TMS320x280x, 2801x, 2804x Boot ROM

Reference Guide

I3 TExAas

INSTRUMENTS

Literature Number: SPRU722C
November 2004—Revised October 2006

l '{EXAS
NSTRUMENTS

Contents

[(=3 = T = PP 5
1 (=Yoo) ol @ 1Y I Y/ =70 g o VA0 Y - o L PP 8
11 On-Chip Boot ROM 1Q Math Tableseiuiiiiiiiiiii i s s e aeeaaes 9

1.2 (04U Y=ok (o) g 1= o = N 10

2 (ST Told oF=To [=T gl o o LU PP 11
2.1 [20T0]u[oF= o [=T gl =0T gTox 1 o g Tz LI @] o =1 - i o o P 11

2.2 Bootloader Device CONfIQUIALION w..uuuussisuseiseiaseesssssiss s s raass s s saanssasssanneranessannss 13

2.3 o I Y W17 0] =T g ST=] [T o 1T o 13

2.4 LAYz 1 (o3 o (o Yo 1Y/ Yo 11 1= S 13

25 JLIE Lo = LT I I 1= 0 0 13

2.6 INterNal PUIlUD RESISEIS . uuuteiiiiiei ittt et e e s st e st s aaae st s s aas e s s s nn e s ssann e e saannnesins 13

2.7 [| @0 o ile 0T 4o o P 14

2.8 TS A= o I 1V =T 4o 14

29 2001 [0 F= Lo =T g 1V o T [T 14

2.10 Bootloader Data Stream SIIUCIUIE 1.uuusevusisisseirrsersrerae st sasssrrans 17

2.11 BasSiC Transfer PrOCEAUINEeeiiiiieiiiii e ti it e e e e e sa e ee s saann e s saann e e saaannnessaannnessaannnenss 22

2.12 INitBOOt ASSEMDIY ROULINE L. uutiiiieee it ir st r e e s s e st s e e s s e s s s s ann s s ssann e e s sannaness 23

P22 1 BT =T [T o1 1 =T Lo 11 oo L= U T 1T o 24

P2 @0 o) V7 = = T U T od 1o o 26

b T 1 @ [= T Yo A 1 [o 1o o 26

2.16 Parallel_Boot FUNCHON (GPIO) .iiiiiieiiiiitessesanteeseaantesssasnneessaanseessasnnnessssnnnesssssnneessssnnnnsss 28

P22 AT I =TT L U) o o 33

PN T O = ToTo) ¥ ot o) o PP 35

P22 T =T @ 1 V= T o U T 17 o 38

2.20 EXitBOOt ASSEMDBIY ROULINE . .uuiueeiiteiite s s s s s n s r e ranes 40

3 BUilding the BOOt Table ...ee e e e e e as 42
3.1 The C2000 HEX ULIITY euuueiinteineirtsisesssssssassssssssiessansssansssaessaanssansssansssassssnnsssnnssnnnssns 42

3.2 Example: Preparing a COFF File For eCAN BoOtoading «....vvveeiiieiiiiiiiiiriiiiieiirernaeanness 43

4 [2¥o Lol oF=To [=T g @feYo L@ V2= Ay AT PP 46
4.1 Boot ROM Version and Checksum INfOrmMationcooeeeiiiiiieiiiii i s e e eeeas 46

4.2 Bootloader Code ReVISION HiSTOMY ..uuuiiiiieeesiiiiteesssanteessaanseessaannnessaasnnesssssnneesessnnressssnnennsns a7

4.3 Bootloader Code LiStiNg (V3.0) .uuuueiruutirueeiteiseesstsrssssse st sanssanessinss 48

4.4 Bootloader Code LiStiNG (V4.0) t.uuueeeiieteirnateessaatsessaaassessaaanesssaanssssaaannsssaaannresssannssssss 79
APPENAIX A REVISION HiSTO Y ittt ettt et et e e et e e e e et et a e eaeaees 84
2 Table of Contents SPRU722C—-November 2004 —-Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

I3 TEXAS
INSTRUMENTS
www.ti.com
List of Figures

1 Memory Map Of ON-Chip ROMt r et e s s e e s aaaa e s s ss i r e s ssannasssaannaessannes 8
2 Y73 (o) g IF= o] 1= 1o o 10
3 (27001 o= To L= gl 01T I = o = o o 12
4 BOOt ROM FUNCLON OVEIVIEW .ttt iaeeessaaaeesssaass s ssaaase et saana s et ssanne s saann e e s aaannnessaannnnessnn 15
5 JUMP-L0-FIash FIOW DIagramuueesiiiieseiisiteesstes s ssise s ssaiae s s ssaas s s ssaan s s ssansaessannnnesinnnes 15
6 Flow Diagram of JumpP t0 MO SARAMttt s e s e s aaa s saaeaanneras 16
7 Flow Diagram of JUMP-t0-OTP MeEMOIY ueeiiiinteiaiaateeesaannre s saanresssaaasessaaannresaaannressaannsrsssnn 16
8 Bootloader BasiC Transfer ProCEAUIE ...i.ueeeiiiiiieiisiie sttt s s s s sas s ssaanr s ssannresas 22
9 Overview of INitBoot ASSEMDBIY FUNCHON ... uuiiei i e e e aaes 23
10 Overview of the SelectBoOtMOdEe FUNCHONuuiiiiii it r e e s rne e s s e e s anannes 25
11 Overview of CopyData FUNCHON ..uviietstiiieeeisiieesss et ss s s s e s saasas s saasan et saannnssaaannnns 26
12 Overview of SCI BOOtOAder OPErationueiseeretirseiite st san s saass e ranraaanns 26
13 Overview Of SCI_BOOt FUNCHON 4. uutiiussitesassssssssss e esise s s sas s ssaa s sasssanresaneasanns 27
14 Overview of SCI_GetWordData FUNCHON wuuiiiiiiiiiiiiiisssssssssssssssssssssssssssasssssssssssssnnnnesssssnnns 28
15 Overview of Parallel GPIO bootloader Operationv.evvseiiuierietirieieiiririrnsaire i 28
16 Parallel GPIO bootloader Handshake ProtoCol..........ovviiiiiiii i rranne e 29
17 Parallel GPIO MOGE OVEIVIEBW ...uiseetiaaaeesssiase s s aaasse s saassse s saassse s tsaaaessaaannessssannnssssannnnsssns 29
18 Parallel GPIO Mode - HOSt Transfer FIOWeeiieiiiiii e e se e e s sasnne e sasann e ssnanneessannnneens 30
19 16-Bit Parallel GetWOrd FUNCHON ...t eiait e tsaate e s raaee e s sa e e s ssann e s saaann e s saanneessaanneessn 31
20 8-Bit Parallel GetWOrd FUNCLON . ..uueiiietes it is e ss s s s s e s s e s s s ane st sanan s s aaannesaaaannnes 32
21 £ 10 - T [33
22 Data Transfer From EEPROM FIOW ...t e s aan s s ssnan s s s s e s ssnn e e s saannnenns 34
23 Overview of SPIA_GetWordData FUNCHON ..uuiiiiiiiiiiiiiiisssssssssssssssssssssitiiiiisssssssssssssssnnnnssnnnnes 35
24 EEPROM DeVice at AddreSS OX50uueirneeesenanneessaannnessaannnesssasnneessasnnnesssssnneessssnnnessssnnnessns 35
25 Overview Of 12C_BOOt FUNCHION .. .uueiiiietiiiie i e s e ree e s s e s ss s e e st s aan e st saannessanannnssaaannnes 36
26 = T [0 o = T [37
27 L= T8 =T 01T LN =T T 38
28 (O1V/STaVIT=IWYA o) =T @FAN\\ EVANN o ToTol 1o F=To [T g @] o T=T - o o 38
29 1= T To] B o o] =0 (U= 0 40
SPRU722C—-November 2004 - Revised October 2006 List of Figures 3

Submit Documentation Feedback

Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

I3 TEXAS
INSTRUMENTS
www.ti.com

List of Tables

1 RV 7= Tox (o g I Yo 1T LN 11
2 Configuration fOr DEVICE MOGES . .uuuiiustteiiiiateesirie s s s s et aaasa e s saaaaee s asannesaaannns 13
3 200 1 1Yo T LTS =1 =T o i o o P 14
4 General Structure Of Source Program Data Stream In 16-Bit MOvvvieiiiiiiiiiiniiiii i 18
5 LSB/MSB Loading Sequence in 8-Bit Data Stream......vueeeeeiiiiireiiiiesiriississirsaaianrssssaanrresas 20
6 200 1 1Yo T LTS =1 =T o i o o 24
7 Y IR C B 2L = 1= RS == o o 33
8 [2C 8-Bit DAIA SIIEAIM 4.utuuesiutiutinetiueeseetneasssraeassaesaeeseatsanrseassaneneansaeeseansneensansneenenssnnrnens 37
9 Bit-Rate Values for Different XCLKIN ValUES.......ueeeiriiiieeiieaeesiaaeeesssasnnesssasnneessssanneessannnnesens 38
10 1107 N\ IR C B 2L G = L= U1 Y- o 39
11 CPU Register ReStOred ValUES. . ..uueiiieieiiiiiiesiiiinsissiisrs st ssastssssaasss s s saasnssasannnssssannnes 41
12 200 2 0 T= 1o =T @ o] 110 1 43
13 Bootloader Revision and Checksum INformation.........ooiiiiiiii i rraneeee s 46
14 BOOtloader REVISION Pl DEVICE ... uuetiiiintetasiiattessaatre s saasse s tsasse s taaiaaessasannssssaannrsssannnnessns 46
15 [g F=TgTo TSR (o] LY £ o] oI 84
4 List of Tables SPRU722C—-November 2004 —-Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

I3 TEXAS
INSTRUMENTS

Preface
SPRU722C—-November 2004—Revised October 2006

Read This First

This reference guide is applicable for the code and data stored in the on-chip boot ROM on the
TMS320x280x, TMS320x2801x and TMS320x2804x processors. This includes all flash-based, ROM-
based, and RAM-based devices within these families.

The boot ROM is factory programmed with boot-loading software. Boot-mode signals (general purpose
I/Os) are used to tell the bootloader software which mode to use on power up. The boot ROM also
contains standard math tables, such as SIN/COS waveforms, for use in IQ math related algorithms found
in the C28x™ IQMath Library - A Virtual Floating Point Engine (literature number SPRC087).

This guide describes the purpose and features of the bootloader. It also describes other contents of the
device on-chip boot ROM and identifies where all of the information is located within that memory.

Project collateral and source code discussed in this reference guide can be downloaded from the following
URL: http://www.ti.com/lit/zip/spru722.

Notational Conventions

This document uses the following conventions.

» Hexadecimal numbers are shown with the suffix h or with a leading 0x. For example, the following
number is 40 hexadecimal (decimal 64): 40h or 0x40.

* Registers in this document are shown in figures and described in tables.

— Each register figure shows a rectangle divided into fields that represent the fields of the register.
Each field is labeled with its bit name, its beginning and ending bit numbers above, and its
read/write properties below. A legend explains the notation used for the properties.

— Reserved bits in a register figure designate a bit that is used for future device expansion.

Related Documentation From Texas Instruments

The following documents describe the related devices and related support tools. Copies of these
documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the search box
provided at www.ti.com.

Data Manuals—

SPRS230 — TMS320F2809, F2808, F2806, F2802, F2801, C2802, C2801, and F2801x DSPs Data
Manual contains the pinout, signal descriptions, as well as electrical and timing specifications for
the F280x devices.

SPRZ171 — TMS320F280x, TMS320C280x, and TMS320F2801x DSP Silicon Errata
describes the advisories and usage notes for different versions of silicon.

SPRS357 — TMS320F28044 Digital Signal Processor Data Manual contains the pinout, signal
descriptions, as well as electrical and timing specifications for the F28044 device.

SPRZ255 — TMS320F28044 DSP Silicon Errata
describes the advisories and usage notes for different versions of silicon.

CPU User's Guides—

SPRUO51— TMS320x28xx, 28xxx Serial Communication Interface (SCI) Reference Guide describes the
SCI, which is a two-wire asynchronous serial port, commonly known as a UART. The SCI modules
support digital communications between the CPU and other asynchronous peripherals that use the
standard non-return-to-zero (NRZ) format.

SPRU722C—-November 2004 —Revised October 2006 Preface 5

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRC087
http://www.ti.com/lit/zip/spru722
http://www.ti.com
http://www.ti.com/lit/pdf/SPRS230
http://www.ti.com/lit/pdf/SPRZ171
http://www.ti.com/lit/pdf/SPRS357
http://www.ti.com/lit/pdf/SPRZ255
http://www.ti.com/lit/pdf/SPRU051
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

Related Documentation From Texas Instruments www.ti.com

SPRU059— TMS320x28xx, 28xxx Serial Peripheral Interface (SPI) Reference Guide describes the SPI -
a high-speed synchronous serial input/output (I/O) port - that allows a serial bit stream of
programmed length (one to sixteen bits) to be shifted into and out of the device at a programmed
bit-transfer rate.

SPRUQ74— TMS320x28xx, 28xxx Enhanced Controller Area Network (eCAN) Reference Guide
describes the eCAN that uses established protocol to communicate serially with other controllers in
electrically noisy environments.

SPRU430— TMS320C28x DSP CPU and Instruction Set Reference Guide describes the central
processing unit (CPU) and the assembly language instructions of the TMS320C28x fixed-point
digital signal processors (DSPs). It also describes emulation features available on these DSPs.

SPRU513— TMS320C28x Assembly Language Tools User's Guide describes the assembly language
tools (assembler and other tools used to develop assembly language code), assembler directives,
macros, common object file format, and symbolic debugging directives for the TMS320C28x device.

SPRU514— TMS320C28x Optimizing C Compiler User's Guide describes the TMS320C28x™ C/C++
compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP
assembly language source code for the TMS320C28x device.

SPRU566— TMS320x28xx, 28xxx Peripheral Reference Guide describes the peripheral reference guides
of the 28x digital signal processors (DSPs).

SPRU608— The TMS320C28x Instruction Set Simulator Technical Overview describes the simulator,
available within the Code Composer Studio for TMS320C2000 IDE, that simulates the instruction
set of the C28x™ core.

SPRU625— TMS320C28x DSP/BIOS Application Programming Interface (API) Reference Guide
describes development using DSP/BIOS.

SPRU712— TMS320x28xx, 28xxx System Control and Interrupts Reference Guide describes the various
interrupts and system control features of the 280x digital signal processors (DSPs).

SPRU716— TMS320x280x, 2801x, 2804x Analog-to-Digital Converter (ADC) Reference Guide describes
how to configure and use the on-chip ADC module, which is a 12-bit pipelined ADC.

SPRU721 — TMS320x280x, 2801x, 2804x Inter-Integrated Circuit (I2C) Reference Guide describes the
features and operation of the inter-integrated circuit (12C) module.

SPRU790 — TMS320x280x, 2801x, 2804x Enhanced Quadrature Encoder Pulse (eQEP) Reference
Guide describes the eQEP module, which is used for interfacing with a linear or rotary incremental
encoder to get position, direction, and speed information from a rotating machine in high
performance motion and position control systems. It includes the module description and registers

SPRU791— TMS320x28xx, 28xxx Enhanced Pulse Width Modulator (ePWM) Module Reference Guide
describes the main areas of the enhanced pulse width modulator that include digital motor control,
switch mode power supply control, UPS (uninterruptible power supplies), and other forms of power
conversion

SPRU807 — TMS320x280x, 2801x, 2804x Enhanced Capture (eCAP) Module Reference Guide
describes the enhanced capture module. It includes the module description and registers.

SPRU924 — TMS320x280x, 2801x, 2804x High-Resolution Pulse Width Modulator (HRPWM) describes
the operation of the high-resolution extension to the pulse width modulator (HRPWM)

Application Reports—

SPRAAS8— TMS320x281x to TMS320x280x Migration Overview describes differences between the
Texas Instruments TMS320x281x and TMS320x280x DSPs to assist in application migration from
the 281x to the 280x. While the main focus of this document is migration from 281x to 280x, users
considering migrating in the reverse direction (280x to 281x) will also find this document useful.

Read This First SPRU722C—-November 2004 —Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRU059
http://www.ti.com/lit/pdf/SPRU074
http://www.ti.com/lit/pdf/SPRU430
http://www.ti.com/lit/pdf/SPRU513
http://www.ti.com/lit/pdf/SPRU514
http://www.ti.com/lit/pdf/SPRU566
http://www.ti.com/lit/pdf/SPRU608
http://www.ti.com/lit/pdf/SPRU625
http://www.ti.com/lit/pdf/SPRU712
http://www.ti.com/lit/pdf/SPRU716
http://www.ti.com/lit/pdf/SPRU721
http://www.ti.com/lit/pdf/SPRU790
http://www.ti.com/lit/pdf/SPRU791
http://www.ti.com/lit/pdf/SPRU807
http://www.ti.com/lit/pdf/SPRU924
http://www.ti.com/lit/pdf/SPRAA58
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

I

TEXAS
INSTRUMENTS

www.ti.com Related Documentation From Texas Instruments

SPRA550— 3.3 V DSP for Digital Motor Control describes a scenario of a 3.3-V-only motor controller

indicating that for most applications, no significant issue of interfacing between 3.3 Vand 5V
exists. On-chip 3.3-V analog-to-digital converter (ADC) versus 5-V ADC is also discussed.
Guidelines for component layout and printed circuit board (PCB) design that can reduce system
noise and EMI effects are summarized.

SPRA820— Online Stack Overflow Detection on the TMS320C28x DSP presents the methodology for

online stack overflow detection on the TMS320C28x™ DSP. C-source code is provided that
contains functions for implementing the overflow detection on both DSP/BIOS™ and non-
DSP/BIOS applications.

SPRA861— RAMDISK: A Sample User-Defined C I/O Driver provides an easy way to use the

sophisticated buffering of the high-level CIO functions on an arbitrary device. This application report
presents a sample implementation of a user-defined device driver.

SPRA873— Thermo-Electric Cooler Control Using a TMS320F2812 DSP & DRV592 Power Amplifier

presents a thermoelectric cooler system consisting of a Texas Instruments TMS320F2812 digital
signal processor (DSP) and DRV592 power amplifier. The DSP implements a digital proportional-
integral-derivative feedback controller using an integrated 12-bit analog-to-digital converter to read
the thermistor, and direct output of pulse-width-modulated waveforms to the H-bridge DRV592
power amplifier. A complete description of the experimental system, along with software and
software operating instructions, is provided.

SPRA876— Programming Examples for the TMS320F281x eCAN contains several programming

examples to illustrate how the eCAN module is set up for different modes of operation to help you
come up to speed quickly in programming the eCAN. All projects and CANalyzer configuration files
are included in the attached SPRA876.zip file.

SPRA953— IC Package Thermal Metrics describes the traditional and new thermal metrics and will put

their application in perspective with respect to system level junction temperature estimation.

SPRA958— Running an Application from Internal Flash Memory on the TMS320F281x DSP (Rev. B)
covers the requirements needed to properly configure application software for execution from on-
chip flash memory. Requirements for both DSP/BIOS™ and non-DSP/BIOS projects are presented.
Example code projects are included.

SPRA963— Reliability Data for TMS320LF24x and TMS320F281x Devices describes reliability data for
TMS320LF24x and TMS320F281x devices.

SPRA989— F2810, F2811, and F2812 ADC Calibration describes a method for improving the absolute
accuracy of the 12-bit analog-to-digital converter (ADC) found on the F2810/F2811/F2812 devices.
This application note is accompanied by an example program (ADCcalibration.zip) that executes
from RAM on the F2812 eZdsp.

SPRA991— Simulation Fulfills its Promise for Enhancing Debug and Analysis - A White Paper describes
simulation enhancements that enable developers to speed up the development cycle by allowing
them to evaluate system alternatives more effectively.

SPRU722C—-November 2004 —Revised October 2006 Read This First 7
Submit Documentation Feedback

Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRA550
http://www.ti.com/lit/pdf/SPRA820
http://www.ti.com/lit/pdf/SPRA861
http://www.ti.com/lit/pdf/SPRA873
http://www.ti.com/lit/pdf/SPRA876
http://www.ti.com/lit/pdf/SPRA953
http://www.ti.com/lit/pdf/SPRA958
http://www.ti.com/lit/pdf/SPRA963
http://www.ti.com/lit/pdf/SPRA989
http://www.ti.com/lit/pdf/SPRA991
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

I

Reference Guide
}‘E)S(’?IEUMENTS SPRU722C—-November 2004—Revised October 2006

Boot ROM

The boot ROM is a block of read-only memory that is factory programmed.

Boot ROM Memory Map
The boot ROM is a 4K x 16 block of read-only memory located at addresses 0x3F FOOO - Ox3F FFFF.

The on-chip boot ROM is factory programmed with boot-load routines and math tables for use with the
C28x™ IQMath Library - A Virtual Floating Point Engine (literature number SPRC087). Section 4 contains
the code for each of the following items:

Bootloader functions

Version number, release date and checksum
Reset vector

CPU vector table (Used for test purposes only)
IQmath Tables

Figure 1 shows the memory map of the on-chip boot ROM. The memory block is 4Kx16 in size and is
located at Ox3F FOOO - 0x3F FFFF in both program and data space.

Figure 1. Memory Map of On-Chip ROM

On-chip boot ROM Section start
address
Data space Prog space
. Sin/Cos 0x3F FO00
(644 X 16)
Normalized inverse Ox3F F502
(528 x 16)
Normalized square root Ox3F F712
(274 x 16)
Normalized Arctan Ox3F F834
(452 X 16)
Rounding and saturation Ox3F FOE8
(360 x 16)
Bootloader functions Ox3F FB50
ROM version
ROM checksum
Reset vector Ox3F FFCO
CPU vector table
(64 x 16)
OX3F FFFF
Boot ROM SPRU722C—-November 2004 —-Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRC087
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com Boot ROM Memory Map

1.1 On-Chip Boot ROM IQ Math Tables

The boot ROM memory reserves 3K x 16 words for IQ math tables. These math tables are provided to
help improve performance and save RAM space.

The math tables included in the boot ROM are used by the Texas Instruments™ C28x™ IQMath Library -
A Virtual Floating Point Engine (literature number SPRCO087). The 28x IQmath Library is a collection of
highly optimized and high precision mathematical functions for C/C++ programmers to seamlessly port a
floating-point algorithm into fixed-point code on TMS320C28x devices.

These routines are typically used in computational-intensive real-time applications where optimal
execution speed and high accuracy is critical. By using these routines you can achieve execution speeds
that are considerably faster than equivalent code written in standard ANSI C language. In addition, by
providing ready-to-use high precision functions, the Tl IQmath Library can shorten significantly your DSP
application development time. The C28x™ |QMath Library - A Virtual Floating Point Engine (literature
number SPRC087) can be downloaded from the Tl website.
The following math tables are included in the Boot ROM:
» Sine/Cosine Table

— Table size: 1282 words

— Q format: Q30

— Contents: 32-bit samples for one and a quarter period sine wave

This is useful for accurate sine wave generation and 32-bit FFTs. This can also be used for 16-bit
math, just skip over every second value.

* Normalized Inverse Table
— Table size: 528 words
— Q format: Q29
— Contents: 32-bit normalized inverse samples plus saturation limits

This table is used as an initial estimate in the Newton-Raphson inverse algorithm. By using a more
accurate estimate the convergence is quicker and hence cycle time is faster.

 Normalized Square Root Table
— Table size: 274 words
— Q format: Q30
— Contents: 32-bit normalized inverse square root samples plus saturation

This table is used as an initial estimate in the Newton-Raphson square-root algorithm. By using a more
accurate estimate the convergence is quicker and hence cycle time is faster.

* Normalized Arctan Table
— Table size: 452 words
— Q format: Q30
— Contents 32-bit second order coefficients for line of best fit plus normalization table

This table is used as an initial estimate in the Arctan iterative algorithm. By using a more accurate
estimate the convergence is quicker and hence cycle time is faster.

* Rounding and Saturation Table
— Table size: 360 words
— Q format: Q30
— Contents: 32-bit rounding and saturation limits for various Q values

SPRU722C—-November 2004 —Revised October 2006 Boot ROM 9

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRC087
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

Boot ROM Memory Map www.ti.com

1.2

CPU Vector Table

A CPU vector table resides in boot ROM memory from address 0x3F FFCO - 0x3F FFFF. This vector table
is active after reset when VMAP = 1, ENPIE = 0 (PIE vector table disabled).

Figure 2. Vector Table Map

0x3F F000
Math tables
and functions
0x3F FB50
Bootloader
functions
Reset fetched from here when
Reset vector Ox3F FFCO VMAP=1
64 x 16 CPU vector table Other vectors fetched from here when
0x3F FFFF VMAP:]_, ENPIE=0

A The VMAP bit is located in Status Register 1 (ST1). VMAP is always 1 on reset. It can be changed after reset by

software, however the normal operating mode will be to leave VMAP = 1.

The ENPIE bit is located in the PIECTRL register. The default state of this bit at reset is 0, which disables the
Peripheral Interrupt Expansion block (PIE).

The only vector that will normally be handled from the internal boot ROM memory is the reset vector
located at Ox3F FFCO. The reset vector is factory programmed to point to the InitBoot function stored in
the boot ROM. This function starts the boot load process. A series of checking operations is performed on
General Purpose 1/0 (GPIO 1/0) pins to determine which boot mode to use. This boot mode selection is
described in Section 2.9 of this document.

The remaining vectors in the boot ROM are not used during normal operation. After the boot process is
complete, you should initialize the Peripheral Interrupt Expansion (PIE) vector table and enable the PIE
block. From that point on, all vectors, except reset, will be fetched from the PIE module and not the CPU
vector table shown in Table 1.

10

Boot ROM SPRU722C—-November 2004 —Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

I

TEXAS
INSTRUMENTS

www.ti.com Bootloader Features

2.1

For Tl silicon debug and test purposes the vectors located in the boot ROM memory point to locations in
the MO SARAM block as described in Table 1. During silicon debug, you can program the specified
locations in MO with branch instructions to catch any vectors fetched from boot ROM. This is not required
for normal device operation.

Table 1. Vector Locations

Location in Contents Location in Contents
Vector Boot ROM (points to) Vector Boot ROM (points to)
RESET O0x3F FFCO InitBoot (0x3F FB50) RTOSINT 0x3F FFEO 0x00 0060
INT1 O0x3F FFC2 0x00 0042 Reserved 0x3F FFE2 0x00 0062
INT2 O0x3F FFC4 0x00 0044 NMI O0x3F FFE4 0x00 0064
INT3 Ox3F FFC6 0x00 0046 ILLEGAL @ 0x3F FFE6 0x00 0066 or ITRAPIsr
INT4 O0x3F FFC8 0x00 0048 USER1 0x3F FFE8 0x00 0068
INT5 O0x3F FFCA 0x00 004A USER2 0x3F FFEA 0x00 006A
INT6 0x3F FFCC 0x00 004C USER3 0x3F FFEC 0x00 006C
INT7 O0x3F FFCE 0x00 004E USER4 0x3F FFEE 0x00 006E
INT8 0x3F FFDO 0x00 0050 USERS5 0x3F FFFO 0x00 0070
INT9 O0x3F FFD2 0x00 0052 USERG6 0x3F FFF2 0x00 0072
INT10 O0x3F FFD4 0x00 0054 USER7 0x3F FFF4 0x00 0074
INT11 Ox3F FFD6 0x00 0056 USERS8 0x3F FFF6 0x00 0076
INT12 O0x3F FFD8 0x00 0058 USER9 0x3F FFF8 0x00 0078
INT13 O0x3F FFDA 0x00 005A USER10 0x3F FFFA 0x00 007A
INT14 0x3F FFDC 0x00 005C USER11 0x3F FFFC 0x00 007C
DLOGINT O0x3F FFDE 0x00 005E USER12 0x3F FFFE 0x00 007E

@ As of version 4 of the boot ROM code, this vector points to a ITRAP interrupt service routine, ITRAPIsr(), within the boot ROM.
This ISR attempts to enable the watchdog and loops until the watchdog resets the part. On previous revisions, this vector points
to location 0x66 in MO SARAM. Refer to Section 4.1 to determine the version of the boot ROM code on a particular device.

Bootloader Features

This section describes in detail the boot mode selection process, as well as the specifics of the bootloader
operation.

Bootloader Functional Operation
The bootloader is the program located in the on-chip boot ROM that is executed following a reset.

The bootloader is used to transfer code from an external source into internal memory following power up.
This allows code to reside in slow non-volatile memory externally, and be transferred to high-speed
memory to be executed.

The bootloader provides a variety of different ways to download code to accommodate different system
requirements. The bootloader uses various GPIO signals to determine which boot mode to use. The boot
mode selection process as well as the specifics of each bootloader are described in the remainder of this
document. Figure 3 shows the basic bootloader flow.

SPRU722C—-November 2004 —Revised October 2006 Boot ROM 11
Submit Documentation Feedback

Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

Bootloader Features www.ti.com

Figure 3. Bootloader Flow Diagram

4 Reset ™\
(power-on reset or warm reset)
Silicon sets the following:

PIE disabled (ENPIE-0)
VMAP=1
OBJMODE=0
AMODE=0
K MOM1MAP=1 J

Boot ROM
Reset vector fetched from boot ROM
address Ox3F FFCO
Jump to InitBoot function to start
boot process

v

SelectBootMode function
Boot determined by the state of I/O pins

v

Begin execution at Entry Point as
determined by selected boot mode

The reset vector in boot ROM redirects program execution to the InitBoot function. After performing device
initialization the bootloader will check the state of GPIO pins to determine which boot mode you want to
execute. Options include: jump to flash, jump to SARAM, jump to OTP, or call one of the on-chip boot
loading routines.

After the selection process and if the required boot loading is complete, the processor will continue
execution at an entry point determined by the boot mode selected. If a bootloader was called, then the
input stream loaded by the peripheral determines this entry address. This data stream is described in
Section 2.10. If, instead, you choose to boot directly to flash, OTP, or SARAM, the entry address is
predefined for each of these memory blocks.

The following sections discuss in detail the different boot modes available and the process used for
loading data code into the device.

12 Boot ROM SPRU722C—-November 2004 —Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

I

TEXAS

INSTRUMENTS

www.ti.com Bootloader Features

2.2

2.3

24

2.5

2.6

Bootloader Device Configuration

At reset, any 28x™ CPU-based device is in 27x™ object-compatible mode. It is up to the application to
place the device in the proper operating mode before execution proceeds.

On the 28x devices, when booting from the internal boot ROM, the device is configured for 28x operating
mode by the boot ROM software. You are responsible for any additional configuration required.

For example, if your application includes C2xLP™ source, then you are responsible for configuring the
device for C2xLP source compatibility prior to execution of code generated from C2xLP source.

The configuration required for each operating mode is summarized in Table 2.

Table 2. Configuration for Device Modes

C2xLP Source
C27x Mode (Reset) 28x Mode Compatible Mode

OBJMODE 0 1 1
AMODE 0 0 1
PAGEO 0 0 0
MOM1MAP® 1 1 1
Other Settings SXM=1,C=1,SPM=0

@ Normally for C27x compatibility, the MOM1MAP would be 0. On these devices, however, it is tied off
high internally; therefore, at reset, MOM1MAP is always configured for 28x mode.

PLL Multiplier Selection

The boot ROM does not change the state of the PLL. Note that the PLL multiplier is not affected by a
reset from the debugger. Therefore, a boot that is initialized from a reset from Code Composer Studio™
may be at a different speed than booting by pulling the external reset line (XRS) low.

Watchdog Module

When branching directly to flash, MO single-access RAM (SARAM), or one-time-programmable (OTP)
memory, the watchdog is not touched. In the other boot modes, the watchdog is disabled before booting
and then re-enabled and cleared before branching to the final destination address.

Taking an ITRAP Interrupt

If an illegal opcode is fetched, the 28x will take an ITRAP (illegal trap) interrupt. During the boot process,
the interrupt vector used by the ITRAP is within the CPU vector table of the boot ROM. As of version 4 of
the boot ROM code, the ITRAP vector points to an interrupt service routine (ISR) within the boot ROM
named ITRAPIsr(). This interrupt service routine attempts to enable the watchdog and then loops forever
until the processor is reset. This ISR will be used for any ITRAP until the user's application initializes and
enables the peripheral interrupt expansion (PIE) block. Once the PIE is enabled, the ITRAP vector located
within the PIE vector table will be used. Prior to boot ROM code version 4, the ITRAP interrupt vector in
the CPU vector table pointed to a RAM location in MO memory. Refer to Section 4.1 to determine the boot
ROM code version of a particular device.

Internal Pullup Resisters

Each GPIO pin has an internal pullup resistor that can be enabled or disabled in software. The pins that
are read by the boot mode selection code to determine the boot mode selection have pull-ups enabled
after reset by default. In noisy conditions it is still recommended that you configure each of the three boot
mode selection pins externally.

The individual bootloaders SCI, SPI, eCAN, and parallel boot all enable the pullup resistors for the pins
that are used for control and data transfer. The bootloader leaves the resistors enabled for these pins
when it exits. For example, the SCI-A bootloader enables the pullup resistors on the SCITXA and SCIRXA
pins. It is your responsibility to disable them, if desired, after the bootloader exits.

SPRU722C—-November 2004 —Revised October 2006 Boot ROM 13
Submit Documentation Feedback

Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

Bootloader Features www.ti.com

2.7 PIE Configuration
The boot modes do not enable the PIE. It is left in its default state, which is disabled.

2.8 Reserved Memory

The first 80 words of the M1 memory block (address 0x400 - 0x44F) are reserved for the stack and .ebss
code sections during the boot-load process. If code is bootloaded into this region there is no error
checking to prevent it from corrupting the boot ROM stack.

2.9 Bootloader Modes

To accommodate different system requirements, the boot ROM offers a variety of different boot modes.
This section describes the different boot modes and gives brief summary of their functional operation. The
states of three GPIO pins are used to determine the desired boot mode as shown in Table 3.

Table 3. Boot Mode Selection

Mode Description GPIO18 GPIO29 GPIO34
SPICLKA® SCITXDA
SCITXDB
Boot to Flash @ Jump to flash address 0x3F 7FF6. You must have programmed 1 1 1

a branch instruction here prior to reset to redirect code
execution as desired.

SCI-A Boot Load a data stream from SCI-A.
SPI-A Boot Load from an external serial SPI| EEPROM on SPI-A.
I>’C Boot Load data from an external EEPROM at address 0x50 on the 0

I>C bus.
eCAN-A Boot © Call CAN_Boot to load from eCAN-A mailbox 1. 0 1 1
Boot to MO SARAM @ Jump to MO SARAM address 0x00 0000. 0 1 0
Boot to OTP @ Jump to OTP address 0x3D 7800. 0 0 1
Parallel 1/0 Boot Load data from GPIOO - GPIO15. 0 0 0

@
()

3

“)

You must take extra care because of any effect toggling SPICLKA to select a boot mode may have on external logic.

When booting directly to flash, it is assumed that you have previously programmed a branch statement at 0x3F 7FF6 to redirect
program flow as desired.

On devices that do not have an eCAN-A module this configuration is reserved. If it is selected, then the eCAN-A bootloader will
run and will loop forever waiting for an incoming message.

When booting directly to OTP or MO SARAM, it is assumed that you have previously programmed or loaded code starting at the
entry point location.

14 Boot ROM SPRU722C—-November 2004 —Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com Bootloader Features

Figure 4 shows an overview of the boot process. Each step is described in greater detail in following
sections.

Figure 4. Boot ROM Function Overview

1 Reset ’

InitBoot
Call
SelectBootMode
Read the state call Read
of I/O pins to Call Yes boot loader, EntrvPoint
determine what Boot Loader SCI, SPI, andyload
boot mode is I12C. eCAN. or
desired ; , data/code
parallel I/O

EntryPoint determined
directly from state of
I/O pins

Call
ExitBoot

Begin execution
at EntryPoint
The following boot modes do not call a bootloader. Instead, they jump to a predefined location in memory:
* Jump to branch instruction in flash memory

In this mode, the boot ROM software will configure the device for 28x operation and then branch
directly to location 0x3F 7FF6 in flash memory. This location is just before the 128-bit code security
module (CSM) password locations. You are required to have previously programmed a branch

instruction at location Ox3F 7FF6 that will redirect code execution to either a custom boot-loader or the
application code.

On RAM-only devices, the boot-to-flash option jumps to reserved memory and should not be used. On
ROM-only devices, the boot-to-flash option jumps to the location 0x3F7FF6 in ROM.

Figure 5. Jump-to-Flash Flow Diagram

User
SelectBootMode Jump to programmed
(Reset InitBoot Select jump ExitBoot 0x3F 7FF6 [branchto
to flash desired
location
SPRU722C—-November 2004 —Revised October 2006 Boot ROM 15

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

Bootloader Features www.ti.com

(Reset)—b InitBoot | Select jump — ExitBoot |

C Reset)—b InitBoot ¥ Selectjump ¥ ExitBoot [02531%%0 —¥ preprogrammed

Jump to MO SARAM

In this mode, the boot ROM software will configure the device for 28x operation and then branch
directly to 0x00 0000; the first address in the MO SARAM memory block

Figure 6. Flow Diagram of Jump to MO SARAM

SelectBootMode

Jump to Execution
0x00 0000 [*] continues

to MO SARAM

Jump to OTP memory

In this mode, the boot ROM software will configure the device for 28x operation and then branch
directly to at 0x3D 7800; the first address in the OTP memory block.

On ROM devices, the boot-to-OTP option jumps to address 0x3D 7800 in ROM. On RAM devices, the
boot-to-OTP option jumps to reserved memory and should not be used.

Figure 7. Flow Diagram of Jump-to-OTP Memory

SelectBootMode Execute

to OTP OTP code

The following boot modes call a boot load routine that loads a data stream from the peripheral into
memory:

Standard serial boot mode (SCI-A)
In this mode, the boot ROM will load code to be executed into on-chip memory via the SCI-A port.
SPI EEPROM boot mode (SPI-A)

In this mode, the boot ROM will load code and data into on-chip memory from an external EEPROM
via the SPI-A port.

I’C-A boot mode (I*C-A)
In this mode, the boot ROM will load code and data into on-chip memory from an external EEPROM at

address 0x50 on the I’C-A bus. The EEPROM must adhere to conventional I°C EEPROM protocol with
a 16-bit base address architecture.

eCAN Boot Mode (eCAN-A)

In this mode, the eCAN-A peripheral is used to transfer data and code into the on-chip memory using
eCAN-A mailbox 1. The transfer is an 8-bit data stream with two 8-bit values being transferred during
each communication. On devices that do not have an eCAN-A peripheral, this mode is reserved and
should not be used.

Boot from GPIO Port (Parallel Boot from GPIO0-GPIO15)

In this mode, the boot ROM uses GPIO port A pins GPIO0-GPIO15 to load code and data from an
external source. This mode supports both 8-bit and 16-bit data streams. Since this mode requires a
number of GPIO pins, it is typically used to download code for flash programming when the device is
connected to a platform explicitly for flash programming and not a target board.

16 Boot ROM SPRU722C—-November 2004 —Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com Bootloader Features

2.10 Bootloader Data Stream Structure

The following two tables and associated examples show the structure of the data stream incoming to the
bootloader. The basic structure is the same for all the bootloaders and is based on the C54x source data
stream generated by the C54x hex utility. The C28x hex utility (hex2000.exe) has been updated to support
this structure. The hex2000.exe utility is included with the C2000 code generation tools. All values in the
data stream structure are in hex.

The first 16-bit word in the data stream is known as the key value. The key value is used to tell the
bootloader the width of the incoming stream: 8 or 16 bits. Note that not all bootloaders will accept both 8
and 16-bit streams. Please refer to the detailed information on each loader for the valid data stream width.
For an 8-bit data stream, the key value is OXO8AA and for a 16-bit stream it is OX10AA. If a bootloader
receives an invalid key value, then the load is aborted. In this case, the entry point for the flash memory
(Ox3F 7FF6) will be used.

The next 8 words are used to initialize register values or otherwise enhance the bootloader by passing
values to it. If a bootloader does not use these values then they are reserved for future use and the
bootloader simply reads the value and then discards it. Currently only the SPI and I2C bootloaders use
these words to initialize registers.

The tenth and eleventh words comprise the 22-bit entry point address. This address is used to initialize
the PC after the boot load is complete. This address is most likely the entry point of the program
downloaded by the bootloader.

The twelfth word in the data stream is the size of the first data block to be transferred. The size of the
block is defined for both 8-bit and 16-bit data stream formats as the number of 16-bit words in the block.
For example, to transfer a block of 20 8-bit data values from an 8-bit data stream, the block size would be
0x000A to indicate 10 16-bit words.

The next two words tell the loader the destination address of the block of data. Following the size and
address will be the 16-bit words that makeup that block of data.

This pattern of block size/destination address repeats for each block of data to be transferred. Once all the
blocks have been transferred, a block size of 0x0000 signals to the loader that the transfer is complete. At
this point the loader will return the entry point address to the calling routine which in turn will cleanup and
exit. Execution will then continue at the entry point address as determined by the input data stream
contents.

SPRU722C—-November 2004 —Revised October 2006 Boot ROM 17
Submit Documentation Feedback

Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

Bootloader Features

13 TEXAS
INSTRUMENTS

www.ti.com

Table 4. General Structure Of Source Program Data Stream In 16-Bit Mode

Word

Contents

© 00 N O U B~ W N PP

N
N R O

13
14
15

n+l

10AA (KeyValue for memory width = 16bits)
Register initialization value or reserved for future use
Register initialization value or reserved for future use
Register initialization value or reserved for future use
Register initialization value or reserved for future use
Register initialization value or reserved for future use
Register initialization value or reserved for future use
Register initialization value or reserved for future use
Register initialization value or reserved for future use
Entry point PC[22:16]

Entry point PC[15:0]

Block size (number of words) of the first block of data to load. If the block size is 0, this indicates the end
of the source program. Otherwise another section follows.

Destination address of first block Addr[31:16]
Destination address of first block Addr[15:0]
First word of the first block in the source being loaded

Last word of the first block of the source being loaded
Block size of the 2nd block to load.

Destination address of second block Addr[31:16]
Destination address of second block Addr[15:0]

First word of the second block in the source being loaded

Last word of the second block of the source being loaded
Block size of the last block to load

Destination address of last block Addr[31:16]

Destination address of last block Addr[15:0]

First word of the last block in the source being loaded

Last word of the last block of the source being loaded
Block size of 0000h - indicates end of the source program

18

Boot ROM

SPRU722C—-November 2004 —Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com

Bootloader Features

Example 1. Data Stream Structure 16-bit

10AA ; Ox10AA 16-bit key value 0000 ; 8 reserved words

0000

0000

0000

0000

0000

0000

0000

003F ; 0x003F8000 EntryAddr, starting point after boot |oad conpletes
8000

0005 ; 0x0005 - First block consists of 5 16-bit words

003F ; O0x003F9010 - First block will be | oaded starting at 0x3F9010
9010

0001 ; Data | oaded = 0x0001 0x0002 0x0003 0x0004 0x0005

0002

0003

0004

0005

0002 ; 0x0002 - 2nd bl ock consists of 2 16-bit words

003F ; Ox003F8000 - 2nd block will be | oaded starting at 0x3F8000
8000

7700 ; Data | oaded = 0x7700 0x7625

7625

0000 ; 0x0000 - Size of O indicates end of data stream

After load has completed the following memory values will have been initialized as follows:

Locati on Val ue

0x3F9010 0x0001

0x3F9011 0x0002

0x3F9012 0x0003

0x3F9013 0x0004

0x3F9014 0x0005

0x3F8000 0x7700

0x3F8001 0x7625

PC Begi ns execution at 0x3F8000

SPRU722C—-November 2004 —Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

Boot ROM

19

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

Bootloader Features

13 TEXAS
INSTRUMENTS

www.ti.com

In 8-bit mode, the least significant byte (LSB) of the word is sent first followed by the most significant byte
(MSB). For 32-bit values, such as a destination address, the most significant word (MSW) is loaded first,

followed by the least significant word (LSW). The bootloaders take this into account when loading an 8-bit
data stream.

Table 5. LSB/MSB Loading Sequence in 8-Bit Data Stream

Byte Contents
LSB (First Byte of 2) MSB (Second Byte of 2)
1 2 LSB: AA (KeyValue for memory width = 8 bits) MSB: 08h (KeyValue for memory width = 8 bits)
3 4 LSB: Register initialization value or reserved MSB: Register initialization value or reserved
5 6 LSB: Register initialization value or reserved MSB: Register initialization value or reserved
7 8 LSB: Register initialization value or reserved MSB: Register initialization value or reserved
17 18 LSB: Register initialization value or reserved MSB: Register initialization value or reserved
19 20 LSB: Upper half of Entry point PC[23:16] MSB: Upper half of entry point PC[31:24] (Always 0x00)
21 22 LSB: Lower half of Entry point PC[7:0] MSB: Lower half of Entry point PC[15:8]
23 24 LSB: Block size in words of the first block to load. If the MSB: block size
block size is 0, this indicates the end of the source
program. Otherwise another block follows. For example, a
block size of 0Xx000A would indicate 10 words or 20 bytes
in the block.
25 26 LSB: MSW destination address, first block Addr[23:16] MSB: MSW destination address, first block Addr[31:24]
27 28 LSB: LSW destination address, first block Addr[7:0] MSB: LSW destination address, first block Addr[15:8]
29 30 LSB: First word of the first block being loaded MSB: First word of the first block being loaded
LSB: Last word of the first block to load MSB: Last word of the first block to load
LSB: Block size of the second block MSB: Block size of the second block
LSB: MSW destination address, second block Addr[23:16] MSB: MSW destination address, second block
Addr[31:24]
LSB: LSW destination address, second block Addr[7:0] MSB: LSW destination address, second block Addr[15:8]
LSB: First word of the second block being loaded MSB: First word of the second block being loaded
LSB: Last word of the second block MSB: Last word of the second block
LSB: Block size of the last block MSB: Block size of the last block
LSB: MSW of destination address of last block Addr[23:16] MSB: MSW destination address, last block Addr[31:24]
LSB: LSW destination address, last block Addr[7:0] MSB: LSW destination address, last block Addr[15:8]
LSB: First word of the last block being loaded MSB: First word of the last block being loaded
LSB: Last word of the last block MSB: Last word of the last block
n n+l LSB: 00h MSB: 00h - indicates the end of the source

20 Boot ROM

SPRU722C—-November 2004 —Revised October 2006

Submit Documentation Feedback

Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com

Bootloader Features

Example 2. Data Stream Structure 8-bit

AA 08 ; OxO8AA 8-bit key val ue

00 00 00 00 ; 8 reserved words

00 00 00 00

00 00 00 00

00 00 00 00

3F 00 00 80 ; Ox003F8000 EntryAddr, starting point after boot

05 00 ; Ox0005 - First block consists of 5 16-bit words

3F 00 10 90 ; Ox003F9010 - First block will be |oaded starting at 0x3F9010
01 00 ; Data | oaded = 0x0001 0x0002 0x0003 0x0004 0x0005

02 00

03 00

04 00

05 00

02 00 ; 0x0002 - 2nd bl ock consists of 2 16-bit words

3F 00 00 80 ; Ox003F8000 - 2nd block will be | oaded starting at 0x3F8000
00 77 ; Data | oaded = 0x7700 0x7625

25 76

00 00 ; 0x0000 - Size of O indicates end of data stream

After |oad has conpleted the followi ng nenory val ues will

Location Val ue

0x3F9010 0x0001

0x3F9011 0x0002

0x3F9012 0x0003

0x3F9013 0x0004

0x3F9014 0x0005

0x3F8000 0x7700

0x3F8001 0x7625

PC Begi ns execution at 0x3F8000

| oad conpl etes

have been initialized as foll ows:

SPRU722C—-November 2004 —Revised October 2006
Submit Documentation Feedback

Copyright © 2004-2006, Texas Instruments Incorporated

Boot ROM

21

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

Bootloader Features www.ti.com

2.11 Basic Transfer Procedure

Figure 8 illustrates the basic process a bootloader uses to determine whether 8-bit or 16-bit data stream
has been selected, transfer that data, and start program execution. This process occurs after the
bootloader finds the valid boot mode selected by the state of GPIO pins.

The loader first compares the first value sent by the host against the 16-bit key value of Ox10AA. If the
value fetched does not match then the loader will read a second value. This value will be combined with
the first value to form a word. This will then be checked against the 8-bit key value of OX08AA. If the
loader finds that the header does not match either the 8-bit or 16-bit key value, or if the value is not valid
for the given boot mode then the load will abort. In this case the loader will return the entry point address
for the flash to the calling routine.

Figure 8. Bootloader Basic Transfer Procedure

Read first word (W1)

Read second word
(W2) and discard
upper 8-bits

Wi1=
O0x10AA
?

Data format error
Return
FLASH_ENTRY_POINT

16-bit data size

Read EntryPoint address Da?;g}ze

Read BlockSize (R)

Yes Return
EntryPoint

No

Read BlockAddress

Transfer R words of
data from source to
destination

A 8-bit and 16-bit transfers are not valid for all boot modes. See the info specific to a particular bootloader for any
limitations.

B In 8-bit mode, the LSB of the 16-bit word is read first followed by the MSB.

22 Boot ROM SPRU722C—-November 2004 —Revised October 2006
Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com Bootloader Features

2.12 InitBoot Assembly Routine

The first routine called after reset is the InitBoot assembly routine. This routine initializes the device for
operation in C28x object mode. InitBoot also performs a dummy read of the Code Security Module (CSM)
password locations. If the CSM passwords are erased (all OxFFFFs) then this has the effect of unlocking
the CSM. Otherwise the CSM will remain locked and this dummy read of the password locations will have
no effect. This can be useful if you have a new device that you want to boot load.

After the dummy read of the CSM password locations, the InitBoot routine calls the SelectBootMode
function. This function determines the type of boot mode desired by the state of certain GPIO pins. This
process is described in Section 2.13. Once the boot is complete, the SelectBootMode function passes
back the entry point address (EntryAddr) to the InitBoot function. EntryAddr is the location where code
execution will begin after the bootloader exits. InitBoot then calls the ExitBoot routine that then restores
CPU registers to their reset state and exits to the EntryAddr that was determined by the boot mode.

Figure 9. Overview of InitBoot Assembly Function

(Init Boot)

Initialize device
OBJMODE=1

AMODE =0 Dummy read of Call Call

MOM1MAP=1 CSM password SelectBootMode ExitBoot

DP =0 locations
OVM =0
SPM= 0

SP = 0x400

SPRU722C—-November 2004 —Revised October 2006 Boot ROM 23

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

Bootloader Features www.ti.com

2.13 SelectBootMode Function

To determine the desired boot mode, the SelectBootMode function examines the state of 3 GPIO pins as
shown in Table 6.

Table 6. Boot Mode Selection

Mode Description GPIO18 GPIO29 GPIO34
SPICLKA @ SCITXA
SCITXB
Boot to Flash @ Jump to flash address 0x3F 7FF6. You must have 1 1 1

programmed a branch instruction here prior to reset to
redirect code execution as desired.

SCI-A Boot Load from SCI-A. 1 1 0
SPI-A Boot Load from an external serial SP| EEPROM on SPI-A. 1 0
I*C-A Boot Load from an external EEPROM at address 0x50 on the 1 0
I2C-A bus.
eCAN-A Boot @ Call CAN_Boot to load from eCAN-A mailbox 1. 0 1 1
Boot to MO SARAM @ Jump to MO SARAM address 0x00 0000. 0 1 0
Boot to OTP @ Jump to OTP address 0x3D 7800. 0 0 1
Parallel 1/O Boot Load from GPIOO0 - GPIO15. 0 0 0

(6]
()

®)
@)

You must take extra care because of any effect toggling SPICLKA to select a boot mode may have on external logic.

When booting directly to flash, it is assumed that you have previously programmed a branch statement at Ox3F 7FF6 to redirect
program flow as desired.

On devices without an eCAN-A module, this mode is reserved and should not be used.

When booting directly to OTP or MO, it is assumed that you have previously programmed or loaded code starting at the entry
point location.

For a boot mode to be selected, the pins corresponding to the desired boot mode have to be pulled low or
high until the selection process completes. Note that the state of the selection pins is not latched at reset;
they are sampled some cycles later in the SelectBootMode function. The internal pullup resistors are
enabled at reset for the boot mode selection pins. It is still suggested that the boot mode configuration be
made externally to avoid the effect of any noise on these pins.

The SelectBootMode function checks the missing clock detect bit (MCLKSTS) in the PLLSTS register to
determine if the PLL is operating in limp mode. If the PLL is operating in limp mode, the boot mode select
function takes an appropriate action depending on the boot mode selected:

Boot to flash, OTP, SARAM, I°C-A, SPI-A and the parallel /O

These modes behave as normal. The user's software must check for missing clock status and take the
appropriate action if the MCLKSTS bit is set.

SCI-A boot

The SCI bootloader will be called. Depending on the requested baud rate, however, the device may
not be able to autobaud lock. In this case the boot ROM software will loop in the autobaud lock
function indefinitely. Should the SCI-A boot complete, the user's software must check for a missing
clock status and take the appropriate action.

eCAN-A boot
The eCAN bootloader will not be called. Instead the boot ROM will loop indefinitely.

NOTE: The SelectBootMode routine disables the watchdog before calling the SCI, I)C, eCAN, SPI or
parallel bootloader. The bootloaders do not service the watchdog and assume that it is
disabled. Before exiting, the SelectBootMode routine will re-enable the watchdog and reset
its timer.

If a bootloader is not going to be called, then the watchdog is left untouched.

24 Boot ROM SPRU722C—-November 2004 —Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS

INSTRUMENTS

www.ti.com

Bootloader Features

When selecting a boot mode, the pins should be pulled high or low through a weak pulldown or weak pull-
up such that the DSP can drive them to a new state when required. For example, if you wanted to boot

from the SCI-A one of the pins you pull high is the SCITXDA pin. This pullup must be weak so that when
the SCI boot process begins the DSP will be able to properly transmit through the TX pin. Likewise for the

remaining boot mode selection pins.

You must take extra care using the SPICLKA signal to select a boot mode. Toggling of this signal may

affect external logic and this effect must be taken into account.

Figure 10. Overview of the SelectBootMode Function

SelectBootMode

Configure GPIO18, GPI029,
GPIO34 as input pins

!
Read boot mode
pins
¥

Dummy read of
CSM password

Call
WatchDogDisable

Call

Return)

FLASH_ENTRY_POINT
EntryAddr: Ox3F 7FF6

J/

Return
MO_ENTRY_POINT
EntryAddr: 0x00 0000

Return
OTP_ENTRY_POINT
EntryAddr: 0x3D 7800

Call
SCI_Boot

Call
SPI_Boot

Call
12C_Boot

eCAN_Boot

Call

\ 4

You must have previously programmed
a branch statement at flash address
0x3F 7FF6 to redirect program as
desired.

This location is just before the

CSM password.

Direct branch to the
MO SARAM block

Execute user custom boot
loader or Tl-provided boot loader
memory without using up main
flash memory.

Bootloader selected (SCI, SPI or
parallel) will copy data from the
external device to internal memory.

A section of the data read determines
the EntryPoint for execution after the
boot routines have completed.

Call

Parallel_Boot

WatchDogEnable

Return EntryAddr as
determined by boot
loader called.

SPRU722C—-November 2004 —Revised October 2006

Submit Documentation Feedback

Boot ROM

Copyright © 2004-2006, Texas Instruments Incorporated

25

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

Bootloader Features www.ti.com

2.14 CopyData Function

Each of the bootloaders uses the same function to copy data from the port to the DSP SARAM. This
function is the CopyData() function. This function uses a pointer to a GetWordData function that is
initialized by each of the loaders to properly read data from that port. For example, when the SPI loader is
evoked, the GetWordData function pointer is initialized to point to the SPI-specific SPI_GetWordData
function. Thus when the CopyData() function is called, the correct port is accessed. The flow of the
CopyData function is shown in Figure 11.

Figure 11. Overview of CopyData Function
‘ CopyData ’

Call peripheral-specific
GetWordData to read
BlockHeader.BlockSize

BlockSize=

0x0000
?

Return

Call GetLongData
to read
BlockHeader.DestAddr

Transfer
BlockHeader.BlockSize
words of data from
port to memory
starting at DestAddr

2.15 SCI_Boot Function

The SCI boot mode asynchronously transfers code from SCI-A to internal memory. This boot mode only
supports an incoming 8-bit data stream and follows the same data flow as outlined in Example 2.

Figure 12. Overview of SCI Bootloader Operation

~ SCIRXDA
N Host
DSP (Data and program
SCITXDA . source)

The DSP communicates with the external host device by communication through the SCI-A Peripheral.
The autobaud feature of the SCI port is used to lock baud rates with the host. For this reason the SCI
loader is very flexible and you can use a number of different baud rates to communicate with the DSP.

After each data transfer, the DSP will echo back the 8-bit character received to the host. In this manner,
the host can perform checks that each character was received by the DSP.

26

Boot ROM SPRU722C—-November 2004 —Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com Bootloader Features

At higher baud rates, the slew rate of the incoming data bits can be effected by transceiver and connector
performance. While normal serial communications may work well, this slew rate may limit reliable auto-

baud detection at higher baud rates (typically beyond 100kbaud) and cause the auto-baud lock feature to
fail. To avoid this, the following is recommended:

1. Achieve a baud-lock between the host and 28x SCI bootloader using a lower baud rate.
2. Load the incoming 28x application or custom loader at this lower baud rate.

3. The host may then handshake with the loaded 28x application to set the SCI baud rate register to the
desired high baud rate.

Figure 13. Overview of SCI_Boot Function

1 SCI_Boot }

Set GetWord function pointer
to SCIA_GetWordData

v

Enable the SCI-A clock
st the LSPOLK 10 /4 Echo autobaud character

l

Enable the SCIA TX and RX pin Read KeyValue
functionality and pullups on
TX and RX

Valid

KeyValue

(0x08AA)
?

Setup SCI-A for
1 stop, 8-bit character,
no parity, use internal
SC clock, no loopback,
disable Rx/Tx interrupts

Return
FLASH_ENTRY_POINT

Yes
Read and discard 8
Disable SCI FIFOs reserved words
Prime SCI-A baud register Read EntryPoint address
Enable autobaud detection Call CopyData

Autobaud

lock
?

Return
EntryPoint

SPRU722C—-November 2004 —Revised October 2006

Boot ROM 27
Submit Documentation Feedback

Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

Bootloader Features

13 TEXAS
INSTRUMENTS

www.ti.com

Figure 14. Overview of SCI_GetWordData Function

Data

Received
?

(SCIA_GetWordData

Read LSB

Data

Echoback LSB Received
2

to host

No

Read MSB

Echoback MSB
to host

—(Return MSB:LSB)

2.16 Parallel_Boot Function (GPIO)

The parallel general purpose I/0O (GPIO) boot mode asynchronously transfers code from GPIO0-GPIO15
to internal memory. Each value can be 16 bits or 8 bits long and follows the same data flow as outlined

inData Stream Structure.

Figure 15. Overview of Parallel GPIO bootloader Operation

DSP control — GP1026

Host control — GP1027 " Host
DSP (Data and program
16 source)

Data GP /O port GPIO[15:0]

The 28x communicates with the external host device by polling/driving

the GP1027 and GPIO26 lines. The

handshake protocol shown in Figure 16 must be used to successfully transfer each word via GPIO[15:0].
This protocol is very robust and allows for a slower or faster host to communicate with the DSP.

If the 8-bit mode is selected, two consecutive 8-bit words are read to form a single 16-bit word. The most
significant byte (MSB) is read first followed by the least significant byte (LSB). In this case, data is read

from the lower eight lines of GPIO[7:0] ighoring the higher byte.

The DSP first signals the host that the DSP is ready to begin data transfer by pulling the GPIO26 pin low.
The host load then initiates the data transfer by pulling the GPIO27 pin low. The complete protocol is

shown in the diagram below:

28 Boot ROM SPRU722C—-November 2004 —Revised October 2006

Copyright © 2004-2006, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com Bootloader Features

Figure 16. Parallel GPIO bootloader Handshake Protocol

P2 00 60
g TN VTN

\
\
\ ||
DSP control | | |
GPI1026 |

1. The DSP indicates it is ready to start receiving data by pulling the GP1026 pin low.

2. The bootloader waits until the host puts data on GPIO[15:0]. The host signals to the DSP that data is
ready by pulling the GPIO27 pin low.

3. The DSP reads the data and signals the host that the read is complete by pulling GP1026 high.
4. The bootloader waits until the host acknowledges the DSP by pulling GP1O27 high.

5. The DSP again indicates it is ready for more data by pulling the GP1026 pin low.

This process is repeated for each data value to be sent.

Figure 17 shows an overview of the Parallel GPIO bootloader flow.

Figure 17. Parallel GPIO Mode Overview

< Parallel_Boot)

A 4

Initialize GP 1/O MUX
and Dir registers
GPIO[15:0] = input

gg:g%;omgﬂtt Read and discard 8

Enable pullups on reserved words

GPIO[15:0], GPIO26,
and GPIO27
i Read EntryPoint

Read KeyValue to address
determine DataSize
and assign appropriate
GetWordData function

Call
CopyData

Valid

KeyValue

(Ox08AA or

0Xx10AA)
?

Return
Yes EntryPoint

Figure 18 shows the transfer flow from the host side. The operating speed of the CPU and host are not
critical in this mode as the host will wait for the DSP and the DSP will in turn wait for the host. In this
manner the protocol will work with both a host running faster and a host running slower then the DSP.

Return
FLASH_ENTRY_POINT

SPRU722C—-November 2004 —Revised October 2006 Boot ROM 29

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

Bootloader Features

13 TEXAS
INSTRUMENTS

www.ti.com

Figure 18. Parallel GPIO Mode - Host Transfer Flow

C Start transfer)

DSP ready
(GPIQ)26=0)

Yes

No DSP ack

Load GPIO[15:0] with dat

Signal that data
is ready
(GP1027=0)

(GPI026=1)

Yes

(GPI027=1)

Acknowledge DSP

C End transfer)

Figure 19 and Figure 20 show the flow used to read a single word of data from the parallel port. The
loader uses the method shown in Figure 8 to read the key value and to determine if the incoming data
stream width is 8-bit or 16-bit. A different GetWordData function is used by the parallel loader depending

on the data size of the incoming data stream.

e 16-bit data stream

For an 16-bit data stream, the function Parallel_GetWordDatal6bit is used. This function reads all 16-
bits at a time. The flow of this function is shown in Figure 19.

* 8-bit data stream

For an 8-bit data stream, the function Parallel_GetWordData8bit is used. The 8-bit routine, shown in
Figure 20, discards the upper 8 bits of the first read from the port and treats the lower 8 bits as the
least significant byte (LSB) of the word to be fetched. The routine will then perform a second read to
fetch the most significant byte (MSB). It then combines the MSB and LSB into a single 16-bit value to
be passed back to the calling routine.

30 Boot ROM

SPRU722C—-November 2004 —Revised October 2006

Copyright © 2004-2006, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com

Bootloader Features

Figure 19. 16-Bit Parallel GetWord Function

CParaIIeI_GetWordDataleit)

Signal host that DSP is ready
(GP1026 = 0)

Data

ready

(GPI027 = 0)
2

Yes

Read word of data from
GPIO[15:0]

DSP ack read complete
(GP1026 = 1)

ack
(GPIO27 =1)
?

Yes

(Return WordData)

SPRU722C—-November 2004 —Revised October 2006

Submit Documentation Feedback

Copyright © 2004-2006, Texas Instruments Incorporated

Boot ROM

31

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

Bootloader Features

13 TEXAS
INSTRUMENTS

www.ti.com

Figure 20. 8-Bit Parallel GetWord Function

Parallel_GetWordData
8 hit

Signal host that DSP is ready
(GP1026 = 0)

Data

ready

(GPI027 = 0)
?

Yes

Read word of data
from GPIO 15:0

DSP ack read complete
(GPI026 = 1)

Host
ack No

(GP1027 = 1)
2

Yes

®

Signal host that DSP
is ready to read MSB
(GPIO26 = 0)

Data

ready

(GPI027 = 0)
?

Yes

Read word from
GPIO[15:0], discard
the upper 8 bits, MSB
of data = lower 8 bits

DSP ack read complete
(GPI026 = 1)

ack
(GPI027 =1)
?

Yes

WordData = MSB:LSB

(Return WordData)

32 Boot ROM

SPRU722C—-November 2004 —Revised October 2006
Submit Documentation Feedback

Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com

Bootloader Features

2.17 SPI_Boot Function
The SPI loader expects an 8-bit wide SPI-compatible serial EEPROM device to be present on the SPI-A

pins as indicated in Figure 21. The SPI bootloader does not support a 16-bit data stream.

Figure 21. SPI Loader

Serial SPI
EEPROM
PISIMOA
SPISIMO DIN
DSP SPISOMIA DOUT
SPICLKA CLK
SPIESTEA cs

The SPI boot ROM loader initializes the SPI module to interface to a serial SPI EEPROM. Devices of this

type include, but are not limited to, the Xicor X25320 (4Kx8) and Xicor X25256 (32Kx8) SPI serial SPI

EEPROMs.

The SPI boot ROM loader initializes the SPI with the following settings: FIFO enabled, 8-bit character,
internal SPICLK master mode and talk mode, clock phase = 0, polarity = 0, using the slowest baud rate.

If the download is to be performed from an SPI port on another device, then that device must be setup to

operate in the slave mode and mimic a serial SPI EEPROM. Immediately after entering the SPI_Boot
function, the pin functions for the SPI pins are set to primary and the SPI is initialized. The initialization is

done at the slowest speed possible. Once the SPI is initialized and the key value read, you could specify a
change in baud rate or low speed peripheral clock.

Table 7. SPI 8-Bit Data Stream

Byte Contents
1 LSB: AA (KeyValue for memory width = 8-bits)
2 MSB: 08h (KeyValue for memory width = 8-bits)
3 LSB: LOSPCP
4 MSB: SPIBRR
5 LSB: reserved for future use
6 MSB: reserved for future use
17 LSB: reserved for future use
18 MSB: reserved for future use
19 LSB: Upper half (MSW) of Entry point PC[23:16]
20 MSB: Upper half (MSW) of Entry point PC[31:24] (Note: Always 0x00)
21 LSB: Lower half (LSW) of Entry point PC[7:0]
22 MSB: Lower half (LSW) of Entry point PC[15:8]
Blocks of data in the format size/destination address/data as shown in the generic
data stream description
n LSB: 00h
n+1 MSB: 00h - indicates the end of the source
SPRU722C—-November 2004 —-Revised October 2006 Boot ROM 33

Submit Documentation Feedback

Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

Bootloader Features

13 TEXAS
INSTRUMENTS

www.ti.com

The data transfer is done in "burst" mode from the serial SPI EEPROM. The transfer is carried out entirely
in byte mode (SPI at 8 bits/character). A step-by-step description of the sequence follows:

Step 1.
Step 2.
Step 3.
Step 4.

The SPI-A port is initialized

The GPIO19 (SPISTE) pin is used as a chip-select for the serial SPI| EEPROM

The SPI-A outputs a read command for the serial SPI EEPROM

The SPI-A sends the serial SPI| EEPROM an address 0x0000; that is, the host requires that

the EEPROM must have the downloadable packet starting at address 0x0000 in the

EEPROM.
Step 5.

The next word fetched must match the key value for an 8-bit data stream (0x08AA). The least

significant byte of this word is the byte read first and the most significant byte is the next byte
fetched. This is true of all word transfers on the SPI. If the key value does not match, then the
load is aborted and the entry point for the flash (0x3F 7FF6) is returned to the calling routine.

Step 6.

The next 2 bytes fetched can be used to change the value of the low speed peripheral clock

register (LOSPCP) and the SPI baud rate register (SPIBRR). The first byte read is the
LOSPCP value and the 2" byte read is the SPIBRR value. The next 7 words are reserved for
future enhancements. The SPI bootloader reads these 7 words and discards them.

Step 7.

The next 2 words makeup the 32-bit entry point address where execution will continue after

the boot load process is complete. This is typically the entry point for the program being
downloaded through the SPI port.

Step 8.

Multiple blocks of code and data are then copied into memory from the external serial SPI

EEPROM through the SPI port. The blocks of code are organized in the standard data stream
structure presented earlier. This is done until a block size of 0x0000 is encountered. At that
point in time the entry point address is returned to the calling routine that then exits the
bootloader and resumes execution at the address specified.

Figure 22.

Enable the SPI-A clock
Set the LSPCLK to 4

!

Enable SPISIMOA,
SPISOMI and SPICLKA
pin functionality and enable
pullups on those pins

I

Set up SPI-A for
8-bit character,
Use internal SPI clock,
master mode
Use slowest baud rate (0x7F)
Relinquish SPI-A from reset

Data Transfer From EEPROM Flow

Valid
KeyValue
(0x078AA)

Return
FLASH_ENTRY_POINT

Yes

Read LOSPCP value

l—’l Change LOSPCP I

I

Read SPIBRR value

|—>I Change SPIBRR

Set chip enable high
(GP1019)

;

Enable EEPROM
Send read command and
start at EEPROM address
0x0000

I

Read KeyValue

Read and discard 7
reserved words

I

Read EntryPoint
address

HI

Call CopyData

Return
EntryPoint

I

34 Boot ROM

SPRU722C—-November 2004 —Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com Bootloader Features

Figure 23. Overview of SPIA_GetWordData Function

Data
Recglved

Send dumm
CSPIA_GetWordDateD—' charactery

Yes

| Readise |
Data No
Send dummy t
character Recglved

Yes

| Readwmse |

2.18 I°C Boot Function

The I°C bootloader expects an 8-bit wide 1°C-compatible EEPROM device to be present at address 0x50
on the I?C-A bus as indicated in Figure 24. The EEPROM must adhere to conventional I°C EEPROM
protocol, as described in this section, with a 16-bit base address architecture.

Figure 24. EEPROM Device at Address 0x50
SDA SCL

280x SDAA —mm———¢

Master SCLA

12C
SDA EEPROM

SCL Slave Address
0x50

If the download is to be performed from a device other than an EEPROM, then that device must be set up
to operate in the slave mode and mimic the I’°C EEPROM. Immediately after entering the 1°C boot function,
the GPIO pins are configured for I’C-A operation and the I°C is initialized. The following requirements
must be met when booting from the I?°C module:

» The input frequency to the device must be between 14 MHz and 24 MHz
+ The EEPROM must be at slave address 0x50

SPRU722C—-November 2004 —Revised October 2006 Boot ROM 35

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

Bootloader Features

13 TEXAS
INSTRUMENTS

www.ti.com

Overview of 12C_Boot Function

Set CopyWord function
pointer to
12C_CopyWord

I

Enable SDAA and
SCLA pins
Enable pullups on
SDAA and SCLA

NACK
received
2

Return
FLASH_ENTRY_POINT

I

Read KeyValue

Enable 12C-A clock

v

Set slave address 0x50
I2C prescaler 2CPSC=0

100-kHz bit rate at
12-MHz SYSCLKOUT?

Enable TX/RX FIFOs to
receive 2 bytes

Valid

KeyValue

(0x08AA)
?

Yes

Return
FLASH_ENTRY_POINT

I

Read I2CPSC value
Read I2CCLKH value
Read I2CCLKL value

Place 12C in master
transmitter mode.
Set EEPROM address
pointer to 0x0000

Put 12C-A in Reset
Set 12CPSC value
Set I2CCLKH value
Set I2CCLKL value
Bring 12C-A out of Reset

Read and discard 5
reserved words

v

Read EntryPoint
address

v

Call CopyData

Return
EntryPoint

T During device boot, SYSCLKOUT will be the device input frequency divided by two.

To use the I°C-A bootloader, the input clock frequency to the device must be between 14 MHz and 24
MHz. This input clock frequency will result in a default 7 MHz to 12 MHz system clock (SYSCLKOUT). By
default, the bootloader sets the I2CPSC prescale value to 0 so that the 1C clock will not be divided down
from SYSCLKOUT. This results in an I>C clock between 7 MHz and 12 MHz, which meets the I1°C
peripheral clocking specification. The I2CPSC value can be modified after receiving the first few bytes
from the EEPROM, but it is not advisable to do this, because this can cause the I°C to operate out of the
required specification.

The bit-period prescalers (I2CCLKH and I2CCLKL) are configured by the bootloader to run the I°C at a 50
percent duty cycle at 100-kHz bit rate (standard 1°C mode) when the system clock is 12 MHz. These
registers can be modified after receiving the first few bytes from the EEPROM. This allows the
communication to be increased up to a 400-kHz bit rate (fast 1°C mode) during the remaining data reads.

36

Boot ROM SPRU722C—-November 2004 —Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com Bootloader Features

Arbitration, bus busy, and slave signals are not checked. Therefore, no other master is allowed to control
the bus during this initialization phase. If the application requires another master during I1°C boot mode,
that master must be configured to hold off sending any I?°C messages until the application software signals
that it is past the bootloader portion of initialization.

The nonacknowledgment bit is checked only during the first message sent to initialize the EEPROM base
address. This is to make sure that an EEPROM is present at address 0x50 before continuing. If an
EEPROM is not present, code will jump to the flash entry point. The nonacknowledgment bit is not
checked during the address phase of the data read messages (I2C_Get Word). If a non acknowledgment
is received during the data read messages, the I1°C bus will hang. Table 8 shows the 8-bit data stream
used by the I?C.

Table 8. I°C 8-Bit Data Stream

Byte Contents

1 LSB: AA (KeyValue for memory width = 8 bits)
2 MSB: 08h (KeyValue for memory width = 8 bits)
3 LSB: I2CPSC[7:0]
4 reserved
5 LSB: I2CCLKH[7:0]
6 MSB: I2CCLKH[15:8]
7 LSB: I2CCLKL[7:0]
8 MSB: I2CCLKL[15:8]
17 LSB: Reserved for future use
18 MSB: Reserved for future use
19 LSB: Upper half of entry point PC
20 MSB: Upper half of entry point PC[22:16] (Note: Always 0x00)
21 LSB: Lower half of entry point PC[15:8]
22 MSB: Lower half of entry point PC[7:0]
Blocks of data in the format size/destination address/data as shown in the generic data stream
description.
n | LSB: 00h
n+l MSB: 00h - indicates the end of the source

The 1°C EEPROM protocol required by the I1°C bootloader is shown in Figure 26 and Figure 27. The first
communication, which sets the EEPROM address pointer to 0x0000 and reads the KeyValue (0x08AA)
from it, is shown in Figure 26. All subsequent reads are shown in Figure 27 and are read two bytes at a
time.

Figure 26. Random Read

START
RESTART
NO ACK

w
o0 =
) x
= 2

ACK

P4
Q
<

0 o
2 g
[TTTTTTTI[TTTTTTTI
SDA LINE 1/0[1(ojo[ojojolojojoj00[o[ojojojolojojoj0 0 0[0| 010 1{0[1 |olojojo[1]0
L et trtl

LSB
ACK

Device Address Address Device DATABYTE 1 DATA BYTE 2
Address Pointer, MSB Pointer, LSB Address
SPRU722C—-November 2004 —-Revised October 2006 Boot ROM 37

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

Bootloader Features www.ti.com

Figure 27. Sequential Read

X
= Q
Z 5% 5 s 8
()] < < P4 ()]
[TTTTTTTT[TTTTTTTT
SDALINE 1)0[1 OOOOHO
ettt et trtl
Device DATA BYTE n DATA BYTE n+1

Address

2.19 eCAN Boot Function

The eCAN bootloader asynchronously transfers code from eCAN-A to internal memory. The host can be
any CAN node. The communication is first done with 11-bit standard identifiers (with a MSGID of Ox1)
using two bytes per data frame. The host can download a kernel to reconfigure the eCAN if higher data
throughput is desired.

Figure 28. Overview of eCAN-A bootloader Operation

PN
280x
target
#1
(%3]
. 2 CAN
° zZ host
° <
$)
280x
target
#n
~

The bit-timing registers are programmed in such a way that a valid bit-rate is achieved for different
XCLKIN values as shown in Table 9.

Table 9. Bit-Rate Values for Different XCLKIN Values

XCLKIN SYSCLKOUT Bit Rate
40 MHz 20 MHz 1 Mbps
20 MHz 10 MHz 500 kbps
10 MHz 5 MHz 250 kbps
5 MHz 2.5 MHz 125 kbps

The SYSCLKOUT values shown are the reset values with the default PLL setting. The BRP,, and bit-time
values are hard coded to 1 and 10, respectively.

Mailbox 1 is programmed with a standard MSGID of 0x1 for boot-loader communication. The CAN host
should transmit only 2 bytes at a time, LSB first and MSB next. For example, to transmit the word OX08AA
to the 280x, transmit AA first, followed by 08. The program flow of the CAN bootloader is identical to the
SCI bootloader. The data sequence for the CAN bootloader shown in Table 10:

38 Boot ROM SPRU722C—-November 2004 —-Revised October 2006
Submit Documentation Feedback

Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS

INSTRUMENTS

www.ti.com

Bootloader Features

AA
00
00
00
00
00
00
00
00
bb
dd

nn

hh
XX
XX

XX
nn

hh
XX
XX

XX

00

08
00
00
00
00
00
00
00
00
aa
cC

mm
ee
hh
XX
XX

XX
mm
ee
99
XX
XX

XX

00

Table 10. eCAN 8-Bit Data Stream

Keyvalue: OX08AA

Part of 8 reserved words stream

Part of 8 reserved words stream

Part of 8 reserved words stream

Part of 8 reserved words stream

Part of 8 reserved words stream

Part of 8 reserved words stream

Part of 8 reserved words stream

Part of 8 reserved words stream

Most significant (MSW) part of 32-bit address (aabb)

Least significant (LSW) part of 32-bit address (ccdd) -
Final entry-point address = Oxaabbccdd

Length of first section (mmnn)

MSW part of 32-bit address (eeff)

LSW part of 32-bit address (gghh) - Starting address of first section = Oxeeffgghh
First word of first section

Second word of first section

Last word of first section
Length of second section (mmnn)
MSW part of 32-bit address (eeff)

LSW part of 32-bit address (gghh) - Starting address of second section = Oxeeffgghh

First word of second section
Second word of second section

Last word of second section
(more sections if needed)

Section length of zero for next section indicates end of data.

SPRU722C—-November 2004 —Revised October 2006
Submit Documentation Feedback

Copyright © 2004-2006, Texas Instruments Incorporated

Boot ROM

39

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

Bootloader Features www.ti.com

2.20 ExitBoot Assembly Routine

The Boot ROM includes an ExitBoot routine that restores the CPU registers to their default state at reset.
This is performed on all registers with one exception. The OBJMODE bit in ST1 is left set so that the
device remains configured for C28x operation. This flow is detailed in the following diagram:

Figure 29. ExitBoot Procedure Flow

| InitBoot I

.

Call
SelectBootMode

Call

BootLoader
?

Call Boot Loader

No

Call ExitBoot

:

Cleanup CPU
registers to default
value after reset*

.

Deallocate stack
(SP=0x400)

I Branch to EntryPoint I

Begin execution
at EntryPoint

The following CPU registers are restored to their default values:
» ACC = 0x0000 0000

» RPC = 0x0000 0000

» P =0x0000 0000

» XT = 0x0000 0000

» STO = 0x0000

» ST1 = 0x0A0B

» XARO = XAR7 = 0x0000 0000

After the ExitBoot routine completes and the program flow is redirected to the entry point address, the
CPU registers will have the following values:

40 Boot ROM SPRU722C—-November 2004 —Revised October 2006
Submit Documentation Feedback

Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS

INSTRUMENTS
www.ti.com Bootloader Features
Table 11. CPU Register Restored Values
Register Value Register Value
ACC 0x0000 0000 P 0x0000 0000
XT 0x0000 0000 RPC 0x00 0000
XARO-XAR7 0x0000 0000 DP 0x0000
STO 0x0000 15:10 OVC =0 ST1 0x0A0B 15:13 ARP =0
9:7 PM=0 12 XF=0
6 V=0 11 MOM1MAP =1
5 N=0 10 reserved
4 2=0 9 OBJMODE =1
3 C=0 8 AMODE =0
2 TC=0 7 IDLESTAT =0
1 OVvWM=0 6 EALLOW =0
0 SXM=0 5 LOOP =0
4 SPA=0
3 VMAP =1
2 PAGEO=0
1 DBGM =1
0 INTM=1
SPRU722C—-November 2004 —-Revised October 2006 Boot ROM 41

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

Building the Boot Table www.ti.com

3 Building the Boot Table

This chapter explains how to generate the data stream and boot table required for the bootloader.

3.1 The C2000 Hex Utility

To use the features of the bootloader, you must generate a data stream and boot table as described in
Section 2.10. The hex conversion utility tool, included with the 28x code generation tools, can generate
the required data stream including the required boot table. This section describes the hex2000 utility. An
example of a file conversion performed by hex2000 is described in Section 3.2.

The hex utility supports creation of the boot table required for the SCI, SPI, I°C, eCAN, and parallel I/O
loaders. That is, the hex utility adds the required information to the file such as the key value, reserved
bits, entry point, address, block start address, block length and terminating value. The contents of the boot
table vary slightly depending on the boot mode and the options selected when running the hex conversion
utility. The actual file format required by the host (ASCII, binary, hex, etc.) will differ from one specific
application to another and some additional conversion may be required.

To build the boot table, follow these steps:
1. Assemble or compile the code.

This creates the object files that will then be used by the linker to create a single output file.
2. Link the file.

The linker combines all of the object files into a single output file in common object file format (COFF).
The specified linker command file is used by the linker to allocate the code sections to different
memory blocks. Each block of the boot table data corresponds to an initialized section in the COFF file.
Uninitialized sections are not converted by the hex conversion utility. The following options may be
useful:

The linker -m option can be used to generate a map file. This map file will show all of the sections that
were created, their location in memory and their length. It can be useful to check this file to make sure
that the initialized sections are where you expect them to be.

The linker -w option is also very useful. This option will tell you if the linker has assigned a section to a
memory region on its own. For example, if you have a section in your code called ramfuncs.

3. Run the hex conversion utility.

Choose the appropriate options for the desired boot mode and run the hex conversion utility to convert
the COFF file produced by the linker to a boot table.

See the TMS320C28x Assembly Language Tools User's Guide (SPRU513) and the TMS320C28x
Optimizing C/C++ Compiler User's Guide (SPRU514) for more information on the compiling and linking
process.

Table 12 summarizes the hex conversion utility options available for the bootloader. See the TMS320C28x
Assembly Language Tools User's Guide (SPRU513) for a detailed description of the hex2000 operations
used to generate a boot table. Updates will be made to support the I°C boot. See the Codegen release
notes for the latest information.

42 Boot ROM SPRU722C—-November 2004 —Revised October 2006
Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

I3 TEXAS
INSTRUMENTS
www.ti.com Building the Boot Table
Table 12. Boot-Loader Options

Option Description

-boot Convert all sections into bootable form (use instead of a SECTIONS directive)

-sci8 Specify the source of the bootloader table as the SCI-A port, 8-bit mode

-spi8 Specify the source of the bootloader table as the SPI-A port, 8-bit mode

-gpio8 Specify the source of the bootloader table as the GPIO port, 8-bit mode

-gpiol6 Specify the source of the bootloader table as the GPIO port, 16-bit mode

-bootorg value Specify the source address of the bootloader table

-lospcp value Specify the initial value for the LOSPCP register. This value is used only for the spi8 boot table format
and ignored for all other formats. If the value is greater than 0x7F, the value is truncated to Ox7F.

-spibrr value Specify the initial value for the SPIBRR register. This value is used only for the spi8 boot table format and
ignored for all other formats. If the value is greater than Ox7F, the value is truncated to Ox7F.

-e value Specify the entry point at which to begin execution after boot loading. The value can be an address or a
global symbol. This value is optional. The entry point can be defined at compile time using the linker -e
option to assign the entry point to a global symbol. The entry point for a C program is normally _c_int00
unless defined otherwise by the -e linker option.

-i2c8 Specify the source of the bootloader table as the I1>C-A port, 8-bit

-i2cpsc value Specify the value for the I2CPSC register. This value will be loaded and take effect after all 1°C options
are loaded, prior to reading data from the EEPROM. This value will be truncated to the least significant
eight bits and should be set to maintain an 1°C module clock of 7-12 MHz.

-i2cclkh value Specify the value for the I2CCLKH register. This value will be loaded and take effect after all I)C options
are loaded, prior to reading data from the EEPROM.

-i2cclkl value Specify the value for the I2CCLKL register. This value will be loaded and take effect after all I°C options

are loaded, prior to reading data from the EEPROM.

3.2 Example: Preparing a COFF File For eCAN Bootloading
This section shows how to convert a COFF file into a format suitable for CAN based bootloading. This
example assumes that the host sending the data stream is capable of reading an ASCII hex format file. An
example COFF file named GPIO34TOG.out has been used for the conversion.
Build the project and link using the -m linker option to generate a map file. Examine the .map file produced
by the linker. The information shown in Example 3 has been copied from the example map file
(GP1034TOG.map). This shows the section allocation map for the code. The map file includes the
following information:
e Output Section
This is the name of the output section specified with the SECTIONS directive in the linker command
file.
* Origin
The first origin listed for each output section is the starting address of that entire output section. The
following origin values are the starting address of that portion of the output section.
* Length
The first length listed for each output section is the length for that entire output section. The following
length values are the lengths associated with that portion of the output section.
» Attributes/input sections
This lists the input files that are part of the section or any value associated with an output section.
See the TMS320C28x Assembly Language Tools User's Guide (SPRU513) for detailed information on
generating a linker command file and a memory map.
All sections shown in Example 3 that are initialized need to be loaded into the DSP in order for the code to
execute properly. In this case, the codestart, ramfuncs, .cinit, myreset and .text sections need to be
loaded. The other sections are uninitialized and will not be included in the loading process. The map file
also indicates the size of each section and the starting address. For example, the .text section has 0x155
words and starts at 0Ox3FA000.
SPRU722C—-November 2004 —-Revised October 2006 Boot ROM 43

Submit Documentation Feedback

Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS

INSTRUMENTS
Building the Boot Table www.ti.com
Example 3. GPIO34TOG Map File
output section page origin length attributes/input sections
codestart
* 0 00000000 00000002
00000000 00000002 DSP280x_CodeStartBranch.obj
(codestart)
.pinit 0 00000002 00000000
.switch 0 00000002 00000000 UNINITIALIZED
ramfuncs 0 00000002 00000016
00000002 00000016 DSP280x_SysCtrl.obj (ramfuncs)
.Cinit 0 00000018 00000019
00000018 0000000e rts2800_ml.lib : exit.obj (.cinit)
00000026 0000000a . _lock.obj (.cinit)
00000030 00000001 --HOLE-- [fill = O]
myreset 0 00000032 00000002
00000032 00000002 DSP280x_CodeStartBranch.obj
(myreset)
IQmath 0 003fa000 00000000 UNINITIALIZED
.text 0 003fa000 00000155
003fa000 00000046 rts2800_ml.lib : boot.obj (.text)

To load the code using the CAN bootloader, the host must send the data in the format that the bootloader
understands. That is, the data must be sent as blocks of data with a size, starting address followed by the
data. A block size of 0 indicates the end of the data. The HEX2000.exe utility can be used to convert the
COFF file into a format that includes this boot information. The following command syntax has been used
to convert the application into an ASCII hex format file that includes all of the required information for the
bootloader:

Example 4. HEX2000.exe Command Syntax

C. HEX2000 GPI GB4TOG QUT -boot -gpio8 -a

Wher e:

- boot Convert all sections into bootable form
- gpi o8 Use the GPIOin 8-bit node data format. The eCAN

a

uses the sane data format as the GPlO in 8-bit node.
Sel ect ASCl|-Hex as the output format.

The command line shown in Example 4 will generate an ASCII-Hex output file called GPIO34TOG.a00,
whose contents are explained in Example 5. This example assumes that the host will be able to read an
ASCII hex format file. The format may differ for your application. . Each section of data loaded can be tied
back to the map file described in Example 3. After the data stream is loaded, the boot ROM will jump to
the Entrypoint address that was read as part of the data stream. In this case, execution will begin at
O0x3FA0000.

44

Boot ROM SPRU722C—-November 2004 —Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

I

TEXAS
INSTRUMENTS

www.ti.com

Building the Boot Table

Example 5. GPIO34TOG Data Stream

00
00
3F
02
00
7F
16
00
22
FF
06
F6
55
3F
AD
29
18
00
04

08
00
00
00
00
00
00
00
00
76
05
96
00
01
00
28
1F
00
04
29

06 .

FC
19
00
FF
00
00
3F
02
00
00
00

63
00
00
FF
00
00
00
00
00
00
00

00
00
00

00
9A

02
1F
50
04
77

00
00
76

29
A8

E6
18
00
00
FE
00
32
00

00
00
A0

00
A0

00
76
06
1A
06

A0
04
00
28
OF
24

6F

00
BO
00

00
00

2A
96
FF
00

69
00
00
6F
01

3F
00

FF ..

00

00
00

00
00

00
06
00

FF
02
00
00

00
FE

00
00

00

05

1F
29
01
9B
A6

00
FF

00
00

1A
FF
1A

56
1B
09
A9
1E

00
04

01
FO
FF

16
76
1D
24

FE
BO

00
A9
00

56
22
61
01
F7

FF
3F

06
1A
1A

1A
76

86

02
00

CC FO
00 05
76 07

56 40
A9 28
76 18
04 6C
24 A7

BO 3F
00 00

; Keyval ue
;8 reserved words

; Ent rypoi nt Ox003FA000

; Load
; Load
; Dat a
; Load
; Load
; Dat a

; Load
; Load
; Dat a

; Load
; Load
; Dat a

; Load
; Load
; Dat a

2 words - codestart section

bl ock starting at 0x000000

bl ock 0x007F, OxAQ09A

0x0016 words - ranfuncs section
bl ock starting at 0x000002

= 0x7522, Ox761F etc..

0x0155 words - .text section
bl ock starting at 0x003FA000
= Ox28AD, 0x4000 etc..

0x0019 words - .cinit section
bl ock starting at 0x000018
= OxFFFF, 0xB00O etc..

0x0002 words - myreset section
bl ock starting at 0x000032
= 0x0000, 0x0000

;Block size of 0 - end of data

SPRU722C—-November 2004 —Revised October 2006
Submit Documentation Feedback

Copyright © 2004-2006, Texas Instruments Incorporated

Boot ROM

45

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

Bootloader Code Overview

13 TEXAS
INSTRUMENTS

www.ti.com

4 Bootloader Code Overview

This chapter contains information on the Boot ROM version, checksum, and code.

4.1 Boot ROM Version and Checksum Information

The boot ROM contains its own version number located at address Ox3F FFBA. This version number
starts at 1 and will be incremented any time the boot ROM code is modified. The next address, 0x3F
FFBB contains the month and year (MM/YY in decimal) that the boot code was released. The next four
memory locations contain a checksum value for the boot ROM. Taking a 64-bit summation of all
addresses within the ROM, except for the checksum locations, generates this checksum.

Table 13. Bootloader Revision and Checksum

Information

Address

Contents

0x3F FFB9

0x3F FFBA
0x3F FFBB
0x3F FFBC
0x3F FFBD
0x3F FFBE
0x3F FFBF

Flash API silicon compatibility check. This
location is read by some versions of the
flash API to make sure it is running on a
compatible silicon version.

Boot ROM Version Number
MM/YY of release (in decimal)
Least significant word of checksum

Most significant word of checksum

The following table shows the boot ROM revision per device. A revision history and code listing for the
latest boot ROM code can be found in Section 4. In addition, a .zip file with each revision of the boot ROM
code can be downloaded from the Tl website at the same location as this document.

Table 14. Bootloader Revision Per Device

Device(s) Silicon REVID Boot ROM Revision
(Address 0x883)
F2808, F2806, 0 (First silicon) Version 1
F2802, F2801
F2808, F2806, 1 (Rev A) Version 2
F2802, F2801
F2808, F2806, 2 (Rev B) and later Version 3
F2802, F2801
C2802, C2801 0 (First silicon) and Version 3
later
F2809 0 (First silicon) Version 4
F28044 0 (First silicon) Version 4

46 Boot ROM

SPRU722C—-November 2004 —Revised October 2006
Submit Documentation Feedback

Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com Bootloader Code Overview

4.2 Bootloader Code Revision History

Version 4, Released: April 2006
The following changes were made in V4:

— The ITRAP vector location in the CPU vector table was changed to point to an ITRAP interrupt
service routine located within the boot ROM. This ISR attempts to enable the watchdog and then
loops until the device resets. This vector will be used for any ITRAP that occurs after reset and
before the user initializes and enables the PIE vector table. In previous revisions of the boot ROM
code, this vector pointed to a memory location in MO SARAM.

— The version number, release date and checksum memory locations have been updated to reflect
the new release.

Version 3, Released: April 2005

The following changes were made in V3:

— The contents of the flash API silicon compatibility location (0x3F FFB9) was changed from OxFFFF
to OXFFFE.

— The version number, release date and checksum memory locations have been updated to reflect
the new release.

Version: 2, Released: January 2005

The following changes were made in V2:

— The version number, release date and checksum memory locations have been updated to reflect
the new release.

— Updated the eCAN-A bootloader to correctly initialize the IDE and AME bits of the MSGID1 register.

— The input configuration of the SCI-A, SPI-A, 12C-A and eCAN-A peripherals are now configured to
be asynchronous inputs when the appropriate bootloader is called. In the previous version, these
inputs were left configured in the default mode which is synch to SYSCLKOUT.

— The boot mode selection routine now checks the missing clock detect bit (MCLKSTS) in the
PLLSTS register to determine if the PLL is operating in limp mode. If the PLL is operating in limp
mode, the boot mode select function takes action depending on the boot mode selected:

e Boot to flash, OTP, SARAM, 12C-A, SPI-A and the parallel I/O modes behave as normal. The
user's software must check for missing clock status and take the appropriate action if the
MCLKSTS bit is set.

» SCI-A boot will be taken, however, depending on the requested baud rate the device may not
be able to autobaud lock. In this case, the boot ROM software will loop in the autobaud lock
function indefinitely. Should the SCI-A boot complete, the user's software must check for a
missing clock status and take the appropriate action.

* Boot to eCAN-A will not be taken. Instead the boot ROM will loop indefinitely.
Version: 1, Released: August 2004:
The initial release of the 280x boot ROM. This version has the following known issues:

— The eCAN-A bootloader does not initialize the IDE and AME bits of the MSGID1 register. Since
these bits can come up as 1 or 0, the frames transmitted by the host may or may not be received.
This bootloader can be used for software development by manually initializing this register before
running the e-CAN bootloader.

— The input configuration of the SCI-A, SPI-A, 12C-A and eCAN-A peripherals are configured in the
default mode which is synch to SYSCLKOUT. This will be changed to asynchronous mode in the
next version.

SPRU722C—-November 2004 —Revised October 2006 Boot ROM 47
Submit Documentation Feedback

Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

Bootloader Code Overview www.ti.com

4.3

Bootloader Code Listing (V3.0)

The following code listing is for the boot ROM code V3.0. Code changes related to V4.0 are shown in .To
determine the version of the bootloader code check the contents of memory address Ox3F FFBA in the
boot ROM. See Section 4.1 for more information.

NOTE: The boot ROM code uses the 280x version of the header files.

/1 TI File $Revision: /main/2 $

/1 Checkin $Date: January 10, 2005 14:45:35 $

| | #eH#HHHH R H AR R R R R R R R R R R R
/1

/1 FILE F280x_Boot.h

/1

/1 TITLE: F280x Boot ROM Definitions.

/1

| | #HEHBHBHBHBH R R R R R R R
/1 $TI Rel ease: $

/| $Rel ease Date: $

| | #HEHBHBHBHBH R R R R R R R R

#i f ndef F280X_BOOT_H
#def i ne F280X_BOOT_H

/1 Fixed boot entry points:

/1

#defi ne FLASH_ENTRY_PO NT Ox3F7FF6
#defi ne OTP_ENTRY_PO NT 0x3D7800
#defi ne RAM ENTRY_PO NT 0x000000
#def i ne PASSWORD _LOCATI ON Ox3F7FF8

#defi ne ERROR 1
#defi ne NO_ERROR 0
#define EIGHT_BI T 8
#define SI XTEEN BI T 16
#def i ne El GHT_BI T_HEADER 0x08AA
#defi ne SI XTEEN_BI T_HEADER O0Ox10AA

typedef U ntl6 (* uintl6fptr)();
extern uint16fptr GetWrdDat a;

#endif // end of F280x_BOOT_H definition

48

Boot ROM SPRU722C—-November 2004 —Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com Bootloader Code Overview

; TI File $Revision: /main/6 $
; Checkin $Date: April 21, 2005 16:00:01 $

b A A A A A A e A A A A A A e A A A A A A A A A A A A A A A A
P o L L L L L L L L L L R R

;; FILE: Init_Boot.asm
;; TITLE: 280x Boot RomInitialization and Exit routines.

;. Functions:

i, _lnitBoot

;; _Exit Boot

i Notes:

i HHBHEHBHBHBHBHBHBHBH BB A AR R R R R R R A R A R R R R R R
;5 STl Rel ease: $

i, $Rel ease Date: $

i HHBHEHBHBHBHBHBHBH AR BB A R R R R R R A A A R R R R

.def _InitBoot
.ref _Sel ect Boot Mode

.sect ".Flash" ; Flash APl checks this for

.word OxFFFE ; silicon conpatibility

.sect ".Version"

.word 0x0003 ; 280x Boot ROM Version 3

.word 0x0405 ; Month/Year: (4/05 = April 2005)

.sect ".Checksunt; 64-bit Checksum
.l ong Ox6A78A069 ; |east significant 32-bits
.1 ong 0x000003B5 ; nost significant 32-bits

.sect ".IlnitBoot"

; This function perforns the initial boot routine
; for the boot ROM

; This nodul e perforns the followi ng actions:
; 1) Initializes the stack pointer
; 2) Sets the device for C28x operating node

; 3) Calls the main boot functions
; 4) Calls an exit routine

_ I ni tBoot :
; Initialize the stack pointer.

__stack: .usect ".stack",
0 MOV SP, #_stack ; Initialize the stack pointer

; Initialize the device for running in C28x node.

C280BJ ; Sel ect C28x object node
C28ADDR ; Select C27x/C28x addressing
C28VAP ; Set blocks M)/ ML for C28x node

CLRC PAGEO ; Always use stack addressi ng node
MOVWDP, #0 ; Initialize DP to point to the low 64 K

SPRU722C—-November 2004 —Revised October 2006 Boot ROM 49

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS

INSTRUMENTS
Bootloader Code Overview www.ti.com
CLRC OVM
; Set PMshift of O
SPM 0
; Deci de which boot npde to use
LCR _Sel ect Boot Mode
; Cleanup and exit. At this point the EntryAddr
; is located in the ACC register
BF _Exit Boot, UNC
; _Exi t Boot
; This nodul e cleans up after the boot | oader
;1) Make sure the stack is deall ocated.
; SP = 0x400 after exiting the boot
; | oader
; 2) Push 0 onto the stack so RPC will be
; 0 after using LRETR to junmp to the
; entry point
; 3) Load RPC with the entry point
; 4) Cear all XARn registers
; 5) Cear ACC, P and XT registers
; 6) LRETR - this will also clear the RPC
; regi ster since 0 was on the stack
Exi t Boot :
; Insure that the stack is deallocated
MOV SP, #__stack
; Cear the bottomof the stack. This will end up
; in RPC when you are finished
MOV * SP++, #0
MOV * SP++, #0
; Load RPC with the entry point as determ ned
; by the boot node. This address will be returned
; in the ACC register.
PUSH ACC
POP RPC
; Put registers back in their reset state.
; Cear all the XARn, ACC, XT, and P and DP
; registers
; NOTE: Leave the device in C28x operating node
; (OBJMODE = 1, AMCDE = 0)
50 Boot ROM SPRU722C—-November 2004 —Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com Bootloader Code Overview

MOVL XT, ACC
MOVZ ARO, AL
MOVZ AR1, AL
MOVZ AR2, AL
MOVZ AR3, AL
MOVZ AR4, AL
MOVZ AR5, AL
MOVZ ARG, AL
MOVZ AR7, AL
MOVW DP, #0

; Restore STO and ST1. Note OBJMODE is

; the only bit not restored to its reset state.
; OBIJMODE is left set for C28x object operating
; node.

; STO = 0x0000 ST1 = O0x0AO0B
; 15:10 OVC = 15:13 ARP = 0
12 XF =
11 MMLMAP =
10 reserved
OBIMODE =
AMODE =
| DLESTAT =
EALLOW =
LOOP
SPA =

©
~
Y
<
I
o

ST0O0ONZ<L

[TR T TR T TR

[eN-NeNeNeoNeNoNeNa)
ORPNWMOUAOON®©

1l
PRPOPRPOOOOOR =

MOV * SP++, #0

MOV * SP++, #0x0A0B
POP ST1

POP STO

; Junp to the EntryAddr as defined by the
; boot npde sel ected and continue execution

;eof ----------

/1 TI File $Revision: /main/2 $
/| Checkin $Date: January 10, 2005 14:39:40 $

T B S S B L S B L L B4 L 13 G 5 L B G 1 41
L L L L A

/1

/1 FILE: Sel ect Mode_Boot.c

/1

/1 TITLE: 280x Boot Mdde sel ection routines
11

/'l Functions:

/1

/1 U nt32 Sel ect Boot Mbde(voi d)

/1 inline void Sel ect Mode_GPA Sel ect (voi d)
/1

/1 Notes:

/1

|| HH o R R R
/1 $TlI Release:$

/1 $Rel ease Date: $

SPRU722C—-November 2004 —Revised October 2006 Boot ROM 51

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

Bootloader Code Overview

13 TEXAS
INSTRUMENTS

www.ti.com

| | HHHBHHHH A A

#i ncl ude "DSP280x_Devi ce. h"

#i ncl ude "280x_Boot . h"

extern Ui nt32 SCl_Boot(void);
extern Ui nt32 SPI_Boot (void);
extern Ui nt32 Parallel _Boot(void);
extern Ui nt32 |2C Boot (void);
extern U nt32 CAN_Boot ();

/1 GPl 018 GPl 29 GPl (B4
/1 SPI CLKA SCI TXDA

/1l SCI TXB

/1 Fl ash 1 1 1
/1SCl 1 1 0
/1 SPI 1 0 1
/112C 1 0 0
/ | ECAN 0 1 1
/| RAM 0 1 0
/1 OTP 0 0 1
/11110 0 0 0

#defi ne FLASH BOOT
#defi ne SCI _BOOT
#defi ne SPI _BOOT
#define | 2C_BOOT
#defi ne CAN_BOOT
#defi ne RAM BOOT
#defi ne OTP_BOOT
#def i ne PARALLEL_BOOT 0

P NWS~OOO N

Ui nt 32 Sel ect Boot Mbde()
{

Ui nt 32 EntryAddr;
Ui nt 16 Boot Mbde;

EALLOW

/1 Set MUX for BOOT Sel ect

Gpi oCt rl Regs. GPAMUX2. bit. GPl O18 =
Gpi oCt r| Regs. GPAMUX2. bi t. GPl 029
Gpi oCt rl Regs. GPBMUX1. bit. GPl (84 =

/1 Set DIR for BOOT Sel ect

Gpi oCtrl Regs. GPADIR bit. GPl O18 =
Goi oCtrl Regs. GPADI R bit. GPI Q29 =
Gpi oCtrl Regs. GPBDIR bit. GPl B4 =

ED S;

/[For m Boot Mode from BOOT sel ect

Boot Mbde Gpi oDat aRegs. GPADAT.
Boot Mbde | Gpi oDat aRegs. GPADAT.
Boot Mbde | = Gpi oDat aRegs. GPADAT.

/! Read the password | ocations -
/1 CSMonly if the passwords are
/1 will not have an effect.
CsnPwl . PSVDO;

CsPwl . PSWD1;

CsnPwl . PSVD2;

CsnPwl . PSVD3;

CsPwl . PSW4;

CsnPwl . PSVD5;

CsnPwl . PSV\D6;

CsPwl . PSWD7;

eee

pi ns

bit.GPI 018 << 2;
bit.GPI R << 1;
bit. GPl C34;

this will unhlock the
erased; otherwi se it

52 Boot ROM

SPRU722C—-November 2004 —Revised October 2006

Copyright © 2004-2006, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com Bootloader Code Overview

/'l First check for nodes which do not require

/1 a boot | oader (Flash/ RAM OTP)

i f (Boot Mode == FLASH BOOT) return FLASH ENTRY_PO NT;
i f (Boot Mode == RAM BOOT) return RAM ENTRY_PO NT;

i f (Boot Mode == OTP_BOOT) return OTP_ENTRY_PO NT;

/1 Otherw se, disable the watchdog and check for the
/1 other boot npdes that requre |oaders

EALLOW

SysCirl Regs. WODCR = 0x0068;

EDI S;

i f (Boot Mode == SCl _BOOT) EntryAddr = SCl _Boot ();

el se if(Boot Mode == SPI _BOOT) EntryAddr = SPI_Boot ();

el se if(BootMde == |2C _BOOT) EntryAddr = |12C _Boot ();

el se if(Boot Mode == CAN_BOOT) EntryAddr = CAN_Boot();

el se if(Boot Mode == PARALLEL BOOT) EntryAddr = Parallel _Boot();
el se return FLASH _ENTRY_PO NT;

EALLOW

SysCrl Regs. WODCR = 0x0028; // Enabl e wat chdog nodul e
SysCirl Regs. WDKEY = 0x55; // O ear the WD counter
SysCtrl Regs. WDKEY = OxAA;

EDI S;

return EntryAddr;

}

SPRU722C—-November 2004 —Revised October 2006 Boot ROM 53

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS

INSTRUMENTS
Bootloader Code Overview www.ti.com
/1 Tl File $Revision: /main/2 $
/1 Checkin $Date: January 10, 2005 14:39:44 $
/1
/1l FILE: SysCrl_Boot.c
/1
/1 TITLE: F2810/12 Boot Rom System Control Routines
/1
/'l Functions:
/1
11 voi d Wat chDogDi sabl e(voi d)
11 voi d Wat chDogEnabl e(voi d)
/1
/1 Notes:
/1
| | #HAHTHHHHHHHHHHHHHHHHHHHH
/1 $TlI Rel ease: $
/1 $Rel ease Date: $
| | #HBHHHHHHHHHHHHHHHHHHHHHHHHHHHHH T
#i ncl ude " DSP280x_Devi ce. h"
e
/1 This nodul e disables the watchdog tiner.
L R LT R
voi d Wat chDogDi sabl e()
{
EALLOW
SysCtrl Regs. WODCR = 0x0068; // Disabl e watchdog nodul e
EDI S;
}
L R LT R
/1 This nodul e enabl es the watchdog tiner.
T e LT R
voi d Wat chDogEnabl e()
{
EALLOW
SysCirl Regs. WODCR = 0x0028; // Enabl e watchdog nodul e
SysCtrl Regs. WDKEY = 0x55; // Cear the WD counter
SysCtrl Regs. WDKEY = OxAA;
ED S;
}
/1l EOF --------
54 Boot ROM SPRU722C—-November 2004 —-Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS
www.ti.com Bootloader Code Overview

/1 TI File $Revision: /main/2 $
/1 Checkin $Date: January 10, 2005 14:39:41 $

T B S S B L S B L L B4 L 3 1 L S G 1 42
L L L L R

I

/1 FILE: Shared_Boot.c

I

/1 TITLE: 280x Boot |oader shared functions
I/

/'l Functions:

I

11 voi d CopyDat a(voi d)

11 Ui nt 32 Get LongDat a(voi d)
I voi d ReadReservedFn(voi d)
I/

T B S S B L S B L B4 L 3 G L S H G 1 41
R L L L L L A

/1 $TI Rel ease: $
/| $Rel ease Date: $

T B S S B L S B L B4 L 3 G L S H G 1 41
R L L L L L A

#i ncl ude " DSP280x_Devi ce. h"
#i ncl ude "280x_Boot . h"

/]l GetWrdData is a pointer to the function that interfaces to the peripheral.
/1 Each | oader assigns this pointer to it's particular GetWrdData function.
ui nt 16f ptr Get Wor dDat a;

/1 Function prototypes

Ui nt 32 GetLongData();

voi d CopyDat a(voi d);

voi d ReadReservedFn(void);

T G S S B L 3 S L 3 G 1 4
HHHHHH AR AR R

/1 void CopyData(void)

I e

/1 This routine copies nmultiple blocks of data fromthe host
/1 to the specified RAM | ocations. There is no error

/1 checking on any of the destination addresses.

/1l That is it is assuned all addresses and bl ock size

/1 values are correct.

/1 Multiple blocks of data are copied until a bl ock
/1 size of 00 00 is encountered.

voi d CopyDat a()

struct HEADER {
Ui nt 16 Bl ockSi ze;
Ui nt 32 Dest Addr;
} Bl ockHeader;

Ui nt 16 wor dDat a;
U ntl6 I;

/Il Get the size in words of the first block

Bl ockHeader . Bl ockSi ze = (*Get WrdData) ();

/1 While the block size is > 0 copy the data
/!l to the DestAddr. There is no error checking
/l as it is assuned the DestAddr is a valid

/1 menmory |ocation

whi | e(Bl ockHeader . Bl ockSi ze ! = (Ui nt 16) 0x0000)

Bl ockHeader . Dest Addr = Get LongDat a();
for(l = 1; | /= Bl ockHeader. Bl ockSi ze; | ++)

SPRU722C—-November 2004 —Revised October 2006 Boot ROM 55

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

Bootloader Code Overview www.ti.com

{
wordData = (*GetWordData) () ;

*(Uint16 *)Bl ockHeader . Dest Addr ++ = wor dDat a;
}

/Il Get the size of the next block
Bl ockHeader . Bl ockSi ze = (*Get WrdData) ();

}

return;

}

T G B S B L L E L S P 1 42
HHHHHH AR AR AR

/1 Ui nt32 GetLongData(void)
e LR

/1 This routine fetches a 32-bit value fromthe peripheral
/1 input stream

Ui nt 32 Get LongDat a()

Ui nt 32 | ongDat a;
/1 Fetch the upper ? of the 32-bit value
longData = ((Uint32)(*CGetWrdData)() << 16);

/! Fetch the lower ? of the 32-bit value
longData | = (Uint32)(*CGetWrdbData)();

return | ongDat a;

}

| | #HHHAB R R R R R H

/1 void Read_ReservedFn(voi d)

R e R R

/1 This function reads 8 reserved words in the header.
/'l None of these reserved words are used by the

/1 this boot |oader at this tine, they nay be used in
/1 future devices for enhancenents. Loaders that use
/1l these words use their own read function.

voi d ReadReservedFn()
{
Untl6 I;
/! Read and discard the 8 reserved words.
for(l =1; | <= 8; |++)
{

}

return;

Get Wor dDat a() ;

56 Boot ROM SPRU722C—-November 2004 —-Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com Bootloader Code Overview

/1 TI File $Revision: /main/3 $
/1 Checkin $Date: January 10, 2005 15:57:54 $

T B S S B L S B L L B4 L 3 1 L S G 1 42
L L L L R

/1

/!l FILE: SPI_Boot.c

/1

/1 TITLE: 280x SPI Boot node routines

/1

/'l Functions:

/1

11 Ui nt 32 SPI _Boot (voi d)

11 inline void SPIA_Init(void)

I inline void SPI A Transnit(ul6 cndDat a)

I/ inline void SPI A ReservedFn(void);

11 Ui nt 32 SPI A_Get Wor dDat a(voi d)

/1

/1 Notes:

/1

| | HHHBHHHH A
/1 $TlI Rel ease: $

/1 $Rel ease Date: $

| | HHHBHHHH A

#i ncl ude " DSP280x_Devi ce. h"
#i ncl ude "280x_Boot . h"

/1 Private functions

inline void SPIA Init(void);

inline Uintle SPIA Transmt (U nt16 cndData);
inline void SPI A ReservedFn(void);

Ui nt16 SPI A Get WrdDat a(voi d);

/1 External functions
extern void CopyData(void);
Ui nt 32 Get LongDat a(voi d);

/1 Ui nt32 SPI_Boot (void)
L R LT
/1 This nodule is the main SPl boot routine.
/1 It will load code via the SPI-A port.
/1
/1 1t will return a entry point address back
/1 to the ExitBoot routine.
L R LT
Ui nt 32 SPI _Boot ()
{
Ui nt 32 EntryAddr;
/] Assign GetWordData to the SPI-A version of the
/1 function. GetWordData is a pointer to a function.
Get WrdData = SPI A _Get Wr dDat a;
/1 1. Init SPI-A and set
/1 EEPROM chip enable - |ow
SPIA Init();
/1 2. Enable EEPROM and send EEPROM Read Command
SPI A_Transnit (0x0300) ;
/1 3. Send Starting for the EEPROM address 16bit
/1 Sendi ng 0x0000, 0000 will work for address and data packets
SPI A_Get WrdDat a() ;
/1 4. Check for OxO08AA data header, else go to flash
if(SPI A GetWrdData() != 0x08AA) return FLASH ENTRY_PO NT;
/'l 5.Check for Cl ock speed change and reserved words
SPRU722C—-November 2004 —-Revised October 2006 Boot ROM 57

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

Bootloader Code Overview

13 TEXAS
INSTRUMENTS

www.ti.com

SPI A_ReservedFn();
/1l 6. Get point of entry address after |oad
Ent ryAddr = Get LongData();

/1 7. Receive and copy one or nore code sections to destination addresses

CopyDat a() ;

/1 8. Disable EEPROM chip enable - high
/1 Chip enable - high

Gpi oDat aRegs. GPASET. bit. GPI O19 = 1;
return EntryAddr;

void SPIA Init(void)
Initialize the SPI-A port for communications
with the host.

inline void SPIA Init()

/1 Enabl e SPI-A cl ocks

EALLOW
SysCtrl Regs. PCLKCRO. bi t. SPI AENCLK = 1,
SysCtrl Regs. LOSPCP. al | = 0x0002;

/1 Enable FIFO reset bit only
Spi aRegs. SPI FFTX. al | =0x8000;
/1 8-bit character

Spi aRegs. SPI CCR al | = 0x0007;
/1 Use internal SPICLK nmaster node and Tal k node
Spi aRegs. SPI CTL. al | = OxO000E;

/1 Use the slowest baud rate

Spi aRegs. SPI BRR = 0x007f;

/1 Relinquish SPI-A fromreset

Spi aRegs. SPI CCR al | = 0x0087;

/1 Enabl e SPI SI MO SPI SOM / SPI CLK pi ns

/1 Enable pull-ups on SPISI MY SPI SOM / SPI CLK/ SPI STE pi ns
/1 GpioCtrl Regs. GPAPUD. bit.GPI OL6 = O;
/1 GpioCtrl Regs. GPAPUD. bi t. GPl OL7 0;
/'l GpioCtrl Regs. GPAPUD. bit. GPl O18 = 0;
/1 GpioCtrl Regs. GPAPUD. bit.GPI 019 = O;
Gpi oCt rl Regs. GPAPUD. al | &= OxFFFOFFFF;
/'l GpioCtrl Regs. GPAMUX2. bit.GPl OL6 = 1;
/1 GpioCtrl Regs. GPAMUX2. bit. GPI OL7 = 1;
/1 GpioCtrl Regs. GPAMUX2. bit.GPI O1L8 = 1;
Gpi oCt rl Regs. GPAMUX2. al | | = 0x00000015;
/1 SPI-A pins are asynch

/1 GpioCtrl Regs. GPAQSEL2. bit. GPI OL6 3;
/'l GpioCtrl Regs. GPAQSEL2. bit. GPI OL7 = 3;
/1 GpioCtrl Regs. GPAQSEL2. bit. GPI 018 = 3;
Gpi oCt rl Regs. GPAQSEL2. al | | = 0x0000003F;
/1 1 OPORT as output pin instead of SPISTE
Gpi oCt r | Regs. GPAMUX2. bit. GPI O19 = 0;

Gpi oCtrl Regs. GPADIR bit. GPI O19 = 1;

/1 Chip enable - |ow

Gpi oDat aRegs. GPACLEAR bit. GPI 019 = 1;

EDI S;

return;

R L L L L L R S R

Send a byte/words through SPI transmit channel

inline Uintle SPIA Transmit (U nt16 cndData)

58

Boot ROM

Copyright © 2004-2006, Texas Instruments Incorporated

SPRU722C—-November 2004 —Revised October 2006

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com Bootloader Code Overview

Ui nt16 recvDat a;

/1 Send Read conmand/dummy word to EEPROM to fetch a byte
Spi aRegs. SPI TXBUF = cndDat a;

whi l e((Spi aRegs. SPI STS. bit.|NT_FLAG !=1);

/1 Cear SPIINT flag and capture received byte

recvData = Spi aRegs. SPI RXBUF;

return recvbDat a;

g g g g gy
R L L L L L L R R

/1 This function reads 8 reserved words in the header.
/1 The first word has paraneters for LOSPCP

/1 and SPIBRR regi ster OxMSB:LSB, LSB = is a three

/1 bit field for LOSPCP change MSB = is a 6bit field
/1 for SPIBRR register update

/Il If either byte is the default value of the register
/1 then no speed change occurs. The default val ues

/1 are LOSPCP = 0x02 and SPI BRR = Ox7F

/1 The remai ning reserved words are read and di scarded
/1 and then returns to the main routine.

inline void SPI A ReservedFn()

Ui nt 16 speedDat a;
uintl6 I;

/1 update LOSPCP register

speedData = SPI A Transm t ((U nt 16) 0x0000) ;
EALLOW

SysCtrl Regs. LOSPCP. al | = speedDat a;

ED S;

asm(" RPT #O0xOF || NOP");

/1 update SPIBRR register

speedData = SPI A Transmt ((Ui nt16)0x0000);
Spi aRegs. SPI BRR = speedDat a;

asm(" RPT #O0xOF || NOP");

/1 Read and discard the next 7 reserved words.
for(l =1; | <=7; |++)
{

}

return;

SPI A_Get WrdDat a() ;

}
| | HHHHHHH A

/1 U ntl6 SPI A Get WrdData(void)

/1 This routine fetches two bytes fromthe SPI-A
/1 port and puts themtogether to forma single

/1 16-bit value. It is assuned that the host is

/1 sending the data in the form MSB: LSB.

Ui nt 16 SPI A Get Wor dDat a()
{
Ui nt 16 wor dDat a;
/! Fetch the LSB
wordData = SPI A Transni t (0x0000) ;
/1l Fetch the NMSB

SPRU722C—-November 2004 —Revised October 2006 Boot ROM 59

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS

INSTRUMENTS
Bootloader Code Overview www.ti.com
wordData | = (SPI A _Transmi t (0x0000) << 8);
return wordDat a;
}
60 Boot ROM SPRU722C—-November 2004 —-Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com Bootloader Code Overview

/1 TI File $Revision: /main/3 $
/1 Checkin $Date: January 10, 2005 15:06:37 $

T B S S B L S B L L B4 L 3 1 L S G 1 42
L L L L R

I

// FILE: SCl_Boot.c

I

/1 TITLE: 280x SCI Boot node routines
I/

/'l Functions:

I

/1 U nt32 SClI _Boot (voi d)

/1 inline void SCIA_Init(void)

/1 inline void SCI A Aut obaudLock(voi d)
/1 U nt32 SCI A Get WrdDat a(voi d)

I

/'l Notes:

I/

T B S S B L S B L B4 L 3 G L S H G 1 41
R L L L L L A

/1 $TI Rel ease: $
/| $Rel ease Date: $

T B S S B L S B L B4 L 3 G L S H G 1 41
L L L L L L e

#i ncl ude "DSP280x_Devi ce. h"
#i ncl ude "280x_Boot . h"

/1 Private functions

inline void SCIA Init(void);

inline void SCl A Aut obaudLock(voi d);
U nt16 SCI A Get WrdDat a(voi d);

/1 External functions

extern void CopyData(void);

Ui nt 32 Get LongDat a(voi d);

extern voi d ReadReservedFn(void);

| | #HHHHHHHHHHHHHHHH
/1 Ui nt32 SCI _Boot (voi d)

e R
/1 This nodule is the main SCI boot routine.
/1 1t will load code via the SClI-A port.

/1

/1 1t will return a entry point address back
/1 to the InitBoot routine which in turn calls
/1 the ExitBoot routine.

Ui nt 32 SCI _Boot ()

{
Ui nt 32 EntryAddr;

/] Assign GetWordData to the SCl-A version of the
/1 function. GetWordData is a pointer to a function.
Get WrdData = SCI A_Get Wr dDat a;

SCIA Init();
SCl A_Aut obaudLock();

/1 1f the KeyVal ue was invalid, abort the |oad

/1 and return the flash entry point.

if (SCIA GetWordbData() != OXO8AA) return FLASH ENTRY_PO NT;
ReadReser vedFn();

Ent ryAddr = Get LongData();

SPRU722C—-November 2004 —Revised October 2006 Boot ROM 61

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS

INSTRUMENTS
Bootloader Code Overview www.ti.com
CopyDat a() ;
return EntryAddr;
}
| | HHHHHHH A
/1 void SCIA_Init(void)
e R
/1 Initialize the SCl-A port for conmmunications
/1 with the host.
e R
inline void SCTA Init()
{
/1 Enable the SCl-A cl ocks
EALLOW
SysCtrl Regs. PCLKCRO. bi t. SCl AENCLK=1;
SysCtrl Regs. LOSPCP. al | = 0x0002;
Sci aRegs. SCl FFTX. al | =0x8000;
/1 1 stop bit, No parity, 8-bit character
/1 No | oopback
Sci aRegs. SCI CCR al | = 0x0007;
/1 Enable TX, RX, Use internal SClICLK
Sci aRegs. SCI CTL1. al | = 0x0003;
/1 Disable RxErr, Sleep, TX Wake,
/1 Disable Rx Interrupt, Tx Interrupt
Sci aRegs. SCI CTL2. al | = 0x0000;
/1 Relinquish SCI-A fromreset
Sci aRegs. SCI CTL1. al | = 0x0023;
/'l Enable pull-ups on SCI-A pins
/1 GpioCtrl Regs. GPAPUD. bit. GPI 28 = 0;
/1 GpioCtrl Regs. GPAPUD. bit. GPI Q29 = 0;
Gpi oCt rl Regs. GPAPUD. al | &= OxCFFFFFFF;
/1 Enable the SCl-A pins
/1 GpioCtrl Regs. GPAMUX2. bit.GPl (28 = 1;
/'l GpioCtrl Regs. GPAMUX2. bit.GPl Q29 = 1;
Gpi oCt rl Regs. GPAMUX2. al | | = 0x05000000;
/1 Input qual for SCl-A RX is asynch
Gpi oCt rl Regs. GPAQSEL2. bit. GPl 28 = 3;
ED S;
return;
}
|| R R R
/1 void SCl A_Aut obaudLock(voi d)
e e
/1 Perform autobaud | ock with the host.
/1l Note that if autobaud never occurs
/1 the programwill hang in this routine as there
/1 is no tineout nechani smincl uded.
e LT P P
inline void SCI A Aut obaudLock()
{
Ui nt 16 byt eDat a;
/1 Must prime baud register with >= 1
Sci aRegs. SCI LBAUD = 1;
/1 Prepare for autobaud detection
/1l Set the CDC bit to enabl e aut obaud detection
/1 and clear the ABD bit
Sci aRegs. SCI FFCT. bit. CDC = 1;
Sci aRegs. SCI FFCT. bit. ABDCLR = 1;
62 Boot ROM SPRU722C—-November 2004 —-Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com

Bootloader Code Overview

/1 Wait until you correctly read an

[/ "A or '"a and lock

whi | e(Sci aRegs. SCI FFCT. bit. ABD ! = 1) {}

/1 After autobaud |ock, clear the CDC bit
Sci aRegs. SCI FFCT. bit. CDC = 0;

whi | e(Sci aRegs. SCI RXST. bit. RXRDY != 1) { }
byt eData = Sci aRegs. SCl RXBUF. bi t . RXDT;

Sci aRegs. SCl TXBUF = byt eDat a;

return;

}

| | #HHHHHHHHHHHHH
/1 U ntl6e SCI A Get WrdDat a(voi d)

/1 This routine fetches two bytes fromthe SCl-A

/1 port and puts themtogether to forma single

/1 16-bit value. It is assuned that the host is

/'l sending the data in the order LSB fol |l owed by MSB.

Uint16 SCl A Get Wr dDat a()

{
Ui nt 16 wor dDat a;
Ui nt 16 byt eDat a;
wor dDat a = 0x0000;
byt eDat a = 0x0000;
/1 Fetch the LSB and verify back to the host
whi | e(Sci aRegs. SCI RXST. bit. RXRDY != 1) { }
wor dDat a = (Ui nt 16) Sci aRegs. SCl RXBUF. bi t . RXDT;
Sci aRegs. SCl TXBUF = wor dDat a;
/1 Fetch the MSB and verify back to the host
whi | e(Sci aRegs. SCI RXST. bit. RXRDY !'= 1) { }
byt eData = (Ui nt16) Sci aRegs. SCl RXBUF. bi t . RXDT;
Sci aRegs. SCl TXBUF = byt eDat a;
/1 formthe wordData fromthe MSB: LSB
wordData | = (byteData << 8);
return wordDat a;

}

/1 EOF-------

SPRU722C—-November 2004 —Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

Boot ROM

63

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

Bootloader Code Overview www.ti.com

/1 TI File $Revision: /main/2 $
/1 Checkin $Date: January 10, 2005 14:39:37 $

T B S S B L S B L L B4 L 3 1 L S G 1 42
L L L L R

I

/1 FILE: Parallel_Boot.c

I

/1 TITLE: 280x Parallel Port 1/0O boot routines

I/

/'l Functions:

I

11 Ui nt 32 Parall el _Boot (void)

11 inline void Parall el _GPlI CSel ect (voi d)

I inline Ui ntl6 Parallel_CheckKeyVal (void)

11 Ui nt16 Parall el _GetWrdData_8bit()

11 Ui nt16 Paral |l el _Get WrdDat a_16bi t ()

I voi d Paral | el _Wi t Host Rdy(voi d)

11 voi d Parall el _Host Handshake(voi d)

/1 Notes:

I

|| #H#p ot R R R R R R R R R R R R R R R R i
/1 $TI Rel ease: $

/1 $Rel ease Date: $

|| #H#p ot R R R R R R R R R R R R R R R R i

#i ncl ude "DSP280x_Devi ce. h"
#i ncl ude "280x_Boot . h"

/1 Private function definitions

inline void Parallel _GPl CSel ect (void);
inline U ntl6 Parallel _CheckKeyVal (void);
Ui nt16 Parall el _Get Wr dData_8bit(void);

Ui nt 16 Parall el _Get WrdData_16bit (void);
voi d Parallel WitHost Rdy(void);

voi d Parall el _Host Handshake(voi d);

/'l External function definitions
extern voi d CopyData(void);
extern Ui nt32 GetlLongData(void);
extern void ReadReservedFn(void);

#defi ne HOST_CTRL GPl Q27 /| GPI 27 is the host control signal
#def i ne DSP_CTRL GPl 26 // GPIO26 is the DSP's control signal

#def i ne HOST_DATA _NOT_RDY Gpi oDat aRegs. GPADAT. bi t . HOST_CTRL! =0
#defi ne WAl T_HOST_ACK Gpi oDat aRegs. GPADAT. bi t . HOST_CTRL! =1

/1 Set (DSP_ACK) or O ear (DSP_RDY) GPIO 17

#defi ne DSP_ACK Gpi oDat aRegs. GPASET. bi t. DSP_CTRL = 1;
#def i ne DSP_RDY Gpi oDat aRegs. GPACLEAR bit. DSP_CTRL =
#def i ne DATA Gpi oDat aRegs. GPADAT. al |

1;

| | #HHHHHHHHHHHHHHHH
/1 U nt32 Parall el _Boot (void)

/1 This nodule is the main Parallel boot routine.
/1 1t will load code via GP I/0O port B.

/1 This boot npde accepts 8-bit or 16-bit data.
/1 8-bit data is expected to be the order LSB

64 Boot ROM SPRU722C—-November 2004 —Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com Bootloader Code Overview

/1 followed by MSB.

/1

/1 This function returns a entry point address back
/1 to the InitBoot routine which in turn calls

/1 the ExitBoot routine.

Ui nt 32 Paral |l el _Boot ()
{
Ui nt 32 EntryAddr;
/1 Setup for Parallel boot
Paral | el _GPI Csel ect () ;
/1 Check for the key value. Based on this the data will
/1l be read as 8-bit or 16-bit val ues.
if (Parallel_CheckKeyVal () == ERROR) return FLASH ENTRY_PQO NT;
/1 Read and discard the reserved words
ReadReser vedFn() ;
/] Get the entry point address
EntryAddr = Get LongDat a();
/1 Load the data
CopyDat a() ;

return EntryAddr;

L g g g
L L L L L L L R R R

/1 Enable 1/O pins for input GPIO 15:0. Also
/1 enable the control pins for HOST_CTRL and
!/ DSP_CTRL.

inline void Parallel _GPlI CSel ect ()
{

EALLOW

/1 Enable pull-ups for GPIO Port A 15:0
/1l GPIO Port 15:0 are all /0O pins

/1 and DSP_CTRL/ HOST_CTRL

/1 GpioCtrl Regs. GPAPUD. bit.GPl QL5 =
/1l GpioCtrl Regs. GPAPUD. bit.GPl O14 =
/1 CGpioCtrl Regs. GPAPUWD. bi t. GPI O13 =
/1 GpioCtrl Regs. GPAPUD. bit.GPl O12 =
/1l GpioCtrl Regs. GPAPUD. bit.GPl 011 =
/1 CGpioCtrl Regs. GPAPUD. bi t. GPI O10 =
/1 Gpi oCtrl Regs. GPAPUD. bit. GPl (9
/'l GpioCtrl Regs. GPAPUD. bit. GPl C8
/1 CpioCtrl Regs. GPAPWD. bit. GPI O7 =
/1 GpioCtrl Regs. GPAPUD. bit.GPI 6 =
/1 GpioCtrl Regs. GPAPUD. bit.GPI 6 =
/1 CpioCtrl Regs. GPAPUWD. bit.GPIO4 =
/1 GpioCtrl Regs. GPAPUD. bit.GPI B =
/1 GpioCtrl Regs. GPAPUD. bit.GPI 2 =
/1 CpioCtrl Regs. GPAPUD. bit.GPIOL =
/1 GpioCtrl Regs. GPAPUD. bit.GPI Q0 =
/'l GpioCtrl Regs. GPAPUD. bit. DSP_CTRL = O;

/1 GpioCtrl Regs. GPAPWD. bi t . HOST_CTRL = O0;
Gpi oCt rl Regs. GPAPUD. al | &= OxF3FF0000;

no
Oo0oooo0oo0ooo0oo
T T T oooo0eR

/1 0 =1/0pin 1 = Peripheral pin
Gpi oCt r| Regs. GPAMUX1. al | = 0x0000;
Gpi oCt rl Regs. GPAMUX2. bit. DSP_CTRL = O;

SPRU722C—-November 2004 —Revised October 2006 Boot ROM 65

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS

INSTRUMENTS
Bootloader Code Overview www.ti.com
Gpi oCt r | Regs. GPAMUX2. bit. HOST_CTRL = 0;
/1 HOST_CTRL is an input control
/1l fromthe Host
/1 to the DSP Ack/ Rdy
/1 DSP_CTRL is an output fromthe DSP Ack/ Rdy
/1 0 = input 1 = output
Gpi oCtrl Regs. GPADI R bit. DSP_CTRL = 1;
Gpi oCt rl Regs. GPADI R bi t. HOST_CTRL = O;
ED S;
}
/1 void Paral | el _CheckKeyVal (voi d)
e
/] Determine if the data you are loading is in
/1 8-bit or 16-bit fornat.
/1 If neither, return an error.
I
/1 Note that if the host never responds then
/1 the code will be stuck here. That is there
/1 is no timeout mechani sm
e
inline U ntl6 Parallel_CheckKeyVal ()
{
Ui nt 16 wor dDat a;
/1l Fetch a word fromthe parallel port and conpare
// it to the defined 16-bit header fornat, if not check
// for a 8-bit header fornat.
wor dData = Paral | el _Get WrdDat a_16bi t();
i f(wordData == S| XTEEN_ Bl T_HEADER)
{
/1 Assign GetWordData to the parallel 16bit version of the
/1 function. GetWordData is a pointer to a function.
Get WrdData = Paral |l el _GetWordData_16bi t;
eturn S| XTEEN BI T;
}
/1 If not 16-bit node, check for 8-bit node
/1 Call Parallel GetWrdData with 16-bit npde
/1 so you only fetch the MSB of the KeyVal ue and not
/1 two bytes. You will ignore the upper 8-bits and conbi ne
/1 the result with the previous byte to formthe
/'l header KeyVal ue.
wor dDat a = wor dDat a & OxOOFF;
wordData | = Parall el _GetWrdData_16bit() << 8;
i f (wordData == El GHT_BI T_HEADER)
{
/] Assign GetWrdData to the parallel 8bit version of the
/1 function. GetWordData is a pointer to a function.
Get WrdData = Paral |l el _Get WrdData_8bit;
return EIGHT_BIT;
}
/1 Didn't find a 16-bit or an 8-bit KeyVal header so return an error.
el se return ERROR
}
|| R R R
/1 U ntl6 Parallel _GetWrdData_16bit()
/1 Ui ntl6 Parallel _GetWrdData_8bit()
e e
/1 This routine fetches a 16-bit word fromthe
// GP 1/Oport. The 16bit function is used if the
/1 input 16-bits and the function fetches a
/1 single word and returns it to the host.
66 Boot ROM SPRU722C—-November 2004 —Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com Bootloader Code Overview

/1

/1 The _8bit function is used if the input streamis

/1 an 8-bit input streamand the upper 8-bits of the

// GP 1/Oport are ignored. In the 8-bit case the

/1 first fetches the LSB and then the MSB fromthe

/1l GPIO port. These two bytes are then put together to
/1 forma single 16-bit word that is then passed back

/1 to the host. Note that in this case, the input stream
/1 fromthe host is in the order LSB fol |l owed by MSB

Ui nt16 Parall el _GetWrdData_8bit()

{
Ui nt 16 wor dDat a;

/1 Cet LSB.

Paral | el _Wai t Host Rdy() ;
wor dDat a = DATA;
Par al | el _Host Handshake() ;

/1 Fetch the NMSB.

wor dDat a = wordData & OxOOFF;
Par al | el _Wai t Host Rdy() ;

wor dDat a | = (DATA << 8);

Par al | el _Host Handshake();
return wordDat a;

Uint 16 Parall el _GetWrdData_16bit ()
{
Ui nt 16 wor dDat a;
/l Get a word of data. If you are in
/1 16-bit node then you are done.
Par al | el _Wai t Host Rdy() ;
wor dDat a = DATA;
Par al | el _Host Handshake();
return wordDat a;

| | #H#HH R
/1 void Parall el Wit HostRdy(void)

/1 This routine tells the host that the DSP is ready to
/'l receive data. The DSP then waits for the host to
/'l signal that data is ready on the GP I/O port.e

R e T T
voi d Parallel WaitHostRdy()
{
DSP_RDY;
whi | e(HOST_DATA_NOT_RDY) { }
}

| | #HHHHHHHHHHHHHHHH
/1 void Parall el _Host Handshake(voi d)

/1 This routine tells the host that the DSP has received
/'l the data. The DSP then waits for the host to acknow edge
/1 the receipt before continuing.
e LR
voi d Parall el _Host Handshake()
{

DSP_ACK;

whi | e(WAI T_HOST_ACK) { }

SPRU722C—-November 2004 —Revised October 2006 Boot ROM 67

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS

INSTRUMENTS
Bootloader Code Overview www.ti.com
}
T = o
68 Boot ROM SPRU722C—-November 2004 —Revised October 2006

) Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com Bootloader Code Overview

/1 TI File $Revision: /main/4 $
/1 Checkin $Date: January 10, 2005 15:57:47 $

/1

/!l FILE: 12C Boot.c

/1

/1 TITLE: 280x |2C Boot node routines

/1

/'l Functions:

/1

11 Ui nt 32 |1 2C_Boot (voi d)

11 inline void |I2C_Init(void)

I inline U ntl6 | 2C CheckKeyVal (voi d)

11 inline void | 2C_ReservedFn(voi d)

11 Ui nt16 |12C _Get Wrd(voi d)

/1

/1 Notes:

11 The 12C code contained here is specifically streamined for the F280x
I boot | oader. It can be used to |load code via the |12C port into the

I/ 280x RAM and junp to an entry point within that code.

/1

I Features/Limtations:

/1 - The |2C boot |oader code is witten to communi cate with an EEPROM
11 devi ce at address 0x50. The EEPROM nust adhere to conventional |2C
I EEPROM pr ot ocol (see the boot rom docunentation) with a 16-bit

11 base address architecture (as opposed to 8-bits). The base address
11 of the code should be contained at address 0x0000 i n the EEPROM

I - The input frequency to the F280x devi ce nust be between 14Mhz and
I/ 24Whz, creating a 7Mhz to 12Whz systemclock. This is due to a

11 requirement that the |2C cl ock be between 7Whz and 12Mhz to neet all
I of the 12C specification timng requirements. The |2CPSC default val ue
/1 i s hardcoded to O so that the I12C clock will not be divided down from
11 the system cl ock. The |2CPSC val ue can be nodified after receiving

I the first few bytes fromthe EEPROM (see the boot rom docunentation),
11 but it is advisable not to, as this can cause the 12C to operate out
11 of specification with a system cl ock between 7Mhz and 12Mhz.

I - The bit period prescalers (I2CCLKH and | 2CCLKL) are configured to
11 run the 12C at 50% duty cycle at 100kHz bit rate (standard |2C npde)
11 when the systemclock is 12Whz. These registers can be nodified after
I receiving the first few bytes fromthe EEPROM (see the boot rom

11 docunentation). This allows the comunication to be increased up to
11 a 400kHz bit rate (fast |12C node) during the renmining data reads.

I - Arbitration, bus busy, and slave signals are not checked. Therefore,
I/ no other master is allowed to control the bus during this

11 initialization phase. If the application requires another master

I during |2C boot node, that master nust be configured to hold off

11 sendi ng any | 2C nessages until the F280x application software

11 signals that it is past the bootl oader portion of initialization.

I - The non-acknow edgenent bit is only checked during the first nmessage
I/ sent to initialize the EEPROM base address. This ensures that an

11 EEPROM i s present at address 0x50 before continuing on. If an EEPROM
I is not present, code will junp to the Flash entry point. The

11 non- acknow edgerment bit is not checked during the address phase of

11 the data read nessages (12C GetWrd). If a non-acknow edge is

I recei ved during the data read nmessages, the |2C bus will hang.

/1

/1 $TI Rel ease: $
/| $Rel ease Date: $

T B S S B L S B L B4 L 3 G L S H G 1 41
L L L L L L L L R

#i ncl ude "DSP280x_Devi ce. h" // DSP280x Headerfile Include File
#i ncl ude "280x_Boot . h"

/1 Private functions
inline void 12C_Init(void);

SPRU722C—-November 2004 —Revised October 2006 Boot ROM 69

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

Bootloader Code Overview

13 TEXAS
INSTRUMENTS

www.ti.com

inline U ntl6 |2C CheckKeyVal (voi d);
inline void | 2C_ReservedFn(void);
U ntl6 |12C _Get Wrd(void);
/1 External functions
extern void CopyData(void);

extern U nt32 Get

LongDat a(voi d);

/'l Receive and copy one or nore code sections to destination addresses

el se go to flash
== ERROR) { return FLASH ENTRY_PO NT; }

/1 Ui nt32 | 2C_Boot (voi d)
L R LT
/1 This nodule is the nain |2C boot routine.
/1 It will load code via the |12C A port.
/1
/1 1t will return an entry point address back
/1 to the ExitBoot routine.
L R LT
Ui nt 32 |1 2C_Boot (voi d)
{
Ui nt 32 EntryAddr;
/] Assign GetWordData to the 12C A version of the
/1 function. GetWordData is a pointer to a function.
Get WrdData = | 2C_Get Wor d;
/1 Init 12C pins, clock, and registers
12C Init();
/1 Check for OxO08AA data header,
if (12C_CheckKeyVal ()
/'l Check for clock and prescal er speed changes and reserved words
| 2C_ReservedFn();
/'l Get point of entry address after |oad
EntryAddr = Get LongDat a();
CopyDat a() ;
return EntryAddr;
}

| | #HBTHHHHHHHHHHHHHHHHHHHHHHHHHHHH
/1 void I2C_Init(void)
R e e R T

/1 Initialize the 12C A port for communications

/1 with the host.

inline void | 2C |
{
/1 Configure
EALLOW
Gpi oCt r | Regs.
Gpi oCt r | Regs.
Gpi oCt r | Regs.
Gpi oCt r | Regs.
Gpi oCt r | Regs.
Gpi oCt r | Regs.

SysCtr| Regs. PCLKCRO. bit. | 2CAENCLK = 1;

EDI S;

nit(void)
1 2C pins and turn on

GPBMUX1. bi t. GPI 082 =
GPBMUX1. bi t . GPI 083 =
GPBPUD. bi t . GPI 082 =
GPBPUD. bi t . GPI 083 =
GPBQSEL1. bi t. GPI 082
GPBQSELL1. bi t. GPI 083

oo

1 2C cl ock

1
1

3,
3;

/1
/1
/1
/1
/1
/1
/1

Configure as SDA pin
Configure as SCL pin
Turn SDA pul | up on

Turn SCL pul lup on
Asynch

Asynch

Turn | 2C nodul e cl ock on

/1 Initialize 12Cin master transmtter node

| 2caRegs. | 2CSAR = 0x0050;

/1 Slave address - EEPROM control code

70

Boot ROM

SPRU722C—-November 2004 —Revised October 2006

Copyright © 2004-2006, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS

INSTRUMENTS
www.ti.com Bootloader Code Overview
| 2caRegs. | 2CPSC. al | = 0xO0; /1 12C clock should be between 7Mhz-12Mz
| 2caRegs. | 2CCLKL = 0x0035; /] Prescalers set for 100kHz bit rate
| 2caRegs. | 2CCLKH = 0x0035; /1 at a 12Mhz 12C cl ock
| 2caRegs. | 2CVMDR al | = 0x0620; // Master transnitter

/1 Take 12C out of reset
/1 Stop when suspended

| 2caRegs. | 2CFFTX. al |
| 2caRegs. | 2CFFRX. al |
return;

0x6000; // Enable FIFO node and TXFI FO
0x2000; // Enabl e RXFI FO

}
| | HHHHHHH A

/1 Uint16 |2C_CheckKeyVal (voi d)

/1 This routine sets up the starting address in the
/1 EEPROM by witing two bytes (0x0000) via the

/1 12C A port to slave address 0x50. Wt hout

/1 sending a stop bit, the communication is then

/1 restarted and two bytes are read fromthe EEPROM
/Il 1f these two bytes read do not equal Ox08AA

/1 (little endian), an error is returned.

inline U ntl6 |2C CheckKeyVal (voi d)

{
/1 To read a word fromthe EEPROM an address nust be given first in
/1 master transmitter node. Then a restart is perforned and data can
/'l be read back in naster receiver node.
| 2caRegs. | 2CCNT = 0x02; /1 Setup how nany bytes to send
| 2caRegs. | 2CDXR = 0x00; /1 Configure fifo data for byte
| 2caRegs. | 2CDXR = 0x00; /] address of 0x0000
| 2caRegs. | 2CVMDR al | = 0x2620; /1 Send data to setup EEPROM address
while (l2caRegs. | 2CSTR bit.ARDY == 0) // Wait until conmunication
{ /1 conplete and registers ready
}

if (12caRegs.|2CSTR bit.NACK == 1) /1 Set stop bit & return error if
{ /1 NACK received

| 2caRegs. | 2CVMDR. bi t. STP = 1;

return ERROR

}
/1 Check to nmake sure key val ue received is correct
if (12C_GetWord() != 0x08AA) {return ERROR }
return NO_ERROR

}

| | #HBHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

/1 void |12C _ReservedFn(void)
e T T

/1 This function reads 8 reserved words in the header.

/1 1st word - paraneters for |2CPSC register

/1 2nd word - paraneters for |2CCLKH register

/1 3rd word - paraneters for |2CCLKL register

/1

/1 The remai ning reserved words are read and di scarded

/1 and then program execution returns to the nain routine.

R e
inline void | 2C_ReservedFn(voi d)
{
Ui nt16 |2CPrescaler;
SPRU722C—-November 2004 —Revised October 2006 Boot ROM 71

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS

INSTRUMENTS
Bootloader Code Overview www.ti.com
Ui nt 16 | 2cd kHbDat a;
Uint16 |2cC kLDat a;
U ntl6 I;
/] Get 12CPSC, |2CCLKH, and |2CCLKL val ues
| 2CPrescal er = 12C_GetWord();
| 2cd kHData = 1 2C_Get Word();
| 2cC kLData = 12C_Get Word();
/1 Store 12C clock prescalers
| 2caRegs. | 2CMDR bit. I RS = 0;
| 2caRegs. | 2CCLKL = |2cC kLDat a;
| 2caRegs. | 2CCLKH = | 2cd kHbDat a;
| 2caRegs. | 2CPSC. al | = | 2CPrescal er;
| 2caRegs. | 2CMDR bit. I RS = 1;
/1 Read and discard the next 5 reserved words
for (I=1; 1<=5; |++)
{
| 2cCl kHData = 1 2C_Get Word();
}
return;
}
| | #HBTHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
/1 Uintl6 |2C_Get Wrd(void)
e e T R
/1 This routine fetches two bytes fromthe |12CA
/1 port and puts themtogether little endian style
/1l to forma single 16-bit val ue.
I e R
Ui nt16 |12C _Get Wrd(voi d)
{
U nt16 LowByt e;
| 2caRegs. | 2CCNT = 2; /1 Setup how many bytes to expect
| 2caRegs. | 2CMDR al | = 0x2C20; // Send start as naster receiver
/] Wait until communication done
while (lI2caRegs.|2CVDR bit.STP == 1) {}
/1 Conbine two bytes to one word & return
LowByte = | 2caRegs. | 2CDRR;
return (LowByte | (Il2caRegs.|2CDRR <<8));
}
/1
/1 No nore.
/1
72 Boot ROM SPRU722C—-November 2004 —-Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com

Bootloader Code Overview

/1 TI File $Revision: /main/7 $
/| Checkin $Date: January 20, 2005 10:05:26 $

T B S S B L S B L L B4 L 3 1 L S G 1 42

L L L L R

/1

/1 FILE: CAN_Boot.c

/1

/1 TITLE: 280x CAN Boot node routines
11

/'l Functions:

/1

/1 U nt32 CAN_Boot (voi d)

/1 void CAN_Init(void)

/1 Ui nt32 CAN_Get Wr dDat a(voi d)
11

/1 Notes:

/1 BRP =2, Bit tine = 10. This would yield the following bit rates with the

/1 default PLL setting:

/1 XCLKIN = 40 MHz SYSCLKOUT = 20 MHz Bit rate = 1 Mits/s
/1 XCLKIN = 20 MHz SYSCLKOUT = 10 Mz Bit rate = 500 kbits/s
/1 XCLKIN = 10 MHz SYSCLKQUT = 5 Mz Bit rate = 250 kbits/s

/1 XCLKIN = 5 Mz SYSCLKOUT = 2.5MHz Bit rate = 125 kbits/s

| | HHHBHHHH A

/1 $TI Rel ease: $
/1 $Rel ease Date: $

| | HHHBHHHH A

#i ncl ude " DSP280x_Devi ce. h"
#i ncl ude "280x_Boot . h"

/1 Private functions
void CAN_Init(void);
Ui nt 16 CAN_Cet Wor dDat a(voi d);

/1 External functions

extern void CopyData(void);
extern U nt32 GetLongData(void);
extern void ReadReservedFn(void);

/1 Ui nt32 CAN_Boot (voi d)

L R LT
/1 This nodule is the nain CAN boot routine.
/1 1t will load code via the CAN-A port.

/1

/1 1t will return a entry point address back

/! to the InitBoot routine which in turn calls
/1 the ExitBoot routine.

Ui nt 32 CAN_Boot ()

{
Ui nt 32 EntryAddr;

/1 1f the mssing clock detect bit is set, just
/1 1 oop here.

i f(SysCirl Regs. PLLSTS. bit. MCLKSTS == 1)

{

}

/1 Assign GetWordData to the CAN-A version of the
/1 function. GetWordData is a pointer to a function.
Get WrdDat a = CAN_Get Wor dDat a;

for(;;);

SPRU722C—-November 2004 —Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

Boot ROM

73

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS

INSTRUMENTS
Bootloader Code Overview www.ti.com
CAN_Init();
/1 1f the KeyVal ue was invalid, abort the |oad
/1 and return the flash entry point.
if (CAN_GetWordData() != 0x08AA) return FLASH ENTRY_PO NT;
ReadReser vedFn();
Ent ryAddr = Get LongData();
CopyDat a() ;
return EntryAddr;
}
/1 void CAN_Init(void)
R
/1 Initialize the CAN-A port for conmunications
/1 with the host.
R
void CAN_Init()
{
/* Create a shadow register structure for the CAN control registers. This is
needed, since, only 32-bit access is allowed to these registers. 16-bit access
to these registers could potentially corrupt the register contents. This is
especially true while witing to a bit (or group of bits) anong bits 16 - 31 */
struct ECAN_REGS ECanaShadow,
EALLOW
/* Enable CAN clock */
SysCt rl Regs. PCLKCRO. bi t . ECANAENCLK=1;
/* Configure eCAN-A pins using GPIO regs*/
Gpi oCtrl Regs. GPAMUX2. bit. GPI 330 = 1; // GPICBO is CANRXA
Gpi 0Ctrl Regs. GPAMUX2. bit. GPIB1 = 1; // GPIB1l is CANTXA
/* Configure eCAN RX and TX pins for eCAN transm ssions using eCAN regs*/
ECanaRegs. CANTI OC. bi t . TXFUNC = 1;
ECanaRegs. CANRI CC. bi t . RXFUNC = 1;
/* Enable internal pullups for the CAN pins */
Gpi oCt r|l Regs. GPAPUD. bit. GPl B0 = 0;
Gpi oCt rl Regs. GPAPUD. bit. GPl @81 = 0;
/* Asynch Qual */
Gpi oCt rl Regs. GPAQSEL2. bit. GPI 30 = 3;
/* Initialize all bits of 'Master Control Field to zero */
/1 Sone bits of MSGCTRL register come up in an unknown state. For proper operation,
/1 all bits (including reserved bits) of MSGCTRL nust be initialized to zero
ECanaMboxes. MBOX1. MSGCTRL. al I = 0x00000000;
/! RWPn, GFn bits are all zero upon reset and are cleared again
I/ as a matter of precaution.
/* Cdear all RWn bits */
ECanaRegs. CANRWP. al | = OxFFFFFFFF;
74 Boot ROM SPRU722C—-November 2004 —Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com Bootloader Code Overview

/* dear all interrupt flag bits */

ECanaRegs. CANG FO. al | = OxFFFFFFFF;
ECanaRegs. CANG F1. al | = OxFFFFFFFF;

/* Configure bit timng paraneters for eCANA*/

ECanaShadow. CANMC. al | = ECanaRegs. CANMC. al | ;
ECanaShadow. CANMC. bit.CCR = 1 ; // Set CCR =1
ECanaRegs. CANMC. al | = ECanaShadow. CANMC. al | ;

whi | e(ECanaRegs. CANES. bit.CCE !'= 1) {} // Wit for CCE bit to be set..

ECanaShadow. CANBTC. al | = 0;

ECanaShadow. CANBTC. bi t . BRPREG = 1;

ECanaShadow. CANBTC. bi t . TSER2REG = 2;

ECanaShadow. CANBTC. bi t . TSEGLREG = 5;

ECanaShadow. CANBTC. bit. SAM = 1;

ECanaRegs. CANBTC. al | = ECanaShadow. CANBTC. al | ;

ECanaShadow. CANMC. al | = ECanaRegs. CANMC. al | ;

ECanaShadow. CANMC. bit.CCR = 0 ; /1l Set CCR =0

ECanaRegs. CANMC. al | = ECanaShadow. CANMC. al | ;

whi | e(ECanaRegs. CANES. bit.CCE == 10) {} // Wait for CCE bit to be cleared..
/* Disable all Mil boxes */

ECanaRegs. CANME. al | = 0; /'l Required before witing the M5A Ds
/* Assign MSG@ D to MBOX1 */

ECanaMboxes. MBOX1. M5s@ D. al | = 0x00040000;

/* Configure MBOX1 to be a receive MBOX */

ECanaRegs. CANMD. al | = 0x0002;

/* Enabl e MBOX1 */

ECanaRegs. CANME. al I = 0x0002;
ED S;
return;

/'l This routine fetches two bytes fromthe CAN-A

// port and puts themtogether to forma single

/1 16-bit value. It is assumed that the host is

/1 sending the data in the order LSB foll owed by MSB.

SPRU722C—-November 2004 —Revised October 2006 Boot ROM 75

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

Bootloader Code Overview www.ti.com

Ui nt 16 CAN_Get Wor dDat a()
{

Ui nt 16 wor dDat a;

Ui nt 16 byt eDat a;

wor dDat a = 0x0000;
byt eData = 0x0000;

/1 Fetch the LSB
whi | e(ECanaRegs. CANRWP. al | == 0) { }
wordData = (Ui nt16) ECanaMoxes. MBOX1. MDL. byt e. BYTEO; // LS byte

/1 Fetch the MSB
byteData = (Ui nt 16) ECanaMboxes. MBOX1. MDL. byt e. BYTELl; // NS byte

/1 formthe wordData fromthe MSB: LSB
wordData | = (byteData << 8);

/* Clear all RWPH bits */
ECanaRegs. CANRMP. al | = OxFFFFFFFF;

return wordDat a;

}

/*
Data franes with a Standard MSA D of Ox1 should be transnmitted to the ECAN-A boot| oader.
This data will be received in Milboxl, whose MSA@ D is Ox1l. No nmessage filtering is enployed.

Transmit only 2 bytes at a tine, LSB first and MSB next. For exanple, to transmt
the word OxO8AA to the 280x, transmit AA first, followed by 08. Following is the
order in which data should be transmtted:

AA 08 - Keyval ue
00 00 - Part of
00 00 - Part of
00 00 - Part of
00 00 - Part of
00 00 - Part of
00 00 - Part of

reserved words stream

reserved words stream

reserved words stream

reserved words stream

reserved words stream

reserved words stream

00 00 - Part of reserved words stream

00 00 - Part of reserved words stream

bb aa - Ms part of 32-bit address (aabb)

dd cc - LS part of 32-bit address (ccdd) - Final Entry-point address = Oxaabbccdd
nn mm - Length of first section (mm nn)

ff ee - M5 part of 32-bit address (eeff)

hh gg - LS part of 32-bit address (gghh) - Entry-point address of first section = Oxeeffgghh
XX XX - First word of first section

XX XX - Second word......

00 00 O 00 00 0 0 ™

XXX - Last word of first section

nn mm - Length of second section (mm nn)

ff ee - M5 part of 32-bit address (eeff)

hh gg - LS part of 32-bit address (gghh) - Entry-point address of second section = Oxeeffgghh
XX XX - First word of second section

XX XX - Second word......

XXX - Last word of second section
(rmore sections, if need be)

76

Boot ROM SPRU722C—-November 2004 —Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com Bootloader Code Overview

00 00 - Section length of zero for next section indicates end of data.
*/

/*
Not es:

Sunmary of changes in ver 2.0, as conpared to 1.0

1. Changed the statenent
ECanaMboxes. MBOX0. MSGCTRL. al | = 0x00000000;
to
ECanaMboxes. MBOX1. MSGCTRL. al | = 0x00000000;
since it is MBOXL that is used, not MBOXO.
2. Made BRP = 1. BRPwas O inrev 1.0 . BT is now 10 to maintain
the SYSCLKOUT-bitrate rel ationship.

3. Changed the statenent
ECanaMboxes. MBOX1. M5SG@ D. bit. STDMSGA D = 1;

to

ECanaMboxes. MBOX1. M5@ D. al I = 0x00040000;
since |DE AVE bits are not initialized in the previous version.

4. Enpl oyed Shadow wites to CANBTC register

*/
/] EOF-------
SPRU722C—-November 2004 —Revised October 2006 Boot ROM 77

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

Bootloader Code Overview

13 TEXAS
INSTRUMENTS

www.ti.com

/*

/1 TI File $Revision:

/1 Checkin $Dat e:

April

/main/5 $
21, 2005 15:59:42 $

| | HHHBHHHH A

/1

/1 FILE: F280x_boot _rom.| nk.cnd

/1

/1 TITLE: F280x boot

/1
/1

romlinker command file

| | #HHHHHHHHHHHHHHHHHHH

/1 $TI Rel ease: $

/1 $Rel ease Date: $

| | #HHHHHHHHHHHHHHHHHHH

*/

MEMORY

{

PAGE O :
TABLES origin = Ox3FFO00, |ength = 0x000b50
BOOT origin = Ox3FFB50, |ength = 0x000386
RSVD1 origin = Ox3FFED6, |ength = OxO0000E3
FLASH_API origin = Ox3FFFB9, |ength = 0x000001
VERSI ON origin = Ox3FFFBA, |ength = 0x000002
CHECKSUM origin = Ox3FFFBC, |ength = 0x000004
VECS origin = Ox3FFFQ0, |ength = 0x000040

PAGE 1 :
EBSS origin = 0x400, |ength = 0x002
STACK origin = 0x402, |ength = 0x200

}

SECTI ONS

{
| Qmat hTables : load = TABLES, PAGE = 0
. I ni t Boot |l oad = BOOT, PAGE = 0
.text | oad = BOOT, PAGE = 0
. Boot Vecs load = VECS, PAGE = 0
. Checksum |l oad = CHECKSUM PAGE = 0
. Version load = VERSI ON, PAGE = 0
.stack |l oad = STACK, PACGE =1
. ebss |l oad = EBSS, PAGE = 1
rsvdl |l oad = RSVDl, PACGE =0

}

78 Boot ROM SPRU722C—-November 2004 —-Revised October 2006

Submit Documentation Feedback

Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com Bootloader Code Overview

4.4 Bootloader Code Listing (V4.0)

This section only shows the code that was modified from V3.0 to V4.0.

;7 TI File $Revision: /main/7 $
;; Checkin $Date: May 2, 2006 20:49:39 $
L BHEHH TR R R A A R R R R R R R R A A R R T

i, FILE: Init_Boot.asm

;. TITLE: 280x Boot RomInitialization and Exit routines.
. Functions:

- _I ni t Boot
- _Exi t Boot

7+ Notes:

| HHBHHBHHBHHBHE B HH R H R R R R R
7, $TI Rel ease: $

;; $Rel ease Date: $

o HHBHHBHHBHHBHE R HH R H R R R

.def _InitBoot

.ref _Sel ect Boot Mode

.sect ".Flash" ; Flash APl checks this for
.word OXFFFE ; silicon conpatability

.sect ".Version"

.word 0x0004 ; 280x Boot ROM Version 4
.word 0x0406 ; Month/Year: (4/06 = April 2006)
.sect ".Checksunt; 64-bit Checksum

.long Ox7F1F1DE5 ; |east significant 32-bits
.1 ong 0x000003B3 ; nost significant 32-bits
.sect ".lnitBoot"

; _InitBoot

; This function perforns the initial boot routine
; for the boot ROM

; This nodule perforns the followi ng actions:
; 1) Initalizes the stack pointer
; 2) Sets the device for C28x operating node

; 3) Calls the main boot functions
; 4) Calls an exit routine

_InitBoot:
; Initalize the stack pointer.

__stack: .usect ".stack",0
MOV SP, # stack ; Initalize the stack pointer

; Initalize the device for running in C28x node.

c2808BJ ; Sel ect C28x object node
C28ADDR ; Sel ect C27x/ C28x addressing
C28VAP ; Set blocks M)/ ML for C28x node
SPRU722C—-November 2004 —Revised October 2006 Boot ROM 79

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

Bootloader Code Overview

I

TEXAS
INSTRUMENTS

www.ti.com

CLRC PAGEO ; Always use stack addressi ng node
MOVWDP, #0 ; Initialize DP to point to the low 64 K
CLRC OvM

Set PMshift of 0

SPM 0

Deci de whi ch boot node to use

a

LCR _Sel ect Boot Mode

eanup and exit. At this point the EntryAddr

is located in the ACC register

a

BF _ExitBoot, UNC

_Exi t Boot
; This nodul e cl eans up after the boot | oader
1) Make sure the stack is deall ocated.
SP = 0x400 after exiting the boot | oader
2) Push 0 onto the stack so RPC will be
0 after using LRETR to junmp to the entry point
2) Load RPC with the entry point
3) Cear all XARn registers
4) Cear ACC, P and XT registers
5) LRETR - this will also clear the RPC
regi ster since 0 was on the stack
t Boot :

ear the bottomof the stack. This will endup

in RPC when we are finished

MOV * SP++, #0
MOV * SP++, #0

Load RPC with the entry point as determn ned
by the boot nbde. This address will be returned
in the ACC register.

PUSH ACC
POP RPC

Put registers back in their reset state.

a

ear all the XARn, ACC, XT, and P and DP

registers

NOTE: Leave the device in C28x operating node

(OBJMODE = 1, AMODE = 0)

80

Boot ROM

Copyright © 2004-2006, Texas Instruments Incorporated

SPRU722C—-November 2004 —Revised October 2006
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com Bootloader Code Overview

MOVL XT, ACC
MOVZ ARO, AL
MOVZ ARL, AL
MOVZ AR2, AL
MOVZ AR3, AL
MOVZ AR4, AL
MOVZ AR5, AL
MOVZ ARG, AL
MOVZ AR7, AL
MOVW DP, #0

; Restore STO and ST1. Note OBJMODE is
; the only bit not restored to its reset state.
; OBIJIMODE is left set for C28x object operating

;. node.
; STO = 0x0000 ST1 = 0x0AOB
; 15:10 ovC =0 15: 13 ARP = 0
;9 7 PM=0 12 XF =0
; 6 V=20 11 MMNVAP = 1
; 5 N=0 10 reserved
; 4 Z=0 9 OBIMXDE =1
; 3 c=20 8 AMODE = 0O
; 2 TC =0 7 | DLESTAT = 0
; 1 OWM=0 6 EALLOW = 0
; 0 SXM=20 5 LOOP = 0
; 4 SPA = 0
; 3 VVAP = 1
; 2 PAGEO = O
; 1 DBGM = 1
; 0 INTM = 1

MOV * SP++, #0

MOV * SP++, #0x0A0B

POP ST1

POP STO

; Junp to the EntryAddr as defined by the
; boot npde sel ected and continue execution

;7 TI File $Revision: /main/1 $
;3 Checkin $Date: Muy 2, 2006 21:10:16 $
o BHBHHHB T R A AR AR R R R R R R R R R AR A R i

v, FILE: I TRAPIsr.asm

7 TITLE: 280x Boot Rom | TRAP | SR
;5 Functions:

o _| TRAPI st

7+ Notes:

| HURHHRHH R TR TR R R R R R R R R R R R
i, $TI Rel ease: $

7, $Rel ease Date: $

| HURHHRHH R TR T R R R R R R R R R R R R R

SPRU722C—-November 2004 —Revised October 2006 Boot ROM 81

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

Bootloader Code Overview

I

TEXAS
INSTRUMENTS

www.ti.com

.def _I TRAPI sr

This is the | TRAP interrupt service routine for
thet boot ROM CPU vector table. This routine

woul d be called should an | TRAP be encoutered
before the PIE nodule was initalized and enabl ed.

This nodul e performs the foll ow ng actions:

1) enabl es the wat chdog
2) | oops forever

sect ".lsr"
_| TRAPI sr:
SETC OBJMODE ; Set OBJMODE for 28x object code
EALLOW ; Enabl e EALLOW prot ected regi ster access

MOVZ DP, #7029h>>6 ; Set data page for WDCR register

MOV @029h, #0028h ;Clear WDDIS bit in WDCR to enabl e Wat chdog
EDI S ; Di sabl e EALLOW prot ected regi ster access
SB 0, UNC ; Loop forever

;eof ----------

;. Tl File $Revision: /main/3 $

;3 Checkin $Date: May 2, 2006 20:49:30 $

o HHHHBHHBHH BB R R R R R R R R R R R R R

;; FILE: Vectors_Boot.h
;; TITLE: Boot Rom vector table.
7, Functions:

;7 This section of code popul ates the vector table in the boot ROM The reset
;; vector at Ox3FFFCO points to the entry into the boot |oader functions (InitBoot())
;; The rest of the vectors are popul ated for test purposes only.

L HHBHHBHH R HH R H R 7
;. $TI Rel ease: $

., $Rel ease Date: $

o HHBHHBHH R HH R 7

The vector table located in boot ROM at Ox3F FFCO - Ox3F FFFF
will be filled with the follow ng data.

Only the reset vector, which points to the InitBoot

routine will be used during normal operation. The remaining
vectors are set for internal testing purposes and will not be
fetched fromthis |ocation during normal operation.

On the 280x reset is always fetched fromthis table.

.ref _InitBoot

.ref _I TRAPI sr

.sect ".Boot Vecs"
.long _InitBoot ; Reset
.1 ong 0x000042

82

Boot ROM

SPRU722C—-November 2004 —Revised October 2006

Submit Documentation Feedback

Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com Bootloader Code Overview

.l ong 0x000044
.l ong 0x000046
.1 ong 0x000048
.l ong 0x00004a
.l ong 0x00004c
.1 ong 0x00004e
.l ong 0x000050
.l ong 0x000052
.1 ong 0x000054
. ong 0x000056
.l ong 0x000058
.1 ong 0x00005a
.l ong 0x00005c
.l ong 0x00005e
.1 ong 0x000060
.l ong 0x000062
.l ong 0x000064
.long _I TRAPI sr ;| TRAP
.l ong 0x000068
.l ong 0x00006a
.1 ong 0x00006c
.l ong 0x00006e
.l ong 0x000070
.1 ong 0x000072
.l ong 0x000074
.l ong 0x000076
.1 ong 0x000078
.l ong 0x00007a
.l ong 0x00007c
.1 ong 0x00007e

SPRU722C—-November 2004 —Revised October 2006 Boot ROM 83

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

13 TEXAS
INSTRUMENTS

www.ti.com

Appendix A Revision History

This document was revised to SPRU722C from SPRU722B. This appendix lists only revisions made in the
most recent version. The scope of the revisions was limited to technical changes as shown in Table 15.

Table 15. Changes for Revision C

Location Addition, Deletion, Modification

Preface Added the 280xx family to the description.

Table 13 Added a boot ROM version per device table.

Table 1 Updated the ITRAP vector information and added a note to the table to explain the change.
Section 2.5 Added this section to describe the behavior of the ITRAP vector within the CPU vector table.
Table 3 Added info for devices that do not have an eCAN-A module.

Section 4.2 Inserted information for version 4 of the boot ROM code.

Section 4.1 Moved the version and checksum information to this section.

Section 4.4 Added code listing section to show changes as of V4.0 of the boot ROM code.

84

Revision History

SPRU722C—-November 2004 —Revised October 2006

Submit Documentation Feedback
Copyright © 2004-2006, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU722C

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESDA48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale
supplied at the time of order acknowledgment.

Tl warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent Tl deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

Tl assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of significant portions of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. Tl is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by Tl for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
Tl is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of Tl components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify Tl and its representatives against any damages arising out of the use
of any Tl components in safety-critical applications.

In some cases, Tl components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class Il (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those Tl components which Tl has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

Tl has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, Tl will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation —www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters
DLP® Products

DSP

Clocks and Timers
Interface

Logic

Power Mgmt
Microcontrollers
RFID

OMAP Applications Processors
Wireless Connectivity

dataconverter.ti.com

www.dlp.com

dsp.ti.com
www.ti.com/clocks

interface.ti.com

logic.ti.com

power.ti.com
microcontroller.ti.com

www.ti-rfid.com
www.ti.com/omap

Computers and Peripherals
Consumer Electronics
Energy and Lighting
Industrial

Medical

Security

Space, Avionics and Defense
Video and Imaging

Tl E2E Community

www.ti.com/wirelessconnectivity

www.ti.com/computers

www.ti.com/consumer-apps

www.ti.com/energy
www.ti.com/industrial

www.ti.com/medical

www.ti.com/security
www.ti.com/space-avionics-defense

www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	TMS320x280x, 2801x, 2804x Boot ROM
	Table of Contents
	Preface
	1 Boot ROM Memory Map
	1.1 On-Chip Boot ROM IQ Math Tables
	1.2 CPU Vector Table

	2 Bootloader Features
	2.1 Bootloader Functional Operation
	2.2  Bootloader Device Configuration
	2.3 PLL Multiplier Selection
	2.4 Watchdog Module
	2.5 Taking an ITRAP Interrupt
	2.6 Internal Pullup Resisters
	2.7 PIE Configuration
	2.8 Reserved Memory
	2.9 Bootloader Modes
	2.10  Bootloader Data Stream Structure
	2.11 Basic Transfer Procedure
	2.12 InitBoot Assembly Routine
	2.13  SelectBootMode Function
	2.14 CopyData Function
	2.15 SCI_Boot Function
	2.16 Parallel_Boot Function (GPIO)
	2.17 SPI_Boot Function
	2.18 I2C Boot Function
	2.19 eCAN Boot Function
	2.20  ExitBoot Assembly Routine

	3 Building the Boot Table
	3.1 The C2000 Hex Utility
	3.2 Example: Preparing a COFF File For eCAN Bootloading

	4 Bootloader Code Overview
	4.1 Boot ROM Version and Checksum Information
	4.2 Bootloader Code Revision History
	4.3 Bootloader Code Listing (V3.0)
	4.4 Bootloader Code Listing (V4.0)

	Appendix A Revision History

