The second byte is the remaining 8 bits of the 10-bit slave address. The
slave must send acknowledgment (ACK) after each of the two byte transfers. Once the master has written
the second byte to the slave, the master can either write data or use a repeated START condition to
change the data direction. (For more details about using 10-bit addressing, see the Philips
Semiconductors I2C-bus specification.)

To select the 10-bit addressing format, write 1 to the XA bit of ICMDR.

13SPRU974A–December 2005–Revised October 2009 C645x I2C Module
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

S

1

1 1 1 1 0 A A

7

A A A A A A A AACK0

11 8

ACK

1

Data

n

ACK

1

P

1

A A = 2 MSBs R/W 8 LSBs of slave address

DataDataS

1

DataACK ACK ACK P

1n n n 111

1 7 n 7 n1 1 1 1 1 1 1 1

S Slave address R/W ACK Data ACK S Slave address R/W ACK Data ACK P

1 Any
number

1 Any number

Peripheral Architecture www.ti.com

Figure 9. I2C Module 10-Bit Addressing Format With Master-Transmitter Writing to Slave-Receiver
(FDF = 0, XA = 1 in ICMDR)

n = The number of data bits (from 1 to 8) specified by the bit count (BC) field of ICMDR.

2.6.3 Free Data Format

In the free data format (Figure 10), the first bits after a START condition (S) are a data word. An ACK bit is
inserted after each data word, which can be from 1 to 8 bits, depending on the bit count (BC) bits of
ICMDR. No address or data-direction bit is sent. Therefore, the transmitter and the receiver must both
support the free data format, and the direction of the data must be constant throughout the transfer.

To select the free data format, write 1 to the free data format (FDF) bit of ICMDR.

Figure 10. I2C Module Free Data Format (FDF = 1 in ICMDR)

n = The number of data bits (from 1 to 8) specified by the bit count (BC) field of ICMDR.

2.6.4 Using a Repeated START Condition

The repeated START condition can be used with the 7-bit addressing, 10-bit addressing, and free data
formats. The 7-bit addressing format using a repeated START condition (S) is shown in Figure 11. At the
end of each data word, the master can drive another START condition. Using this capability, a master can
transmit/receive any number of data words before driving a STOP condition. The length of a data word
can be from 1 to 8 bits and is selected with the bit count (BC) bits of ICMDR.

Figure 11. I2C Module 7-Bit Addressing Format With Repeated START Condition (FDF = 0,
XA = 0 in ICMDR)

n = The number of data bits (from 1 to 8) specified by the bit count (BC) field of ICMDR.

2.7 Operating Modes

The I2C module has four basic operating modes to support data transfers as a master and as a slave. For
the names and descriptions of the modes, see Table 1.

If the I2C module is a master, it begins as a master-transmitter and, typically, transmits an address for a
particular slave. When giving data to the slave, the I2C module must remain a master-transmitter. In order
to receive data from a slave, the I2C module must be changed to the master-receiver mode.

If the I2C module is a slave, it begins as a slave-receiver and, typically, sends acknowledgment when it
recognizes its slave address from a master. If the master will be sending data to the I2C module, the
module must remain a slave-receiver. If the master has requested data from the I2C module, the module
must be changed to the slave-transmitter mode.

14 C645x I2C Module SPRU974A–December 2005–Revised October 2009
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

www.ti.com Peripheral Architecture

Table 1. Operating Modes of the I2C Module

Operating Mode Description

Slave-receiver mode The I2C module is a slave and receives data from a master. All slave modules begin in this mode.
In this mode, serial data bits received on SDA are shifted in with the clock pulses that are
generated by the master. As a slave, the I2C module does not generate the clock signal, but it
can hold SCL low while the intervention of the DSP is required (RSFULL = 1 in ICSTR) after data
has been received.

Slave-transmitter mode The I2C module is a slave and transmits data to a master. This mode can only be entered from
the slave-receiver mode; the I2C module must first receive a command from the master. When
you are using any of the 7-bit/10-bit addressing formats, the I2C module enters its
slave-transmitter mode if the slave address is the same as its own address (in ICOAR) and the
master has transmitted R/W = 1. As a slave-transmitter, the I2C module then shifts the serial data
out on SDA with the clock pulses that are generated by the master. While a slave, the I2C module
does not generate the clock signal, but it can hold SCL low while the intervention of the DSP is
required (XSMT = 0 in ICSTR) after data has been transmitted.

Master-receiver mode The I2C module is a master and receives data from a slave. This mode can only be entered from
the master-transmitter mode; the I2C module must first transmit a command to the slave. When
you are using any of the 7-bit/10-bit addressing formats, the I2C module enters its master-receiver
mode after transmitting the slave address and R/W = 1. Serial data bits on SDA are shifted into
the I2C module with the clock pulses generated by the I2C module on SCL. The clock pulses are
inhibited and SCL is held low when the intervention of the DSP is required (RSFULL = 1 in
ICSTR) after data has been received.

Master-transmitter mode The I2C module is a master and transmits control information and data to a slave. All master
modules begin in this mode. In this mode, data assembled in any of the 7-bit/10-bit addressing
formats is shifted out on SDA. The bit shifting is synchronized with the clock pulses generated by
the I2C module on SCL. The clock pulses are inhibited and SCL is held low when the intervention
of the DSP is required (XSMT = 0 in ICSTR) after data has been transmitted.

2.8 NACK Bit Generation

When the I2C module is a receiver (master or slave), it can acknowledge or ignore bits sent by the
transmitter. To ignore any new bits, the I2C module must send a no-acknowledge (NACK) bit during the
acknowledge cycle on the bus. Table 2 summarizes the various ways the I2C module sends a NACK bit.

Table 2. Generating a NACK Bit

NACK Bit Generation

I2C Module Condition Basic Optional

Slave-receiver mode Set the NACKMOD bit of ICMDR before the rising• Disable data transfers (STT = 0 in ICSTR).
edge of the last data bit you intend to receive.

• Allow an overrun condition (RSFULL = 1 in
ICSTR).

• Reset the module (IRS = 0 in ICMDR)
.

Master-receiver mode Set the NACKMOD bit of ICMDR before the rising• Generate a STOP condition (STOP = 1 in
AND edge of the last data bit you intend to receive.ICMDR).
Repeat mode

• Reset the module (IRS = 0 in ICMDR).(RM = 1 in ICMDR)

Master-receiver mode Set the NACKMOD bit of ICMDR before the rising• If STP = 1 in ICMDR, allow the internal data
AND edge of the last data bit you intend to receive.counter to count down to 0 and force a STOP
Nonrepeat mode condition.
(RM = 0 in ICMDR)

• If STP = 0, make STP = 1 to generate a
STOP condition.

• Reset the module (IRS = 0 in ICMDR).

15SPRU974A–December 2005–Revised October 2009 C645x I2C Module
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

1

0 0 01

0 0 0

1 1

111

0

Device #1 lost arbitration
and switches off

Bus line
SCL

Data from
device #1

Data from
device #2

Bus line
SDA

Peripheral Architecture www.ti.com

2.9 Arbitration

If two or more master-transmitters simultaneously start a transmission on the same bus, an arbitration
procedure is invoked. The arbitration procedure uses the data presented on the serial data bus (SDA) by
the competing transmitters. Figure 12 illustrates the arbitration procedure between two devices. The first
master-transmitter, which drives SDA high, is overruled by another master-transmitter that drives SDA low.
The arbitration procedure gives priority to the device that transmits the serial data stream with the lowest
binary value. Should two or more devices send identical first bytes, arbitration continues on the
subsequent bytes.

If the I2C module is the losing master, it switches to the slave-receiver mode, sets the arbitration lost (AL)
flag, and generates the arbitration-lost interrupt.

If during a serial transfer the arbitration procedure is still in progress when a repeated START condition or
a STOP condition is transmitted to SDA, the master-transmitters involved must send the repeated START
condition or the STOP condition at the same position in the format frame. Arbitration is not allowed
between:

• A repeated START condition and a data bit
• A STOP condition and a data bit
• A repeated START condition and a STOP condition

Figure 12. Arbitration Procedure Between Two Master-Transmitters

2.10 Reset Considerations

The I2C module has two reset sources: software reset and hardware reset.

2.10.1 Software Reset Considerations

To reset the I2C module, write 0 to the I2C reset (IRS) bit in the I2C mode register (ICMDR). All status bits
in the I2C interrupt status register (ICSTR) are forced to their default values, and the I2C module remains
disabled until IRS is changed to 1. The SDA and SCL pins are in the high-impedance state.

NOTE: If the IRS bit is cleared to 0 during a transfer, this can cause the I2C bus to hang. For more
information, see Section 2.15.

2.10.2 Hardware Reset Considerations

When a hardware reset occurs, all the registers of the I2C module are set to the default value and the
module remains disabled until the I2C reset (IRS) bit in the I2C mode register (ICMDR) is changed to 1.

NOTE: The IRS bit must be cleared to 0 while you configure/reconfigure the I2C module. Forcing
IRS to 0 can be used to save power and to clear error conditions.

16 C645x I2C Module SPRU974A–December 2005–Revised October 2009
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

www.ti.com Peripheral Architecture

2.11 Initialization

This section should cover the initialization issues and information that are not related to a specific
supported mode or use case, such as how to bring the peripheral out of reset. Any information specific to
one of the supported use cases (like the proper configuration for that use case) should be covered in the
corresponding supported use case section.

2.12 Interrupt Support

The I2C module is capable of interrupting the DSP CPU and sends a single interrupt to the CPU. The
CPU can determine which I2C events caused the interrupt by reading the I2C interrupt vector register
(ICIVR). ICIVR contains a binary-coded interrupt vector type to indicate which interrupt has occurred.
Reading ICIVR clears the interrupt flag; if other interrupts are pending, a new interrupt is generated. If
there is more than one pending interrupt flag, reading ICIVR clears the highest-priority interrupt flag.

2.12.1 Interrupt Events and Requests

The I2C module can generate the interrupts described in Table 3. Each interrupt has a flag bit in the I2C
interrupt status register (ICSTR) and a mask bit in the interrupt mask register (ICIMR). When one of the
specified events occurs, its flag bit is set. If the corresponding mask bit is 0, the interrupt request is
blocked; if the mask bit is 1, the request is forwarded to the CPU as an I2C interrupt.

Table 3. Descriptions of the I2C Interrupt Events

I2C Interrupt Initiating Event

Arbitration-lost interrupt (AL) Generated when the I2C arbitration procedure is lost or illegal START/STOP conditions occur

No-acknowledge interrupt Generated when the master I2C does not receive any acknowledge from the receiver
(NACK)

Registers-ready-for-access Generated by the I2C when the previously programmed address, data and command have been
interrupt (ARDY) performed and the status bits have been updated. This interrupt is used to let the controlling

processor know that the I2C registers are ready to be accessed.

Receive interrupt/status Generated when the received data in the receive-shift register (ICRSR) has been copied into the
(ICRINT and ICRRDY) ICDRR. The ICRRDY bit can also be polled by the DSP to read the received data in the ICDRR.

Transmit interrupt/status Generated when the transmitted data has been copied from ICDXR to the transmit-shift register
(ICXINT and ICXRDY) (ICXSR) and shifted out on the SDA pin. This bit can also polled by the DSP to write the next

transmitted data into the ICDXR.

Stop-Condition-Detection Generated when a STOP condition has been detected
interrupt (SCD)

Address-as-Slave interrupt Generated when the I2C has recognized its own slave address or an address of all (8) zeros.
(AAS)

2.12.2 Interrupt Multiplexing

The I2C interrupt to the DSP CPU is not multiplexed with any other interrupt source.

2.13 DMA Events Generated by the I2C Module

For the EDMA controller to handle transmit and receive data, the I2C module generates the following two
EDMA events. Activity in EDMA channels can be synchronized to these events.

• Receive event (ICREVT): When receive data has been copied from the receive shift register (ICRSR)
to the data receive register (ICDRR), the I2C module sends an REVT signal to the EDMA controller. In
response, the EDMA controller can read the data from ICDRR.

• Transmit event (ICXEVT): When transmit data has been copied from the data transmit register
(ICDXR) to the transmit shift register (ICXSR), the I2C module sends an XEVT signal to the EDMA
controller. In response, the EDMA controller can write the next transmit data value to ICDXR.

17SPRU974A–December 2005–Revised October 2009 C645x I2C Module
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

Peripheral Architecture www.ti.com

2.14 Emulation Considerations

The response of the I2C events to emulation suspend events (such as halts and breakpoints) is controlled
by the FREE bit in the I2C mode register (ICMDR). The I2C module either stops exchanging data
(FREE = 0) or continues to run (FREE = 1) when an emulation suspend event occurs. How the I2C
module terminates data transactions is affected by whether the I2C module is acting as a master or a
slave. For a description of the FREE bit in ICMDR, see Section 3.9.

2.15 I2C Bus Hang Caused by Reset

It is generally known that the I2C bus can hang if an I2C master is removed from the bus in the middle of
a data read. This can occur because the I2C protocol does not mandate a minimum clock rate. Therefore,
if a master is reset in the middle of a read while a slave is driving the data line low, the slave will continue
driving the data line low while it waits for the next clock edge. This prevents bus masters from initiating
transfers. If this condition is detected, the following three steps will clear the bus hang condition:

1. An I2C master must generate up to 9 clock cycles.
2. After each clock cycle, the data pin must be observed to determine whether it has gone high while the

clock is high.
3. As soon as the data pin is observed high, the master can initiate a start condition.

Appendix A contains more information on this topic.

18 C645x I2C Module SPRU974A–December 2005–Revised October 2009
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

www.ti.com Registers

3 Registers

Table 4 lists the memory-mapped registers for the inter-integrated circuit (I2C) module. For the memory
address of these registers, see the device-specific data manual.

Table 4. Inter-Integrated Circuit (I2C) Registers

Offset Acronym Register Description See

0h ICOAR I2C Own Address Register Section 3.1

4h ICIMR I2C Interrupt Mask/Status Register Section 3.2

8h ICSTR I2C Interrupt Status Register Section 3.3

Ch ICCLKL I2C Clock Low-Time Divider Register Section 3.4

10h ICCLKH I2C Clock High-Time divider Register Section 3.4

14h ICCNT I2C Data Count Register Section 3.5

18h ICDRR I2C Data Receive Register Section 3.6

1Ch ICSAR I2C Slave Address Register Section 3.7

20h ICDXR I2C Data Transmit Register Section 3.8

24h ICMDR I2C Mode Register Section 3.9

28h ICIVR I2C Interrupt Vector Register Section 3.10

2Ch ICEMDR I2C Extended Mode Register Section 3.11

30h ICPSC I2C Prescaler Register Section 3.12

19SPRU974A–December 2005–Revised October 2009 C645x I2C Module
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

Registers www.ti.com

3.1 I2C Own Address Register (ICOAR)

The I2C own address register (ICOAR) is used to specify its own slave address, which distinguishes it
from other slaves connected to the I2C-bus. If the 7-bit addressing mode is selected (XA = 0 in ICMDR),
only bits 6-0 are used; bits 9-7 are ignored. The ICOAR register is shown in Figure 13 and described in
Table 5.

Figure 13. I2C Own Address Register (ICOAR)
31 16

Reserved

R-0

15 10 9 0

Reserved OADDR

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 5. I2C Own Address Register (ICOAR) Field Descriptions

Bit Field Value Description

31-10 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.

9-0 OADDR 0-3FFh Own slave address. Provides the slave address of the I2C.

In 7-bit addressing mode (XA = 0 in ICMDR): bits 6-0 provide the 7-bit slave address of the I2C.
Bits 9-7 are ignored.

In 10-bit addressing mode (XA = 1 in ICMDR): bits 9-0 provide the 10-bit slave address of the I2C.

20 C645x I2C Module SPRU974A–December 2005–Revised October 2009
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

www.ti.com Registers

3.2 I2C Interrupt Mask Register (ICIMR)

The I2C interrupt mask register (ICIMR) is used by the CPU to individually enable or disable I2C interrupt
requests. The ICIMR register is shown in Figure 14 and described Table 6.

Figure 14. I2C Interrupt Mask Register (ICIMR)
31 8

Reserved

R-0

7 6 5 4 3 2 1 0

Reserved AAS SCD ICXRDY ICRRDY ARDY NACK AL

R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6. I2C Interrupt Mask Register (ICIMR) Field Descriptions

Bit Field Value Description

31-7 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.

6 AAS Address-as-slave interrupt enable bit.

0 Interrupt request is disabled.

1 Interrupt request is enabled.

5 SCD Stop condition detected interrupt enable bit.

0 Interrupt request is disabled.

1 Interrupt request is enabled.

4 ICXRDY Transmit-data-ready interrupt enable bit.

0 Interrupt request is disabled.

1 Interrupt request is enabled.

3 ICRRDY Receive-data-ready interrupt enable bit.

0 Interrupt request is disabled.

1 Interrupt request is enabled.

2 ARDY Register-access-ready interrupt enable bit.

0 Interrupt request is disabled.

1 Interrupt request is enabled.

1 NACK No-acknowledgment interrupt enable bit.

0 Interrupt request is disabled.

1 Interrupt request is enabled.

0 AL Arbitration-lost interrupt enable bit

0 Interrupt request is disabled.

1 Interrupt request is enabled.

21SPRU974A–December 2005–Revised October 2009 C645x I2C Module
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

Registers www.ti.com

3.3 I2C Interrupt Status Register (ICSTR)

The I2C interrupt status register (ICSTR) is used by the CPU to determine which interrupt has occurred
and to read status information. The ICSTR register is shown in Figure 15 and described in Table 7.

Figure 15. I2C Interrupt Status Register (ICSTR)
31 16

Reserved

R-0

15 14 13 12 11 10 9 8

Reserved SDIR NACKSNT BB RSFULL XSMT AAS AD0

R-0 R/W1C-0 R/W1C-0 R/W1C-0 R-0 R-1 R-0 R-0

7 6 5 4 3 2 1 0

Reserved SCD ICXRDY ICRRDY ARDY NACK AL

R-0 R/W1C-0 R/W1C-1 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0

LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear (writing 0 has no effect); -n = value after reset

Table 7. I2C Interrupt Status Register (ICSTR) Field Descriptions

Bit Field Value Description

31-15 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.

14 SDIR Slave direction bit. In digital-loopback mode (DLB), the SDIR bit is cleared to 0.

0 I2C is acting as a master-transmitter/receiver or a slave-receiver. SDIR is cleared by one of the
following events:

• A STOP or a START condition.
• SDIR is manually cleared. To clear this bit, write a 1 to it.

1 I2C is acting as a slave-transmitter.

13 NACKSNT No-acknowledgment sent bit. NACKSNT bit is used when the I2C is in the receiver mode. One
instance in which NACKSNT is affected is when the NACK mode is used (see the description for
NACKMOD in Section 3.9).

0 NACK is not sent. NACKSNT is cleared by one of the following events:

• It is manually cleared. To clear this bit, write a 1 to it.
• The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when the DSP is reset).

1 NACK is sent. A no-acknowledge bit was sent during the acknowledge cycle on the I2C-bus.

12 BB Bus busy bit. BB bit indicates whether the I2C-bus is busy or is free for another data transfer. In the
master mode, BB is controlled by the software.

0 Bus is free. BB is cleared by one of the following events:

• The I2C receives or transmits a STOP bit (bus free).
• BB is manually cleared. To clear this bit, write a 1 to it.
• The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when the DSP is reset).

1 Bus is busy. When the STT bit in ICMDR is set to 1, a restart condition is generated. BB is set by
one of the following events:

• The I2C has received or transmitted a START bit on the bus.
• SCL is in a low state and the IRS bit in ICMDR is 0.

11 RSFULL Receive shift register full bit. RSFULL indicates an overrun condition during reception. Overrun
occurs when the receive shift register (ICRSR) is full with new data but the previous data has not
been read from the data receive register (ICDRR). The new data will not be copied to ICDRR until
the previous data is read. As new bits arrive from the SDA pin, they overwrite the bits in ICRSR.

0 No overrun is detected. RSFULL is cleared by one of the following events:

• ICDRR is read.
• The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when the DSP is reset).

1 Overrun is detected.

22 C645x I2C Module SPRU974A–December 2005–Revised October 2009
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

www.ti.com Registers

Table 7. I2C Interrupt Status Register (ICSTR) Field Descriptions (continued)

Bit Field Value Description

10 XSMT Transmit shift register empty bit. XSMT indicates that the transmitter has experienced underflow.
Underflow occurs when the transmit shift register (ICXSR) is empty but the data transmit register
(ICDXR) has not been loaded since the last ICDXR-to-ICXSR transfer. The next ICDXR-to-ICXSR
transfer will not occur until new data is in ICDXR. If new data is not transferred in time, the previous
data may be re-transmitted on the SDA pin.

0 Underflow is detected.

1 No underflow is detected. XSMT is set by one of the following events:

• Data is written to ICDXR.
• The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when the DSP is reset).

9 AAS Addressed-as-slave bit.

0 The AAS bit has been cleared by a repeated START condition or by a STOP condition.

1 AAS is set by one of the following events:

• I2C has recognized its own slave address or an address of all zeros (general call).
• The first data word has been received in the free data format (FDF = 1 in ICMDR).

8 AD0 Address 0 bit.

0 AD0 has been cleared by a START or STOP condition.

1 An address of all zeros (general call) is detected.

7-6 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.

5 SCD Stop condition detected bit. SCD indicates when a STOP condition has been detected on the I2C
bus. The STOP condition could be generated by the I2C or by another I2C device connected to the
bus.

0 No STOP condition has been detected. SCD is cleared by one of the following events:

• By reading the INCODE bits in ICICR as 110b.
• SCD is manually cleared. To clear this bit, write a 1 to it.

1 A STOP condition has been detected.

4 ICXRDY Transmit-data-ready interrupt flag bit. ICXRDY indicates that the data transmit register (ICDXR) is
ready to accept new data because the previous data has been copied from ICDXR to the transmit
shift register (ICXSR). The CPU can poll ICXRDY or use the XRDY interrupt request.

0 ICDXR is not ready. ICXRDY is cleared by one of the following events:

• Data is written to ICDXR.
• ICXRDY is manually cleared. To clear this bit, write a 1 to it.

1 ICDXR is ready. Data has been copied from ICDXR to ICXSR. ICXRDY is forced to 1 when the I2C
is reset.

3 ICRRDY Receive-data-ready interrupt flag bit. ICRRDY indicates that the data receive register (ICDRR) is
ready to be read because data has been copied from the receive shift register (ICRSR) to ICDRR.
The CPU can poll ICRRDY or use the RRDY interrupt request.

0 ICDRR is not ready. ICRRDY is cleared by one of the following events:

• ICDRR is read.
• ICRRDY is manually cleared. To clear this bit, write a 1 to it.
• The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when the DSP is reset).

1 ICDRR is ready. Data has been copied from ICRSR to ICDRR.

2 ARDY Register-access-ready interrupt flag bit (only applicable when the I2C is in the master mode). ARDY
indicates that the I2C registers are ready to be accessed because the previously programmed
address, data, and command values have been used. The CPU can poll ARDY or use the ARDY
interrupt request.

0 The registers are not ready to be accessed. ARDY is cleared by one of the following events:

• The I2C starts using the current register contents.
• ARDY is manually cleared. To clear this bit, write a 1 to it.
• The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when the DSP is reset).

1 The registers are ready to be accessed.

• In the nonrepeat mode (RM = 0 in ICMDR): If STP = 0 in ICMDR, ARDY is set when the internal
data counter counts down to 0. If STP = 1, ARDY is not affected (instead, the I2C generates a
STOP condition when the counter reaches 0).

• In the repeat mode (RM = 1): ARDY is set at the end of each data word transmitted from ICDXR.

23SPRU974A–December 2005–Revised October 2009 C645x I2C Module
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

Registers www.ti.com

Table 7. I2C Interrupt Status Register (ICSTR) Field Descriptions (continued)

Bit Field Value Description

1 NACK No-acknowledgment interrupt flag bit. NACK applies when the I2C is a transmitter (master or
slave). NACK indicates whether the I2C has detected an acknowledge bit (ACK) or a
no-acknowledge bit (NACK) from the receiver. The CPU can poll NACK or use the NACK interrupt
request.

0 ACK received/NACK is not received. NACK is cleared by one of the following events:

• An acknowledge bit (ACK) has been sent by the receiver.
• NACK is manually cleared. To clear this bit, write a 1 to it.
• The CPU reads the interrupt source register (ICISR) when the register contains the code for a

NACK interrupt.
• The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when the DSP is reset).

1 NACK bit is received. The hardware detects that a no-acknowledge (NACK) bit has been received.
Note: While the I2C performs a general call transfer, NACK is 1, even if one or more slaves send
acknowledgment.

0 AL Arbitration-lost interrupt flag bit (only applicable when the I2C is a master-transmitter). AL primarily
indicates when the I2C has lost an arbitration contest with another master-transmitter. The CPU
can poll AL or use the AL interrupt request.

0 Arbitration is not lost. AL is cleared by one of the following events:

• AL is manually cleared. To clear this bit, write a 1 to it.
• The CPU reads the interrupt source register (ICISR) when the register contains the code for an

AL interrupt.
• The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when the DSP is reset).

1 Arbitration is lost. AL is set by one of the following events:

• The I2C senses that it has lost an arbitration with two or more competing transmitters that started
a transmission almost simultaneously.

• The I2C attempts to start a transfer while the BB (bus busy) bit is set to 1.

When AL is set to 1, the MST and STP bits of ICMDR are cleared, and the I2C becomes a
slave-receiver.

24 C645x I2C Module SPRU974A–December 2005–Revised October 2009
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

master clock frequency �
module clock frequency

(ICCL � 6) � (ICCH � 6)

SCL

High-time duration:
Tmod × (ICCH + 6)A

High-time duration:
Tmod × (ICCH + 6)A

Low-time duration:
Tmod × (ICCL + 6)A

Low-time duration:
Tmod × (ICCL + 6)A

www.ti.com Registers

3.4 I2C Clock Divider Registers (ICCLKL and ICCLKH)

When the I2C is a master, the module clock is divided down for use as the master clock on the SCL pin.
As shown in Figure 16, the shape of the master clock depends on two divide-down values, ICCL and
ICCH.

The frequency of the master clock can be calculated as:

Figure 16. Roles of the Clock Divide-Down Values (ICCL and ICCH)

A Tmod = module clock period = 1/module clock frequency

3.4.1 I2C Clock Low-Time Divider Register (ICCLKL)

The I2C clock low-time divider register (ICCLKL) is shown in Figure 17 and described in Table 8. For each
master clock cycle, ICCL determines the amount of time the signal is low. ICCLKL must be configured
while the I2C is still in reset (IRS = 0 in ICMDR).

Figure 17. I2C Clock Low-Time Divider Register (ICCLKL)
31 16

Reserved

R-0

15 0

ICCL

R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 8. I2C Clock Low-Time Divider Register (ICCLKL) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no
effect.

15-0 ICCL 0-FFFFh Clock low-time divide-down value of 1-65536. The period of the module clock is multiplied by
(ICCL + 6) to produce the low-time duration of the master clock on the SCL pin.

25SPRU974A–December 2005–Revised October 2009 C645x I2C Module
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

Registers www.ti.com

3.4.2 I2C Clock High-Time Divider Register (ICCLKH)

The I2C clock high-time divider register (ICCLKH) is shown in Figure 18 and described in Table 9. For
each master clock cycle, ICCH determines the amount of time the signal is high. ICCLKH must be
configured while the I2C is still in reset (IRS = 0 in ICMDR).

Figure 18. I2C Clock High-Time Divider Register (ICCLKH)
31 16

Reserved

R-0

15 0

ICCH

R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 9. I2C Clock High-Time Divider Register (ICCLKH) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no
effect.

15-0 ICCH 0-FFFFh Clock high-time divide-down value of 1-65536. The period of the module clock is multiplied by
(ICCH + 6) to produce the high-time duration of the master clock on the SCL pin.

26 C645x I2C Module SPRU974A–December 2005–Revised October 2009
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

www.ti.com Registers

3.5 I2C Data Count Register (ICCNT)

The I2C data count register (ICCNT) is used to indicate how many data words to transfer when the I2C is
configured as a master-transmitter (MST = 1 and TRX = 1 in ICMDR) and the repeat mode is off (RM = 0
in ICMDR). In the repeat mode (RM = 1), ICCNT is not used. The ICCNT register is shown in Figure 19
and described in Table 10.

The value written to ICCNT is copied to an internal data counter. The internal data counter is decremented
by 1 for each data word transferred (ICCNT remains unchanged). If a STOP condition is requested
(STP = 1 in ICMDR), the I2C terminates the transfer with a STOP condition when the countdown is
complete (that is, when the last data word has been transferred).

Figure 19. I2C Data Count Register (ICCNT)
31 16

Reserved

R-0

15 0

ICDC

R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 10. I2C Data Count Register (ICCNT) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no
effect.

15-0 ICDC 0-FFFFh Data count value. When RM = 0 in ICMDR, ICDC indicates the number of data words to
transfer in the nonrepeat mode. When RM = 1 in ICMDR, the value in ICCNT is a don't care. If
STP = 1 in ICMDR, a STOP condition is generated when the internal data counter counts
down to 0.

0 The start value loaded to the internal data counter is 65536.

1h-FFFFh The start value loaded to internal data counter is 1-65535.

27SPRU974A–December 2005–Revised October 2009 C645x I2C Module
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

Registers www.ti.com

3.6 I2C Data Receive Register (ICDRR)

The I2C data receive register (ICDRR) is used by the DSP to read the receive data. The ICDRR can
receive a data value of up to 8 bits; data values with fewer than 8 bits are right-aligned in the D bits and
the remaining D bits are undefined. The number of data bits is selected by the bit count bits (BC) of
ICMDR. The I2C receive shift register (ICRSR) shifts in the received data from the SDA pin. Once data is
complete, the I2C copies the contents of ICRSR into ICDRR. The CPU and the EDMA controller cannot
access ICRSR. The ICDRR register is shown in Figure 20 and described in Table 11.

Figure 20. I2C Data Receive Register (ICDRR)
31 16

Reserved

R-0

15 8 7 0

Reserved D

R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 11. I2C Data Receive Register (ICDRR) Field Descriptions

Bit Field Value Description

31-8 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.

7-0 D 0-FFh Receive data.

28 C645x I2C Module SPRU974A–December 2005–Revised October 2009
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

www.ti.com Registers

3.7 I2C Slave Address Register (ICSAR)

The I2C slave address register (ICSAR) contains a 7-bit or 10-bit slave address. When the I2C is not
using the free data format (FDF = 0 in ICMDR), it uses this address to initiate data transfers with a slave
or slaves. When the address is nonzero, the address is for a particular slave. When the address is 0, the
address is a general call to all slaves. If the 7-bit addressing mode is selected (XA = 0 in ICMDR), only
bits 6-0 of ICSAR are used; bits 9-7 are ignored. The ICSAR register is shown in Figure 21 and described
in Table 12.

Figure 21. I2C Slave Address Register (ICSAR)
31 16

Reserved

R-0

15 10 9 0

Reserved SADDR

R-0 R/W-3FFh

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 12. I2C Slave Address Register (ICSAR) Field Descriptions

Bit Field Value Description

31-10 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no
effect.

9-0 SADDR 0-3FFh Slave address. Provides the slave address of the I2C.

In 7-bit addressing mode (XA = 0 in ICMDR): bits 6-0 provide the 7-bit slave address that the
I2C transmits when it is in the master-transmitter mode. Bits 9-7 are ignored.

In 10-bit addressing mode (XA = 1 in ICMDR): Bits 9-0 provide the 10-bit slave address that
the I2C transmits when it is in the master-transmitter mode.

29SPRU974A–December 2005–Revised October 2009 C645x I2C Module
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

Registers www.ti.com

3.8 I2C Data Transmit Register (ICDXR)

The CPU writes transmit data to the I2C data transmit register (ICDXR). The ICDXR can accept a data
value of up to 8 bits. When writing a data value with fewer than 8 bits, the CPU must make sure that the
value is right-aligned in the D bits. The number of data bits is selected by the bit count bits (BC) of
ICMDR. Once data is written to ICDXR, the I2C copies the contents of ICDXR into the I2C transmit shift
register (ICXSR). The ICXSR shifts out the transmit data from the SDA pin. The CPU and the EDMA
controller cannot access ICXSR. The ICDXR register is shown in Figure 22 and described in Table 13.

Figure 22. I2C Data Transmit Register (ICDXR)
31 16

Reserved

R-0

15 8 7 0

Reserved D

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13. I2C Data Transmit Register (ICDXR) Field Descriptions

Bit Field Value Description

31-8 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.

7-0 D 0-FFh Transmit data.

30 C645x I2C Module SPRU974A–December 2005–Revised October 2009
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

www.ti.com Registers

3.9 I2C Mode Register (ICMDR)

The I2C mode register (ICMDR) contains the control bits of the I2C. The ICMDR register is shown in
shown in Figure 23 and described in Table 14.

Figure 23. I2C Mode Register (ICMDR)
31 16

Reserved

R-0

15 14 13 12 11 10 9 8

NACKMOD FREE STT Reserved STP MST TRX XA

R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0

7 6 5 4 3 2 0

RM DLB IRS STB FDF BC

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 14. I2C Mode Register (ICMDR) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.

15 NACKMOD No-acknowledge (NACK) mode bit (only applicable when the I2C is a receiver).

0 In slave-receiver mode: The I2C sends an acknowledge (ACK) bit to the transmitter during the each
acknowledge cycle on the bus. The I2C only sends a no-acknowledge (NACK) bit if you set the
NACKMOD bit.

In master-receiver mode: The I2C sends an ACK bit during each acknowledge cycle until the
internal data counter counts down to 0. When the counter reaches 0, the I2C sends a NACK bit to
the transmitter. To have a NACK bit sent earlier, you must set the NACKMOD bit.

1 In either slave-receiver or master-receiver mode: The I2C sends a NACK bit to the transmitter
during the next acknowledge cycle on the bus. Once the NACK bit has been sent, NACKMOD is
cleared.

To send a NACK bit in the next acknowledge cycle, you must set NACKMOD before the rising edge
of the last data bit.

14 FREE This emulation mode bit is used to determine the state of the I2C when a breakpoint is encountered
in the high-level language debugger.

0 When I2C is master: If SCL is low when the breakpoint occurs, the I2C stops immediately and
keeps driving SCL low, whether the I2C is the transmitter or the receiver. If SCL is high, the I2C
waits until SCL becomes low and then stops.

When I2C is slave: A breakpoint forces the I2C to stop when the current transmission/reception is
complete.

1 The I2C runs free; that is, it continues to operate when a breakpoint occurs.

13 STT START condition bit (only applicable when the I2C is a master). The RM, STT, and STP bits
determine when the I2C starts and stops data transmissions (see Table 15). Note that the STT and
STP bits can be used to terminate the repeat mode.

0 In master mode, STT is automatically cleared after the START condition has been generated.

In slave mode, if STT is 0, the I2C does not monitor the bus for commands from a master. As a
result, the I2C performs no data transfers.

1 In master mode, setting STT to 1 causes the I2C to generate a START condition on the I2C-bus.

In slave mode, if STT is 1, the I2C monitors the bus and transmits/receives data in response to
commands from a master.

12 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.

11 STP STOP condition bit (only applicable when the I2C is a master). The RM, STT, and STP bits
determine when the I2C starts and stops data transmissions (see Table 15). Note that the STT and
STP bits can be used to terminate the repeat mode.

0 STP is automatically cleared after the STOP condition has been generated.

1 STP has been set by the DSP to generate a STOP condition when the internal data counter of the
I2C counts down to 0.

31SPRU974A–December 2005–Revised October 2009 C645x I2C Module
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

Registers www.ti.com

Table 14. I2C Mode Register (ICMDR) Field Descriptions (continued)

Bit Field Value Description

10 MST Master mode bit. MST determines whether the I2C is in the slave mode or the master mode. MST
is automatically changed from 1 to 0 when the I2C master generates a STOP condition (see
Table 16).

0 Slave mode. The I2C is a slave and receives the serial clock from the master.

1 Master mode. The I2C is a master and generates the serial clock on the SCL pin.

9 TRX Transmitter mode bit. When relevant, TRX selects whether the I2C is in the transmitter mode or the
receiver mode. Table 16 summarizes when TRX is used and when it is a don't care.

0 Receiver mode. The I2C is a receiver and receives data on the SDA pin.

1 Transmitter mode. The I2C is a transmitter and transmits data on the SDA pin.

8 XA Expanded address enable bit.

0 7-bit addressing mode (normal address mode). The I2C transmits 7-bit slave addresses (from bits
6-0 of ICSAR), and its own slave address has 7 bits (bits 6-0 of ICOAR).

1 10-bit addressing mode (expanded address mode). The I2C transmits 10-bit slave addresses (from
bits 9-0 of ICSAR), and its own slave address has 10 bits (bits 9-0 of ICOAR).

7 RM Repeat mode bit (only applicable when the I2C is a master-transmitter). The RM, STT, and STP
bits determine when the I2C starts and stops data transmissions (see Table 15). If the I2C is
configured in slave mode, the RM bit is don't care.

0 Nonrepeat mode. The value in the data count register (ICCNT) determines how many data words
are received/transmitted by the I2C.

1 Repeat mode. Data words are continuously received/transmitted by the I2C until the STP bit is
manually set to 1, regardless of the value in ICCNT.

6 DLB Digital loopback mode bit (only applicable when the I2C is a master-transmitter). This bit disables or
enables the digital loopback mode of the I2C. The effects of this bit are shown in Figure 24. Note
that DLB mode in the free data format mode (DLB = 1 and FDF = 1) is not supported.

0 Digital loopback mode is disabled.

1 Digital loopback mode is enabled. In this mode, the MST bit must be set to 1 and data transmitted
out of ICDXR is received in ICDRR after n DSP cycles by an internal path, where:

n = ((I2C input clock frequency/module clock frequency) × 8)

The transmit clock is also the receive clock. The address transmitted on the SDA pin is the address
in ICOAR.

5 IRS I2C reset bit. Note that if IRS is reset during a transfer, it can cause the I2C bus to hang. For more
information, see Section 2.15.

0 The I2C is in reset/disabled. When this bit is cleared to 0, all status bits (in ICSTR) are set to their
default values. SDA and SCL are in a high-impedance state.

1 The I2C is enabled.

4 STB START byte mode bit (only applicable when the I2C is a master). As described in version 2.1 of the
Philips I2C-bus specification, the START byte can be used to help a slave that needs extra time to
detect a START condition. When the I2C is a slave, the I2C ignores a START byte from a master,
regardless of the value of the STB bit.

0 The I2C is not in the START byte mode.

1 The I2C is in the START byte mode. When you set the START condition bit (STT), the I2C begins
the transfer with more than just a START condition. Specifically, it generates:

1. A START condition
2. A START byte (0000 0001b)
3. A dummy acknowledge clock pulse
4. A repeated START condition

The I2C sends the slave address that is in ICSAR.

3 FDF Free data format mode bit. Note that DLB mode in the free data format mode (DLB = 1 and FDF =
1) is not supported (see Table 16).

0 Free data format mode is disabled. Transfers use the 7-/10-bit addressing format selected by the
XA bit.

1 Free data format mode is enabled.

32 C645x I2C Module SPRU974A–December 2005–Revised October 2009
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

www.ti.com Registers

Table 14. I2C Mode Register (ICMDR) Field Descriptions (continued)

Bit Field Value Description

2-0 BC 0-7h Bit count bits. BC defines the number of bits (1 to 8) in the next data word that is to be received or
transmitted by the I2C. The number of bits selected with BC must match the data size of the other
device. Note that when BC = 0, a data word has 8 bits.

If the bit count is less than 8, receive data is right aligned in the D bits of ICDRR and the remaining
D bits are undefined. Also, transmit data written to ICDXR must be right aligned.

0 8 bits per data word

1h 1 bit per data word

2h 2 bits per data word

3h 3 bits per data word

4h 4 bits per data word

5h 5 bits per data word

6h 6 bits per data word

7h 7 bits per data word

Table 15. Master-Transmitter/Receiver Bus Activity Defined by RM, STT, and STP Bits

ICMDR Bit

RM STT STP Bus Activity (1) Description

0 0 0 None No activity

0 0 1 P STOP condition

0 1 0 S-A-D..(n)..D START condition, slave
address, n data words (n =
value in ICCNT)

0 1 1 S-A-D..(n)..D-P START condition, slave
address, n data words, STOP
condition (n = value in
ICCNT)

1 0 0 None No activity

1 0 1 P STOP condition

1 1 0 S-A-D-D-D.. Repeat mode transfer:
START condition, slave
address, continuous data
transfers until STOP condition
or next START condition

1 1 1 None Reserved bit combination (No
activity

(1) A = Address; D = Data word; P = STOP condition; S = START condition

33SPRU974A–December 2005–Revised October 2009 C645x I2C Module
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

ICDRR ICRSR
0

1

ICSAR

ICOAR

0

1

ICDXR

ICXSR

0

1 0

0

DLB

SCL_IN

SCL_OUT

Address/data

To internal I2C logic

From internal I2C logic

To internal I2C logic

To DSP CPU or EDMA controller

From DSP CPU or EDMA controller

From DSP CPU or EDMA controller

From DSP CPU or EDMA controller

SCL

SDA

I2C module

DLB

DLB

Registers www.ti.com

Table 16. How the MST and FDF Bits Affect the Role of TRX Bit

ICMDR Bit

MST FDF I2C State Function of TRX Bit

0 0 In slave mode but not free data format TRX is a don't care. Depending on the command
mode from the master, the I2C responds as a receiver

or a transmitter.

0 1 In slave mode and free data format The free data format mode requires that the
mode transmitter and receiver be fixed. TRX identifies

the role of the I2C:

TRX = 0: The I2C is a receiver.
TRX = 1: The I2C is a transmitter.

1 0 In master mode but not free data TRX identifies the role of the I2C:
format mode

TRX = 0: The I2C is a receiver.
TRX = 1: The I2C is a transmitter.

1 1 In master mode and free data format The free data format mode requires that the
mode transmitter and receiver be fixed. TRX identifies

the role of the I2C:

TRX = 0: The I2C is a receiver.
TRX = 1: The I2C is a transmitter.

Figure 24. Block Diagram Showing the Effects of the Digital Loopback Mode (DLB) Bit

34 C645x I2C Module SPRU974A–December 2005–Revised October 2009
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

www.ti.com Registers

3.10 I2C Interrupt Vector Register (ICIVR)

The I2C interrupt vector register (ICIVR) is used by the CPU to determine which event generated the I2C
interrupt. Reading ICIVR clears the interrupt flag; if other interrupts are pending, a new interrupt is
generated. If there are more than one interrupt flag, reading ICIVR clears the highest priority interrupt flag.
Note that you must read (clear) ICIVR before doing another start; otherwise, ICIVR could contain an
incorrect (old interrupt flags) value. The ICIVR register is shown in Figure 25 and described in Table 17.

Figure 25. I2C Interrupt Vector Register (ICIVR)
31 16

Reserved

R-0

15 2 0

Reserved INTCODE

R-0 R-0

LEGEND: R= Read only; -n = value after reset

Table 17. I2C Interrupt Vector Register (ICIVR) Field Descriptions

Bit Field Value Description

31-3 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.

2-0 INTCODE 0-7h Interrupt code bits. The binary code in INTCODE indicates which event generated an I2C interrupt.

0 None

1h Arbitration-lost interrupt (AL)

2h No-acknowledgment interrupt (NACK)

3h Register-access-ready interrupt (ARDY)

4h Receive-data-ready interrupt (ICRRDY)

5h Transmit-data-ready interrupt (ICXRDY)

6h Stop condition detected interrupt (SCD)

7h Address-as-slave interrupt (AAS)

35SPRU974A–December 2005–Revised October 2009 C645x I2C Module
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

Registers www.ti.com

3.11 I2C Extended Mode Register (ICEMDR)

The I2C extended mode register (ICEMDR) is used to indicate which condition generates a transmit
data-ready interrupt. The ICEMDR register is shown in Figure 26 and described in Table 18.

Figure 26. I2C Extended Mode Register (ICEMDR)
31 16

Reserved

R-0

15 1 0

Reserved BCM

R-0 R/W-1

LEGEND: R/W = Read/Write; R= Read only; -n = value after reset

Table 18. I2C Extended Mode Register (ICEMDR) Field Descriptions

Bit Field Value Description

31-1 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.

0 BCM Backward compatibility mode bit. Determines which condition generates a transmit data ready
interrupt.

The BCM bit only has an effect when the I2C is operating as a slave-transmitter.

0 The transmit data ready interrupt is generated when the master requests more data by sending an
acknowledge signal after the transmission of the last data.

1 The transmit data ready interrupt is generated when the data in ICDXR is copied to ICXSR.

36 C645x I2C Module SPRU974A–December 2005–Revised October 2009
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

www.ti.com Registers

3.12 I2C Prescaler Register (ICPSC)

The I2C prescaler register (ICPSC) is used for dividing down the I2C input clock to obtain the desired
module clock for the operation of the I2C. The ICPSC register is shown in Figure 27 and described in
Table 19.

The IPSC bits must be initialized while the I2C is in reset (IRS = 0 in ICMDR). The prescaled frequency
takes effect only when the IRS bit is changed to 1. Changing the IPSC value while IRS = 1 has no effect.

Figure 27. I2C Prescaler Register (ICPSC)
31 16

Reserved

R-0

15 8 7 0

Reserved IPSC

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 19. I2C Prescaler Register (ICPSC) Field Descriptions

Bit Field Value Description

31-8 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.

7-0 IPSC 0-FFh I2C prescaler divide-down value. IPSC determines how much the I2C input clock is divided to
create the I2C module clock:

I2C clock frequency = I2C input clock frequency/(IPSC + 1)

Note: IPSC must be initialized while the I2C is in reset (IRS = 0 in ICMDR).

37SPRU974A–December 2005–Revised October 2009 C645x I2C Module
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

SDA

SCK

Processor
(Master)

Memory
(Slave)

Appendix A www.ti.com

Appendix A I2C Lockup Issue

DSPs can use a memory device connected with an I2C interface as a source for boot code. A reset of the
DSP while it is reading from the memory device can cause the I2C interface to enter a state which will
prevent the DSP from accessing the attached memory device. Once the I2C interface enters this state it
will not recover, even if additional DSP resets are issued. It will prevent the DSP from booting until the
power is removed from the system or from the I2C device. This failure mode is possible as part of the
normal behavior of the I2C interface as described in the I2C specification. To prevent a system from
entering this unrecoverable state, a hardware workaround is needed to force the I2C interface into a
usable condition. This appendix describes the problem and a hardware workaround that can be used to fix
the issue.

The I2C interface consists of two bi-directional lines, SDA and SCL, which are pulled to a positive supply
voltage with external resistors. The output stages for these signals are open-drain or open-collector,
allowing multiple devices to share the same I2C interfaces. These devices can be either a master-type
device or a slave-type device. Master devices initiate data transfers and generate the clock signals to
permit transfers. Once a master device has initiated a transfer and gained control of the bus through the
arbitration process it continues to control the bus until the end of an access. Under certain conditions if a
reset to the controlling master device occurs during a transfer, the bus can remain in a locked state which
does not allow the transfer to be completed and does not allow any other master device to gain control.
This condition, inherent to the I2C specification, must be considered when designing a system dependent
on I2C accesses.

This appendix presents a brief overview of the I2C bus and describes the condition that can halt accesses.
The scenario of a single I2C master device connected to a slave device is described as well as a strategy
to recover from the locked condition. This is followed by a discussion of the additional complications found
in a multi-master environment.

In the simplest environment, a single master device will be connected to one or more slave devices. The
example, shown in Figure 28, is a processor attached to a memory device using the I2C interface.

Figure 28. Example I2C Interface

To initiate a transfer the master device will generate a start condition. The start condition is defined as a
high-to-low transition on the SDA line while SCL is high. Once the master has initiated a transfer with a
start condition, the bus is considered busy until the master generates a stop condition. The stop condition
is defined as a low-to-high transition of the SDA line while the SCL is high. Once the transfer is initiated by
the start condition, the SDA line must remain stable while SCL is high. SDA will only transition when SCL
is low until the master releases the bus with a stop condition.

The start condition is followed by a series of byte transfers consisting of eight bits followed by a single
acknowledge bit. The first byte contains the slave device address and a read/write bit. Once the slave
device has received the correct address and the read/write bit, it will drive the SDA signal low as an

38 I2C Lockup Issue SPRU974A–December 2005–Revised October 2009
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

SDA

SCK

Start
Condition

Stop
ConditionDevice Address

Read
bit

ACK from
Slave

Address
Byte

ACK from
Slave Data Byte

ACK from
Master

Normal Read

SDA

SCK

Start
Condition Device Address

Read
bit

ACK from
Slave

Address
Byte

ACK from
Slave Data Byte

Read Resulting in Bus Hang
Master reset occurs

Slave continues to
drive bit low

www.ti.com Appendix A

acknowledgement that it has received the information correctly. The bytes that follow the device address
vary in function from device to device. In the case of a sequential write to a slave memory device, the
device address will be followed by a word address byte and a series of data bytes. Again, each byte
transmitted from the master is acknowledged by the slave by driving the ninth bit low. When the master is
done transmitting data it will send the stop condition releasing the bus.

During a write cycle the slave will only drive the SDA low during the acknowledge (ACK). During a read
cycle the slave will drive the data byte one bit at a time in response to the read command. There is a
period of time during which the slave device will drive eight consecutive bits based on the clock provided
by the master. When the master drives the clock low, it will drive the next bit onto the SDA line. When the
master stops driving SCK, the pull-up resistor will return it to a high state signaling the slave device to hold
the SDA signal level. Once all eight bits are clocked onto the SDA, the master can end the access by
generating a stop condition freeing the bus. Figure 29 shows a normal read cycle. The period when the
slave is driving SDA is indicated by the red lines.

Figure 29. Normal Read Cycle

If a reset to the master device occurs during the data transfer of a read cycle, there is the possibility of the
bus ending in a state that will prevent any master from regaining control. Consider the situation shown in
Figure 30.

Figure 30. Bus-Hang Read Cycle

The master initiates a read in the normal fashion but a reset occurs while the SCK is high and the slave is
driving the SDA low. The slave device will continue to drive SDA low waiting for the master to provide the
next clock however the master has been reset and is no longer attempting to complete the read cycle. In
addition, if the master attempts to access the bus after its reset has been released it will fail to arbitrate for
control.

Arbitration for the I2C bus is performed on the SDA line. The master will attempt to generate a start
condition beginning with both the SDA and the SCK lines high. Remember that the SDA and SCK lines
are open-collector so the slave device will continue to hold the SDA line in a low state. When the master
detects that the SDA line is not high, it will assume that some other device is in control of the bus and
discontinue its attempt to start an access. This state will continue indefinitely blocking all attempts to
access devices on the I2C interface.

This state is especially debilitating if the I2C slave is a memory device used as a boot memory. If the bus
hang occurs during a reset, the processor acting as an I2C master will not be able to read its boot code
and will fail to initialize. The processor cannot recover from this condition, even if additional resets are
applied. To resolve this condition, additional hardware attached to the I2C bus is required (see Figure 31).

39SPRU974A–December 2005–Revised October 2009 I2C Lockup Issue
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

SDA

SCK

Processor
(Master)

Memory
(Slave)

Bus-Hang
Recovery

Logic

Reset Status

SDA

SCK

Processor 1
(Master)

Memory
(Slave)

Bus-Hang
Recovery

Logic

Reset
Status

Processor 2
(Master)

Appendix A www.ti.com

Figure 31. I2C Master Bus Hang

The bus-hang recovery logic needs to have knowledge of the reset status of the processor either through
a RESETSTAT or a GPIO signal as well as the ability to monitor and drive the SDA and SCK signals. This
logic may be a state machine in a programmable logic device or a software-driven solution in a
microcontroller or processor using GPIO pins, but it must meet the open-collector driver requirements for
the SDA and SCK signals to ensure the proper operation of the I2C. Once the logic senses that the
processor has entered reset it should sample the SDA signal to determine if it is stuck in a low state. In a
single master environment, the SDA should be pulled high as soon as the reset is applied to the master. If
the logic senses that the SDA is low during a reset state it can take action to free the bus. The logic
should toggle SCK nine times ending in a high state. These clock pulses must meet all the specification
timing requirements for the high and low states. This will clock any remaining data bits from the slave
memory device. Once these bits have been transmitted on the SDA, the slave device should release SDA
and allow it to return to a high state. The recovery logic should sample SDA to ensure it has been
released. The I2C bus should now be ready to respond to any requests for data by the processor.

The I2C interface with multiple master devices requires more complex logic to clear a bus-hang condition.
In addition to determining that a master has been reset, the logic must also determine that a second
master is not making a valid access to the bus (see Figure 32).

Figure 32. Multiple Master Bus Hang

In this environment, a reset to one of the processors during a read can cause the same bus-hang
condition described above but detection of that condition is more complicated. When a single master is
present on the bus, it is clear that there should not be any activity while that master is in reset. In this
case, it is sufficient to sample the SDA signal while the RESET to the master is active, as described
above. If multiple master devices are connected to the I2C, a second master can access a working I2C
interface while the first master is in reset. This would create the condition where SDA is low while the first
processor is in reset. In this environment, the logic must monitor the reset status from both master devices
to determine if either is in reset. Once a reset has been detected, the logic should monitor the SDA signal

40 I2C Lockup Issue SPRU974A–December 2005–Revised October 2009
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

www.ti.com Appendix A

and the SCK signal. If a reset has been detected and the SDA signal is high, the I2C interface is not hung
and no further action is needed. If the SDA signal is low and the SCK is toggling, another master is
accessing the slave device and the interface is not hung. Again, no further action is needed. If the SDA
signal is low and the SCK signal is high for too long the bus-hang condition is present and the logic must
take action to recover.

The period of time that defines a failure can vary, depending on the slave devices on the bus and the
speed of the I2C interface. Slave devices can only add wait time to accesses by holding the SCK low so
the average time that the SCK is high and the SDA is low should depend on the frequency that the
masters are using to drive the interface. Once the slowest frequency is determined, the longest value for
SCK high during an access should be multiplied by four to determine the period of time that defines a
bus-hang condition. The logic should sample the SDA and SCK many times during the expected clock
period to detect a stall condition. If a bus-hang condition is present, the logic should send nine clock
pulses onto SCK complete the in-process read from the slave memory. The slave should release SDA and
allow it to be pulled high. In multi-master environments, a stop sequence should be generated after the
nine clock pulses to release the bus for arbitration. This should clear the bus-hang condition and allow the
I2C master devices to access the memory.

41SPRU974A–December 2005–Revised October 2009 I2C Lockup Issue
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

Appendix B www.ti.com

Appendix B Revision History

This revision history highlights the technical changes made to the document in this revision.

Table 20. C645x I2C Revision History

See Additions/Modifications/Deletions

Section 2.10.1 Modified note

Section 2.15 Added new section: I2C Bus Hang Caused by Reset

Table 14 Modified bit 5, IRS, description

Appendix A Added new appendix: I2C Lockup Issue

42 Revision History SPRU974A–December 2005–Revised October 2009
Submit Documentation Feedback

Copyright © 2005–2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU974A

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DLP® Products www.dlp.com Broadband www.ti.com/broadband
DSP dsp.ti.com Digital Control www.ti.com/digitalcontrol
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Military www.ti.com/military
Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork
Power Mgmt power.ti.com Security www.ti.com/security
Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony
RFID www.ti-rfid.com Video & Imaging www.ti.com/video
RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/broadband
http://dsp.ti.com
http://www.ti.com/digitalcontrol
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/military
http://logic.ti.com
http://www.ti.com/opticalnetwork
http://power.ti.com
http://www.ti.com/security
http://microcontroller.ti.com
http://www.ti.com/telephony
http://www.ti-rfid.com
http://www.ti.com/video
http://www.ti.com/lprf
http://www.ti.com/wireless

	TMS320C645x DSPInter-Integrated Circuit (I2C) Module
	Table of Contents
	Preface
	1 Introduction
	1.1 Purpose of the Peripheral
	1.2 Features
	1.3 Functional Block Diagram
	1.4 Industry Standard(s) Compliance Statement

	2 Peripheral Architecture
	2.1 Bus Structure
	2.2 Clock Generation
	2.3 Clock Synchronization
	2.4 Signal Descriptions
	2.4.1 Input and Output Voltage Levels
	2.4.2 Data Validity

	2.5 START and STOP Conditions
	2.6 Serial Data Formats
	2.6.1 7-Bit Addressing Format
	2.6.2 10-Bit Addressing Format
	2.6.3 Free Data Format
	2.6.4 Using a Repeated START Condition

	2.7 Operating Modes
	2.8 NACK Bit Generation
	2.9 Arbitration
	2.10 Reset Considerations
	2.10.1 Software Reset Considerations
	2.10.2 Hardware Reset Considerations

	2.11 Initialization
	2.12 Interrupt Support
	2.12.1 Interrupt Events and Requests
	2.12.2 Interrupt Multiplexing

	2.13 DMA Events Generated by the I2C Module
	2.14 Emulation Considerations
	2.15 I2C Bus Hang Caused by Reset

	3 Registers
	3.1 I2C Own Address Register (ICOAR)
	3.2 I2C Interrupt Mask Register (ICIMR)
	3.3  I2C Interrupt Status Register (ICSTR)
	3.4 I2C Clock Divider Registers (ICCLKL and ICCLKH)
	3.4.1 I2C Clock Low-Time Divider Register (ICCLKL)
	3.4.2 I2C Clock High-Time Divider Register (ICCLKH)

	3.5 I2C Data Count Register (ICCNT)
	3.6 I2C Data Receive Register (ICDRR)
	3.7 I2C Slave Address Register (ICSAR)
	3.8 I2C Data Transmit Register (ICDXR)
	3.9 I2C Mode Register (ICMDR)
	3.10 I2C Interrupt Vector Register (ICIVR)
	3.11 I2C Extended Mode Register (ICEMDR)
	3.12 I2C Prescaler Register (ICPSC)

	Appendix A I2C Lockup Issue
	Appendix B Revision History

