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About This Manual 
 

This document explains the fundamentals of memory caches and describes 
how to efficiently utilize the TMS320C6000 DSP two-level cache-based 
memory architecture. It shows how to maintain coherence with external 
memory, how to use DMA to reduce memory latencies, and how to optimize 
your code to improve cache efficiency. Project collateral discussed in this 
user guide can be downloaded from http://www.ti.com/lit/zip/SPRU656. 

 

How to Use this Manual 
 

Novice users unfamiliar with memory caches should read this document start- 
ing with Chapter 1, which lays the fundamentals for all later chapters. More 
advanced users interested in issues related to cache coherence may directly 
skip to Chapter 2. Users who are familiar with the C6000 DSP memory 
architecture and do not experience coherence problems, but want to learn how 
to optimize their application code for higher performance by reducing cache 
overhead cycles may directly go to Chapter 3. 

 

Notational Conventions 
 

This document uses the following conventions. 
 

□ Hexadecimal numbers are shown with the suffix h. For example, the 
following number is 40 hexadecimal (decimal 64): 40h. 

□ Program listings and examples are shown in a special typeface 
similar to a typewriter’s. 

Here is a sample program listing: 

#include <csl.h> 

#include <csl_cache.h> 

CSL_init(); 

CACHE_enableCaching(CACHE_CE00); 

CACHE_setL2Mode(CACHE_48KCACHE); 

http://www.ti.com/lit/zip/SPRU656
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Related Documentation From Texas Instruments 
 

 
 

Related Documentation From Texas Instruments 
The following documents describe the C6000 devices and related support 
tools. Copies of these documents are available on the Internet at www.ti.com. 
Tip: Enter the literature number in the search box provided at www.ti.com. 

TMS320C6000 CPU and Instruction Set Reference Guide (literature 
number SPRU189) describes the TMS320C6000 CPU architecture, 
instruction set, pipeline, and interrupts for these digital signal processors. 

TMS320C6000 Peripherals Reference Guide (literature number SPRU190) 
describes the peripherals available on the TMS320C6000 DSPs. 

TMS320C6000 Technical Brief (literature number SPRU197) gives an 
introduction to the TMS320C62x and TMS320C67x DSPs, develop- 
ment tools, and third-party support. 

TMS320C64x Technical Overview (SPRU395) gives an introduction to the 
TMS320C64x DSP and discusses the application areas that are 
enhanced by the TMS320C64x VelociTI. 

TMS320C6000 Programmer’s Guide (literature number SPRU198) 
describes ways to optimize C and assembly code for the 
TMS320C6000 DSPs and includes application program examples. 

TMS320C6000 Code Composer Studio Tutorial (literature number 
SPRU301) introduces the Code Composer Studio integrated develop- 
ment environment and software tools. 

Code Composer Studio Application Programming Interface Reference 
Guide (literature number SPRU321) describes the Code Composer 
Studio application programming interface (API), which allows you to 
program custom plug-ins for Code Composer. 

TMS320C6x Peripheral Support Library Programmer’s Reference 
(literature number SPRU273) describes the contents of the 
TMS320C6000 peripheral support library of functions and macros. It 
lists functions and macros both by header file and alphabetically, 
provides a complete description of each, and gives code examples to 
show how they are used. 

TMS320C6000 Chip Support Library API Reference Guide (literature 
number SPRU401) describes a set of application programming interfaces 
(APIs) used to configure and control the on-chip peripherals. 

 

Trademarks  
 

Code Composer Studio, C6000, C62x, C64x, C67x, TMS320C6000, 
TMS320C62x, TMS320C64x, TMS320C67x, and VelociTI are trademarks of 
Texas Instruments. 
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This chapter discusses the basic operation of memory caches and describes 
the operation of the TMS320C6000 DSP two-level cache architecture. 
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1.1 Purpose of This User’s Guide 
This user’s guide describes how the cache-based memory system of the 
C621x, C671x, and C64x DSPs can be efficiently used in DSP applications. 
The internal memory architecture of these devices is organized in a two-level 
hierarchy consisting of a dedicated program cache (L1P) and a dedicated data 
cache (L1D) on the first level. Accesses by the CPU to the these first level 
caches can complete without CPU pipeline stalls. If the data requested by the 
CPU is not contained in cache, it is fetched from the next lower memory level, 
L2 or external memory. A detailed technical description of the C621x/C671x 
memory architecture is given in TMS320C621x/671x DSP Two-Level Internal 
Memory Reference Guide (SPRU609) and the C64x memory architecture is 
given in TMS320C64x DSP Two-Level Internal Memory Reference Guide 
(SPRU610). 

The following topics are covered in this user’s guide: 

□ The necessity of caches in high-performance DSPs 
□ General introduction into cache-based architectures 
□ Configuring and using the cache on the C621x, C671x, and C64x devices 
□ Maintaining coherence of the cache with external memory 
□ Linking code and data for increased cache efficiency 
□ Code-optimization techniques for increased cache efficiency 

 
 

1.2 Why Use Cache 
From a DSP application perspective, a large amount of fast on-chip memory 
would be ideal. However, over the past years the performance of processors 
has improved at a much faster pace than that of memory. As a result, there is 
now a performance gap between CPU and memory speed. High-speed 
memory is available but consumes much more size and is more expensive 
compared with slower memory. 

Consider the flat memory architecture shown on the left in Figure 1–1. Both 
CPU and internal memory are clocked at 300 MHz such that no memory stalls 
occur. However for accesses to the slower external memory, there will be CPU 
stalls. If the CPU clock was now increased to 600 MHz, the internal memory 
could only service CPU accesses every two CPU cycles and the CPU would 
stall for one cycle on every memory access. The penalty would be particularly 
large for highly optimized inner loops that may access memory on every cycle. 
In this case, the effective CPU processing speed would approach the slower 
memory speed. Unfortunately, today’s available memory technology is not 
able to keep up with increasing processor speeds, and a same size internal 
memory running at the same CPU speed would be far too expensive. 

Purpose of This User’s Guide / Why Use Cache 
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Figure 1–1. Flat Versus Hierarchical Memory Architecture 
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The solution is to use a memory hierarchy, as shown on the right in Figure 1–1. 
A fast but small memory is placed close to the CPU that can be accessed with- 
out stalls. The next lower memory levels are increasingly larger but also slower 
the further away they are from the CPU. Addresses are mapped from a larger 
memory to a smaller but faster memory higher in the hierarchy. Typically, the 
higher-level memories are cache memories that are automatically managed 
by a cache controller. Through this type of architecture, the average memory 
access time will be closer to the access time of the fastest memory rather than 
to the access time of the slowest memory. 
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1.3 Principle of Locality 
 

Caches reduce the average memory access time by exploiting the locality of 
memory accesses. The principle of locality assumes that if a memory location 
was referenced it is very likely that the same or a neighboring location will be 
referenced soon again. Referencing memory locations within some period of 
time is referred to as temporal locality. Referencing neighboring memory loca- 
tions is referred to as spatial locality. A program typically reuses data from the 
same or adjacent memory locations within a small period of time. If the data 
is fetched from a slow memory into a fast cache memory and is accessed as 
often as possible before it is being replaced with another set of data, the bene- 
fits become apparent. 

 
The following example illustrates the concept of spatial and temporal locality. 
Consider the memory access pattern of a 6-tap FIR filter. The required 
computations for the first two outputs y[0] and y[1] are: 

 
y[0] = h[0] × x[0] + h[1] × x[1] + ... + h[5] × x[5] 

 
y[1] = h[0] × x[1] + h[1] × x[2] + ... + h[5] × x[6] 

 
Consequently, to compute one output we have to read six data samples from 
an input data buffer x[ ]. Figure 1–2 shows the memory layout of this buffer 
and how its elements are accessed. When the first access is made to memory 
location 0, the cache controller fetches the data for the address accessed and 
also the data for a certain number of the following addresses into cache. This 
range of addresses is called a cache line. The motivation for this behavior is 
that accesses are assumed to be spatially local. This is true for the FIR filter, 
since the next five samples are required as well. Then all accesses will go to 
the fast cache instead of the slow lower-level memory. 

 
Consider now the calculation of the next output, y[1]. The access pattern again 
is shown in Figure 1–2. Five of the samples are being reused from the previous 
computation and only one sample is new; but all of them are already held in 
cache and no CPU stalls occur. This access pattern exhibits high spatial and 
temporal locality: the same data that was used in the previous step is being 
used again for processing. 

 
Cache builds on the fact that data accesses are spatially and temporally local. 
The number of accesses to a slower, lower-level memory are greatly reduced, 
and the majority of accesses can be serviced at CPU speed from the high-level 
cache memory. 
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Figure 1–2. Access Pattern of a 6-Tap FIR Filter 
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1.4 Cache Memory Architecture Overview 

The C6000 DSP memory architecture consists of a two-level internal cache- 
based memory architecture plus external memory. Level 1 cache is split into 
program (L1P) and data (L1D) cache. On C64x devices (Figure 1–3), each L1 
cache is 16 Kbytes; on C621x/C671x devices (Figure 1–4), each L1 cache is 
4 Kbytes. All caches and data paths shown in Figure 1–3 and Figure 1–4 are 
automatically managed by the cache controller. Level 1 cache is accessed by 
the CPU without stalls. Level 2 memory is configurable and can be split into 
L2 SRAM (addressable on-chip memory) and L2 cache for caching external 
memory locations. On a C6416 DSP for instance, the size of L2 is 1 Mbyte; on 
a C621x/C671x device, the size of L2 is 64 Kbytes. External memory can be 
several Mbytes large. The access time depends on the memory technology 
used but is typically around 100 to 133 MHz. 

 
 

Figure 1–3. C64x Cache Memory Architecture 
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Figure 1–4. C621x/C671x Cache Memory Architecture 
Addressable memory 
Cache memory 
Data path managed 
by cache controller 

256 bit 2 × 32 bit 
(C671x: 2 × 64 bit read access) 

 
 
 

   

 
 

256 bit 256 bit 
 

64 bit 
 

L1 cache 

Write 
buffer 

L1D 
4K bytes 

L1P 
4K bytes 

 
 
 

On-chip L2 memory 

External memory 

 
C621x/C671x CPU 

L2 Cache L2 SRAM 



1-8 Introduction SPRU656A 

Cache Memory Architecture Overview 
 

 

 

1.5 Cache Basics 
 
 

This section explains the different types of cache architectures and how they 
work. Generally, you can distinguish between direct-mapped caches and set- 
associative caches. The caches described use the C64x L1P (direct-mapped) 
and L1D (set-associative) as examples; however, the concept is the same for 
C621x/C671x DSPs and is similar for all cache-based computer architectures. 
This section focuses on the behavior of the cache system. Performance 
considerations, including various stall conditions and associated stall cycles 
are discussed in section 3.1, Cache Performance Characteristics. 

 
1.5.1 Direct-Mapped Caches 

The C64x program cache (L1P) is used as an example to explain how a direct- 
mapped cache functions. Whenever the CPU accesses instructions in 
memory, the instructions are brought into L1P. The characteristics of the C64x 
and the C621x/C671x L1P caches are summarized in Table 1–1. 

 
Table 1–1. L1P Characteristics 

 

Characteristic C621x/C671x DSP C64x DSP 

Organization Direct-mapped Direct-mapped 

Protocol Read Allocate Read Allocate 

CPU access time 1 cycle 1 cycle 

Capacity 4 Kbytes 16 Kbytes 

Line size 64 bytes 32 bytes 

Single miss stall 5 cycles 8 cycles 

Miss pipelining No Yes 

 
 

Figure 1–5 shows the architecture of the C64x L1P that consists of the cache 
memory and the cache control logic. Additionally,  addressable  memory 
(L2 SRAM or external memory) is shown. The cache memory is 16 Kbytes 
large and consists of 512 32-byte lines. Each line frame always maps to the 
same fixed addresses in memory. For instance, as shown in Figure 1–5, 
addresses 0000h to 0019h are always cached in line frame 0 and addresses 
3FE0h to 3FFFh are always cached in line frame 511. Since the capacity of the 
cache has been exhausted, addresses 4000h to 4019h map to line frame 0, 
and so forth. Note that one line contains exactly one instruction fetch packet. 
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1.5.1.1 Read Misses 
 

Consider a CPU program fetch access to address location 0020h. Assume 
that cache is completely invalidated, meaning that no line frame contains 
cached data. The valid state of a line frame is indicated by the valid (V) bit. A 
valid bit of 0 means that the corresponding cache line frame is invalid, that is, 
does not contain cached data. When the CPU makes a request to read 
address 0020h, the cache controller splits up the address into three portions 
as shown in Figure 1–6. 

 
Figure 1–6. Memory Address from Cache Controller 
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The set portion (bits 13–5) indicates to which set the address maps to (in case 
of direct caches, a set is equivalent to a line frame). For the address 0020h, 
the set portion is 1. The controller then checks the tag (bits 31–14) and the valid 
bit. Since we assumed that the valid bit is 0, the controller registers a miss, that 
is the requested address is not contained in cache. 
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A miss also means that a line frame will be allocated for the line containing the 
requested address. Then the controller fetches the line (0020h–0039h) from 
memory and stores the data in line frame 1. The tag portion of the address is 
stored in the tag RAM and the valid bit is set to 1 to indicate that the set now 
contains valid data. The fetched data is also forwarded to the CPU, and the 
access is complete. Why a tag portion of the address has to be stored be- 
comes clear when address 0020h is accessed again. This is explained next. 

 

1.5.1.2 Read Hits  
 

The cache controller splits up the address into the three portions, as shown 
in Figure 1–6. The set portion determines the set, and the stored tag portion 
is now compared against the tag portion of the address requested. This 
comparison is necessary since multiple lines in memory are mapped to the 
same set. If we had accessed address 4020h that also maps to the same set, 
the tag portions would be different and the access would have been a miss. 
If address 0020h is accessed, the tag comparison is true and the valid bit is 
1; thus, the controller registers a hit and forwards the data in the cache line to 
the CPU. The access is completed. 

 
1.5.2 Types of Cache Misses 

Before set-associative caches are discussed, it is beneficial to acquire a better 
understanding of the properties of different types of cache misses. The ulti- 
mate purpose of a cache is to reduce the average memory access time. For 
each miss, there is a penalty for fetching a line of data from memory into cache. 
Therefore, the more often a cache line is reused the lower the impact of the 
initial penalty and the shorter the average memory access time becomes. The 
key is to reuse this line as much as possible before it is replaced with another line. 

Replacing a line involves eviction of the line from cache and using the same 
line frame to store another line. If later the evicted line is accessed again, the 
access misses and the line has to be fetched again from slower memory. 
Therefore, it is important to avoid eviction of a line as long as it is still used. 
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1.5.2.1 Conflict and Capacity Misses 
 

Evictions are caused by conflicts, that is, a memory location is accessed that 
maps to the same set as a memory location that was cached earlier. This type 
of miss is referred to as a conflict miss, a miss that occurred because the line 
was evicted due to a conflict before it was reused. It is further distinguished 
whether the conflict occurred because the capacity of the cache was 
exhausted or not. If the capacity was exhausted, all line frames in the cache 
were allocated when the miss occurred, then the miss is referred to as a capac- 
ity miss. Capacity misses occur if a data set that exceeds the cache capacity 
is reused. When the capacity is exhausted, new lines accessed start replacing 
lines from the beginning of the array. 

 
Identifying the cause of a miss may help to choose the appropriate measure 
for avoiding the miss. Conflict misses mean that the data accessed fits into 
cache but lines get evicted due to conflicts. In this case, we may want to 
change the memory layout so that the data accessed is located at addresses 
in memory that do not conflict (map to the same set) in cache. Alternatively, 
from a hardware design, we can create sets that can hold two or more lines. 
Thus, two lines from memory that map to the same set can both be kept in 
cache without evicting one another. This is the idea of set-associative caches, 
described in section 1.5.3. 

 
In case of capacity misses, one may want to reduce the amount of data that 
is operated on at a time. Alternatively, from a hardware design, the capacity 
of the cache can be increased. 

 
1.5.2.2 Compulsory Misses 

 
A third category of misses are compulsory misses or first reference misses. 
They occur when the data is brought in cache for the first time. Unlike the other 
two misses, they cannot be avoided, hence, they are compulsory. 

 
 

1.5.3 Set-Associative Caches 
 

Set-associative caches have multiple cache ways to reduce the probability of 
conflict misses. The C64x  L1D  is  a  2-way  set-associative  cache  with  
16 Kbytes capacity (8 Kbytes per way) and 64-byte lines. The C621x/C671x 
L1D is also a 2-way set-associative cache, but with 4 Kbytes capacity        
(2 Kbytes per way) and 32-byte lines. The characteristics of the L1D caches 
are summarized in Table 1–2. 
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Table 1–2. L1D Characteristics 
 

Characteristic C621x/C671x DSP C64x DSP 
 

Organization 2-way set-associative 2-way set-associative 
 

Protocol Read Allocate, Write-back Read Allocate, Write-back 
 

CPU access time 1 cycle 1 cycle 
 

Capacity 4 Kbytes 16 Kbytes 
 

Line size 32 bytes 64 bytes 
 

Single read miss stall (L2 SRAM) 4 cycles 6 cycles 
 

Single read miss stall (L2 Cache) 4 cycles 8 cycles 
 

Miss pipelining No Yes 

Multiple consecutive misses (L2 SRAM)   4 cycles 4 + 2 × M cycles 

Multiple consecutive misses (L2 Cache)   4 cycles 6 + 2 × M cycles 

Write miss Passed through 4 × 32-bit write 
buffer. Only stalls when full. 

Passed through 4 × 64-bit write 
buffer. Only stalls when full. 

 
 

 
 
 

The difference to a direct-mapped cache is that in a 2-way cache each set 
consists of two line frames, one line frame in way 0 and another line frame in 
way 1. A line in memory still maps to one set, but now can be stored in either 
of the two line frames. In this sense, a direct-mapped cache can also be viewed 
as a 1-way cache. 

The set-associative cache architecture is explained by examining how misses 
and hits are handled for the C64x L1D cache. Its architecture is shown in 
Figure 1–7. Hits and misses are determined the same as in a direct-mapped 
cache, except that two tag comparisons, one for each way, are necessary to 
determine which way the requested data is kept. 

 

1.5.3.1 Read Hits  
 

If there is a read hit in way 0, the data of the line frame in way 0 is accessed; 
if there is a hit in way 1, the data of the line frame in way 1 is accessed. 
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Figure 1–7. C64x L1D Architecture 
 
 
 
 
 
 

LRU: 1 
LRU: 1 
LRU: 1 

... 
LRU: 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.5.3.2 Read Misses 

 
8K byte 

 

If both ways miss, the data first needs to be fetched from memory. The LRU 
bit determines in which cache way the line frame is allocated. An LRU bit exists 
for each set and can be thought of as a switch. If the LRU bit is 0, the line frame 
in way 0 is allocated; if the LRU bit is 1, the line frame in way 1 is allocated. The 
state of the LRU bit changes whenever an access is made to the line frame. 
When a way is accessed, the LRU bit always switches to the opposite way, as 
to protect the most-recently-used line frame from being evicted. Conversely, 
on a miss, the least-recently-used (LRU) line frame in a set is allocated to the 
new line evicting the current line. The reason behind this line replacement 
scheme is based on the principle of locality: if a memory location was 
accessed, then the same or a neighboring location will be accessed soon 
again. Note that the LRU bit is only consulted on a miss, but its status is 
updated every time a line frame is accessed regardless whether it was a hit 
or a miss, a read or a write. 
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1.5.3.3 Write Misses 
 

L1D is a read-allocate cache, meaning that a line is allocated on a read miss 
only. On a write miss, the data is written to the lower level memory through a 
write buffer, bypassing L1D cache (see Figure 1–3 and Figure 1–4). The write 
buffer consists of 4 entries. On C621x/C671x devices, each entry is 32-bits 
wide; on C64x devices, each entry is 64-bits wide. 

 
 

1.5.3.4 Write Hits 
 

On a write hit, the data is written to the cache, but is not immediately passed 
on to the lower level memory. This type of cache is referred to as write-back 
cache, since data that was modified by a CPU write access is written back to 
memory at a later time. To write back modified data, you have to know which 
line was written to by the CPU. For this purpose, every cache line has a dirty 
bit (D) associated with it. Initially, the dirty bit is zero. As soon as the CPU writes 
to a cached line, the corresponding dirty bit is set. When the dirty line needs 
to be evicted due to a conflicting read miss, it will be written back to memory. 
If the line was not modified (clean line), its contents are discarded. For 
instance, assume the line in set 0, way 0 was written to by the CPU, and the 
LRU bit indicates that way 0 is to be replaced on the next miss. If the CPU now 
makes a read access to a memory location that maps to set 0, the current dirty 
line is first written back to memory, then the new data is stored in the line frame. 
A write-back may also be initiated by the program, by sending a writeback 
command to the cache controller. Scenarios where this is required include 
boot loading and self-modifying code. 

 
 

1.5.4 Level 2 (L2) Cache 
 

Until now, it was assumed that there is one level of cache memory between 
the CPU and the addressable main memory. If there is a larger difference in 
memory size and access time between the cache and main memory, a second 
level of cache is typically introduced to further reduce the number of accesses 
to memory. A level 2 (L2) cache basically operates in the same manner as for 
a level 1 cache; however, level 2 cache are typically larger in capacity. Level 1 
and level 2 caches interact as follows: an address misses in L1 and is passed 
on to L2 for handling; L2 employs the same valid bit and tag comparisons to 
determine if the requested address is present in L2 cache or not. L1 hits are 
directly serviced from the L1 caches and do not require involvement of L2 
caches. 
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The C6000 L2 memory space can be split into an addressable internal 
memory (L2 SRAM) and a cache (L2 cache) portion. Unlike L1 caches that are 
read-allocate only, L2 cache is a read and write allocate cache. L2 cache is 
used to cache external memory addresses only; whereas, L1P and L1D are 
used to cache both L2 SRAM and external memory addresses. L2 cache char- 
acteristics are summarized in Table 1–3. 

 
Table 1–3. L2 Cache Characteristics 

 

Characteristic C621x/C671x DSP C64x DSP 

Organization 1-, 2-, 3-, or 4-way set-associative (depending on 
selected cache capacity) 

Protocol Read and write allocate 
Write-back 

4-way set-associative 
 

Read and write allocate 
Write-back 

Capacity 16/32/48/64 Kbytes 32/64/128/256 Kbytes 
 

Line size 128 bytes 128 bytes 
 

Replacement strategy Least recently used Least recently used 

 
1.5.4.1 Read Misses and Hits 

 
Consider a CPU read request to a cacheable external memory address that 
misses in L1 (may be L1P or L1D). If the address also misses L2 cache, the 
corresponding line will be brought into L2 cache. The LRU bits determine the 
way in which the line frame is allocated. If the line frame contains dirty data, 
it will be first written back to external memory before the new line is fetched. 
(If data of this line is also contained in L1D, it will be first written back to L2 
before the L2 line is sent to external memory. This is required to maintain cache 
coherence, which is further explained in section 2.2, Coherence). The portion 
of the line forming an L1 line and containing the requested address is then 
forwarded to L1. L1 stores the line in its cache memory and finally forwards the 
requested data to the CPU. Again, if the new line replaces a dirty line in L1, 
its contents are first written back to L2 cache. 

 
If the address was an L2 hit, the corresponding line is directly forwarded from 
L2 cache to L1. 

 
Some external memory addresses may be configured as noncacheable. In 
this case, the requested data is simply forwarded from external memory to the 
CPU without being stored in any of the caches (see section 2.1, Configuring 
L2 Cache, for more information). 



Cache Basics 

1-16 Introduction SPRU656A 

 

 

 
 

1.5.4.2 Write Misses and Hits 

If a CPU write request to an external memory address misses L1D, it is passed 
on to L2 through the write buffer. If L2 detects a miss for this address, the corre- 
sponding L2 cache line is fetched from external memory, modified with the 
CPU write, and stored in the allocated line frame. The LRU bits determine the 
way in which the line frame is allocated. If the line frame contains dirty data, 
it will be first written back to external memory before the new line is fetched. 
Note that the line is not stored in L1D, since it is a read-allocate cache only. 

If the address was an L2 hit, the corresponding L2 cache line frame is directly 
updated with the CPU write data. 

Note that some external memory addresses may be configured as noncache- 
able. In this case, the data is directly updated in external memory without being 
stored in cache. 
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Using Cache 
 

 
 

 
 

 
 

 
 
 

This chapter explains how to enable and configure cache for C621x/C671x 
and C64x devices. It also describes the cache coherence protocol employed 
by the cache controller and provides examples for common application 
scenarios. 

Since in a cache-based memory system, multiple copies of the same memory 
location containing different data may exist simultaneously, a protocol must be 
followed that ensures that a device different from the CPU (for example, a 
peripheral) does not access an out-of-date copy of a memory location. This 
protocol is referred to as a cache coherence protocol. 

 

  Important! Whenever external memory caching is enabled and the EDMA is 
used to transfer to/from external memory, it is your responsibility to maintain 
cache coherence. Failing to do so almost certainly results in incorrect 
functioning of the application. 
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Configuring L2 Cache 
 

 

 

2.1 Configuring L2 Cache 
After a reset, L2 cache is disabled and all of L2 is configured as SRAM 
(addressable internal memory). If DSP/BIOS is used, L2 cache is enabled 
automatically; otherwise, L2 cache can be enabled in the program code by 
issuing the appropriate chip support library (CSL) commands. Additionally, in 
the linker command file the memory to be used as L2 SRAM has to be specified. 
Since L2 cache cannot be used for code or data placement by the linker, all 
sections must be linked into L2 SRAM or external memory. 

Further, you can control whether external memory addresses are cacheable 
or noncacheable. Each external memory address space of 16 Mbytes is 
controlled by one MAR bit (0: noncacheable, 1:cacheable). The MAR registers 
are documented in TMS320C621x/671x DSP Two-Level Internal Memory 
Reference Guide (SPRU609) and TMS320C64x DSP Two-Level Internal 
Memory Reference Guide (SPRU610). For instance, to enable caching on a 
C6211/6711 device for the external memory range from 8000 0000h  to 
80FF FFFFh, the CSL function CACHE_enableCaching(CACHE_CE00) 
can be used. This sets register MAR0 to 1. For C64x devices, the function 
CACHE_enableCaching(CACHE_EMIFA_CE00) would be called to set 
register MAR128 to 1. After the MAR bit is set for an external memory space, 
new addresses accessed by the CPU will be cached in L2 cache or, if L2 is all 
SRAM, in L1. After a reset, caching for external memory address space is 
disabled. 

 
See TMS320C6000 Chip Support Library API Reference Guide (SPRU401) 
for more information on how to use the cache CSL functions. 

 
2.1.1 C6211/C6711 Cache Configurations 

On C6211/C6711 devices, the linker command file for an example configura- 
tion of 16K SRAM and 48 Kbytes 3-way cache is shown in Figure 2–1. 

The required CSL command sequence to enable caching of external memory 
locations and to enable L2 cache is shown in Figure 2–2. 

In Figure 2–2, the first command initializes the CSL. Then caching of the external 
memory space CE00h, which corresponds to the first 16 Mbytes in external 
memory, is enabled by setting the appropriate MAR bit. Finally, L2 cache size is 
set to 48 Kbytes. 
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Figure 2–1. C6211/C6711 Cache Configuration Linker Command File 

 
 

Figure 2–2. C6211/C6711 CSL Command Sequence to Enable Caching 
 

 
 

Figure 2–3 shows all possible cache configurations for C6211/C6711 devices. 
Slightly different configurations may exist for other C621x/C671x devices. See 
your device-specific datasheet. 

L2SRAM 

L2SRAM 

L2SRAM 

L2SRAM 

L2SRAM 

L2SRAM 

L2SRAM 

L2SRAM 

L2SRAM 

L2SRAM 

L2SRAM 

CE0 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 
> 

} 

 
SECTIONS 

{ 

.cinit 

.text 

.stack 

.bss 

.const 

.data 

.far 

.switch 

.sysmem 

.tables 

.cio 

.external 

} 

origin = 00000000h length = 00004000h 
origin = 80000000h length = 01000000h 

L2SRAM: 
CE0: 

MEMORY 

{ 

 
#include <csl.h> 

#include <csl_cache.h> 

... 

CSL_init(); 

CACHE_enableCaching(CACHE_CE00); 

CACHE_setL2Mode(CACHE_48KCACHE); 
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Figure 2–3. C6211/C6711 L2 Memory Configurations 
L2 memory 

 

16K SRAM 
 

32K SRAM 
 

48K SRAM 
 

64K SRAM 

0000 0000h 
 
 

0000 4000h 
 
 

0000 8000h 
 
 

0000 C000h 

 
 
 
 
 
 

4-way cache 

3-way cache 

2-way cache 

1- way cache 
 
 

Note that when the L2 cache size is increased the memory is taken from the 
high memory addresses. Other configurations are set by adjusting the cache 
size in Figure 2–1 and Figure 2–2. Therefore, the corresponding 
CACHE_setL2Mode() calls and MEMORY definitions are following. 

  Important! Do not define memory that is to be used as cache under the 
MEMORY directive. This memory is not valid for the linker to place code or data 
in. 

□ 64K SRAM, 0K cache: 
CACHE_setL2Mode(CACHE_0KCACHE); 

L2SRAM: origin = 00000000h length = 00010000h 
 

□ 48K SRAM, 16K cache: 
CACHE_setL2Mode(CACHE_16KCACHE); 

L2SRAM: origin = 00000000h length = 0000C000h 
 

□ 32K SRAM, 2-way 32K cache: 
CACHE_setL2Mode(CACHE_32KCACHE); 

L2SRAM: origin = 00000000h length = 00008000h 
 

□ 16K SRAM, 3-way 48K cache: 
CACHE_setL2Mode(CACHE_48KCACHE); 

L2SRAM: origin = 00000000h length = 00004000h 
 

□ 0K SRAM, 4-way 64K cache: No code/data can be linked into L2 SRAM. 
CACHE_setL2Mode(CACHE_64KCACHE); 
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2.1.2 C64x Cache Configurations 
 

The following description is for C64x devices with 1024 Kbytes of L2 memory. 
For C64x devices with different L2 sizes, see the device-specific datasheet. 
On C64x devices, the linker command file for a configuration of 992K SRAM 
and 32 Kbytes 4-way cache is shown in Figure 2–4. 

 
The required CSL command sequence to enable caching of external memory 
locations and to enable L2 cache is shown in Figure 2–5. 

 
In Figure 2–5, the first command initializes the CSL. Then caching of the external 
memory space CE00h, which corresponds to the first 16 MBytes in external 
memory connected to EMIFA, is enabled by setting the appropriate MAR bit. 
Finally, L2 cache size is set to 32 Kbytes. 

 
 

Figure 2–4. C64x Cache Configuration Linker Command File 
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> 
> 

} 

 
SECTIONS 

{ 

.cinit 

.text 

.stack 

.bss 

.const 

.data 

.far 

.switch 

.sysmem 

.tables 

.cio 

.external 
} 

origin = 00000000h length = 000F8000h 
origin = 80000000h length = 01000000h 

L2SRAM: 
CE0: 

MEMORY 

{ 
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Figure 2–5. C64x CSL Command Sequence to Enable Caching 
 

 
 
 

Figure 2–6 shows all possible cache configurations for C64x devices with 
1024 Kbytes of L2 memory. Slightly different configurations may exist for other 
C64x devices. See your device-specific datasheet. 

 

Figure 2–6. C64x L2 Memory Configurations 
L2 mode bits 
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#include <csl.h> 

#include <csl_cache.h> 

... 

CSL_init(); 

CACHE_enableCaching(CACHE_EMIFA_CE00); 

CACHE_setL2Mode(CACHE_32KCACHE); 
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4-way 
cache 

 
 
 

768K bytes 
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Note that when the L2 cache size is increased the memory is taken from the 
high memory addresses. Other configurations are set by adjusting the cache 
size in Figure 2–4 and Figure 2–5. Therefore, the corresponding 
CACHE_setL2Mode() calls and MEMORY definitions are following. 

 
  Important! Do not define memory that is to be used as cache under the 
MEMORY directive. This memory is not valid for the linker to place code or data 
in. 

□ 1024K SRAM, 0K cache: 
CACHE_setL2Mode(CACHE_0KCACHE); 

L2SRAM: origin = 00000000h length = 00100000h 

 
□ 992K SRAM, 32K cache: 

CACHE_setL2Mode(CACHE_32KCACHE); 

L2SRAM: origin = 00000000h length = 000F8000h 

 
□ 960K SRAM, 64K cache: 

CACHE_setL2Mode(CACHE_64KCACHE); 

L2SRAM: origin = 00000000h length = 000F0000h 

 
□ 896K SRAM, 128K cache: 

CACHE_setL2Mode(CACHE_128KCACHE); 

L2SRAM: origin = 00000000h length = 000E0000h 

 
□ 768K SRAM, 256K cache: 

CACHE_setL2Mode(CACHE_256KCACHE); 

L2SRAM: origin = 00000000h length = 000C0000h 
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2.2 Coherence 
 
 

Generally if multiple devices, such as the CPU or peripherals, share the same 
cacheable memory region, cache and memory can become incoherent. 
Consider the system shown in Figure 2–7. Suppose the CPU accesses a 
memory location that gets subsequently allocated in cache (1). Later, a periph- 
eral is writing data to this same location that is meant to be read and processed 
by the CPU (2). However, since this memory location is kept in cache, the 
memory access hits in cache and the CPU reads the old data instead of the 
new data (3). A similar problem occurs if the CPU writes to a memory location 
that is cached, and the data is to be read by a peripheral. The data only gets 
updated in cache but not in memory, from where the peripheral reads the data. 
The cache and the memory are said to be incoherent. 

 
 

Figure 2–7. Cache Coherence Problem 
 

 
(3) CPU reads “old” data 

(1) Allocated in cache 

 
(2) New data written through DMA 

 

Memory 
5A5Ah B2B2h 

CPU 

Cache 
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Peripheral 

1111h 2222h 
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Coherence needs to be addressed if the following is true: 
 

□ Multiple devices (CPUs, peripherals, DMA controllers) share a region of 
memory for the purpose of data exchange. 

□ This memory region is cacheable by at least one device. 
 

□ A memory location in this region has been cached. 
 

□ And this memory location is modified (by any device). 
 

Consequently, if a memory location is shared, cached, and has been modified, 
there is a cache coherence problem. 

C621x/C671x and C64x DSPs automatically maintain cache coherence for 
accesses by the CPU and EDMA to L2 SRAM through a hardware cache 
coherence protocol based on snoop commands. The coherence mechanism 
is activated on a DMA read and write access. When a DMA read of a cached 
L2 SRAM location occurs, the location is first updated with modified data from 
L1D before its value is returned to the DMA. On a DMA write, the correspond- 
ing L1D cache line is invalidated. 

For accesses by the CPU and EDMA to external memory, it is your responsibil- 
ity to maintain cache coherence. For this purpose, the cache controller offers 
various commands that allow it to manually keep the cache coherent for 
accesses by the CPU and EDMA to external memory. 

A less frequently occurring case is coherency between L1D and L1P, which 
also is your responsibility. However, measures need only be taken in very 
special cases such as self-modifying code and boot loading. 

This section explains how to maintain coherence for external memory by  
describing the cache coherence protocol and providing examples for common 
types of applications. 

For a more formal definition of cache coherence and its relation to memory 
consistency models, see TMS320C621x/671x DSP Two-Level Internal 
Memory Reference Guide (SPRU609) and TMS320C64x DSP Two-Level 
Internal Memory Reference Guide (SPRU610). 
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2.2.1 Snoop Commands 
Before describing cache coherence mechanisms and operations, it is benefi- 
cial to first understand the basic underlying protocols that are used for all 
coherence operations. The cache controller supports snoop commands to 
maintain coherence between the L1 caches and L2 SRAM/cache. Generally, 
snooping is a cache operation initiated by a lower-level memory to check if the 
address requested is cached (valid) in the higher-level memory. If yes, typically, 
a writeback-invalidate, a writeback, or an invalidate only of the corresponding 
cache line is triggered. The C6000 cache controller supports the following 
snoop commands: 

□ L1D Snoop Command (C64x devices only): 

■ Writes back a line from L1D to L2 SRAM/cache 
■ Used for DMA reads of L2 SRAM 

□ L1D Snoop-Invalidate Command: 

■ Writes back a line from L1D to L2 SRAM/cache and invalidates it in L1D 
■ Used for DMA writes to L2 SRAM and user-controlled cache operations 

□ L1P Invalidate Command: 

■ Invalidates a line in L1P 
■ Used for DMA write of L2 SRAM and user-controlled cache operations 

Note that the DMA is not allowed to access addresses that map to L2 cache. 

2.2.2 Cache Coherence Protocol for DMA Accesses to L2 SRAM 
To illustrate the coherence protocols, assume a peripheral is writing data 
through the DMA to an input buffer located in L2 SRAM. Then the CPU reads 
the data, processes it, and writes it to an output buffer. From there the data is 
sent through the DMA to another peripheral. 

The procedure for a DMA write is shown in Figure 2–8 and is: 

1) The peripheral requests a write access to a line in L2 SRAM that maps to 
set 1 in L1D. 

2) The L2 cache controller checks its local copy of the L1D tag RAM and 
determines if the line that was just requested is cached in L1D (by check- 
ing the valid bit and the tag). If the line is not cached in L1D, no further 
action needs to be taken and the data is written to memory. 

3) If the line is cached in L1D, the L2 controller sends a snoop-invalidate 
command to L1D. This clears the valid bit of the corresponding line, invali- 
dates the line. If the line is dirty, it is written back to L2 SRAM. Then the 
new data from the peripheral is written to L2 SRAM. 
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4) The next time the CPU accesses this memory location, the access will 
miss in L1D and the line containing the new data written by the peripheral 
is allocated in L1D and read by the CPU. If the line had not been invali- 
dated, the CPU would have read the “old” value that was cached in L1D. 

Note that the L2 controller sends an invalidate command to L1P. This is neces- 
sary in case program code is to be written to L2 SRAM. No data needs to be 
written back in this case since data in L1P is never modified. 

 
 

Figure 2–8. DMA Write to L2 SRAM 
 
 
 
 
 
 
 

3. If yes, 

4. Next time the CPU accesses 
this memory location, the access 
will miss L1D 

 
L1D 

 
 

*) If line is dirty it is first 
written back to L2 SRAM 
and merged with the new 
data written by the DMA. 
An invalidate command is 
always sent to L1P (not 
shown here). 

Snoop-invalidate *)  
 
 
 
 

Cached input buffer Cached output buffer 
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way 0 
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The procedure for a DMA read is shown in Figure 2–9 and is: 

1) The CPU writes the result to the output buffer. Assume that the output 
buffer was preallocated in L1D. Since the buffer is cached, only the cached 
copy of the data is updated, but not the data in L2 SRAM. 

2) When the peripheral issues a DMA read request to the memory location 
in L2 SRAM, the controller checks to determine if the line that contains the 
memory location requested is cached in L1D. In this example, we already 
assumed that it is cached. However, if it was not cached, no further action 
would be taken and the peripheral would complete the read access. 
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L2 
controller 

 
 

3) If the line is cached, the L2 controller sends a snoop command to L1D. The 
snoop first checks to determine if the corresponding line is dirty. If not, the 
peripheral is allowed to complete the read access. 

4) If the dirty bit is set, the snoop causes the dirty line to be written back to 
L2 SRAM. This is the case in this example, since we assumed that the 
CPU has written to the output buffer. 

5) Finally, the read access completes the peripheral reading of the “new” 
data written by the CPU. 

 
 

Figure 2–9. DMA Read of L2 SRAM 
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2.2.2.1 L2 SRAM Double Buffering Example 

Having described how coherence is maintained for a DMA write and read of 
L2 SRAM, a typical double buffering example is now presented. Assume data 
is read in from one peripheral, processed, and written out to another peripheral, 
a structure of a typical signal processing application. The data flow is shown 
in Figure 2–10. The idea is that while the CPU is processing data from one set 
of buffers (for example, InBuffA and OutBuff A), the peripherals are writing/ 
reading data using the other set of buffers (InBuffB and OutBuff B) such that 
the DMA data transfer may occur in parallel with CPU processing. 

Assuming that InBuffA has been filled by the peripheral, the procedure is: 
 

1) Buffer InBuffB is being filled, while the CPU is processing data in InBuffA. 
The lines of InBuffA are allocated in L1D. Data is processed by the CPU 
and is written through the write buffer to OutBuffA (remember that L1D is 
read-allocate only). 

2) When the peripheral is filling InBuffA with new data, the second peripheral 
is reading from OutBuffA and the CPU is processing InBuffB. For InBuffA, 
the L2 cache controller automatically takes care of invalidating the corre- 
sponding lines in L1D through snoop-invalidates. The CPU will then 
allocate the line again from L2 SRAM with the new data, rather than reading 
the cached line containing the old data. For OutBuffA, since it is not cached 
in L1D, no snoops are necessary. 

3) Buffers are then switched again, and so on. 
 

It may be beneficial to make the buffers in L2 SRAM fit into a multiple of L1D 
cache lines, in order to get the highest return (in terms of cached data) for every 
cache miss. 

The pseudo-code in Figure 2–11 shows how a double buffering scheme could 
be realized. A complete example Code Composer Studio (CCS) project is 
available in the accompanying zip archive (L2_DOUBLE_BUF). 
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Figure 2–10. Double Buffering in L2 SRAM 
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Figure 2–11. L2SRAM DMA Double Buffering Code Example 
 

 
 
 

2.2.2.2 Maintaining Coherence Between External Memory and Cache 
 

Now the same double buffering scenario is considered, but with the buffers 
located in external memory. Since the cache controller does not automatically 
maintain coherence in this case, it is your responsibility to maintain coherence. 
Again, the CPU reads in data from a peripheral, processes it, and writes it out 
to another peripheral via DMA. But now the data is additionally passed through 
L2 cache. 

As shown in Figure 2–12, assume that transfers already have occurred, both 
InBuff and OutBuff are cached in L2 cache, and InBuff is cached in L1D. 
Further assume that the CPU has completed processing InBuffB, filled 
OutBuffB, and is now about to start processing InBuffA. The transfers that 
bring in new data into InBuffB and commit the data in OutBuffB to the peripheral 
are also about to begin. 

 
for (i=0; i<(DATASIZE/BUFSIZE)–2; i+=2) 

{ 

/* –––––––––––––––––––––––––––––––––––––––––––––––––––– */ 

/* InBuffA –> OutBuffA Processing */ 

/* –––––––––––––––––––––––––––––––––––––––––––––––––––– */ 

<DMA_transfer(peripheral, InBuffB, BUFSIZE)> 

 
<DMA_transfer(OutBuffB, peripheral, BUFSIZE)> 

process(InBuffA, OutBuffA, BUFSIZE); 

/* ––––––––––––––––––––––––––––––––––––––––––––––––––––– */ 

/* InBuffB –> OutBuffB Processing */ 

/* ––––––––––––––––––––––––––––––––––––––––––––––––––––– */ 

<DMA_transfer(peripheral, InBuffA, BUFSIZE)> 

 
<DMA_transfer(OutBuffA, peripheral, BUFSIZE)> 

process(InBuffB, OutBuffB, BUFSIZE); 

} 
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We already know from the previous example what the L2 cache controller did 
to keep L2 SRAM coherent with L1D. We have to do exactly the same here to 
ensure that external memory is kept coherent with L2 cache, and L2 cache with 
L1D. 

 
 
 

Figure 2–12. Double Buffering in External Memory 
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To maintain coherence, you have to imitate for external memory what the 
cache controller does for L2 SRAM accesses. Whenever data is written to an 
input buffer, the cache controller would invalidate the corresponding line in the 
cache. Similarly, here all the lines in L1D and L2 cache that map to the external 
memory input buffer have to be invalidated before the DMA transfer starts. 
This way the CPU will reallocate these lines from external memory next time 
the input buffer is read. 

The chip support library (CSL) provides a set of routines that allow the required 
cache coherence operations to be initiated. Before the DMA write transfer 
starts, a writeback-invalidate (or alternatively an invalidate on C64x devices) 
has to be completed. The start address of the buffer in external memory and 
the number of bytes need to be specified: 

□ C621x/C671x devices, which only support writeback-invalidate, or C64x 
devices: 

CACHE_wbInvL2(InBuffB, BUFSIZE, CACHE_WAIT); 
 

□ For C64x devices, an invalidate-only operation is also supported that 
completes faster: 

CACHE_invL2(InBuffB, BUFSIZE, CACHE_WAIT); 
 

Similarly, before OutBuffB is transferred to the peripheral, the data first has to 
be written back from L1D and L2 cache to external memory. This is done by 
issuing a writeback operation (C621x/C671x and C64x devices): 

CACHE_wbL2(OutBuffB, BUFSIZE, CACHE_WAIT); 
 

Again, this is necessary since the CPU writes data only to the cached copies 
of the memory locations of OutBuffB that still may reside in L1D and L2 cache. 

Additionally, a wait flag is specified. If CACHE_WAIT is used, the routine waits 
until the operation has completed. This is the recommended mode of opera- 
tion. If CACHE_NOWAIT is used, the routine initiates the operation and imme- 
diately returns. This allows the CPU to continue execution of the program while 
the coherence operation is performed in the background. However, care must 
be taken that the CPU is not accessing addresses that the cache controller is 
operating since this causes memory corruption. The routine CACHE_wait() 
can then be used before the DMA transfer is initiated, to ensure completion of 
the coherence operation. More information on these cache coherence opera- 
tions can be found in section 2.2.3. 

The pseudo-code in Figure 2–13 shows exactly in which order the cache 
coherence calls and the DMA transfers should occur. A complete example 
CCS project is available in the accompanying zip archive. 
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Figure 2–13. External Memory DMA Double Buffering Code Example 
 

 
for (i=0; i<(DATASIZE/BUFSIZE)–2; i+=2) 

{ 

/* ––––––––––––––––––––––––––––––––––––––––––––––––––––– */ 

/* InBuffA –> OutBuffA Processing */ 

/* ––––––––––––––––––––––––––––––––––––––––––––––––––––– */ 

CACHE_wbInvL2(InBuffB, BUFSIZE, CACHE_WAIT); 

<DMA_transfer(peripheral, InBuffB, BUFSIZE)> 

 
CACHE_wbL2(OutBuffB, BUFSIZE, CACHE_WAIT); 

<DMA_transfer(OutBuffB, peripheral, BUFSIZE)> 

process(InBuffA, OutBuffA, BUFSIZE); 

/* ––––––––––––––––––––––––––––––––––––––––––––––––––––– */ 

/* InBuffB –> OutBuffB Processing */ 

/* ––––––––––––––––––––––––––––––––––––––––––––––––––––– */ 

CACHE_wbInvL2(InBuffA, BUFSIZE, CACHE_WAIT); 

<DMA_transfer(peripheral, InBuffA, BUFSIZE)> 

 
CACHE_wbL2(OutBuffA, BUFSIZE, CACHE_WAIT); 

<DMA_transfer(OutBuffA, peripheral, BUFSIZE)> 

process(InBuffB, OutBuffB, BUFSIZE); 

} 
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In addition to the coherence operations, it is important that all DMA buffers are 
aligned at an L2 cache line and are an integral multiple of cache lines large. 
Further details on why this is required are given in section 2.2.3. These 
requirements can be achieved as: 

 

 
 
 

Alternatively, a CSL macro can be used that automatically rounds array sizes 
up to the next multiple of a cache line size. The macro is defined as: 

 

 
 

The array definitions above would then look as follows: 
 

 
#pragma DATA_ALIGN(InBuffA, CACHE_L2_LINESIZE) 

#pragma DATA_ALIGN(InBuffB, CACHE_L2_LINESIZE) 

#pragma DATA_ALIGN(OutBuffA,CACHE_L2_LINESIZE) 

#pragma DATA_ALIGN(OutBuffB,CACHE_L2_LINESIZE) 

 
unsigned char InBuffA [N*CACHE_L2_LINESIZE]; 

unsigned char OutBuffA[N*CACHE_L2_LINESIZE]; 

unsigned char InBuffB [N*CACHE_L2_LINESIZE]; 

unsigned char OutBuffB[N*CACHE_L2_LINESIZE]; 

((elcnt)*(elsize)/CACHE_#cache#_LINESIZE) + 1) / \ 

(elsize)) 

\ 
\ 

#define CACHE_ROUND_TO_LINESIZE(cache,elcnt,elsize) 
((CACHE_#cache#_LINESIZE * 

 
unsigned char InBuffA [CACHE_ROUND_TO_LINESIZE(L2, N, sizeof(unsigned char)]; 

unsigned char OutBuffA[CACHE_ROUND_TO_LINESIZE(L2, N, sizeof(unsigned char)]; 

unsigned char InBuffB [CACHE_ROUND_TO_LINESIZE(L2, N, sizeof(unsigned char)]; 

unsigned char OutBuffB[CACHE_ROUND_TO_LINESIZE(L2, N, sizeof(unsigned char)]; 
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2.2.3 Usage Guidelines for L2 Cache Coherence Operations 

Table 2–1 shows an overview of available L2 cache coherence operations for 
C621x/C671x and C64x devices. Note that these operations have no effect if 
L2 cache is disabled; in this case, refer to section 2.2.4. Table 2–1 has to be 
interpreted as follows. First, the cache controller checks if an external memory 
address within the specified range is cached in L2 cache. If yes, it then issues 
a snoop-invalidate command to L1D (and invalidate command to L1P, if 
required) to make L2 and L1 coherent. Then the appropriate operation is 
performed on L2 cache. 

 
 

Table 2–1. L2 Cache Coherence Operations 
 

 

 
Scope 

Coherence 
Operation CSL Command 

Operation on 
L2 Cache 

L1D Snoop 
Commands 

L1P Snoop 
Commands 

Range Invalidate L2 
(C64x 
devices only) 

CACHE_invL2 
(external memory start 
address, byte count, 
wait) 

All lines within 
range invalidated 

L1D 
snoop-invalidate 
(any returned dirty 
data is discarded) 

L1P invalidate 

Writeback L2 CACHE_wbL2 
(external memory start 
address, byte count, 
wait) 

Dirty lines within 
range written 
back 

All lines within 
range kept valid 

L1D 
snoop-invalidate 

None 

Writeback– 
Invalidate L2 

CACHE_wbInvL2 
(external memory start 
address, byte count, 
wait) 

Dirty lines within 
range written 
back 

All lines within 
range invalidated 

L1D 
snoop-invalidate 

L1P invalidate 

All L2 
Cache 

Writeback All 
L2 

CACHE_wbAllL2(wait) All dirty lines in 
L2 written back 

All lines in L2 
kept valid 

L1D 
snoop-invalidate 

None 

Writeback- 
Invalidate All 
L2 

CACHE_wbInvAllL2 
(wait) 

All dirty lines in 
L2 written back 

All lines in L2 
invalidated 

L1D 
snoop-invalidate 

L1P invalidate 
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It is important to note that although a start address and a byte count is speci- 
fied, the cache controller operates always on whole lines. Therefore, arrays 
in external memory that are accessed by both CPU and EDMA must be: 

□ A multiple of cache lines large 
□ Aligned at a cache line boundary 

 
The cache controller operates on all lines that are “touched” by the specified 
range of addresses. Note that the maximum byte count that can be specified 
is 4 × 65 535, that is, one L2 cache operation  can  operate  on  at  most 
256 Kbytes. If the external memory buffer to be operated on is larger, multiple 
cache operations have to be issued. 

The following guidelines should be followed for using cache coherence opera- 
tions. Again, user-issued cache coherence operations are only required if the 
CPU and DMA share a cacheable region of external memory, that is, if the CPU 
reads data written by the DMA and vice versa. 

The safest rule is to issue a Writeback-Invalidate All prior to any DMA transfer 
to or from external memory. However, the disadvantage of this is that possibly 
more cache lines are operated on than is required, causing a larger than 
necessary cycle overhead. A more targeted approach is more efficient. First, 
it is only required to operate on those cache lines in memory that actually 
contain the shared buffer. Second, it can be distinguished between the three 
scenarios shown in Table 2–2. 

 
Table 2–2. DMA Scenarios With Coherence Operation Required 

 

Scenario Coherence Operation Required 
 

1) DMA reads data written by the CPU Writeback before DMA starts 
 

2) DMA writes data that is to be read by the CPU Invalidate or Writeback-Invalidate before DMA starts 
 

3) DMA modifies data written by the CPU that data is 
to be read back by the CPU 

 
Writeback-Invalidate before DMA starts 

 
 

 
 
 

In scenario 3, the DMA may modify data that was written by the CPU and that 
data is then read back by the CPU. This is the case if the CPU initializes the 
memory (for example, clears it to zero) before a peripheral writes to the buffer. 
Before the DMA starts, the data written by the CPU needs to be committed to 
external memory and the buffer has to be invalidated. 
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2.2.4 Maintaining Coherence Between External Memory and L1 Caches 

In case L2 cache is disabled (configured as all SRAM) and external memory 
caching is enabled, L1D and L1P cache coherence operations have to be 
issued to maintain coherence between external memory and L1 caches. 
Although using external memory without L2 cache is not a recommended 
configuration because overall application performance may suffer, it is 
explained here for comprehensiveness. The same guidelines outlined for  
L2 cache in section 2.2.3  should  be  followed;  however,  instead  of  the 
L2 cache operations, the L1D/L1P cache operations in Table 2–3 are used. 

 
 

Table 2–3. L1D/L1P Cache Coherence Operations 
 

 

 
Scope 

Coherence 
Operation CSL Command L1D Snoop Commands L1P Snoop Commands 

Range Invalidate 
L1D 
(C64x 
devices only) 

CACHE_invL1d 
(external memory start 
address, byte count, 
wait) 

L1D Snoop-Invalidate 
(any returned dirty data is 
discarded) 

None 

Writeback- 
Invalidate 
L1D 

 

Invalidate 
L1P 

CACHE_wbInvL1d 
(external memory start 
address, byte count, 
wait) 

CACHE_invL1p 
(external memory start 
address, byte count, 
wait) 

L1D Snoop-Invalidate C621x/C671x devices: 
L1P Invalidate 

C64x devices:None 
 

None L1P Invalidate 

All Invalidate 
L1P 

CACHE_invL1pAll() None L1P Invalidate 
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2.3 Switching Cache Configuration During Run-Time 
 

This section explains how cache configurations may be safely changed during 
run-time. 

 
 

2.3.1 Disabling External Memory Caching 
 

Disabling external memory caching after it was enabled should not be generally 
necessary. However if it is, then the following considerations should be taken 
into account. If the MAR bit is set from 1 to 0, external memory addresses 
already cached stay in the cache and accesses to those addresses still hit. The 
MAR bit is only consulted if the external memory address misses in L2. This 
includes the case where L2 is all SRAM. Since there is no L2 cache, this can 
also be interpreted as an L2 miss. 

 
If all addresses in the respective external memory address space are made 
noncacheable, the addresses need to be written back and invalidated first (see 
sections 2.2.3 and 2.2.4 for a description of user-initiated cache control opera- 
tions). If external memory addresses are only kept in L1D, in the case of L2 
all SRAM mode, an L1D Writeback-Invalidate operation has to be performed. 

 
 

2.3.2 Changing L2 Cache Size During Run-Time 
 

Changing the size of L2 cache during run time may be beneficial for some 
applications. Consider the following example for a C621x/C671x device (same 
concept applies to C64x devices). An application has two tasks: A and B. 
Task A benefits from 48 Kbytes of code and data being allocated in L2 SRAM, 
while task B would benefit from having 32 Kbytes of L2 cache. Assume the 
memory configuration as shown in Figure 2–14. The third 16 Kbyte segment 
contains the routine, some global variables for task A (that need to be 
preserved during task B executes), and some variables for task A that after 
task switching are no longer needed. 

 
The memory region where this routine and the variables reside can then be 
freed (assume no other sections are located in this 16 Kbyte segment) by 
copying the code and the global variables to another memory region in external 
memory using a DMA. Then, all memory addresses in the 16 Kbyte segment 
that reside in L1D or L1P have to be writeback-invalidated since those 
addresses no longer exist after switching the segment to cache mode. Then, 
the cache mode can be switched. Finally, 8 cycles of NOP need to be executed. 
The writeback-invalidate, mode switch operation, and execution of 8 NOPs is 
all performed by the function CACHE_setL2Mode(). 
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Figure 2–14. Changing L2 Cache Size During Run-Time (C6211/C6711 Devices) 
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To switch back to task A configuration, L2 cache line frames located in the 
16 Kbyte segment that is to be switched to SRAM have to be written back to 
external memory and invalidated. Since it is not known which external memory 
addresses are cached in these line frames, an L2 Writeback-Invalidate All has 
to be performed. This also snoop-invalidates L1D and invalidates L1P. Then 
the cache mode can be switched and code and global variables copied back 
to their original location. 

 
The exact procedures are given in Table 2–4. The same procedure applies to 
C621x/C671x and C64x devices. Note that for C64x devices, an additional L2 
Writeback-Invalidate All for switching to a mode with more L2 cache is required 
(because the organization of the cache ways for C64x L2 cache is always 
4-ways, regardless of size), but this has been integrated into the function 
CACHE_setL2Mode(). 
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Table 2–4. Procedure for Switching Between L2 Mode 
 

Switch To Perform 

More L2 Cache 
(Less L2 SRAM) 

 
 
 

Less L2 Cache 
(More L2 SRAM) 

1) DMA needed code/data out of L2 SRAM addresses to be converted to cache. 
Note: L1D Snoop is triggered by DMA that will invalidate L1D. 

2) Wait for completion of step 1. 

3) Increase L2 Cache size: CACHE_setL2Mode() 

1) Decrease L2 Cache size: CACHE_setL2Mode() 

2) DMA back any code/data needed. 

3) Wait for completion of step 2. 
 

 

 
 
 

Note that switching from an all SRAM mode to a mode with L2 cache after 
having accessed cacheable external memory is not recommended since this 
could lead to incoherence problems. This is because external addresses may 
still be left in L1D without being contained in L2 cache. To ensure that all exter- 
nal addresses are writeback-invalidated, you would have to perform an L1D 
Writeback-Invalidate All operation, which is not available. In the case that you 
know exactly which addresses reside in L1D, a range writeback-invalidate 
operation could be performed. 

Figure 2–15 shows a C code example of how to realize the above L2 mode 
switching example. The corresponding linker command file is shown in 
Figure 2–16 (page 2-29). 
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Figure 2–15. L2 Mode Switching C Code Example (C621x/C671x Devices) 
 

 
/* –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– */ 

/* Buffer for Task A code and data in external memory */ 

/* –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– */ 

#pragma DATA_SECTION(buffer_A, ”.external”) 

unsigned char buffer_A[1024]; 

 
/* –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– */ 

/* Main */ 

/* –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– */ 

void main(void) 

{ 

int i; 

Uint32 id = DAT_XFRID_WAITNONE; 
 

/* ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– */ 

/* Initialize CSL, set L2 mode and open DAT */ 

/* ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– */ 

CSL_init(); 

CACHE_enableCaching(CACHE_CE00); 

CACHE_setL2Mode(CACHE_16KCACHE); 

DAT_open(DAT_CHAANY, DAT_PRI_HIGH, 0); 

/* ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– */ 

/* Initialize state_A */ 

/* ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– */ 

for (i=0; i<N_STATE_A; i++) 

{ 

state_A[i] = 1; 

} 
 

/* ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– */ 

/* Task A – 1 */ 

/* ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– */ 

process_A(state_A, N_STATE_A); 
 

process_AB(state_A, local_var_A, N_STATE_A); 
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Figure 2–15. L2 Mode Switching C Code Example (C621x/C671x Devices) (Continued) 
 

/* ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– */ 

CACHE_setL2Mode(CACHE_16KCACHE); 

id = DAT_copy(buffer_A, (void*)0x8000, 0x0120); 

DAT_wait(id); 

 
/* ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– */ 

/* Task A – 2 */ 

/* ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– */ 

process_A(state_A, N_STATE_A); 
 
process_AB(state_A, local_var_A, N_STATE_A); 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ Take address and word count information from map file 

Switch back to configuration for Task A with 16K cache 

1) Switch mode 
2) DMA back any code/data needed 
3) Wait for completion of 2) 

/* 

/* 

/* 

/* 

/* 

/* 

/* ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– */ 

id = DAT_copy((void*)0x8000, buffer_A, 0x0120); 

DAT_wait(id); 

CACHE_setL2Mode(CACHE_32KCACHE); 

/* ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– */ 

/* Task B */ 

/* Cache into L2, destroys code/data in the L2 segment that */ 

/* previously was SRAM. */ 

/* ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– */ 

process_AB(ext_data_B, ext_data_B, N_DATA_B); 
 
/* ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– */ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ Take address and word count information from map file 

Switch to configuration for Task B with 32K cache: 

1) DMA needed code/data out of L2 SRAM addresses to be 
converted to cache. 

2) Wait for completion of 1) 
3) Switch mode 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– */ 
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Figure 2–15. L2 Mode Switching C Code Example (C621x/C671x Devices) (Continued) 
 

 
/* ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– */ 

/* Exit */ 

/* ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– */ 

DAT_close(); 

} 

void process_A(unsigned char *x, int nx) 

{ 

int i; 

 
for (i=0; i<nx; i++) 

x[i] = x[i] * 2; 

} 

 
void process_AB(unsigned char *input, unsigned char 

*output, int size) 

{ 

int i; 

 
for (i=0; i<size; i++) 

output[i] = input[i] + 0x1; 

} 
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Figure 2–16. Linker Command File for L2 Mode Switching C Code Example 
 

} 

CE0 > .external 

L2_3 

L2_3 

L2_3 

.sram_state_A > 

.sram_process_A > 

.sram_local_var_A > 

L2_12 

L2_12 

L2_12 

L2_12 

L2_12 

L2_12 

L2_12 

L2_12 

L2_12 

L2_12 

L2_12 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 
> 

SECTIONS 

{ 

.cinit 

.text 

.stack 

.bss 

.const 

.data 

.far 

.switch 

.sysmem 

.tables 

.cio 

*/ 
*/ 

l = 00004000h /*4th 16K segment: always Cache 
l = 01000000h /*external memory 

l = 00004000h /*3rd 16K segment:Task A–SRAM,Task B–Cache */ o = 00008000h 

o = 0000C000h 

o = 80000000h 

L2_3: 

L2_4: 

CE0: 

} 

*/ 

MEMORY 

{ 

L2_12: o = 00000000h l = 00008000h /*1st and 2nd 16K segments: always SRAM 
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2.4 Self-Modifying Code and L1P Coherence 
No coherence is maintained between L1D and L1P. That means if the CPU 
wants to modify program code, the writes may only update L1D, L2 SRAM, or 
L2 cache, but not L1P. For the CPU to be able to execute the modified code, 
the addresses containing the instructions must not be cached in either L1D or 
L1P. 

Consider an example where an interrupt vector table is to be modified during 
run-time, the following procedure has to be followed: 

1) Disable interrupts. 

2) Perform CPU writes (STW) to modify code. 

3) Perform coherence operations: 

a) If C621x/C671x devices: 

i) Perform an L1D Writeback-Invalidate operation (includes L1P 
Invalidate). 

ii) Wait for operation to complete. 

b) If C64x devices: 

i) Perform an L1D Writeback-Invalidate operation. 

ii) Perform an L1P Invalidate operation. 

iii) Wait for the last operation to complete. 

Waiting for completion is done by polling the word count (xxWC) registers. 
This automatically ensures that any L1D write misses have drained from 
the write buffer. This is because polling a memory-mapped register is 
treated as a read miss that always causes the write buffer to be completely 
drained. 

4) Reenable interrupts. 
 
 

2.5 Summary of Coherence Properties 
The memory system of C621x/C671x and C64x devices has the following 
coherence properties. The first two properties are concerned with data 
accesses and the third property is concerned with write accesses to program 
code. 

1) L1D and L2 SRAM present a coherent memory system to the CPU and 
peripherals. The CPU views L2 SRAM through L1D; the peripherals view 
L2 SRAM directly. Coherence is maintained automatically by the cache 
controller. 

Self-Modifying Code and L1P Coherence / Summary of Coherence Properties 
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2) External memory is not part of the coherent memory system. The CPU 
views data in cacheable external memory through L1D and L2 cache. 
Since the cache controller does not maintain coherence, the CPU may 
never be able to see the same data as a peripheral at the same address 
in external memory. If and when required, coherence among CPU and 
peripherals can be achieved by manually issuing cache coherence 
commands to the cache controller. Note that in the case of only one single 
device accessing an external memory region, coherence is assured (that 
is, a read by a device that follows a write by the same device to the same 
location returns the written value). Only if external memory is shared 
among multiple devices, coherence between those devices is not maintained. 

3) Write accesses by the DMA controller or a peripheral to program code in 
L2 SRAM are kept coherent with L1P reads. This allows for transferring 
program code from external memory to L2 SRAM through DMA without 
the need to manually invalidate L1P. However, write accesses by the CPU 
to program code in L2 SRAM or L1D are not kept coherent with L1P reads. 
Also, write accesses by the CPU or peripherals to program code in 
external memory are not kept coherent with L1P reads. Due to this 
incoherence, self-modifying code is not supported automatically by the 
hardware. If required, self-modifying code may be software controlled by 
manually issuing cache coherence commands. 

From a typical software application point of view, properties 1 and 2 are the 
most important. Note that only coherence of data is addressed. Maintaining 
coherence for program code, which is addressed by property 3, is not usually 
required except in the special case of self-modifying code. 

In a typical application, L2 memory is split into L2 cache and L2 SRAM 
portions. The first property mostly concerns those parts of an application that 
do not utilize external memory and keep data/code in L2 SRAM. For these 
parts, no action by the programmer is required regarding coherence. The 
second property is relevant for those parts of the application that do utilize 
external memory for data or code. If L2 is configured as all SRAM, external 
memory is cached in L1 only. However, this configuration is not recommended 
since a considerable performance penalty can be expected. 
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2.6 Old and New CSL Cache API’s 

The CSL cache coherence APIs have been renamed to better reflect the actual 
operation. If you are encouraged to switch to the new APIs, the old APIs still 
work, but are no longer updated. Also, some new C64x cache operations were 
not supported by the old CSL version. Table 2–5 and Table 2–6 show the 
correct function calls for the new API that should be used to replace the old 
API. Note that the new API expects byte counts whereas the old API expected 
word counts. Also, the old CSL routines waited for completion of the coherence 
operations. To achieve the same behavior with the new routines, 
CACHE_WAIT has to be used. 

 
Table 2–5. CSL API’s for L2 Cache Operations 

 
 

 
Scope 

Coherence Opera- 
tion Old CSL Command New CSL Command 

Range L2 Invalidate 
(C64x devices only) 

N/A CACHE_invL2(start address, byte 
count, CACHE_WAIT) 

L2 Writeback CACHE_flush(CACHE_L2, start 
address, word count) 

CACHE_wbL2(start address, byte 
count, CACHE_WAIT) 

L2 Writeback- 
Invalidate 

CACHE_clean(CACHE_L2, start 
address, word count) 

CACHE_wbInvL2(start address, byte 
count, CACHE_WAIT) 

All L2 
Cache 

L2 Writeback All CACHE_flush(CACHE_L2ALL, 
[ignored], [ignored]) 

CACHE_wbAllL2(CACHE_WAIT) 

L2 Writeback- 
Invalidate All 

CACHE_clean(CACHE_L2ALL, 
[ignored], [ignored]) 

CACHE_wbInvAllL2(CACHE_WAIT) 

 
 

 
 
 

Table 2–6. CSL API’s for L1 Cache Operations 
 

 
Scope 

Coherence Opera- 
tion 

 
Old CSL Command 

 
New CSL Command 

Range L1D Invalidate 
(C64x devices only) 

N/A CACHE_invL1d(start address, byte 
count, CACHE_WAIT) 

 L1D Writeback- 
Invalidate 

CACHE_flush(CACHE_L1D, start 
address, word count) 

CACHE_wbInvL1d(start address, byte 
count, CACHE_WAIT) 

 L1P Invalidate CACHE_invalidate(CACHE_L1P, 
start address, word count) 

CACHE_invL1p(start address, byte 
count, CACHE_WAIT) 

All L1P Invalidate All CACHE_invalidate(CACHE_L1PAL 
L, [ignored], [ignored]) 

CACHE_invAllL1p() 
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 Chapter 3  
 

Optimizing for Cache Performance 
 

 
 

 
 

 
 

 
 
 

This chapter discusses cache optimization techniques from a programmer’s 
point of view. The ideal scenario would be to have an application execute in 
a fast and large flat memory that is clocked at CPU speed. However, this 
scenario becomes more and more unrealistic the higher the CPU clock rate 
becomes. Introducing a cached-memory architecture inevitably causes some 
cycle count overhead compared to the flat memory model. However, since a 
cached-memory model enables the CPU to be clocked at a higher rate, the 
application generally executes faster (execution time = cycle count/clock rate). 
Still, the goal is to reduce the cache cycle overhead as much as possible. In 
some cases performance can be further improved by implementing algorithms 
with a cached architecture in mind. 
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3.1 Cache Performance Characteristics 
The performance of cache mostly relies on the reuse of cache lines. The 
access to a line in memory that is not yet in cache will incur CPU stall cycles. 
As long as the line is kept in cache, subsequent accesses to that line will not 
cause any stalls. Thus, the more often the line is reused before it is evicted 
from cache, the less impact the stall cycles will have. Therefore, one important 
goal of optimizing an application for cache performance is to maximize line 
reuse. This can be achieved through an appropriate memory layout of code 
and data, and altering the memory access order of the CPU. In order to 
perform these optimizations, you should be familiar with the cache memory 
architecture, in particular the characteristics of the cache memories such as 
line size, associativity, capacity, replacement scheme, read/write allocation, 
miss pipelining, and write buffer. These characteristics were discussed in 
Chapter 1, Introduction. You also have to understand what conditions CPU 
stalls occur and the cycle penalty associated with these stalls. 

For this purpose, the next two sections present an overview of the 
C621x/C671x and C64x cache architecture, respectively, detailing all impor- 
tant cache characteristics, cache stall conditions and associated stall cycles. 
These sections provide a useful reference for optimizing code for cache 
performance. 

 
3.1.1 C621x/C671x Stall Conditions 

The most common stall conditions on C621x/C671x devices are: 

□ L1D Dual-Port Memory Access Conflict: A parallel write/write or write/read 
hit to the same 32-bit word causes a 1 cycle stall. 

□ L1D Read Miss: 4 cycles per miss to perform a line allocation from     
L2 SRAM or L2 cache. Can be lengthened by: 

■ L2 Cache Read Miss: The data has to be fetched from external 
memory first. The number of stall cycles depends on the ratio of the 
CPU and EMIF clock rate and EDMA latencies. 

■ L2 Access Conflict: L2 can only service one request at a time. If L1P 
and L1D access L2 simultaneously for line allocation, L1P is given 
priority. 

■ L2 Bank Conflict: Since an L2 access requires 2 cycles to complete, 
accesses to the same bank on consecutive cycles cause a stall. For 
instance, one additional stall cycle is caused if an L1D line allocation 
access occurs on the next cycle after a write buffer, L1P line allocation 
or EDMA access to the same bank. Note, simultaneous accesses to 
the same bank fall under L2 Access Conflict case. 
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■ L1D Write Buffer Flush: If the write buffer contains data and a read 
miss occurs, the write buffer is first fully drained before the L1D Read 
Miss is serviced. This is required to maintain proper ordering of a write 
followed by a read. Write buffer draining can be lengthened by     
L2 Access Conflicts, L2 Bank Conflicts, and L2 Write Misses (the write 
buffer data misses L2). 

■ L1D Victim Buffer Writeback: If the victim buffer contains data and a 
read miss occurs, its contents are first written back to L2 before the 
L1D Read Miss is serviced. This is required to maintain proper order- 
ing of a write followed by a read. The writeback can be lengthened by 
L2 Access Conflicts and L2 Bank Conflicts. 

 
Parallel misses will be overlapped, provided none of the above stall lengthen- 
ing condition occurs between the misses and the two parallel misses are not 
to the same set. Two parallel misses take 7 cycles to complete, 3.5 cycles per 
miss. 

 
□ L1D Write Buffer Full: The 4 × 32-bit buffer drains at 2 cycles per entry. If 

an L1D write miss occurs and the write buffer is full, the CPU is stalled until 
one entry is available. Write buffer draining can be lengthened by: 

■ L2 Cache Write Miss: The line has to be fetched from external memory 
first (L2 cache is write allocate). The number of stall cycles depend on 
the ratio of CPU and EMIF clock rate and EDMA latencies. 

■ L2 Access Conflict: L2 can only service one request at a time. L1P has 
priority over L1D requests. If a simultaneous access by the write buffer 
and L1P to L2 memory occurs, L1P is given priority. 

■ L2 Bank Conflict: Since an L2 access requires 2 cycles to complete, 
accesses to the same bank on consecutive cycles cause a stall. For 
instance, one additional stall cycle is caused if a write buffer access 
occurs on the next cycle after another write buffer, an L1D line alloca- 
tion, an L1P line allocation, or an EDMA access to the same bank. 
Note, simultaneous accesses to the same bank fall under L2 Access 
Conflict case. 

 
□ L1P Read Miss: 5 cycles per miss to perform a line allocation from     

L2 SRAM or L2 cache. Can be lengthened by: 

■ L2 Cache Read Miss: The program data has to be fetched from external 
memory first. The number of stall cycles depends on the ratio of CPU 
and EMIF clock rate and EDMA latencies. 
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■ L2 Bank Conflict: Since an L2 access requires 2 cycles to complete, 
accesses to the same bank on consecutive cycles cause a stall. For 
instance, one additional stall cycle is caused if a L1P line allocate 
access occurs on the next cycle after a write buffer, L1D line allocate, 
or EDMA access to the same bank. 

□ Snoops: Stalls may occur due to snooping (used by EDMA accesses or 
cache coherence operations). Every time a snoop accesses the L1D tag 
RAM, the CPU is stalled (also if there is no simultaneous access request 
to L1D by the CPU). If the snoop hits L1D, CPU requests to L1D are stalled 
until the writeback-invalidate operation is complete. If the snoop and the 
CPU request occur simultaneously, the CPU request is given higher priority. 

Figure 3–1 shows the C621x/C671x memory architectures detailing all impor- 
tant characteristics, stall conditions, and associated stall cycles. 

 
3.1.2 C621x/C671x Pipelining of Read Misses 

The C621x/C671x cache architecture pipelines read misses and allows parallel 
read miss stall cycles to be overlapped. While a single miss takes 4 stall cycles, 
two parallel read misses consume only 7 cycles, 3.5 cycles per miss. This 
mechanism is described in TMS320C621x/C671x DSP Two-Level Internal 
Memory Reference Guide (SPRU609). 
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way 0 way 1 way 2 way 3 

Cache: 0 / 16 (1 way) / 32 (2 way) / 48 (3 way) / 64 (4-way) KBytes, 
LRU, Read/Write Allocate 

 
 

Figure 3–1. C621x/C671x Cache Memory Architecture 
 

 
 
 
 

256 bit 
No stalls 

 
 
 

 
 
 

2 x 32 bits 
No stalls 

 
 
 

 
2 x 32 bit 

 
 
 
 
 
 
 

■ Write Buffer stalls 
when full until free 
entry available 

■ Write Buffer is fully 
drained before a 
L1D Read Miss is 
serviced, 
extending read 
miss stalls. 

Write Buffer 
drains at 2 
cycles / entry 
(for L2 SRAM 
or L2 cache 
hit). 

 
 

 
 

 
 

256 bit 
2 fetches / L1P line 
5 cycles stall 

128 bit 
2 fetches / L1D line 

4 cycles stall 

victim / snoop path 
128 bit 

 
 

0000 0000h 000F FFFFh 

  
 

 
Byte 

Byte 

 
 
 

Level 2 Memory: 64 KBytes 

Level 2 Memory 
bank organization 
(8 x 64 bit banks) 

1 128 Byte Line 1 128 Byte Line 1 128 Byte Line 1 128 Byte Line 

2 2 2 2 

... ... ... ... 

128 128 128 128 

 

 
 
 
 
 
 
 
 
 
 

SRAM: 64/48/32/16/0 KBytes 
(always starts at address 0000 0000h) 

victim buffer 

Data Cache(L1D): 2-way, 4 KBytes (each way 
2 KBytes), LRU, dual ported 

Program cache(L1P): Direct Mapped, 4 KBytes 

CPU 

sets 

way 0 way 1 

sets 

2 

3 

4 

1 32 bit 

 
 

C621x: 2 x 32 bit 
C671x: 2 x 64 bit 

No stalls 

Data Paths A+B 
Read Write 

Instruction 
Fetch 

1 64 byte line 

2 

3 

... 

64 

 

1 32 byte line 1 32 byte line 

2 2 

3 3 

... ... 

64 64 

 

1.8 9.16 17.24 25.32 33.40 41.48 49.56 57.64 

65.72 73.80 81.88 89.96 97.104 105.112 113.120 121.128 
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3.1.3 C64x Stall Conditions 
 

The most common stall conditions on C64x devices are: 
 

□ Cross Path Stall: When an instruction attempts to read a register via a 
cross path that was updated in the previous cycle, one stall cycle is 
introduced. The compiler automatically tries to avoid these stalls whenever 
possible. 

 
□ L1D Bank Conflict: L1D memory is organized in 8 × 32-bit banks. Parallel 

accesses that both hit in L1D and are to the same bank cause 1 cycle stall. 
See TMS320C64x DSP Two-Level Internal Memory Reference Guide 
(SPRU610) for special case exceptions. 

 
□ L1D Read Miss: 6 cycles per miss to perform line allocation from L2 SRAM 

and 8 cycles per miss to perform line allocation from L2 cache. L1D Read 
Miss stalls can be lengthened by: 

■ L2 Cache Read Miss: The data has to be fetched from external 
memory first. The number of stall cycles depends on the ratio of CPU 
and EMIF clock rate and EDMA latencies. 

■ L2 Access Conflict: L2 can service only one request at a time. L1P has 
priority over L1D requests. While some stall cycles of L1D and L1P 
read miss servicing may overlap, if a simultaneous access to L2 
memory occurs, L1P is given priority. 

■ L2 Bank Conflict: Since an L2 access requires 2 cycles to complete, 
accesses to the same bank on consecutive cycles cause a stall. For 
instance, one additional stall cycle is caused if an L1D line allocation 
access occurs on the next cycle after a write buffer, L1P line allocation, 
or EDMA access to the same bank. Note, simultaneous accesses to 
the same bank fall under L2 Access Conflict case. 

■ L1D Write Buffer Flush: If the write buffer contains data and a read 
miss occurs, the write buffer is first fully drained before the L1D Read 
Miss is serviced. This is required to maintain proper ordering of a write 
followed by a read. Write buffer draining can be lengthened by     
L2 Access Conflicts, L2 Bank Conflicts, and L2 Cache Write Misses 
(the write buffer data misses L2 cache). 

■ L1D Victim Buffer Writeback: If the victim buffer contains data and a 
read miss occurs, the contents are first written back to L2 before the 
L1D Read Miss is serviced. This is required to maintain proper order- 
ing of a write followed by a read. The writeback can be lengthened by 
L2 Access Conflicts and L2 Bank Conflicts. 
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Consecutive and parallel misses will be overlapped, provided none of the 
above stall lengthening condition occurs and the two parallel/consecutive 
misses are not to the same set: 4 + 2 ×  M cycles for M misses to       
L2 SRAM, and 6 + 2 × M cycles for M misses to L2 cache. 

□ L1D Write Buffer Full: The 4 × 64-bit buffer drains at 1 cycle per entry. If 
an L1D write miss occurs and the write buffer is full, stalls occur until one 
entry is available. Write buffer draining can be lengthened by: 
■ L2 Cache Write Miss: The line has to be fetched from external memory 

first (L2 is write allocate). The number of stall cycles depends on the 
ratio of CPU and EMIF clock rate and EDMA latencies. 

■ L2 Access Conflict: L2 can only service one request at a time. L1P has 
priority over L1D requests to L2. If a simultaneous access by the write 
buffer and L1P to L2 memory occurs, L1P is given priority. 

■ L2 Bank Conflict: Since an L2 access requires 2 cycles to complete, 
accesses to the same bank on consecutive cycles cause a stall. For 
instance, one additional stall cycle is caused if a write buffer access 
occurs on the next cycle after another write buffer access, L1D line 
allocation, L1P line allocation, or EDMA access to the same bank. 
Note, simultaneous accesses to the same bank fall under L2 Access 
Conflict case. 

□ L1P Read Miss: 8 cycles per miss to perform a line allocation from     
L2 SRAM or L2 cache. Can be lengthened by: 
■ L2 Cache Read Miss: The program data has to be fetched from exter- 

nal memory first. The number of stall cycles depends on the ratio of 
CPU and EMIF clock rate and EDMA latencies. 

■ L2 Bank Conflict: Since an L2 access requires 2 cycles to complete, 
accesses to the same bank on consecutive cycles cause a stall. For 
instance, one additional stall cycle is caused if a L1P line allocation 
access occurs on the next cycle after a write buffer, L1D line alloca- 
tion, or EDMA access to the same bank. 

Consecutive misses will be overlapped, provided none of the above stall 
lengthening condition occurs and the two consecutive misses are not to 
the same set. 

□ Snoops: Stalls may occur due to snooping (used by EDMA accesses or 
cache coherence operations). Every time a snoop accesses the L1D tag 
RAM, the CPU is stalled (even if there is no simultaneous access request 
to L1D tag RAM by the CPU). If the snoop hits L1D, CPU L1D requests 
are stalled until the writeback-invalidate operation is complete. If the 
snoop and the CPU L1D request occur simultaneously, the CPU request 
is given higher priority. 



Cache Performance Characteristics 

3-8 Optimizing for Cache Performance SPRU656A 

 

 

way 0 way 1 way 2 way 3 

Cache: 0/32/64/128/256 KBytes, 4-way, LRU, Read/Write Allocate 

 
 

Figure 3–2 shows the C64x memory architectures detailing all important 
characteristics, stall conditions and associated stall cycles. 

 
 

Figure 3–2. C64x Cache Memory Architecture 
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when full until free 
entry available 

256 bit 
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2 x 64 bit 
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■ Write Buffer is fully 
drained before a 
L1D Read Miss is 
serviced, 
extending read 
miss stalls. 

Write Buffer 
drains at 1 
cycle / entry 
(for L2 SRAM/ 
or L2 cache 
hit). Data of 
2 parallel or 
consecutive 
stores may 
be merged 

 
 
 
 

256 bit 
1 fetches / L1P line 

8 cycles stall, multiple 
consecutive stalls overlap 

Level 1 Cache: Read Allocate, Miss-Pipelined 
256 bit 

2 fetches / L1D line 
SRAM: 6 cycles/stall, multiple consecutive stalls 4 + 2 x M 
Cache: 8 cycles/stall, multiple consecutive stalls 6+ 2 x M 

 
 

victim / snoop path 
256 bit 

 
64 bit 

 
0000 0000h 

 
000F FFFFh 

  
 

Byte 

Byte 

 
 
 

Level 2 Memory: 1024 KBytes 

Level 2 Memory 
bank organization 
(8 x 64 bit banks) 

1 128-byte Line 1 128-byte Line 1 128-byte Line 1 128-byte Line 

2 2 2 2 

... ... ... ... 

64/128/256/512 64/128/256/512 64/128/256/512 64/128/256/512 

 

 
 
 
 
 
 
 
 
 
 

SRAM: 1024/992/960/896/768 KBytes 
(always starts at address 0000 0000h) 

victim buffer 

sets 

CPU 

sets 

way 0 way 1 

4 

3 

2 

1 64 bit 

Data Cache(L1D): 2-way, LRU, 8 KBytes each 
way, 8 x 32 bit banks 

Program cache(L1P): Direct Mapped, 16 KBytes 

2 x 64 bit 
No stalls 

Data Paths A+B 
Read Write 

Instruction 
Fetch 

1 32 byte line 

2 

3 

... 

512 

 

1 64 byte line 1 64 byte line 

2 2 

3 3 

... ... 

128 128 

 

1.8 9.16 17.24 25.32 33.40 41.48 49.56 57.64 

65.72 73.80 81.88 89.96 97.104 105.112 113.120 121.128 

 



Cache Performance Characteristics 

SPRU656A Optimizing for Cache Performance 3-9 

 

 

 
 

3.1.4 C64x Pipelining of Read Misses 
 

The C64x cache architecture pipelines read misses and allows parallel and 
consecutive read miss stall cycles to be overlapped. While a single miss to 
L2 SRAM causes a 6 cycle stall, multiple parallel and consecutive misses 
consume only 2 cycles once pipelining is set up: 

□ for L2 SRAM, 4 + 2 × M cycles 
□ for L2 Cache, 6 + 2 × M cycles 

where M is the number of misses. 

This mechanism is described in TMS320C64x DSP Two-Level Internal 
Memory Reference Guide (SPRU610). Miss pipelining will be disrupted, if two 
misses occur to the same set or if the L1D stall is lengthened by any of the 
conditions listed in section 3.1.3. Note that when accessing memory sequen- 
tially, misses are not overlapped since on a miss one full cache line is allocated 
and the accesses to the next memory locations in the cache line will hit. There- 
fore, to achieve full overlapping of stalls, you have to access two new cache 
lines every cycle, that is, step through memory in strides that are equal to the 
size of two cache lines. This is realized in the assembly routine “touch”, that 
can be used to allocate length bytes of a memory buffer *array into L1D. The 
routine loads (or touches) one byte each of two consecutive cache lines in 
parallel. To avoid bank conflicts, the two parallel loads are offset by one word. 
The access pattern is illustrated in Figure 3–3. The assembly routine is shown 
in Figure 3–4. 

If a line does not reside in L1D, the load will miss and the line allocated in L1D. 
If the line already was allocated, there is no effect. The data read by the load 
is not used. The routine takes (2.5 × N + 16) cycles to allocate N lines. This 
includes the execution of the code and miss penalties. 

 
 
 

Figure 3–3. Memory Access Pattern of Touch Loop 
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lin
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Figure 3–4. Touch Assembly Routine 
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* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

MEMORY NOTE 

The code is ENDIAN NEUTRAL. 

No bank conflicts occur in this code. 

A multiple of two cache lines is always touched. apart. 

When touching the array, the pointer is first aligned to a cache– 

line boundary, and the size of the array is rounded up to the 

next multiple of two cache lines. The array is touched with two 

parallel accesses that are spaced one cache–line and one bank 

This routine returns no value and discards the loaded data. 
 
DESCRIPTION 

The touch() routine brings an array into the cache by reading 

elements spaced one cacheline apart in a tight loop. This 

causes the array to be read into the cache, despite the fact 

that the data being read is discarded. If the data is already 

present in the cache, the code has no visible effect. 

); 

*/ /* Length array in bytes length int 

/* Pointer to array to touch */ 

void touch 

( 

const void *array, 

USAGE 

This routine is C callable, and has the following C prototype: 

NAME 

touch 
 
PLATFORM 

C64x 

TEXAS INSTRUMENTS, INC. * 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* ========================================================================= * 



Cache Performance Characteristics 

SPRU656A Optimizing for Cache Performance 3-11 

 

 

 
 

Figure 3–4. Touch Assembly Routine (Continued) 
 

 
* CODESIZE * 

* 84 bytes * 

* * 

* CYCLES * 

* cycles = MIN(22, 16 + ((length + 124) / 128)) * 

* For length = 1280, cycles = 27. * 

* The cycle count includes 6 cycles of function–call overhead, but * 

* does NOT include any cycles due to cache misses. * 

* ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– * 

* Copyright (c) 2001 Texas Instruments, Incorporated. * 

* All Rights Reserved. * 

* ========================================================================= * 

 
 
_touch 

.global 

.sect 

 
B 

_touch 

”.text:_touch” 

 
.S2 loop 

   
 
 

; Pipe up the loop 

|| 

|| 

MVK 

ADDAW 

.S1 128, A2 

.D2 B4, 31, 

  
B4 

; Step by two cache lines 

; Round up # of iters 

 
 
|| 

B 

CLR 

.S2 loop 

.S1 A4, 0, 

 
 
6, 

 
 
A4 

; Pipe up the loop 

; Align to cache line 

|| MV .L2X A4, B0   ; Twin the pointer 

 
 
|| 

B 

CLR 

.S1 loop 

.S2 B0, 0, 

 
 
6, 

 
 
B0 

; Pipe up the loop 

; Align to cache line 

|| MV .L2X A2, B2   ; Twin the stepping constant 

 
 
|| 

B 

SHR 

.S2 loop 

.S1X B4, 7, 

  
 
A1 

; Pipe up the loop 

; Divide by 128 bytes 

|| ADDAW .D2 B0, 17,  B0 ; Offset by one line + one word 

[A1] 

|| [A1] 

BDEC 

LDBU 

.S1 loop, A1 

.D1T1 *A4++[A2], 

  
 
A3 

; Step by 128s through array 

; Load from [128*i + 0] 

|| [A1] 

|| 

LDBU 

SUB 

.D2T2 *B0++[B2], 

.L1 A1, 7, 

 B4 

A0 

; Load from [128*i + 68] 
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loop: 

* ========================================================================= * 

* End of file: touch.asm * 

* ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– * 

* Copyright (c) 2001 Texas Instruments, Incorporated. * 

* All Rights Reserved. * 

* ========================================================================= * 

 
 

Figure 3–4. Touch Assembly Routine (Continued) 
 
 
 

 
|| 

[A0] 

[A1] 

BDEC 

LDBU 

.S1 

.D1T1 

loop, A0 

*A4++[A2], 
 

A3 

; Step by 128s through array 

; Load from [128*i + 0] 

|| [A1] LDBU .D2T2 *B0++[B2], B4 ; Load from [128*i + 68] 

|| [A1] SUB .L1 A1, 1, A1  

  
BNOP .S2 B3, 5 

 
; Return 

 
 
 
 
 
 
 
 
 
 

3.1.5 Optimization Techniques Overview 
The focus here is on efficient use of the L1 caches. Since L1 characteristics 
(capacity, associativity, line size) are more restrictive than those of L2 cache, 
optimizing for L1 almost certainly implies that L2 cache is also used efficiently. 
Typically, there is not much benefit in optimizing only for L2 cache. It is recom- 
mended to use L2 cache for the general-purpose parts of the application with 
largely unpredictable memory accesses (general control flow, etc.). L2 SRAM 
should be used for time-critical signal processing algorithms. Data can be 
directly streamed into L2 SRAM using EDMA, and memory accesses can be 
optimized for L1 cache. 

There are two important ways to reduce the cache overhead: 

1) Reduce the number of cache misses (in L1P, L1D, and L2 cache): This can 
be achieved by: 

a) Maximizing cache line reuse: 

i) Access all memory locations within a cached line. Since the data 
was allocated in cache causing expensive stall cycles, it should be 
used. 

ii) The same memory locations within a cached line should be 
reused as often as possible. Either the same data can be reread or 
new data written to already cached locations so that subsequent 
reads will hit. 
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b) Avoiding eviction of a line as long as it is being reused: 

i) Evictions can be prevented, if data is allocated in memory such 
that the number of cache ways is not exceeded when it is 
accessed. (The number of ways is exceeded if more lines map to 
the same set than the number of cache ways available.) 

ii) If this is not possible, evictions may be delayed by separating 
accesses to the lines that cause the eviction further apart in time. 

iii) Also, one may have lines evicted in a controlled manner relying on 
the LRU replacement scheme such that only lines that are no 
longer needed are evicted. 

2) Reduce the number of stall cycles per miss: This can be achieved by 
exploiting miss pipelining. 

Methods for reducing the number of cache misses and number of stalls per 
miss are discussed in this chapter. 

A good strategy for optimizing cache performance is to proceed in a top-down 
fashion, starting on the application level, moving to the procedural level, and 
if necessary considering optimizations on the algorithmic level. The optimiza- 
tion methods for the application level tend to be straightforward to implement 
and typically have a high impact on overall performance improvement. If 
necessary, fine tuning can then be performed using lower level optimization 
methods. Hence, the structure of this chapter reflects the order that one may 
want to address the optimizations. 



3-14 Optimizing for Cache Performance SPRU656A 

Application-Level Optimizations 
 

 

 

3.2 Application-Level Optimizations 
On an application and system level the following considerations are important 
for good cache performance. 

 
3.2.1 Choosing the Right L2 Cache Size 

Choosing the right L2 cache size is particularly important for C621x/C671x 
devices, since the cache size also determines the associativity. A 16-Kbyte 
cache is direct-mapped, a 32-Kbyte cache is 2-way, a 48-Kbyte cache is 3-
way, and a 64-Kbyte cache is 4-way set–associative. As a general rule, you 
should always try to use at least 32 Kbytes of L2 cache to be able to get a 2-way 
set-associativity. L2 cache should only be enabled if the code and/or data is 
too large to fit into L2 SRAM and has to be allocated in external memory. 

 
3.2.2 Using DMA or L2 Cache 

For streaming data from/to a peripheral using EDMA, it is recommended to 
allocate the streaming buffers in L2 SRAM. This has several advantages over 
allocating the buffers in external memory: 

1) L2 SRAM is closer to the CPU; therefore, latency is reduced. If the buffers 
are located in external memory, data is first written from the peripheral to 
external memory by the DMA, cached by L2, then cached by L1D, before 
reaching the CPU. 

2) Cache coherence is automatically maintained by the cache controller, no 
user action is required. If the buffers are located in external memory, you 
have to take care to maintain coherence by manually issuing L2 cache 
coherence operations. In some cases, buffers may have to be allocated 
in external memory due to memory capacity restrictions. Section 2.2, 
Coherence, explains in detail how to manage cache coherence. 

3) The additional coherence operations may add to the latency. The latency 
can be thought of as adding to the time required for processing the buff- 
ered data. In a typical double buffering scheme, this has to be taken into 
account when choosing the the size of the buffers. 

For rapid-prototyping applications, where implementing DMA double buffering 
schemes are considered too time consuming and would like to be avoided, 
allocating all code and data in external memory and using L2 as All Cache may 
be an appropriate way. Following the simple rules for using L2 cache coherence 
operations described in section 2.2, Coherence, this is a fast way to get an 
application up and running without the need to perform DSP-style optimiza- 
tions. Once the correct functioning of the application has been verified, bottle- 
necks in the memory management and critical algorithms can be identified and 
optimized. 
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3.2.3 Signal Processing versus General-Purpose Processing Code 

It may beneficial to distinguish between DSP-style processing and general- 
purpose processing in an application. 

Since control and data flow of DSP processing are usually well understood, its 
code better lends itself to a more careful optimization than general-purpose 
code. General-purpose processing is typically dominated by straight-line 
code, control flow and conditional branching. This code typically does not 
exhibit much parallelism and execution depends on many modes and condi- 
tions and tends to be largely unpredictable. That is, data memory accesses are 
mostly random, and access to program memory is linear with many branches. 
This makes optimization much more difficult. Therefore, in case L2 SRAM is 
insufficient to hold code and data of the entire application, it is recommended 
to allocate general-purpose code and associated data in external memory and 
allow L2 cache to handle memory accesses. This makes more L2 SRAM 
memory available for performance-critical signal processing code. Due to the 
unpredictable nature of general-purpose code, L2 cache should be made as 
large as possible. On C6211/C6711 devices, this has the additional benefit of 
a higher set-associativity. On C64x devices, the associativity of L2 cache is 
always 4 regardless of the size of the cache that can be configured between 
32 Kbytes and 256 Kbytes. High set-associativity is crucial for general- 
purpose code, since it can hold multiple memory locations that would otherwise 
conflict in cache and would cause evictions. Due to the randomness of 
memory accesses, conflicts are highly likely. 

DSP code and data may benefit from being allocated in L2 SRAM. This 
reduces cache overhead and gives you more control over memory accesses 
since only Level 1 cache is involved whose behavior is easier to analyze. This 
allows you to make some modifications to algorithms in the way the CPU is 
accessing data, and/or to alter data structures to allow for more cache-friendly 
memory access patterns. 
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3.3 Procedural-Level Optimizations 
 

Procedural-level optimizations are concerned with changing the way data and 
functions are allocated in memory, and the way functions are called. No 
changes are made to individual algorithms, that is algorithms (for example, 
FIR filters, etc.) that were implemented for a flat memory model are used as 
is. Only the data structures that are accessed by the algorithm are optimized 
to make more efficient use of cache. In most cases these type of optimizations 
are sufficient, except for some algorithms such as the FFT whose structure has 
to be modified in order to take advantage of cache. Such a cache-optimized 
FFT is provided in the C62x and C64x DSP Library (DSPLIB) and is described 
in more detail in the Chapter 4, Examples. 

 
The goal is to reduce the number of cache misses and/or the stall cycles asso- 
ciated with a miss. The first can be achieved by reducing the amount of 
memory that is being cached (see section 3.3.2) and reusing already cached 
lines. Reuse can be achieved by avoiding evictions and writing to preallocated 
lines. Stall cycles of a miss can be reduced by exploiting miss pipelining. 

 
We can distinguish between three different read miss scenarios: 

 
1) All data/code of the working set fits into cache (no capacity misses by defi- 

nition), but conflict misses occur. The conflict misses can be eliminated by 
allocating the code or data contiguously in memory. This is discussed in 
sections 3.3.4 and 3.3.5. 

 
2) The data set is larger than cache, contiguously allocated, and not reused. 

Conflict misses occur, but no capacity misses (because data is not 
reused). The conflict misses can be eliminated, for instance by interleaving 
cache sets. This is discussed in section 3.3.6. 

 
3) The data set is larger than cache, capacity misses (because same data 

is reused) and conflict misses occur. Conflict and capacity misses can be 
eliminated by splitting up data sets and processing one set at a time. This 
method is referred to as blocking or tiling and is discussed in section 3.3.7. 

 
Avoiding stalls that are caused directly or indirectly by the write buffer are 
described in section 3.3.8. 

 
Processing chains, in which the results of one algorithm form the input of the 
next algorithm, provide an opportunity to eliminate all cache misses except for 
the compulsory misses of the first algorithm in the chain. This is explained in 
section 3.3.3. A more comprehensive example that demonstrates this impor- 
tant concept is provided in section 4.3, Processing Chain With DMA Buffering. 
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3.3.1 Method of Analysis 
 

In the following sections the effectiveness of optimization methods is demon- 
strated through examples. The performance is assessed by measuring: 

 
□ Execute Cycles that are raw CPU execute cycles 

 
□ L1D Stall Cycles that are predominantly caused by L1D Read Miss and 

L1D Write Buffer Full occurrences, and 
 

□ L1P Stall Cycles that are caused by L1P Misses. Note that as long as the 
execute pipeline stages are being supplied with execute packets, a fetch 
packet read miss does not stall the CPU. 

 
The total cycles are the sum of the execute cycles, L1D stall cycles, and L1P 
stall cycles. The total cycle count was obtained by running the code on the 
hardware target. The number of misses and miss stall cycles were obtained 
either from the emulator or simulator depending on the available capabilities. 

 
The number of read misses can be estimated by dividing the size of the array 
that is accessed by the line size. Typically, the number of misses is slightly 
higher due to stack accesses between function calls. The number of read miss 
stall cycles can then be estimated by multiplying the number of read misses 
with the number of stall cycles per miss. Since we assume that all code and 
data is allocated in L2 SRAM, the typical stall cycles per L1D read miss are 
4 cycles for C621x/C671x devices and 6 cycles for C64x devices. The typical 
stall cycles per L1P miss are 5 cycles for C621x/C671x devices. For C64x 
devices, L1P miss stall cycles are difficult to estimate since misses are pipe- 
lined and the stall cycles depend on the average number of execute packets 
per fetch packet. As explained in section 3.1, the typical number of stall cycles 
per miss can increase due to other conditions. 

 
In the performance tables, L1D stall cycles includes L1D read miss stall cycles, 
write buffer full stall cycles, and all stall cycles caused by the other conditions. 

 

Note: 
In this section, individual functions are benchmarked for the purpose of dem- 
onstrating cache optimization methods. These benchmarks are not intended 
to be used for performance estimation of an entire application. The cache 
overhead of individual functions can be misleading and is not indicative of 
the total cache overhead of an entire application. When a function is bench- 
marked, you have to consider the function within the context of the entire 
application. See section 3.3.2 for an example. 
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3.3.2 Reduce Memory Bandwidth Requirements by Choosing Appropriate Data Type 
It should be ensured that memory efficient data types are chosen. For 
instance, if the data is maximum 16-bits wide, it should be declared as short 
rather than integer. This halves the memory requirements for the array, which 
also reduces the number of compulsory misses by a factor of two. This typically 
only requires a minor change in the algorithm to accept the new data type. 
Additionally, the algorithm is likely to execute much faster, since smaller data 
containers may allow SIMD optimizations to be performed by the compiler. 
Especially in the cases where an application is ported from another platform 
to a DSP system, inefficient data types may exist. 

Consider Example 3–1 and Example 3–2. Converting the array x[ ] from int 
to short reduced the execution cycles from 5197 to 2245 on a C64x device. 
Table 3–1 shows the corresponding cycle count breakdown. 

Example 3–1. Integer Data 
 

 
 

Example 3–2. Short Data 
 

 

Table 3–1. Cycle Count Breakdown for Example 3–1 and Example 3–2 

Integer Data Type (Cycles)    Short Data Type (Cycles) 

Execute Cycles 3117 1071 

L1D Stall Cycles 2063 1152 

L1P Stall Cycles 17 22 

Total Cycles 5197 2245 

The optimizations, enabled by using short data type, brought roughly a 
2.3 times speed up, and the cache miss stalls were about halved. 

 
int x[ ]; 

for (i=0; i<n; i++) 
r[i] = x[i] – c; 

 
short x[ ]; 

for (i=0; i<n; i++) 
r[i] = x[i] – c; 
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#define NX NR+NH–1 

for (i=0; i<4; i++) 

{ 

fir(in[i], h[i], out, NR, NH); 

out2 = dotprod(out, w, NR); 

} 

 

out1 

 

3.3.3 Processing Chains 
Often the results of one algorithm form the input of the next algorithm. If the 
algorithms operate out-of-place (that is, the results are placed in an array 
different from the input), the input array gets allocated in L1D, but the output 
is passed through the write buffer to next lower memory level (L2 or external 
memory). The next algorithm then again suffers miss penalties when reading 
the data. On the other hand, if the output of the first algorithm were written to 
L1D, then the data could be directly reused from cache without incurring cache 
stalls. There are many possible configurations for processing chains. The 
concept is shown in Figure 3–5. 

Figure 3–5. Processing Chain With 2 Functions 
 
 

func1   func2         
 
 

L2 SRAM L1D L2 SRAM 
 
 

Consider Figure 3–6, a 4-channel filter system consisting of a FIR filter 
followed by a dot product. The FIR filter in the first iteration allocates in[ ] and 
h[ ] in L1D and write out[ ] to L2 SRAM. Subsequently, out[ ] and w[ ] are 
allocated in L1D by the dotprod routine. For the next iteration, the FIR routine 
writes its results to L1D, rather L2 SRAM, and the function dotprod does not 
incur any read misses. 

Figure 3–6. Channel FIR/Dot Product Processing Chain Routine 
 
 
 

short in [4][NX]; /* input samples  */ 

short out [NR]; /* FIR output  */ 

short w [NR]; /* weights for dot product */ 

short h [4][NH]; /* FIR filter coefficients */ 

short out2; /* final output */ 

 

in1 

 

out2 
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In total, four arrays, in[ ], h[ ], out[ ], and w[ ] are allocated in L1D. If it is 
assumed that the total data working set required for one iteration fits into L1D, 
conflict misses can still occur if more than two of the arrays map to the same 
sets (since L1D is 2-way set associative). As discussed in section 3.3.5, these 
arrays should be allocated contiguously in memory to avoid conflict misses. 
What exact memory allocation is chosen depends on the size of the arrays and 
the capacity of L1D. 

The number of input samples, NX, shall be chosen such that the array occu- 
pies about one-forth of L1D. We assume that NH filter taps occupy two cache 
lines. The number of output samples produced is then NR = NX – NH + 1. 
Figure 3–7 shows how the individual arrays map to the L1D cache sets. We 
can neglect the coefficient array since it occupies only 4 × NH = 8 cache lines. 
It can be seen that within one iteration no more that two arrays map the same 
sets, that is, no conflict misses will occur. Capacity misses will also not occur 
since the total size of the data set accessed within one iteration fits into L1D. 

 
 

Figure 3–7. Memory Layout for Channel FIR/Dot Product Processing Chain Routine 
L2 SRAM 

set 
0 

 
 
 

S/2-1 
S/2 

 
 
 

2-1 

 

in[0] 

 

in[2] 

 
 

out 

 

in[1] 

 

in[3] 

 
 

w 
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3.3.3.1 C621x/C671x Device Example 

For C621x/C671x devices, the number of taps, NH, was chosen to be 32 and 
the number of outputs, NR, 480. The number of input samples required is then 
NX = NR + NH – 1 = 480 + 32 – 1 = 511. The cycle counts are listed in 
Table 3–2. The FIR filter is reading NX + NH data elements, 543 16-bit 
elements or 1086 bytes spanning 34 lines. Accordingly, we see around 34 
compulsory read misses for the FIR filter (the actual numbers may be slightly 
higher due to stack accesses). Additionally, we see 7 write buffer full occur- 
rences that add to the read miss stalls. Therefore, for the first iteration the L1D 
stalls are higher than the expected 37 × 4 stalls cycles per miss = 148 read 
miss stall cycles. The dotprod routine is accessing 2 × NR × 16 bits = 1920 bytes 
spanning 60 cache lines. As expected, misses occur only during the first 
iteration. For all following iterations, w[ ] and out[ ] are in L1D. The FIR filter 
is taken from the C62x DSPLIB (DSP_fir_r8) and takes nr × nh/2 + 28 cycles 
to execute, 7708 cycles. 

 
 

Table 3–2. Misses and Cycle Counts for FIR/Dot Product Example (C621x/C671x Devices) 
 

 1st Iteration  2nd Iteration  3rd Iteration  4th Iteration  

NR = 480, NH = 32, 
S = 64 

dot- 
fir prod 

 dot- 
fir prod 

 dot- 
fir prod 

 dot- 
fir prod 

 
Total 

Execute Cycles 7708 253  7708 253  7708 253  7708 253 31 844 

L1D Stall Cycles 173 214  150 8  146 18  137 0 846 

L1D Read Misses 37 60  35 2  33 4  34 0 205 

L1D Write Buffer Full 7 0  0 0  0 0  0 0 7 

L1P Stall Cycles 50 30  0 0  0 0  0 0 80 

L1P Misses 10 6  0 0  0 0  0 0 16 

Total Cycles 7931 497  7858 261  7854 271  7845 253 32 770 
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3.3.3.2 C64x Device Example 

For C64x devices, the number of taps, NH, was chosen to be 64 and the 
number of outputs, NR, 1984. The number of input samples required is then 
NX = NR + NH – 1 = 1984 + 64 – 1 = 2047. The cycle counts are listed in 
Table 3–3. The FIR filter is reading NX + NH data elements, 2111 16-bit 
elements or 4222 bytes spanning 66 lines. Accordingly, we see around 66 
misses for FIR. The dotprod routine is accessing 2 × NR × 16 bits = 7936 bytes 
spanning 124 cache lines. As expected, misses occur only during the first 
iteration. For all following iterations, w[ ] and out[ ] are in L1D. The FIR filter 
is taken from the C64x DSPLIB (DSP_fir_r8) and takes nr × nh/4 + 17 cycles 
to execute, 31 761 cycles. 

 
 

Table 3–3. Misses and Cycle Counts for FIR/Dot Product Example (C64x Devices) 
 

 1st Iteration  2nd Iteration  3rd Iteration  4th Iteration  

NR = 1984, NH = 64, 
S = 128 

dot- 
fir prod 

 dot- 
fir prod 

 dot- 
fir prod 

 dot- 
fir prod 

 
Total 

Execute Cycles 31 766 520  31 766 520  31 766 520  31 766 520 129 144 

L1D Stall Cycles 396 719  396 1  408 16  388 0 2327 

L1D Read Misses 67 124  66 6  68 3  65 0 390 

L1D Write Buffer Full 0 0  0 0  0 0  0 0 0 

L1P Stall Cycles 58 53  0 0  0 0  0 0 111 

L1P Misses 12 11  0 0  0 0  0 0 23 

Total Cycles 32 220 1292  32 160 526  32 174 536  32 154 520 131 582 

 
 

3.3.3.3 Interpretation of Cache Overhead Benchmarks 

Note that if the cache overhead of the FIR filter and the dot product is 
determined in isolation, for C621x/C671x devices, the FIR filter has a low 
2.2 percent overhead; whereas, the dot product has an 85 percent overhead. 
Even if it is taken into account that only the first call of dotprod has 85 percent 
overhead and all following calls have no overhead at all, the average overhead 
would still be 24 percent. However, the total cache overhead of the processing 
chain is only 2.7 percent. This is a good example that shows the cache over- 
head of an individual function can be misleading and is not indicative of the 
total cache overhead of an entire application. When a function is benchmarked, 
you have to consider the function in the context of the entire application. 
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Generally, cache overhead is a function of how much data is accessed relative 
to the amount of processing that is performed on the data. In case of the 32-tap 
FIR filter, relative little data is accessed while processing is quite expensive (for 
example, 543 input samples take 7708 cycles to process, that is 14 cycles per 
data element). The opposite is true for a dot product. A large amount of data 
is accessed, but only little processing is done on that data (for example, 
960 input data take 253 cycles to process, that is 0.26 cycles per data 
element). The higher the ratio of processing cycles to data elements, the lower 
the cache overhead. 

 
 

3.3.4 Avoiding L1P Conflict Misses 
 

In this read miss scenario, all code of the working set fits into cache (no capac- 
ity misses by definition), but conflict misses occur. This section first explains 
how L1P conflict misses are caused and then describes how the conflict misses 
can be eliminated by allocating the code contiguously in memory. 

 
The L1P set number is determined by the memory address modulo the capacity 
divided by the line size. Memory addresses that map to the same set and are 
not contained in the same cache line will evict one another. 

 
Compiler and linker do not give considerations to cache conflicts, and an 
inappropriate memory layout may cause conflict misses during execution. 
This section describes how most of the evictions can be avoided by altering 
the order in which functions are linked in memory. Generally, this can be 
achieved by allocating code that is accessed within some local time window 
contiguously in memory. 

 
Consider the code in Example 3–3. Assume that function_1 and function_2 
have been placed by the linker such that they overlap in L1P, as shown in 
Figure 3–8. When function_1 is called the first time, it is allocated in L1P causing 
three misses (1). A following call to function_2 causes its code to be allocated 
in L1P, resulting in five misses (2). This also will evict parts of the code of 
function_1, lines 3 and 4, since these lines overlap in L1P (3). When function_1 
is called again in the next iteration, these lines have to brought back into L1P, 
only to be evicted again by function_2. Hence, for all following iterations, each 
function call causes two misses, totaling four L1P misses per iteration. 

 
These type of misses are called conflict misses. They can be completely 
avoided by allocating the code of the two functions into nonconflicting sets. 
The most straightforward way this can be achieved is to place the code of the 
two functions contiguously in memory (4). 
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Note that it also would be possible to move function_2 to any place where none 
of its sets conflicts with function_1. This would prevent eviction as well; how- 
ever, the first method has the advantage that you do not need to worry about 
absolute address placement, but can simply change the order in which the 
functions are allocated in memory. 

Example 3–3. L1P Conflicts Code Example 
 

Figure 3–8. Avoiding L1P Evictions  
 

L2 SRAM 
 
 
 

function_1 

 
 

L1P cache set 
0 
1 
2 
3 
4 

L1P set(=line) 
0 

function_2 5 
6 

 
 
 
 
 
 
 
 
 
 
 
 
 

(3) Conflict: 
lines 3 and 4 
will be evicted 

 
 
 
 
 
 
 
 
 
 
 

... 

1 
2 
3 
4 
5 
6 
7 
8 
9 
S–1 

(1) Allocated in L1P 
 
 
 
 
 
 
 

(2) Allocated in L1P 

 
 
 
 
 
 
 
 
 
 
 

function_2 

 
 
 
 
... 

7 
8 
9 

(4): Solution: 
S Allocate 

functions 
0 contiguously in 
1 memory 
2 
3 
4 
5 
6 
7 

8 

S: Total number of L1P sets 

(C621x/C671x: S=64, C64x: S=512) 

 

... 
9 

 

S–1 

 
for (i=0; i<N; i++) 

{ 

function_1(); 

function_2(); 

} 
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There are two ways for allocating functions contiguously in memory: 
 

□ Use the compiler option –mo to place each C and linear assembly function 
into its own individual section (assembly functions have to be placed in 
sections using the .sect directive). Inspect the map file to determine the 
section names for the functions chosen by the compiler. In the example, 
the sections names are .text:_function_1 and .text:_function_2. 
Now, the linker command file can be specified as: 

 

vecs 

SRAM 

SRAM 

SRAM 

SRAM 

SRAM 

SRAM 

SRAM 

SRAM 

SRAM 

SRAM 

SRAM 

SRAM 

SRAM 

CE0 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 
> 

SECTIONS 

{ 

.vectors 

.cinit 

.text:_function_1 

.text:_function_2 

.text 

.stack 

.bss 

.const 

.data 

.far 

.switch 

.sysmem 

.tables 

.cio 

.external 

} 

} 

l = 00000200h 

l = 0000FE00h 

l = 01000000h 

o = 00000000h 

o = 00000200h 

o = 80000000h 

vecs: 

SRAM: 

CE0: 

MEMORY 

{ 
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The linker will link all sections in exactly the order specified in the linker 
command file. In this case, the code for function_1 is followed by function_2 
and then by all other functions located in the section .text. No changes are 
required in the source code. However, be aware that using the –mo shell 
option can result in overall code size growth because any section containing 
code will be aligned to a 32-byte boundary to support the C6000 DSP 
branching mechanism. 

Note that the linker can only place entire sections, but not individual func- 
tions that reside in the same section. In case of precompiled libraries or 
object files that have multiple functions in a section or were compiled with- 
out –mo, there is no way to reassign individual functions to different 
sections without recompiling the library. 

□ To avoid the disadvantage of using –mo, only the functions that require 
contiguous placement may be assigned individual sections by using the 
pragma CODE_SECTION before the definition of the functions: 

 

 

The linker command file would then be specified as: 
 

 

Those functions should be considered for reordering that are repeatedly 
called within the same loop, or within some time frame. 

 
#pragma CODE_SECTION(function_1,”.funct1”) 

#pragma CODE_SECTION(function_2,”.funct2”) 

void function_1(){...} 

void function_2(){...} 

vecs 

SRAM 

SRAM 

SRAM 

SRAM 

SRAM 

> 

> 

> 

> 

> 
> 

SECTIONS 

{ 

.vectors 

.cinit 

.funct1 

.funct2 

.text 

.stack 

... 
} 

... 
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If the capacity of the cache is not sufficient to hold all functions of a loop, 
the loop may have to be split up in order to achieve code reuse without 
evictions. This may increase the memory requirements for temporary buff- 
ers to hold output data. Assume that the combined code size of function_1 
and function_2, as shown in Example 3–4, is larger than the size of L1P. In 
Example 3–5, the code loop has been split so that both functions can be 
executed from L1P repeatedly, considerably reducing misses. However, 
the temporary buffer tmp[ ] now has to hold all intermediate results from 
each call to function_1. 

 
Example 3–4. Combined Code Size is Larger than L1P 

 

 

Example 3–5. Code Split to Execute from L1P 
 

 
3.3.5 Avoiding L1D Conflict Misses 

In this read miss scenario, all data of the working set fits into cache (no capacity 
misses by definition), but conflict misses occur. This section first explains how 
L1D conflict misses are caused and then describes how the conflict misses 
can be eliminated by allocating data contiguously in memory. 

The L1D set number is determined by the memory address modulo the capacity 
of one cache way divided by the line size. In a direct-mapped cache such as 
L1P, these addresses would evict one another if those addresses are not 

 
for (i=0; i<N; i++) 

{ 

function_1(in[i], tmp); 

function_2(tmp, out[i]); 

} 

 
for (i=0; i<N; i++) 

{ 

function_1(in[i], tmp[i]); 

} 

for (i=0; i<N; i++) 

{ 

function_2(tmp[i], out[i]); 
} 
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contained in the same cache line. However, in the 2-way set-associative L1D, 
two conflicting lines can be kept in cache without causing evictions. Only if 
another third memory location set is allocated that maps to that same set, one 
of the previously allocated lines in this set will have to be evicted (which one 
will be evicted is determined according to the least-recently-used rule). 

 
Compiler and linker do not give considerations to cache conflicts, and an 
inappropriate memory layout may cause conflict misses during execution. 
This section describes how most of the evictions can be avoided by altering 
the memory layout of arrays. Generally, this can be achieved by allocating data 
that is accessed within the same local time window contiguously in memory. 

 
Optimization methods similar to the ones described for L1P in section 3.3.4 
can be applied to data arrays. However, the difference between code and data 
is that L1D is a 2-way set-associative cache and L1P is direct-mapped. This 
means that in L1D, two data arrays can map to the same sets and still reside 
in L1D at the same time. The following example illustrates the associativity of 
L1D. 

 
Consider the dotprod routine shown in Example 3–6 that computes the dot 
product of two input vectors. 

 
Example 3–6. Dot Product Function Code 

 

 
int dotprod 

( 

const short *restrict x, 

const short *restrict h, 

int nx 

) 

{ 

int i, r = 0; 

 
for (i=0; i<nx; i++) 

{ 

r += x[i] * h[i]; 

} 

 
return r; 

} 
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Assume we have two input vectors in1 and in2, and two coefficient vectors w1 
and w2. We would like to multiply each of the input vectors with each of the 
coefficient vectors, in1 × w1, in2 × w2, in1 × w2, and in2 × w1. We could use 
the following call sequence of dotprod to achieve this: 

 

 
 
 

Further assume that each array is one-fourth the total L1D capacity, such that 
all four arrays fit into L1D. However, assume that we have given no consider- 
ation to memory layout and declared the arrays as: 

 

 
 
 

The arrays other1, other2, and other3 are used by other routines in the same 
application. It is assumed that the arrays are allocated contiguously in the 
section .data in the order they are declared. The assigned addresses can be 
verified in the map file (generated with the option –m). Since each way in L1D 
is half the size of the total capacity, all memory locations that are the size of 
one way apart (2 Kbytes for C621x/C671x devices, and 8 Kbytes for C64x 
devices) map to the same set. In this case, in1, in2, w1, and w2 all map to the 
same sets in L1D. A layout for L1D is shown on the left in Figure 3–9. Note, 
that this is only one possible configuration of many. The exact configuration 
depends on the start address of the first array, in1, and the state of the LRU 
bit (which decides the way the line is allocated). However, all configurations 
are equivalent in terms of cache performance. 

 
r1 = dotprod(in1, w1, N); 

r2 = dotprod(in2, w2, N); 

r3 = dotprod(in1, w2, N); 

r4 = dotprod(in2, w1, N); 

short other1 [N]; 

short in2 [N]; 

short other2 [N]; 

short w1 [N]; 

short other3 [N]; 

short w2    [N]; 

[N]; short in1 
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Figure 3–9. Mapping of Arrays to L1D Sets for Dot Product Example 
 

set 
0 

 
 
 
 
 

S/2–1 
S/2 

 
 
 
 
 

S–1 

way 0 way 1  
set 

0 
 
 
 
 
 

S/2–1 
S/2 

 
 
 
 
 

S–1 

way 0 way 1 

S: Total number of L1D sets (C621x/C671x: S=64, C64x: S=128) 
 

The first call to dotprod allocates in1 and w1 into L1D, as shown in Figure 3–9. 
This causes S compulsory misses, where S is the total number of sets. The 
second call causes in1 and w1 to be evicted and replaced with in2 and w2, 
which causes another S misses. The third call reuses w2, but replaces in2 with 
in1 resulting in S/2 misses. Finally, the last call again causes S misses, 
because in1 and w2 are replaced with in2 and w1. Table 3–4 (page 3-32) 
shows the stall cycles for C621x/C671x devices and Table 3–6 (page 3-33) 
shows the stall cycles for C64x devices. 

We expected S read misses in L1D, but the actual number is slightly higher. 
Additional misses occur if the arrays are not aligned at a cache line size bound- 
ary or due to stack access (benchmarks include function call overhead). 

To reduce the read misses, we can allocate the arrays contiguously in memory 
as follows: 

short other1 [N]; 

short other2 [N]; 

short other3 [N]; 

[N]; 

[N]; 

[N]; 

[N]; 

short in1 

short in2 

short w1 

short w2 

 
 
 

in1 
in2 

 
 
 

w1 w2 

 
 
 

other1 
other3 

 
 
 

other2 

 

 
 
 

in1 

 
 
 

w1 

 
 
 

in2 

 
 
 

w2 
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We grouped together the definitions of the arrays that are used by the routine. 
Now all arrays, in1, in2, w1, and w2 can fit into L1D as shown on the right in 
Figure 3–9. Note that due to the memory allocation rules of the linker, it cannot 
always be assured that consecutive definitions of arrays are allocated contigu- 
ously in the same section (for example, const arrays will be placed in the .const 
section and not in .data). Therefore, it is recommended to assign the arrays 
to a user-defined section, for instance: 

 

 
 
 

Additionally, the arrays are aligned at a cache line boundary to save some 
extra misses. The new cycle counts for a C621x/C671x device are shown in 
Table 3–5 (page 3-33) and for a C64x device are shown in Table 3–7 (page 3-34). 
Now the data is reused from cache using the new memory configuration. The 
C64x L1D stall cycles were reduced from 2730 to 1560, a 43 percent reduction. 

Note that for the C64x devices, it may be necessary to align the arrays at different 
memory banks to avoid bank conflicts, for example: 

 
 

#pragma DATA_MEM_BANK(in1, 0) 

#pragma DATA_MEM_BANK(in2, 0) 

#pragma DATA_MEM_BANK(w1, 2) 

#pragma DATA_MEM_BANK(w2, 2) 

 
#pragma DATA_SECTION(in1, “.mydata”) 

#pragma DATA_SECTION(in2, “.mydata”) 

#pragma DATA_SECTION(w1, “.mydata”) 

#pragma DATA_SECTION(w2, “.mydata”) 

#pragma DATA_ALIGN(in1, 32) 

short in1 [N]; 

short in2 [N]; 

short w1 [N]; 

short w2 [N]; 



3-32 Optimizing for Cache Performance SPRU656A 

Procedural-Level Optimizations 
 

 

 
 

Exploiting of miss pipelining on C64x devices can further reduce the cache 
miss stalls. The touch loop discussed in section 3.1.4 is used to preallocate 
all arrays, in1, in2, w1, and w2, in L1D. Since all arrays are allocated contigu- 
ously in memory, one call of the touch routine is sufficient: 

 

 

The cycle counts are shown in Table 3–8 (page 3-34). The L1D stalls cycles 
have further reduced from 1560 to 544 cycles, a total reduction of 80 percent. 

 
 

Table 3–4. Misses and Cycle Counts for Dot Product Example Before Optimization 
(C621x/C671x Devices) 

 
 1st Call 2nd Call 3rd Call 4th Call  
N = 512, S = 64 (in1,w1) (in2,w2) (in1,w2) (in2,w1) Total 

Execute Cycles 272 272 272 272 1088 

L1D Stall Cycles 229 228 163 228 848 

L1D Read Misses 64 64 32 64 224 

L1D Write Buffer Full 0 0 0 0 0 

L1P Stall Cycles 20 0 0 0 20 

L1P Misses 4 0 0 0 4 

Total Cycles 521 500 435 500 1956 

 
touch(in1, 4*N*sizeof(short)); 

r1 = dotprod(in1, w1, N); 

r2 = dotprod(in2, w2, N); 

r3 = dotprod(in1, w2, N); 

r4 = dotprod(in2, w1, N); 
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Table 3–5. Misses and Cycle Counts for Dot Product Example After Optimization 
(C621x/C671x Devices) 

 
 1st Call 2nd Call 3rd Call 4th Call  
N = 512, S = 64 (in1,w1) (in2,w2) (in1,w2) (in2,w1) Total 

Execute Cycles 272 272 272 272 1088 

L1D Stall Cycles 229 228 0 0 457 

L1D Read Misses 64 64 0 0 128 

L1D Write Buffer Full 0 0 0 0 0 

L1P Stall Cycles 20 0 0 0 20 

L1P Misses 4 0 0 0 4 

Total Cycles 521 500 272 272 1565 

 
 
 
 

Table 3–6. Misses and Cycle Counts for Dot Product Example Before Optimization 
(C64x Devices) 

 
 1st Call 2nd Call 3rd Call 4th Call  
N = 2048, S = 128 (in1,w1) (in2,w2) (in1,w2) (in2,w1) Total 

Execute Cycles 538 538 538 538 2152 

L1D Stall Cycles 780 780 390 780 2730 

L1D Read Misses 130 130 65 130 455 

L1D Write Buffer Full 0 0 0 0 0 

L1P Stall Cycles 35 8 5 8 56 

L1P Misses 11 2 1 2 16 

Total Cycles 1353 1326 395 1326 4400 
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Table 3–7. Misses and Cycle Counts for Dot Product Example After Optimization 
(C64x Devices) 

 
 1st Call 2nd Call 3rd Call 4th Call  
N = 2048, S = 128 (in1,w1) (in2,w2) (in1,w2) (in2,w1) Total 

Execute Cycles 538 538 538 538 2152 

L1D Stall Cycles 780 768 6 6 1560 

L1D Read Misses 130 128 1 1 260 

L1D Write Buffer Full 0 0 0 0 0 

L1P Stall Cycles 35 8 5 8 56 

L1P Misses 11 2 1 1 16 

Total Cycles 1358 1314 549 552 3278 

 
 
 
 

Table 3–8. Misses and Cycle Counts for Dot Product Example With Touch Loop 
(C64x Devices) 

 
 1st Call 2nd Call 3rd Call 4th Call  
N = 2048, S = 128 Touch (in1,w1) (in2,w2) (in1,w2) (in2,w1) Total 

Execute Cycles 144 538 538 538 538 2296 

L1D Stall Cycles 515 0 22 0 7 544 

L1D Read Misses 256 0 3 0 1 260 

L1D Write Buffer Full 0 0 0 0 0 0 

L1P Stalls 14 42 0 8 0 64 

L1P Misses 3 12 0 2 0 17 

Total Cycles 673 580 560 546 545 2904 
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3.3.6 Avoiding L1D Thrashing 

In this read miss scenario, the data set is larger than cache, contiguously 
allocated, but data is not reused. Conflict misses occur, but no capacity misses 
(since data is not reused). This section describes how the conflict misses can 
be eliminated, for instance, by interleaving cache sets. 

Thrashing is caused if more than two read misses occur to the same set evict- 
ing a line before all of its data was accessed. Provided all data is allocated 
contiguously in memory, this condition can only occur if the total data set 
accessed is larger than the L1D capacity. These conflict misses can be 
completely eliminated by allocating the data set contiguously in memory and 
pad arrays as to force an interleaved mapping to cache sets. 

Consider the weighted dot product routine shown in Example 3–7 
(C621x/C671x devices) and Example 3–8 (C64x devices). 

 
 

Example 3–7. Weighted Dot Product (C621x/C671x Devices) 
 

 
int w_dotprod(const short *restrict w, const short 

*restrict x, const short *restrict h, int N) 

{ 

int i, sum = 0; 

 
_nassert((int)w % 4 == 0); 

_nassert((int)x % 4 == 0); 

_nassert((int)h % 4 == 0); 

 
#pragma MUST_ITERATE(16,,2) 

for (i=0; i<N; i++) 

sum += w[i] * x[i] * h[i]; 

 
return sum; 

} 
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Example 3–8.  Weighted Dot Product (C64x Devices) 
 

 
 
 
 

If the three arrays w[ ], x[ ], and h[ ] are allocated in memory such that they 
are all aligned to the same set, L1D thrashing occurs. Consider the first itera- 
tion of the loop, all three arrays are accessed and cause three read misses to 
the same set. The third read miss evicts a line just allocated by one of the two 
previous read misses. Assume that first w[0] and then x[0] is accessed, 
causing one full line of w[ ] and x[ ] to be allocated in L1D. If there was no 
further allocation to the same set, accesses to w[1] and x[1] in the next iteration 
would be cache hits. However, the access to h[0] causes the line of w[ ] 
allocated by the previous access to w[0] to be evicted (because it was least- 
recently-used) and a line of h[ ] to be allocated in its place. In the next iteration, 
w[1] causes a read miss, evicting the line of x[ ]. Next, x[1] is accessed that 
was just evicted, causing another read miss and eviction of the line of h[ ]. This 
pattern repeats for every iteration of the loop. Since each array is evicted just 
before its line is reused, every single read access in the routine causes a read 
miss. The contents of the L1D set, at the time when an access is made, is listed 
in Table 3–9. It can be seen that whenever an array element is attempted to 
be read, it is not contained in L1D. 

 
int w_dotprod(const short *restrict w, const short 

*restrict x, const short *restrict h, int N) 

{ 

int i, sum = 0; 

 
_nassert((int)w % 8 == 0); 

_nassert((int)x % 8 == 0); 

_nassert((int)h % 8 == 0); 

 
#pragma MUST_ITERATE(16,,4) 

for (i=0; i<N; i++) 

sum += w[i] * x[i] * h[i]; 

 
return sum; 

} 
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Table 3–9. Contents of an L1D Set at the Time When an Array is Accessed (Weighted Dot 
Product Example) 

 
Read Access To Way 0l Way 1 LRU 

w[0]   0 

x[0] w  1 

h[0] w x 0 

w[1] h x 1 

x[1] h w 0 

h[1] x w 1 

 
 
 

For C621x/C671x devices, the read miss stalls caused are  shown  in  
Table 3–10. In this case, N was chosen to be  1024,  so  each  array is 
2048 Kbytes, which is half the L1D capacity, and places the start of each array 
at the same set. We expect to see 3 × 1024 read misses, one for each element 
access. However, the number of measured read misses is much smaller, only 
1089 misses. This is due to the fact the compiler uses 32-bit wide accesses 
to read two 16-bit array elements simultaneously and schedules two of those 
accesses in parallel. This reduces the overall number of memory accesses 
and introduces some amount of line reuse. Still, the number of read misses 
without thrashing should be 1024 elements × 2 bytes each × 3 arrays/32 bytes 
line size = 192 read misses. 

 
Table 3–10. Misses and Cycle Counts for Weighted Dot Product Example 

(C621x/C671x Devices) 
 

N = 1024 Original Optimized 

Execute Cycles 1556 1556 

L1D Stall Cycles 4297 712 

L1D Read Misses 1089 193 

L1D Write Buffer Full 0 0 

L1P Stall Cycles 25 20 

L1P Misses 5 4 

Total Cycles 5878 2288 
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For C64x devices, the read miss stalls caused are shown in Table 3–11. In this 
case, N was chosen to be 4096, so each array is 8192 Kbytes, which is half 
the L1D capacity, and places the start of each array at the same set. We expect 
to see 3 × 4096 read misses, one for each element access. However, the 
number of measured read misses is much smaller, only 2817 misses. This is 
due to the fact the compiler uses 64-bit wide accesses to read four 16-bit array 
elements simultaneously and schedules two of those accesses in parallel. 
This reduces the overall number of memory accesses and introduces some 
amount of line reuse. Still, the number of read misses without thrashing should 
be 4096 elements × 2 bytes each × 3 arrays/64 bytes line size = 384 read 
misses. 

 
Table 3–11. Misses and Cycle Counts for Weighted Dot Product Example (C64x Devices) 

 

N = 4096 Original Optimized 

Execute Cycles 3098 3098 

L1D Stalls Cycles 20 485 2433 

L1D Read Misses 2817 385 

L1D Write Buffer Full 0 0 

L1P Stalls Cycles 33 40 

L1P Misses 13 13 

Total Cycles 23 616 5571 

 
 

These conflict misses can be completely eliminated by allocating the data set 
contiguously in memory and pad arrays as to force an interleaved mapping to 
cache sets. For instance: 

 

#pragma DATA_SECTION(pad, ”.mydata”) 

#pragma DATA_SECTION(h, ”.mydata”) 

#pragma DATA_ALIGN (w, CACHE_L1D_LINESIZE) 

short w [N]; 

short x [N]; 

char pad [CACHE_L1D_LINESIZE]; 

short h [N]; 

”.mydata”) 

”.mydata”) 

#pragma DATA_SECTION(w, 

#pragma DATA_SECTION(x, 
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This causes allocation of the array h[ ] in the next set, thus avoiding eviction 
of w[ ]. Now all three arrays can be kept in L1D. This memory configuration 
is shown in Figure 3–10. The line of array h[ ] will be only evicted when the 
data of one line has been consumed and w[ ] and x[ ] are allocated in the next 
set. Eviction of h[ ] is irrelevant since all data in the line has been used and 
will not be accessed again. 

The cycle counts for the modified memory layout are listed in Table 3–10 and 
Table 3–11. L1D conflict misses were completely eliminated; hence, the 
number of L1D read misses now matches the expected ones. 

 
 

Figure 3–10. Memory Layout and Contents of L1D After the First Two Iterations 
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3.3.7 Avoiding Capacity Misses 
 

In this read miss scenario, data is reused, but the data set is larger than cache 
causing capacity and conflict misses. These misses can be eliminated by split- 
ting up data sets and processing one subset at a time. This method is referred 
to as blocking or tiling. 

 
Consider the dot product routine in Example 3–6 that is called four times with 
one reference vector and four different input vectors: 

 

 
 
 
 

Assume that each array is twice the L1D capacity. We expect compulsory 
misses for in1[ ] and w[ ] for the first call. For the remaining calls, we expect 
compulsory misses for in2[ ], in3[ ], and in4[ ], but would like to reuse w[ ] 
from cache. However, after each call, the beginning of w[ ] has already been 
replaced with the end of w[ ], since the capacity is insufficient. The following 
call then suffers again misses for w[ ]. 

 
The goal is to avoid eviction of a cache line before it is reused. We would like 
to reuse the array w[ ]. This memory configuration is shown in Figure 3–11. 
The first line of w[ ] will be the first one to be evicted when the cache capacity 
is exhausted. In this example, the cache capacity is exhausted after N/4 out- 
puts have been computed, since this required N/4 × 2 arrays = N/2 array 
elements to be allocated in L1D. If we stop processing in1[ ] at this point and 
start processing in2[ ], we can reuse the elements of w[ ] that we just 
allocated in cache. Again, after having computed another N/4 outputs, we skip 
to processing in3[ ] and finally to in4[ ]. After that, we start computing the next 
N/4 outputs for in1[ ], and so on. 

 
short in1[N]; 

short in2[N]; 

short in3[N]; 

short in4[N]; 

short w [N]; 

 
r1 = dotprod(in1, w, N); 

r2 = dotprod(in2, w, N); 

r3 = dotprod(in3, w, N); 

r4 = dotprod(in4, w, N); 
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The restructured code for the example would look like this: 
 

 
 
 
 
 

Figure 3–11.Memory Layout for Dotprod Example 
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dotprod(in4+o, w+o, N/4); 
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3.3.7.1 C621x/C671x Cycle Counts 

For C621x/C671x devices, the cycle counts are shown in Table 3–12. The 
number of elements per vector N was set to 4096. We expect to see about 
4096 elements × 2 bytes per element × 2 arrays/32 bytes per cache line = 
512 read misses to occur. The size of each array is 8 Kbytes, twice the 
capacity of L1D. The total amount of data that is allocated in L1D for each call 
is 16 Kbytes, but only 4 Kbytes can be retained at a time. Since the two arrays 
are accessed in an interleaved fashion, by the time the first call to the routine 
has completed, only the last quarter of the arrays in1[ ] and w[ ] will reside in 
L1D. The following call then has to reallocate w[ ] again. 

Through blocking we expect to save the capacity misses for the array w[ ], 
which are 4096 elements × 2 bytes × 3 arrays/32 bytes per line = 768. The 
actual cycle counts are shown in Table 3–12. 

 
 

Table 3–12. Misses and Cycle Counts for Dot Product Example (C621x/C671x Devices) 
 

N = 4096, S = 64 Original Optimized 

Execute Cycles 8269 8269 

L1D Stall Cycles 7177 5639 

L1D Read Misses 2048 1280 

L1D Write Buffer Full 0 0 

L1P Stall Cycles 50 50 

L1P Misses 10 10 

Total Cycles 15 496 14 225 
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3.3.7.2 C64x Cycle Counts 

For C64x devices, the cycle counts are shown in Table 3–13 (page 3-45). The 
number of elements per vector N was set to 16 384. We expect to see about 
16 384 elements × 2 bytes per element × 2 arrays/64 bytes per cache line = 
1024 read misses to occur. The size of each array is 32 Kbytes, twice the 
capacity of L1D. The total amount of data that is allocated in L1D for each call 
is 64 Kbytes, but only 16 Kbytes can be retained at a time. Since the two arrays 
are accessed in an interleaved fashion, by the time the first call to the routine 
has completed, only the last quarter of the arrays in1[ ] and w[ ] will reside in 
L1D. The following call then has to reallocate w[ ] again. 

Through blocking we expect to save the capacity misses for the array w[ ], 
which are 16 384 elements × 2 bytes × 3 arrays/64 bytes per line = 1536. 
The actual cycle counts are shown in Table 3–14 (page 3-46). Read miss stalls 
were reduced by 23 percent from 24 704 to 15 528. 

We can further reduce the number of read miss stalls by exploiting miss pipe- 
lining. The touch loop is used to allocate w[ ] once at the start of the iteration; 
then before each call of dotprod, the required input array is allocated: 

 

 
for (i=0; i<4; i++) 

{ 

o = i * N/4; 

touch(w+o, N/4 * sizeof(short)); 

touch(in1+o, N/4 * sizeof(short)); 

dotprod(in1+o, w+o, N/4); 

 
touch(in2+o, N/4 * sizeof(short)); 

dotprod(in2+o, w+o, N/4); 

 
touch(in3+o, N/4 * sizeof(short)); 

dotprod(in3+o, w+o, N/4); 

 
touch(in4+o, N/4 * sizeof(short)); 

dotprod(in4+o, w+o, N/4); 

} 
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It is important to note that the LRU scheme automatically retains the line that 
hits (w[ ] in this case), as long as two lines in the same set are always 
accessed in the same order. (Assume that way 0 in set X is accessed before 
way 1 in set X. The next time set X is accessed, it should be in the same order: 
way 0, then way 1). This LRU behavior cannot be assured if the access order 
changes. Example: If after dotprod array w[ ] is LRU and array in[ ] is MRU, 
w[ ] was accessed before in[ ]. If the next dotprod accesses w[ ] first again, 
the access will hit and the line of w[ ] turns MRU and is protected from eviction. 
However, if now the touch loop is used, in[ ] is accessed before w[ ]. Accesses 
to in[ ] will miss and evict w[ ] since it is LRU. Therefore, it has to be ensured 
that after each dotprod w[ ] is MRU. This can be achieved by aligning w[ ] and 
in[ ] at the same set, and within this set placing the start of w[ ] ahead of in[ ] 
as shown in Figure 3–12. Consider processing of elements 64 to 127. When 
element 127 of both w[ ] and in[ ] is accessed, in[127] is one line ahead, leaving 
the line of w[ ] in set 2 most recently used. Consequently, all lines of w[ ] will 
become MRU and will not be evicted. 

 
 

Figure 3–12. Memory Layout for Dotprod With Touch Example 
relative 
L1D set 

0 
1 
2 

 
 
 
 

S 

w[0]  in[0] in[N/4–1]  
   
w[64] ...... w[127]  in[64]  

 ..in[127]   
   
   
   

w[N/4–1]   
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In this example, arrays w[ ] and in[  ] should be aligned to different memory banks 
to avoid bank conflicts. If arrays w[ ] and in[ ] are aligned to the same set first, 
and in[ ] is then aligned to bank 2 the desired memory layout is achieved: 

 

The touch loop is called five times per iteration. For M read misses, each touch 
loop requires (2.5 × M + 16) cycles, in this case: 2.5 × N/4 × sizeof(short)/64 
+ 16 = 336 cycles. The dotprod routine then will not suffer any read miss stalls. 
The results are shown in Table 3–15 (page 3-46). This brings the total cycle 
count down to 24 100. Compared to the original cycle count of 41 253, this is 
a reduction of 42 percent. 

Table 3–13. Misses and Cycle Counts for Dot Product Example (C64x Devices) 
 

 1st Call 2nd Call 3rd Call 4th Call  
N = 16 384, S = 128 (in1,w) (in2,w) (in3,w) (in4,w) Total 

Execute Cycles 4120 4124 4125 4125 16 494 

L1D Stall Cycles 6176 6176 6176 6176 24 704 

L1D Read Misses 1025 1025 1025 1025 4100 

L1D Write Buffer Full 0 0 0 0 0 

L1P Stall Cycles 46 7 2 0 55 

L1P Misses 11 1 2 0 14 

Total Cycles 10 342 10 307 10 303 10 301 41 253 

/* avoid bank conflicts AND ensure w[ ] is MRU */ 

#pragma DATA_MEM_BANK(in1, 2) 

short in1[N]; 

short in2[N]; 

short in3[N]; 

short in4[N]; 

*/ /* this implies #pragma DATA_MEM_BANK(w, 0) 

#pragma DATA_ALIGN(w, CACHE_L1D_LINESIZE) 

short w [N]; 

#pragma DATA_SECTION(in1, ”.mydata”) 

#pragma DATA_SECTION(in2, ”.mydata”) 

#pragma DATA_SECTION(in3, ”.mydata”) 

#pragma DATA_SECTION(in4, ”.mydata”) 

#pragma DATA SECTION(w,  ”.mydata”) 
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Table 3–14. Misses and Cycle Counts for Dot Product Example After Blocking (C64x Devices) 
 

 1st Call 2nd Call 3rd Call 4th Call Total Per  
N = 16 384, S = 128 (in1,w) (in2,w) (in3,w) (in4,w) Iteration Total 

Execute Cycles 1048 1048 1048 1048 4192 16 768 

L1D Stall Cycles 1542 780 780 780 3882 15 528 

L1D Read Misses 257 130 130 130 647 2588 

L1D Write Buffer Full 0 0 0 0 0 0 

L1P Stall Cycles 46 2 0 9 57 228 

L1P Misses 10 2 0 2 14 56 

Total Cycles 2636 1830 1830 1839 8135 32 540 

 
 
 
 

Table 3–15. Misses and Cycle Counts for Dot Product Example With Blocking and Touch 
(C64x Devices) 

 
  

1st 
Call 

  
2nd 
Call 

 
3rd 
Call 

 
4th 
Call 

Total 
Per 

Itera- 

 

N = 16 384, S = 128 Touch (in1,w) Touch (in2,w) Touch (in3,w) Touch (in4,w) tion Total 

Execute Cycles 165 1048 83 1048 83 1048 82 1054 4611 18 444 

L1D Stall Cycles 518 6 259 12 259 12 265 20 1351 5404 

L1D Read Misses 256 1 128 2 128 2 129 3 649 2596 

L1D Write Buffer Full 0 0 0 0 0 0 0 0 0 0 

L1P Stall Cycles 15 32 1 3 1 2 1 8 63 252 

L1P Misses 5 10 1 2 1 1 1 2 23 92 

Total Cycles 698 1086 343 1063 343 1062 348 1082 6025 24 100 
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3.3.8 Avoiding Write Buffer Related Stalls 

The L1D write buffer can be the cause for additional stalls. Generally, write 
misses do not cause stalls since they pass through the write buffer to the lower 
level memory (L2 or external memory). However, the depth of the write buffer 
is limited to four entries. If the write buffer is full and a write miss occurs, the 
CPU stalls until an entry in the buffer becomes available. Also, a read miss 
causes the write buffer to be completely drained before the miss is serviced. 
This is necessary to ensure proper read-after-write ordering (the read that 
caused the miss may access data that is still in the write buffer). The number 
of cycles it takes to drain the write buffer adds to the normal read miss stall 
cycles. For additional information, see section 3.1, the TMS320C621x/ C671x 
DSP Two-Level Internal Memory Reference Guide (SPRU609), and the 
TMS320C64x DSP Two-Level Internal Memory Reference Guide (SPRU610). 

Write buffer related stalls can be simply avoided by allocating the output buffer 
in L1D. Writes will then hit in L1D rather than being passed on to the write buffer. 
Consider the constant-vector add routine in Example 3–9. 

 
 

Example 3–9. Add Constant to Vector Function 
 

 
void vecaddc(const short *restrict x, short c, short *restrict r, int nx) 

{ 

int i; 

 
for (i = 0 ; i < nx; i++) 

r[i] = x[i] + c; 

} 
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Assume the scenario shown in Example 3–10. A constant c is added to four 
input vectors in[4][N] and the results are then used to compute the dot product 
with the reference vector ref[ ]. 

In the first iteration, vecaddc may suffer read miss stalls for allocating in[0], and 
write buffer stalls while writing results to out[ ]. Also, dotprod will see read miss 
stalls for out[ ] and ref[ ]. If arrays out[ ] and ref[ ] can be retained in L1D for 
the remaining iterations, only compulsory misses for in[ ] will be incurred. 
Since out[ ] is now allocated in L1D, writes will hit instead of passing through 
the write buffer. 

 
 

Example 3–10. Vecaddc/Dotprod Code 
 

 
 

3.3.8.1 C621x/C671x Device Example 

The size of each array shall be 256 elements such that one array occupies 
one-eighth of L1D as shown in Figure 3–13. An optimized C version of the 
vecaddc routine was used that computes two results per cycle in the inner 
loop, that is, it takes N/2 cycles to execute plus some cycles for set-up code. 
Thus, we expect to see 128 execute cycles for vecaddc. The routine accesses 
256 elements, 512 bytes spanning 16 cache lines. We expect to see 16 L1D 
read misses causing 16 × 4 stalls = 64 stall cycles. Additionally, there will be 
write buffer related stalls. First, one STW instruction is issued every cycle in 
the kernel. When the output array is not in L1D (for the first iteration in 
Example 3–10), the write buffer fills at a rate of one entry per cycle. However, 
since the write buffer drains only at a rate of one entry every 2 cycles, this will 
cause write buffer full stalls. Second, every time a read miss occurs, the write 
buffer will be drained completely to maintain proper program ordering. 

 
short in[4][N]; 

short out [N]; 

short ref [N]; 

short c, r; 

 
for (i=0; i<4; i++) 

{ 

vecaddc(in[i], c, out, N); 

r = dotprod(out, ref, N); 

} 
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Figure 3–13. Memory Layout for Vecaddc/Dotprod Example 
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The interaction of write buffer related stalls and read misses is listed in 
Table 3–16 (page 3-51). Consider the loop prolog and kernel shown in 
Figure 3–14 (page 3-52). Every cycle, 4 bytes are read from the input array. 
Therefore, after 8 execute cycles, 4 bytes × 8 cycles = 32 bytes are 
consumed that equals one cache line. The data words stored by STW shall be 
denoted A, B, C, ..., etc. In the first execution cycle of the prolog, a read miss 
occurs that costs 4 cycles. All subsequent 7 LDW’s hit in L1D. The write buffer 
starts filling up in execute cycle 7 (the predicate for STW on cycle 6 is false). 
On execute cycle 9, the next read miss occurs. This time the write buffer 
contains data and needs to be drained that takes 3 cycles. One more cycle for 
entry B is required that already was at the top of the queue for one cycle, and 
two cycles for entry C. Then the write buffer starts filling again. On execute 
cycle 16, the write buffer was full when another write miss occurred for data 
word K. The write buffer takes another cycle to drain G, which frees up one 
entry for K. On execute cycle 17, the write buffer is full when the read miss 
occurs. This causes 7 additional write buffer drain stalls (2 cycles for I, J, and 
K; and 1 cycle for H). Again, on execute cycle 24, we take one stall cycle due 
to write buffer full. The pattern from execute cycle 17 to 24 now repeats. In 
summary, we  expect  to  see  the  following  number  of  L1D  stall  cycles: 
4 + (4 + 2 + 1) + ((4 + 7 + 1) × 14) = 179. 

The dotprod routine sees 32 read misses since it accesses 512 elements. 
Since the load instructions occur in parallel, the misses will be overlapped and 
we expect to see 32 misses/2 × 7 cycles for two parallel misses = 112 stall 
cycles. 

For iterations 2 to 4, vecaddc will only suffer read miss stalls for the in[ ] array. 
Any write buffer related stalls will no longer occur since the output array was 
allocated in L1D by the dotprod routine in the previous iteration. Read miss 
stalls will take 16 read misses × 4 stalls per miss = 64 stall cycles. Also, the 
dotprod routine will not incur any stalls since both out[ ] and ref[ ] arrays are 
held in L1D. The actual cycle counts are shown in Table 3–17 (page 3-53). 
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Table 3–16. Interaction of Read Miss and Write Buffer Activity for the 
First Call of Vecaddc (n = 0..13) (C21x/C671x Devices) 

 
 

Execute Cycle Read Activity Write Buffer Contents 

1 4 miss stalls  

2 hit  

3 hit  

4 hit  

5 hit  

6 hit  

7 hit A 

8 hit A, B 

9 4 miss stalls, 2 write buffer drain stalls C 

10 hit C, D 

11 hit D, E 

12 hit D, E, F 

13 hit E, F, G 

14 hit E, F, G, H 

15 hit F, G, H, I 

16 hit 1 write buffer full stall, G, H ,I, J 

17 + 8*n 4 miss stalls, 7 write buffer drain stalls K 

18 + 8*n hit K, L 

19 + 8*n hit L, M 

20 + 8*n hit L, M, N 

21 + 8*n hit M, N, O 

22 + 8*n hit M, N, O, P 

23 + 8*n hit N, O, P, Q 

24 + 8*n hit 1 write buffer full stall, O, P, Q, R 
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;*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––* 

;*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––* 

L2: ; PIPED LOOP KERNEL 

;*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––* 

 
 

Figure 3–14. C621x/C671x Assembly Code for Prolog and Kernel of Routine vecaddc 
 
 
 
 

L1:   ; PIPED LOOP PROLOG  

 
 
|| 

  
LDW .D1T1 

B .S1 

*A0++,A3 

L2 

; 

; 

(P) 

(P) 

|10| 

|10| 

 
 
|| 

  
SUB .L1X 

B .S1 

B5,8,A1 

L2 

 
 

; 

 
 
(P) 

 
 
@|10| 

||   LDW .D1T1 *A0++,A3 ; (P) @|10| 

 
 
|| 

 
 
[ 

 
 
A1] 

LDW .D1T1 

SUB .L1 

*A0++,A3 

A1,1,A1 

; 

; 

(P) 

(P) 

@@|10| 

@@@|10| 

|| [ A1] B .S1 L2 ; (P) @@|10| 

 
 
|| 

 
 
[ 

 
 
A1] 

MV .S2X 

B .S1 

A6,B5 

L2 

 
 

; 

 
 
(P) 

 
 
@@@|10| 

|| [ A1] SUB .L1 A1,1,A1 ; (P) @@@@|10| 

||   LDW .D1T1 *A0++,A3 ; (P) @@@|10| 

   
MVK .S2 0x1,B0 ; init prolog collapse predicate 

||   ADD .L2X B4,A3,B4   

||   LDW .D1T1 *A0++,A3 ; (P) @@@@|10| 

|| [ A1] SUB .L1 A1,1,A1 ; (P) @@@@@|10| 

|| [ A1] B .S1 L2 ; (P) @@@@|10| 
 
 
 
 
 

 [ B0] SUB .L2 B0,1,B0 ;  

|| [!B0] STW .D2T2 B6,*B5++ ; |10| 

||  ADD2 .S2X A3,B4,B6 ; @|10| 

|| [ A1] B .S1 L2 ; @@@@@|10| 

|| [ A1] SUB .L1 A1,1,A1 ; @@@@@@|10| 

||  LDW .D1T1 *A0++,A3 ; @@@@@@|10| 
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Table 3–17. Misses and Cycle Counts for Vecaddc/Dot Product Example 
(C621x/C671x Devices) 

 

1st Iteration 2nd – 4th Iteration 
 

N = 256, S = 64 vecaddc dotprod  vecaddc dotprod Total 
Execute Cycles 147 146  147 146 1172 

L1D Stall Cycles 183 116  64 0 491 

L1D Read Misses 17 32  16 0 97 

L1D Write Buffer Full 65 0  0 0 65 

L1P Stall Cycles 25 30  0 0 55 

L1P Misses 5 6  0 0 11 

Total Cycles 354 287  211 146 1707 

 
3.3.8.2 C64x Device Example 

The size of each array shall be 1024 elements such that one array occupies 
one-eighth of L1D as shown in Figure 3–13. An optimized C version of the 
vecaddc routine was used that computes eight results every 2 cycles in the 
inner loop, that is, it takes N/4 cycles to execute plus some cycles for set-up 
code. Thus, we expect to see 256 execute cycles for vecaddc. The routine 
accesses 1024 elements, 2048 bytes spanning 32 cache lines. We expect to 
see 32 L1D read misses causing 32 × 6 stalls = 192 stall cycles. Additionally, 
there will be write buffer related stalls. Two STDW instructions are issued 
every 2 cycles in the kernel. When the output array is not in L1D (for the first 
iteration in Example 3–10), the write buffer fills at an average rate of one entry 
per cycle. Since the write buffer drains at the same rate, there will not be any 
write buffer full conditions. However, every time a read miss occurs, the write 
buffer will be drained completely to maintain proper program ordering. Due to 
the high draining rate and support for write merging, the C64x write buffer does 
not generally suffer write buffer full stalls. 

The interaction of write buffer related stalls and read misses is listed in 
Table 3–18. Consider the loop prolog and kernel shown in Figure 3–15 
(page 3-55). Every other cycle, 16 bytes are read from the input array. There- 
fore, after 8 execute cycles, 16 bytes × 8/2 cycles = 64 bytes are consumed 
that equals one cache line. The data words stored by STDW shall be denoted 
A, B, C, ..., etc. In the first execution cycle of the prolog, one read miss and one 
read hit occurs that costs 6 stall cycles. The subsequent 3 LDDW||LDDW’s hit 
in L1D. The write buffer starts filling up in execute cycle 8 (the predicate for 
STW on cycle 6 is false). On execute cycle 9, the next read miss occurs. The 
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write buffer still contains B that needs to be drained taking one cycle. Then the 
write buffer starts filling again. The pattern from execute cycle 9 to 16 now 
repeats. In summary, we expect to see the following number of L1D stall cycles: 
6 + ((6 + 1) × 31) = 223. 

 
The dotprod routine sees 64 read misses since it accesses 2048 elements. 
We expect to see 64 misses × 6 cycles = 384 stall cycles. 

 
For iterations 2 to 4, vecaddc will only suffer read miss stalls for the in[ ] array. 
Any write buffer related stalls will no longer occur since the output array was 
allocated in L1D by the dotprod routine in the previous iteration. Read miss 
stalls will take 32 read misses × 6 stalls per miss = 192 stall cycles. Also, the 
dotprod routine will not incur any stalls since both out[ ] and ref[ ] arrays are 
held in L1D. The actual cycle counts are shown in Table 3–19 (page 3-56). 

 
Table 3–18. Interaction of Read Miss and Write Buffer Activity for the 

First Call of Vecaddc (n = 0..30) (C64x Devices) 
 

Execute Cycle Read Activity Write Buffer Contents 

1 6 miss stalls  

2   

3 hit  

4   

5 hit  

6   

7 hit  

8  A, B 

9 + 8*n 6 miss stalls, 1 write buffer drain stall  

10 + 8*n  D, E 

11 + 8*n hit E 

12 + 8*n  F, G 

13 + 8*n hit G 

14 + 8*n  H, I 

15 + 8*n hit I 

16 + 8*n  J, K 
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;*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––* 

|| MVKH .S1 0x10000,A1 ; init prolog collapse predicate 

;**–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––* 

L2: ; PIPED LOOP KERNEL 

;**––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––* 

 
 

Figure 3–15. C64x Assembly Code for Prolog and Kernel of Routine vecaddc 
 
 
 
 

L1:   ; PIPED LOOP PROLOG  

 
 
|| 

 
 
[ 

 
 
A0] 

 
LDDW .D2T2 

BDEC .S1 

*++B9(16),B7:B6 

L2,A0 

 
; 

; 

 
(P) 

(P) 

 
|10| 

||   LDDW .D1T1 *A8++(16),A5:A4 ; (P) |10| 

    
ZERO .D1 

 
A1 

   

 
 
|| 

  
PACK2 .L1 

LDDW .D2T2 

 
A3,A3,A3 

*++B9(16),B7:B6 

 
 

; 

 
 
(P) 

 
 
@|10| 

|| [ A0] BDEC .S1 L2,A0 ; (P) @ 

||   LDDW .D1T1 *A8++(16),A5:A4 ; (P) @|10| 

 
 
|| 

   
SUB .D2X 

MV .D1 

A6,8,B8 

A6,A9 

   

 
 
 
 
 
 
 

 
|| 

 
[ A0] 

ADD2 

BDEC 

.S2X 

.S1 

B7,A3,B5 

L2,A0 

; 

; 

|10| 

@@ 

||  LDDW .D1T1 *A8++(16),A5:A4 ; @@@|10| 

||  LDDW .D2T2 *++B9(16),B7:B6 ; @@@|10| 

 
 
|| 

[ A1] 

[!A1] 

MPYSU 

STDW 

 
.M1 

.D1T1 

2,A1,A1 

A7:A6,*A9++(16) 

 
; 

; 

 
 
|10| 

|| [!A1] STDW .D2T2 B5:B4,*++B8(16) ; |10| 

||  ADD2 .S2X B6,A3,B4 ; @|10| 

||  ADD2 .S1 A5,A3,A7 ; @|10| 

||  ADD2 .L1 A4,A3,A6 ; @|10| 
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Table 3–19. Misses and Cycle Counts for Vecaddc/Dot Product Example (C64x Devices) 
 

1st Iteration 2nd – 4th Iteration 
 

N = 1024, S = 128 vecaddc dotprod  vecaddc dotprod Total 
Execute Cycles 272 280  272 280 2208 

L1D Stall Cycles 342 384  192 0 800 

L1D Read Misses 33 64  32 0 98 

L1D Write Buffer Full 0 0  0 0 0 

L1P Stall Cycles 19 25  0 0 0 

L1P Misses 15 11  0 0 0 

Total Cycles 633 689  464 280 3554 
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This chapter provides examples that demonstrate the optimization techniques 
that were discussed in Chapter 3. The source code along with Code 
Composer Studio (CCS) projects files for each example are provided in the 
accompanying file archive. 

The cache-optimized FFT from the Texas Instruments DSP Library (DSPLIB) 
is explained. It is described how it can be used to reduce the cache overhead 
for FFT data that exceeds the cache capacity. Additionally, a modified version 
of this FFT routine is presented that allows you to reduce the cache overhead 
even further. 

The blocking method described in section 3.3.7, Avoiding Capacity Misses, is 
applied to a FIR filter with a large number of taps. 

Finally, a typical processing chain configuration within a DMA double-buffering 
framework is described. It is explained how to choose memory layout that 
enables data reuse from cache and thus eliminating all cache misses except 
the compulsory misses for the input data. An in-depth analysis of the cache 
behavior is provided. 
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4.2 FIR With Large Number of Coefficients .............................................. 4-18 
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4-2 Examples SPRU656A 

Cache-Optimized FFT 
 

 

 

4.1 Cache-Optimized FFT 
The C62x and C64x DSPLIB provide several optimized FFT routines. This 
example uses the fft16x16r routine that has been modified to allow for higher 
cache efficiency. For additional information on this routine including twiddle 
factor generation and appropriate input data scaling, refer to the DSPLIB 
Programmer’s Reference Guides (SPRU565 for C64x devices and SPRU402 
for C62x devices). The routine can be called in a single-pass or a multi-pass 
fashion. As single pass, the routine behaves like other DSPLIB FFT routines 
in terms of cache efficiency. If the total data size accessed by the routine fits 
in L1D, the single pass use of fft16x16r is most efficient. The total data size 
accessed for an N-point FFT is N × 2 complex parts × 2 bytes for the input data 
plus the same amount for the twiddle factors, that is, 8 × N bytes. Therefore, 
if 8 × N is smaller or equal to the capacity, then no special considerations need 
to be given to cache and the FFT can be called in the single-pass mode. Exam- 
ples: the L1D capacity of a C621x/C671x device is 4 Kbytes. If N ::; 512 
(= 4 Kbytes/8), the single-pass FFT gives the best performance. For C64x 
devices, the L1D capacity is 16 Kbytes, thus if N ::; 2048, the single-pass FFT 
is the best choice. The multi-pass version should be used whenever N > L1D 
capacity/8. 

The fft16x16r routine has the following API: 
 

N, 

*x, 

*w, 

*brev, 

*y, 

n_min, 

offset, 

nmax 

void fft16x16r 

( 

int 

short 

short 

unsigned char 

short 

int 

int 

int 

); 
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The function arguments are: 
 

N Length of FFT in complex samples, power of 2 ≤ 16 384 

x[2*N] Complex input data 

w[2*N] Complex twiddle factors 

brev[64] Bit reverse table (C62x device only) 

y[2*N] Complex data output 

n_min Smallest FFT butterfly used in computation. Used for decomposing 
FFT into sub-FFTs 

offset Index to sub-FFT from start of main FFT (in complex samples) 

nmax Size of main FFT in complex samples 

 
 

4.1.1 Structure of the Algorithm 
 

The FFT routine uses a decimation-in-frequency algorithm that is able to 
perform radix-2 and radix-4 FFTs. In the first part of the algorithms, 1log4(N–1)l 
radix-4 stages are performed. The second part then performs either another 
radix-4 stage or a radix-2 stage in case N is a power of 2. Since for the final 
stage the twiddle factors are ±1 and ±j, no multiplications are required. The 
second part also performs a digit or bit-reversal. The computation of the first 
part is in-place, while the second part is out-of-place. In-place computation has 
the advantage that only compulsory read misses occur when the input and 
twiddle factors are read for the first time. The output of each stage is written 
back to the input array, which is kept in L1D, thus eliminating all write buffer 
related stalls and read misses for the following stage (provided all data fits into 
cache). Only the output of the last stage is passed through the write buffer to 
L2. Due to the high data output rate this results in write buffer full stalls. 

 
 

4.1.2 Specially Ordered Twiddle Factors 
 

All fftNxN type routines in the DSPLIB use a redundant set of twiddle factors 
where each radix-4 stage (Figure 4–1) has its own set of twiddle factors. The 
first stage comprises 3/4 × N twiddle factors, the second stage 3/16 × N, the 
third stage 3/64 × N, etc. There are 1log4Nl stages and twiddle factor sets. All 
twiddle factors required for the entire FFT are contained in the first set; how- 
ever, for the following stages, the twiddle factors required for a butterfly are no 
longer located contiguously in memory that would prevent the use of LDDW 
(for C64x devices) to load two complex twiddle factors. Another benefit of 
having individual twiddle factor sets per stage is that now the FFT can be 
decomposed into multiple smaller FFTs that fit into cache. 
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Figure 4–1. 16-Point Radix-4 FFT 
0*N/4 

 
 
 

1*N/4 
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Stage 1 Stage 2 
 
 
 
 

4.1.3 FFT Data Fits in L1D 

If all FFT data, input samples and twiddle factors fit into L1D, the routine only 
suffers compulsory misses. 

 
4.1.3.1 C621x/C671x Device Example 

All FFT data fits in L1D for N ::; 512. A 512-point FFT causes 128 misses 
(= 8 bytes × 512 points/32 bytes per cache line) and results in 512 stall cycles 
(= 128 misses × 4 stalls per miss). 

To assess potential write buffer full stalls in the last stage of the FFT, we 
observe that the kernel loop consists of 8 cycles and 4 STWs. The write buffer 
drains at a rate of 2 cycles per entry. Therefore, considering the average rate, 
we should not see any write buffer full stalls. However, if there had been bursts 
of writes, write buffer full conditions could have still occurred even though the 
average drain rate was not exceeded. In this case, the stores are scheduled 
such that the entries are allowed to drain before the write buffer becomes full. 
The write buffer contains no more than two entries at a time. 

L1P stalls can be estimated through the code size, which is 1344 bytes. Thus, 
the number of L1P misses are 21 (= 1344 bytes/64 bytes per cache line) and 
the number of stalls are 105 (= 21 misses × 5 cycles per miss). 
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The cycle count formula for the C62x device is 2.5 × N × 1log4 Nl– N/2 + 164. 

The execute cycle counts are tabulated in Table 4–1 over the allowed range 
of N. 

 
Thus, the expected total cycle count for N = 512 for C621x/C671x devices is 
6308 + 512 + 105 = 6925. 

 
Table 4–1. Execute Cycle Counts for a Single-Pass fft16x16r Routine 

 
N C621x/C671x Cycles C64x Cycles 

8 200 71 

16 236 91 

32 388 196 

64 612 316 

128 1380 741 

256 2596 1381 

512 6308 3326 

1024 12 452 6526 

2048 29 860 15 511 

4096 59 556 30 871 

8192 139 428 71 856 

16 384 278 692 143 536 

 
Figure 4–2 shows how the routine has to be called in a single-pass mode. The 
twiddle factors can be generated with the twiddle factor generator program 
provided with DSPLIB. The array brev has to be initialized with the values 
given in the DSPLIB Reference Guide. The argument n_min is set equal to the 
radix of the FFT (4 if N is a power of 4, and 2 if N is a power of 2). The arguments 
offset and nmax are only required for multi-pass mode, and for single-pass 
mode should always be 0 and N, respectively. 

 
The benchmark results in Table 4–2 show 139 L1D read misses instead of the 
expected 128. The additional misses are due to accesses to the bit-reverse 
index table (up to 3 cache lines) and stack accesses (about 5 cache lines) with- 
in the routine. The write buffer full stalls are caused by a series of 20 stores for 
saving register contents on the stack. 
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#define N 512 

#define RADIX 2 

unsigned char brev[64];/* bit reverse index table, see DSPLIB Reference Guide */ 

fft16x16r(N, x, w, brev, y, RADIX, 0, N); 

 
 

Figure 4–2. Single-Pass 512-Point FFT Routine (C621x/C671x Devices) 
 
 
 
 
 
 

short x[2*N]; /* input samples  */ 

short w[2*N]; /* twiddle factors created by twiddle factor generator */ 

short y[2*N]; /* output data  */ 
 
 
 
 
 
 
 
 

Table 4–2. Execute Cycle Counts for Single-Pass 512-Point FFT (C621x/C671x Devices) 
 

N = 512 Cycles 

Execute Cycles 6308 

L1D Stall Cycles 600 

L1D Read Misses 139 

L1D Read Miss Stall Cycles 556 

L1D Write Buffer Full Stall Cycles 15 

L1P Stall Cycles 123 

L1P Misses 22 

Total Cycles 7016 
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#define N 2048 

#define RADIX 2 

fft16x16r(N, x, w, NULL, y, RADIX, 0, N); 

 
 

4.1.3.2 C64x Device Example 

All FFT data fits in L1D for N ::; 2048. A 2048-point FFT causes 256 misses 
(= 8 bytes × 2048 points/64 bytes per cache line), and results in 1536 stall 
cycles (= 256 misses × 6 stalls per miss). 

To assess potential write buffer full stalls in the last stage of the FFT, we 
observe that the kernel loop consists of 5 cycles and 4 STWs. The write buffer 
drains at a rate of 1 cycle per entry. Therefore, considering the average rate, 
we should not see any write buffer full stalls. However, since the outputs are 
written in a bit-reversed order rather than contiguously, L2 bank conflicts may 
occur. Since an L2 access requires 2 cycles to complete, accesses to the same 
bank on consecutive cycles cause a stall (see section 3.1.3, C64x Stall Condi- 
tions). These bank conflicts show up as write buffer stalls, since they effectively 
slow down the drain rate to one entry every 2 cycles (insufficient for the number 
of STWs per cycle). 

L1P cycles are difficult to estimate due to miss pipelining whose effectiveness 
depends on the number of instructions per execute packet. 

The cycle count formula is 1log4N–1l × (5 × N/4 + 25) + 5 × N/4 + 26. The 
execute cycle counts are tabulated in Table 4–1 over the allowed range of N. 
Thus, the expected total  cycle count for N = 2048 for C64x devices is 
15 511 + 1536 + L1D Write Buffer Full Stall Cycles + L1P Stall Cycles. 

Figure 4–3 shows how the routine has to be called in a single-pass mode. The 
twiddle factors can be generated with the twiddle factor generator program 
provided with DSPLIB. The array brev is only required for the C62x version of 
the routine, and the pointer argument should be passed NULL. The argument 
n_min is set equal to the radix of the FFT (4 if N is a power of 4, and 2 if N is 
a power of 2). The arguments offset and nmax are only required for multi-pass 
mode, and for single-pass mode should always be 0 and N, respectively. 

 
Figure 4–3. Single-Pass 2048-Point FFT Routine (C64x Devices) 

 
 
 
 
 

short x[2*N]; /* input samples   */ 

short w[2*N]; /* twiddle factors created by twiddle factor generator */ 

short y[2*N]; /* output data   */ 
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The penalty from the compulsory misses can be reduced by utilizing the touch 
loop. Assuming that x[ ] and w[ ] are allocated contiguously in memory, you 
can use one call to touch() to preallocate both arrays in L1D: 

 

 
 
 

The cycle counts are shown in Table 4–3. Although the number of L1D read 
miss stall cycles were reduced to about one third, the overall cycle count with 
the touch loop is only about 3 percent lower. 

 
Table 4–3. Execute Cycle Counts for Single-Pass 2048-Point FFT (C64x Devices) 

 
 With Touch  

N = 2048 Without Touch  Touch FFT Total 

Execute Cycles 15 520  143 15 520 15 663 

L1D Stall Cycles 2724  516 1497 2013 

L1D Read Miss Stall Cycles 1548  516 18 534 

L1D Read Misses 258  256 3 259 

L1D Write Buffer Full Stall Cycles 1176  0 1479 1479 

L1P Stall Cycles 169  14 177 191 

L1P Misses 30  5 29 34 

Total Cycles 18 413  673 17 194 17 867 

 
touch(x, 4*N*sizeof(short)); 

fft16x16r(N, x, w, NULL, y, RADIX, 0, N); 
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4.1.4 FFT Data is Larger Than L1D Cache 

If the FFT data exceeds the capacity of L1D, not all data can be held in L1D. 
For each stage, input data and twiddle factors are read and the butterflies com- 
puted. The input data is overwritten with the results that are then read again 
by the following stage. When the capacity is exhausted, new read misses will 
evict already computed results (and twiddle factors) and the following stage 
suffers capacity misses. These capacity misses can be partially avoided if the 
computation of the FFT is split up into smaller FFTs that fit into cache. 

Consider the radix-4 16-point FFT shown in Figure 4–1. After computing the 
first stage, all four butterflies of stage 2 are independent and can be computed 
individually. Generally after each radix-4 FFT stage, an N-point input data set 
splits into 4 separate N/4-point data sets whose butterflies are completely 
independent from one another. This tree structure of the FFT makes decom- 
position possible. Assume that the data for an N-point FFT exceeds L1D, but 
the N/4-point data fits. Instead of computing the entire FFT stage after stage, 
we stop after the first stage. We then obtained 4 N/4-point data sets. To 
complete the N-point FFT, we then compute 4 individual N/4-point FFTs on the 
output data of the first stage. Since each of the N/4-point FFT fits into cache, 
misses only occur for the first stage of each of the N/4-point FFT. If the FFT 
had been computed conventionally, each stage would have suffered capacity 
misses. 

4.1.4.1 C621x/C671x Device Example 

Assume   a    2048-point    FFT    is    computed.    The    data    size    is    
8 × 2048 = 16 384 bytes; four times the size of L1D. After the first stage, we 
obtain four data sets with 512 points each. The data for a 512-point FFT fits 
into L1D. Hence, we can decompose the FFT into the first stage of a 2048-
point FFT plus four 512-point FFTs that compute the remaining stages. The 
required calling sequence of the FFT routine is shown in Figure 4–4. The 
argument nmin is N/4 that specifies the routine to exit after the stage whose 
butterfly input samples are a stride of N/4 complex samples apart (after the first 
stage). For the sub-FFTs, nmin becomes RADIX that means the FFT is 
computed to the end. The first argument now changes to N/4 to indicate that 
we compute N/4-point FFTs. The argument offset indicates the start of the sub- 
FFT in the input data set. The pointers to the input array have to be offset, 
accordingly. Since each FFT stage has its own set of twiddle factors, the 
twiddle factors for the first set (3 × N/4 complex twiddle factors) are skipped 
and set to point to the ones for the second stage. All sub-FFTs start at the 
second stage; the pointer into the twiddle factor array is the same for all sub- 
FFT calls. 



Cache-Optimized FFT 

4-
 

Examples SPRU656A 

 

 

#define N 2048 

#define RADIX 2 

short brev[64]; 

short y[2*N]; 

/* bit reverse index table, see DSPLIB Reference Guide 

/* output data 

*/ 

*/ 

/* Four N/4-point FFTs: */ 

fft16x16r(N/4, &x[ 0], &w[2*3*N/4], brev, &y[0], RADIX, 0, N); 

fft16x16r(N/4, &x[2*1*N/4], &w[2*3*N/4], brev, &y[0], RADIX, 1*N/4, N); 

fft16x16r(N/4, &x[2*2*N/4], &w[2*3*N/4], brev, &y[0], RADIX, 2*N/4, N); 

fft16x16r(N/4, &x[2*3*N/4], &w[2*3*N/4], brev, &y[0], RADIX, 3*N/4, N); 

 
 

Figure 4–4. Cache-Optimized 2048-Point FFT Routine (C621x/C671x Devices) 
 
 
 
 
 

short x[2*N]; /* input samples */ 

short w[2*N]; /* twiddle factors created by twiddle factor generator */ 
 
 
 
 

/* Stage 1 of N-point FFT:      */ 

fft16x16r(N, &x[ 0], &w[ 0], brev, &y[0], N/4, 0, N);  

 
 
 
 
 
 
 
 
 
 
 

For the first call, we can expect compulsory and conflict misses. For all following 
calls, there are only compulsory misses due to the first time access of data and 
twiddle factors. Since the sub-FFTs process a 512-point input data set, we can 
expect the same number of cache stalls as for Figure 4–2 (see Table 4–2). The 
cycle counts measured are shown in Table 4–4. 

Table 4–4. Execute Cycle Counts for Multi-Pass 2048-Point FFT (C621/C671x Devices) 
 

N = 2048 1st Call 2nd Call 3rd–5th Call Total 

Execute Cycles 5138 6308 6308 30 370 

L1D Stall Cycles 10 302 633 565 12 630 

L1D Read Miss Stall Cycles 10 287 612 550 12 549 

L1D Read Misses 2572 153 137 3136 

L1D Write Buffer Full Stall Cycles 15 15 15 75 

L1P Stall Cycles 103 10 10 143 

L1P Misses 21 2 2 29 

Total Cycles 15 543 6946 6883 43 138 
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The total execute cycle count for a single-pass FFT is 29 860. This is very 
close to the actual measured 30 370 cycles. It is slightly higher due to the call 
overhead for calling the function five times. Most of the L1D stalls are caused, 
as expected, by the first call (first FFT radix-4 stage). Once the FFT fits into 
L1D, we mostly see the compulsory misses for the data. 

For a 4096–point FFT, two stages have to be computed to obtain 16 256-point 
FFTs that fit into cache. The code would then change as shown in Figure 4–5. 

 
 

Figure 4–5. Cache-Optimized 4096-Point FFT Routine (C621x/C671x Devices) 
 

/* 16 N/16–point FFTs: */ 

for(i=0;i<16;i++) 

fft16x16r(N/16, &x[2*i*N/16], &w[2*(3*N/4+3*N/16)], brev, &y[0], RADIX, i*N/16, N); 

/* Stage 1 and 2 of N–point FFT: */ 

fft16x16r(N, &x[0], &w[0], brev, &y[0], N/16, 0, N); 

/* input samples */ 

/* twiddle factors created by twiddle factor generator */ 

/* bit reverse index table, see DSPLIB Reference Guide */ 

/* output data */ 

short x[2*N]; 

short w[2*N]; 

short brev[64]; 

short y[2*N]; 

#define N 4096 

#define RADIX 4 
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#define N 8192 

#define RADIX 2 

short x[2*N]; 

short w[2*N]; 

short y[2*N]; 

/* input samples 

/* twiddle factors created by twiddle factor generator 
/* output data 

*/ 

*/ 
*/ 

/* Four N/4-point FFTs: 

fft16x16r(N/4, &x[ 

*/ 

0], &w[2*3*N/4], NULL, &y[0], RADIX, 0, N); 

fft16x16r(N/4, &x[2*1*N/4], &w[2*3*N/4], NULL, &y[0], RADIX, 1*N/4, N); 

fft16x16r(N/4, &x[2*2*N/4], &w[2*3*N/4], NULL, &y[0], RADIX, 2*N/4, N); 

fft16x16r(N/4, &x[2*3*N/4], &w[2*3*N/4], NULL, &y[0], RADIX, 3*N/4, N); 

 
 

4.1.4.2 C64x Device Example 
 

Assume   an   8192-point    FFT    is    computed.    The    data    size    is   
8 × 8192 = 65 536 bytes; four times the size of L1D. After the first stage, we 
obtain four data sets with 2048 points each. The data for a 2048-point FFT fits 
into L1D. Hence, we can decompose the FFT into the first stage of an 8192-
point FFT plus four 2048-point FFTs. The required calling sequence of the 
FFT routine is shown in Figure 4–6. The argument nmin is N/4 that speci- 
fies the routine to exit after the stage whose butterfly input samples are a stride 
of N/4 complex samples apart (after the first stage). For the sub-FFTs, nmin 
becomes RADIX that means that the FFT is computed to the end. The first 
argument now changes to N/4, to indicate that we compute N/4-point FFTs. 
The argument offset indicates the start of the sub-FFT in the input data set. The 
pointers to the input array have to be offset, accordingly. Since each FFT stage 
has its own set of twiddle factors, the twiddle factors for the first set (3 × N/4 
complex twiddle factors) are skipped and set to point to the ones for the second 
stage. All sub-FFTs start at the second stage; the pointer into the twiddle factor 
array is the same for all sub–FFT calls. 

 
 
 
 

Figure 4–6. Cache-Optimized 8192-Point FFT Routine (C64x Devices) 
 
 
 
 
 
 
 
 
 
 
 

/* Stage 1 of N-point FFT:      */ 

fft16x16r(N, &x[ 0], &w[ 0], NULL, &y[0], N/4, 0, N);  
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For the first call, we can expect compulsory and conflict misses. For all following 
calls, there are only compulsory misses due to the first time access of data and 
twiddle factors. The total execute cycle count according to the single-pass 
cycle count formula is 71 856. The cycle breakdown for the 2048-point sub-
FFTs is expected to be similar to the single-pass 2048-point FFT (see Table 
4–3, page 4-8). The cycle counts measured are shown in Table 4–5. Note 
that an 8192-point single-pass FFT takes 156 881 cycles; whereas, the 
multi-pass FFT takes only 128 956 cycles, an 18 percent improvement. 

The stall overhead relative to the ideal formula cycle count is 79 percent. Using 
the touch loop here is not very effective. Due to the high number of conflict 
misses in the first stage, the miss pipelining of the compulsory read misses 
results in only small savings. For the following stages, L1D contains a large 
amount of dirty data. Whenever a dirty cache line has to be evicted, miss pipe- 
lining is disrupted. Hence, the touch loop again shows little effect. 

 
 

Table 4–5.  Execute Cycle Counts for Multi-Pass 8192-Point FFT (C64x Devices) 
 

N = 8192 1st Call 2nd Call 3rd–5th Call Total 

Execute Cycles 10 293 15 520 15 520 72 373 

L1D Stall Cycles 43 993 3522 2962 56 401 

L1D Read Miss Stall Cycles 43 993 1638 1386 49 789 

L1D Read Misses 7333 273 231 8299 

L1D Write Buffer Full Stall Cycles 0 1884 1576 6612 

L1P Stall Cycles 130 31 7 182 

L1P Misses 27 5 2 38 

Total Cycles 54 416 19 073 18 489 128 956 
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4.1.5 Avoiding L1D Thrashing on C64x Device 

The examples in section 4.1.4 showed that the majority of cache misses occur 
in the initial FFT stages that exceed the cache capacity. The majority of these 
misses are conflict misses caused by thrashing. To see how these conflict 
misses are caused, consider the computation of the first two butterflies of the 
stage 1 in the 16-point radix-4 FFT shown in Figure 4–7. 

 

Figure 4–7. Radix-4 Butterfly Access Pattern 
4 Butterflies 

 
 

4 Butterflies 
0 

 
 
 
 

N/4 
 
 
 
 

N/2 
 
 
 
 

3*N/4 
 
 
 

Stage 1 Stage 2 
 

The first butterfly accesses the input data elements x[0], x[N/4], x[N/2] and 
x[3*N/4]. The second butterfly accesses the elements x[2], x[N/4  +  2], 
x[N/2 + 2] and x[3*N/4 + 2]. Assume N/4 complex input samples consume one 
cache way, that is, half of the L1D capacity (if N = 8192 for C64x device). In 
this case, all four addresses of the elements of the two butterflies map to the 
same set. Initially, elements x[0] and x[N/4] are allocated in L1D in different 
ways. However, the access of x[N/2] and x[3*N/4] evicts these two elements. 
Since x[0] and x[2] share the same line, the access to x[2] misses again, as 
do all remaining accesses for the second butterfly. Consequently, every 
access to an input sample misses due to conflicts, making no use of line reuse. 
Instead of one miss per line, we see one miss per data access. The accesses 
to twiddle factors may interfere with input data accesses, but this is insignifi- 
cant. The twiddle factors are ordered such that they accessed linearly for a 
butterfly, thus avoiding conflicts. 
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These conflict misses can be avoided if each of the four input elements of a 
butterfly maps to a different set. To achieve this, the input data is split into four 
sets consisting of N/4 complex samples each and a gap of one cache line is 
inserted after each set as shown in Figure 4–8. This new memory layout 
requires that the FFT routine is modified such that an offset is added to the 
input data array indices as shown in Table 4–6 (note that x[ ] is defined as short 
and the increment of i is 2 since we access complex samples). The modified 
assembly routine can be found in the corresponding example CCS project. 

Figure 4–8. New Memory Layout for FFT Input Data 
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Table 4–6. New Butterfly Access Pattern 

Normal Access Pattern New Modified Access Pattern 
 

x[i] x[i] 
 

x[N/4 + i] x[N/4+ i + L1D_LINESIZE/2] 
 

x[N/2 + i] x[N/2+ i + L1D_LINESIZE] 
 

x[3*N/4 + i] x[3*N/4 + i + 3*L1D_LINESIZE/2] 

 
 

The new access pattern is used for all FFT stages that exceed the cache 
capacity. Once the FFT has been decomposed to the stage where an entire 
FFT data set fits into cache, the normal access pattern is used. Before the 
modified FFT routine can be called, the four input data sets have to be moved 
apart. This can be done with the DSPLIB routine DSP_blk_move. The size of 
the input array has to be increased by 3 cache lines. Also, since the output data 
of the first stage is split up, we have to offset the start of each sub-FFT, accord- 
ingly. The argument list of the FFT routine was modified to accept a flag gap 
that indicates if the input data was split up (gap = 1) or is contiguous (gap = 0). 
The exact details of the procedure is shown in Figure 4–9 (N = 8192). 

N bytes 
 

 

N bytes 
 

N bytes 
 

 

N bytes 

 

N bytes 

N bytes 

N bytes 

N bytes 
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Figure 4–9. 8192-Point FFT with Cache-Optimized Access Pattern (C64x Devices) 
 

/* Compute remaining FFT stages */ 

for(i=0; i<4; i++) 

fft16x16rc(N/4,&xc[2*i*N/4+ i*CACHE_L1D_LINESIZE/2], &w[2*3*N/4], NO_GAP, y, 
RADIX, 3*N/4, N); 

/* Compute first FFT stage */ 
fft16x16rc(N, &x_s[0], &w[0], GAP, y, N/4, 0, N); 

/* Copy and split the input data */ 

for(i=0; i<4; i++) 

{ 

touch (&x[2*i*N/4], 2*N/4*sizeof(short)); 

DSP_blk_move(&x[2*i*N/4], &xc[2*i*N/4 + i*CACHE_L1D_LINESIZE/2], 2*N/4); 

} 

*/ /* output data 

/* twiddle factors created by twiddle factor generator */ short w [2*N]; 

short y [2*N]; 

*/ 

*/ 

/* input samples 

/* input samples split up 

short x [2*N]; 

short xc [2*N+ 3*CACHE_L1D_LINESIZE/2]; 

#define CACHE_L1D_LINESIZE 64 

#define N 8192 

#define RADIX 2 

#define GAP 1 

#define NO_GAP 0 
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The savings in the number of conflict misses far outweighs the additional over- 
head introduced by splitting up the input data. Splitting the data can also be 
performed in the background, if a DMA is used. The CSL DAT_copy routine 
can be used for this purpose: 

 

 
 
 

The cycle count results are shown in Table 4–7. Note that the number of L1D 
stalls is greatly reduced from 43 993 to only 6101 stall cycles. The overhead 
due to stalls and the block move operation is 34 percent. If background DMAs 
are used instead of block moves, the overhead drops to 26 percent. 

 
Table 4–7. Execute Cycle Counts for Multi-Pass FFT with Cache-Optimized Access Pattern 

(C64x Devices) 
 

  
blk_move 

 
1st Pass 

Total With 
blk_move 

Total Without 
blk_move 

Execute Cycles 4620 10 294 77 090 72 470 

L1D Stall Cycles 1100 6101 19 098 17 998 

L1D Read Miss Stall Cycles 1100 6101 12 990 11 890 

L1D Read Misses 514 903 2334 1820 

L1D Write Buffer Full Stall Cycles 0 0 6108 6108 

L1P Stall Cycles 50 141 227 177 

L1P Misses 14 27 49 35 

Total Cycles 5771 16 536 96 415 90 644 

 
/* Copy and split the input data */ 

for(i=0; i<4; i++) 

id = DAT_copy(&xi[2*i*N/4], &x[2*i*N/4 + i*CACHE_L1D_LINESIZE/2], 

2*N/4*sizeof(short)); 

 
/* Perform other tasks */ 

... 

DAT_wait(id); 

 
/* Compute first FFT stage */ 

... 
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4.2 FIR With Large Number of Coefficients 
Assume a FIR filter is computed with a large number of coefficients that exceed 
the capacity of one way of L1D. A conventional implementation would result 
in a high number of capacity misses because after the convolution for one out- 
put is completed, the input data and coefficients required for the next output 
will have been evicted. Thus, data cannot be reused across filter outputs. 

In order to reduce the number of capacity misses, the blocking method 
described in section 3.3.7, Avoiding Capacity Misses, can be used to split the 
FIR filter into multiple smaller filters such that the same coefficients can be 
reused before they get evicted. A subset of coefficients is kept in L1D and used 
to compute its contribution to all output samples, then the next subset of coeffi- 
cients is brought into cache, and so on. While one subset of coefficients is 
retained in L1D, new inputs are continuously brought into cache (one new 
input sample for each output in the steady state). This is shown in Figure 4–10. 
After all subfilters have been calculated, their individual contributions to each 
output sample are summed up to yield the final output sample. 

Figure 4–10. Splitting Up a Large FIR Filter 
0    nh 

 
 

Coefficients used for the 1st call 
of the FIR filter which computes 
their contribution to all output 
samples. 

input samples x  Coefficients used for the 2nd call. 

0 ny nx = ny + nh – 1  Coefficients used for the 3rd call. 
Coefficients used for the last call. 

 

0 ny output samples y from 1st FIR 

+ output samples y from 2nd FIR 

+ output samples y from 3rd FIR 
 

+ output samples y from last FIR 
 

final output is the sum of all 
outputs from the individual 
FIRs 

ny: Number of output samples 
nh: Number of coefficients 
nx: Number of input samples 

 

While new input samples replace old ones in cache, this does not matter as 
long as the coefficients are retained. If the coefficients are kept in one way and 
the input samples in the other (the size of the coefficient subset is not larger 
than one way of L1D), the coefficients will not be evicted by input samples. The 
behavior of the LRU replacement scheme automatically ensures that the lines 
which are not reused are replaced, leaving the ones that are reused in the 
cache. 
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What is the optimal number of coefficients per subfilter? Note that for the com- 
putation of ny output samples, each coefficient is allocated in cache only once. 
However, each input sample has to be reallocated for each subfilter computa- 
tion. Therefore, more coefficients per subfilter results in fewer cache misses. 
Using half the L1D capacity (equal to one cache way) for coefficients can be 
expected to be most efficient. However, due to the nature of convolution, there 
are evictions during the computation of each output, if a full cache way is allo- 
cated for the coefficients. Consider the accesses required for each filter output, 
assuming a hypothetical cache architecture with 6 sets and 8 coefficients per 
line as shown in Figure 4–11. Computation of the first output y[0] requires input 
samples x[0] to x[47]. The next output y[1] requires x[1] to x[48]. However, x[48] 
maps to set 0 and evicts the line containing x[0] to x[7]. For output y[3], which 
requires x[2] to x[49], the access to x[2] will then miss. At the same time, this 
evicts x[48] and x[49] that are required later.  Consequently, there will be    
2 misses for each filter output. Even though 48 samples can be packed into 
6 lines, they span 7 lines when they do not start at a cache line boundary. The 
cache capacity, in terms of number lines accessed rather data size, is exceeded. 
The repeated eviction and reallocation of the cache line can be avoided, if the 
number of coefficients is reduced such that they occupy one cache line less. 
That is, if only 40 instead of 48 coefficients are used in the example, the cache 
capacity is never exceeded. This is shown in Figure 4–12. The optimum sub- 
set size in bytes for the coefficient array, therefore, is the size of one cache way 
less one line. 

 
 

Figure 4–11.Cache Contents After Each Filter Output for Maximum Number of Filter 
Coefficients 

after computing y[0] 
(x[0] .. x[47]) 

after computing y[1] 
(x[1] .. x[48]) 

after computing y[2] 
(x[0] .. x[49]) 

   
1 eviction occurred in set 0 2 evictions occurred in set 0 

x[48] – x[55] h[0] – h[7] 
– – 

– – 

– – 

– – 

x[40] – x[47] h[40] – h[47] 
 

x[48] – x[55] h[0] – h[7] 
 

– 
 

– 
 

– 
 

– 
 

– 
 

– 
 

– 
 

– 

x[40] – x[47] h[40] – h[47] 
 

x[0] – x[7] h[0] – h[7] 
– – 

– – 

– – 

– – 

x[0] – x[7] h[0] – h[7] 
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Figure 4–12. Cache Contents After Each Filter Output for Optimum Number of Filter 
Coefficients 

after computing y[0] 
(x[0] .. x[47]) 

after computing y[1] 
(x[1] .. x[48]) 

after computing y[2] 
(x[0] .. x[49]) 

   
1 miss occurred in set 5 no misses occured 

 
4.2.1 C621x/C671x Device Example 

In this example, we use the routines DSP_fir_r8 and DSP_fir_r4 from the C62x 
DSPLIB (refer to the DSPLIB Programmer’s Reference Guide, SPRU402, for 
a description of the routine). 

Assume that a block of 512 outputs of a 4000-tap FIR filter is to be computed, 
NH = 4000 and NR = 512. One L1D cache way is 2048 bytes and can hold 
1024 16-bit coefficients. We subtract one cache line of coefficients to obtain 
the optimum number of filter coefficients per sub-FIR, 1024 – 16 = 1008. This 
leaves three sub-FIRs with 1008 coefficients plus one sub-FIR with 76 coeffi- 
cients. The code for the multi-pass FIR filter is shown in Figure 4–13. 

Figure 4–13. Optimized Multi-Pass FIR Filter Routine (C621x/C671x Devices) 

x[0] – x[7] h[0] – h[7] 
 

– 
 

– 
 

– 
 

– 
 

– 
 

– 

x[32] – x[49] h[32] – h[39] 
x[40] – x[47] – 

 

x[48] – x[55] h[0] – h[7] 
 

– 
 

– 
 

– 
 

– 
 

– 
 

– 
x[32] – x[39] h[32] – h[39] 
x[40] – x[47] – 

 

x[0] – x[7] h[0] – h[7] 
 

– 
 

– 
 

– 
 

– 
 

– 
 

– 

x[32] – x[39] h[32] – h[39] 
– – 

 

 
#pragma DATA_ALIGN(x, CACHE_L1D_LINESIZE) 

#pragma DATA_ALIGN(h, CACHE_L1D_LINESIZE) 

short x[NX] ; // input 

short h[NH] ; // coefficients 

short r[NR] ; // output 

short r1[NR] ; // intermediate output 

 
DSP_fir_r8(x, h, r, NH_SET, NR); 

for (j=1; j<3; j++) 

{ 

DSP_fir_r8(x + j*NH_SET, h + j*NH_SET, r1, NH_SET, NR); 

for (i=0; i<NR; i++) r[i] += r1[i]; 

} 

DSP_fir_r4(x + j*NH_SET, h + j*NH_SET, r1, NH_LAST_SET, NR); 
for (i=0; i<NR; i++) r[i] += r1[i]; 
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Table 4–8 shows the measured cycle counts for the optimized multi-pass filter. 
For comparison, the cycle counts for the unoptimized filter that is performed 
in a single call to DSP_fir_r8 are also shown. The ideal cycle count for the 
DSP_fir_r8 is nh × nr/2 + 28 = (4000  × 512)/2 + 28 = 1 024 028 cycles.  
The number of input samples accessed is 4000 + 512 – 1 = 4511. The 
number of compulsory L1D read misses is 532 (= 4511 input samples + 4000 
coefficients) × 2 bytes/32 bytes per line). The remainder are capacity misses. 
By splitting up the filter into multiple calls, the number of capacity misses is 
greatly reduced from 128 265 to only 799. The cache stall overhead is reduced 
from 53 percent to 0.69 percent. 

 
 

Table 4–8. Execute Cycle Counts for Single-Pass and Multi-Pass FIR Filter 
(C621x/C671x Devices) 

 
 Single Pass Multi Pass 

Execute Cycles 1 024 074 1 027 450 

L1D Stall Cycles 545 264 3415 

L1D Read Misses 128 265 799 

L1D Write Buffer Full 0 0 

L1P Stall Cycles 55 192 

L1P Misses 11 33 

Total Cycles 1 569 338 1 031 057 
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4.3 Processing Chain With DMA Buffering 
This example illustrates some of the cache optimization techniques described 
in section 3.3, Procedural-Level Optimizations. The example uses the C64x 
device as a target, but applies conceptually also to C621x/C671x devices. It 
consists of a simple processing chain within a DMA double-buffering frame- 
work. This type of scenario is frequently found in typical DSP applications. In 
this example, a horizontal wavelet filter (wave_horz) is applied to an image that 
is located in external memory. Since the filter routine operates on 16-bit data, 
two additional routines are required that convert the 8-bit image data to 16-bit 
data, and conversely (pix_expand and pix_sat). All three routines are taken 
from the Texas Instruments C64x Image and Video Processing Library (IMGLIB). 

The data flow is shown in Figure 4–14. The image is transferred from external 
memory to a buffer in L2 SRAM using DMA. The three processing steps are 
then applied, and the output transferred back to external memory. While one 
DMA input buffer is being processed, the second one is being filled in the back- 
ground. Figure 4–15 shows how the routines of the processing chain are 
called. 

Note that the optimization techniques presented here can also be applied to 
processing chains outside a DMA double-buffering framework. 

 
Figure 4–14. Data Flow of Processing Chain 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4–15. Code for Processing Chain 
 

 
pix_expand(ROWS*COLS, inbuf, expand_out); 

for(i=0; i<=ROWS; i++) 

wave_horz(&expand_out[i*COLS], qmf, mqmf, 

&wave_out[i*COLS], COLS); 

pix_sat(ROWS*COLS, wave_out, outbuf); 

pix_sat 

 
 

outbufB 

 
 

outbufA 

DMA 
pix_expand 

DMA 
wave_horz 

 
 

wave_ 
out 

 
 

expand_ 
out 

 
 

inbufB 

 
 

inbufA 
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4.3.1 Data Memory Layout 
 

We will now discuss optimizations that ensure the highest possible data 
throughput. The library code of the three routines is already optimized to 
achieve fastest possible execution. However, further consideration has to be 
given to overhead caused by DMA set up and cache misses. This overhead 
can be minimized by choosing the right memory layout that takes into account 
the size of each of the buffers and their relative location in memory. 

 
The size of the DMA buffers determine how many transfers have to be initiated 
to bring the image into on-chip memory. Every transfer initiation costs some 
cycles to set up the DMA controller. Therefore, the buffers should be large 
enough to minimize DMA setup cycles. On the other hand, they should be 
small enough to leave on-chip memory for other critical data and code. The 
buffer size also affects the delay for initial and final DMA transfers. In this 
example,  a  DMA  buffer size of 16 Kbytes is chosen, corresponding to    
16 384 pixels. If we assume that the image size is 512 × 512 pixels, then  
16 DMA transfers are required. 

 
In a processing chain, the output of one function forms the input of the next 
function. If the buffers that interface the functions (expand_out and wave_out 
in Figure 4–14) can be retained in L1D, there will be no cache misses inside 
the processing chain, thus completely eliminating read miss and write buffer 
related stalls. The only read misses that then occur are compulsory misses for 
the first routine, pix_expand, that reads new data from the DMA buffers. The 
last routine in the chain writes its results through the write buffer to the DMA 
output buffer in L2 SRAM. Note that the first time the processing chain is  
executed, read accesses to these interface buffers will miss. However, all 
following iterations will then access these buffers in L1D. 

 
What is the appropriate memory layout that ensures that the interface buffers 
are retained in cache? In the example, we have to consider read accesses to 
four buffers: the DMA input buffers inbufA and inbufB, and the interface buffers 
expand_out and wave_out. Whereas the interface buffers are being reused 
from cache (within and across iterations of the processing chain), the DMA 
buffers are continuously filled with new data by the DMA. The data is written 
to L2 SRAM and, consequently, allocated in L1D. When the DMA writes to a 
buffer that is held in L1D, the internal cache coherence protocol is triggered 
that invalidates the lines of the buffer. This ensures that the latest data is read 
from memory, rather than stale data from the cached copy of the buffer. Even- 
tually, an appropriate memory layout has to fulfill the requirement that both 
interface buffers fit completely into cache and are not evicted by allocation of 
lines of the input buffers. 
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A memory layout that fulfills this requirement is shown in Figure 4–16. Since 
the input buffer size was chosen to be 16 Kbytes and is larger than one cache 
way (8 Kbytes), the only method to protect the interface buffers from being 
evicted is to make sure they allocate in the opposite way of the input buffer. 
This leaves the interface buffers with a size of 4 Kbytes each. Since the inter- 
face buffers will always be most recently used, the LRU replacement scheme 
automatically ensures that the interface buffers are not evicted when new lines 
from the input buffers are allocated. New input buffer lines always replace old 
input buffer lines. 

The size of the interface buffers determines how much data can be processed 
at a time. Since we have 4 Kbytes for results, we can at most expand a block 
of 2048 8-bit pixels to 16 bits. The two input buffers can be placed anywhere 
in memory. However, the two interface buffers should be allocated contiguously; 
otherwise, they may map to conflicting sets in L1D and would be subject to 
eviction by input buffer lines. Figure 4–17 shows a C code example for the 
necessary array declarations. 

Note that we have neglected the wavelet filter coefficients in this discussion. 
Since they occupy only 32 bytes (half a cache line), they have very little impact 
on the overall cache miss overhead. 

 
 

Figure 4–16. L1D Memory Layout 
way 0 way 1 set 

0 
 
 
 
 
 
 
 

128 

 
 
 

inbufA and 
inbufB 

 

expand_out 

 

wave_out 
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Figure 4–17. Array Declarations 
 

 

4.3.2 Miss Pipelining 
The previous discussion showed how to eliminate most of the cache misses. 
The only cache misses left are now the compulsory misses due to the first time 
reference of the input data. Their impact can be reduced by using the touch 
routine, that effectively exploits miss pipelining by allocating two cache lines 
per cycle. The 6 stall cycles per read miss reduces to an incremental stall 
penalty of only 2 cycles per miss. Figure 4–18 shows the code of the process- 
ing chain after optimization. Also, the touch routine can be used to preallocate 
the interface buffers prior to the first iteration. This has the additional effect of 
also eliminating write buffer related stalls during the first iteration. 

Figure 4–18. Code for Processing Chain After Optimization 
 

#define DMABUF 16384 

#define TMPBUF (4*COLS) /* 2048 */ 

#pragma DATA_ALIGN(inbufA,CACHE_L1D_LINESIZE) 

#pragma DATA_SECTION(expand_out, ”.tmpbuf”) 

#pragma DATA_SECTION(wave_out, ”.tmpbuf”) 

unsigned char inbufA [DMABUF]; 

unsigned char inbufB [DMABUF]; 

unsigned char outbufA[DMABUF]; 

unsigned char outbufB[DMABUF]; 

short expand_out[TMPBUF]; 

short wave out [TMPBUF]; 

512 #define COLS 

 
#define COLS 512 

for(j=0; j<8; j++) 

{ 

touch(&inbuf[j*TMPBUF], TMPBUF); 

pix_expand(TMPBUF, inbuf, expand_out); 

for(i=0; i<=4; i++) 

wave_horz(&expand_out[i*COLS], qmf, 

mqmf, &wave_out[i*COLS], COLS); 

pix_sat(ROWS*COLS, wave_out, outbuf); 
} 
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4.3.3 Program Memory Layout 

Now we consider program cache misses. Since the three routines of the proc- 
essing chain are repeatedly executed, they should be contiguously allocated 
in memory to avoid evictions and thus conflict misses. Additionally, the code 
for setting up DMA transfers (for example, DAT_copy and DAT_wait routines 
from the Texas Instruments chip support library) and the touch routine should 
also be taken into account. An example linker command file that achieves this 
is shown in Figure 4–19. 

 
 

Figure 4–19. Linker Command File 
 

> L2SRAM 

> L2SRAM 
> L2SRAM 
> L2SRAM 
> L2SRAM 
> L2SRAM 
> L2SRAM 

SECTIONS 

{ 

... 

.text:_pix_expand 

.text:_wave_horz 

.text:_pix_sat 

.text:_touch 

.text:_DAT_copy 

.text:_DAT_wait 

... 

.tmpbuf 

} 
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4.3.4 Benchmark Results 
 

Since the image size is 512 × 512 pixels and we process 2048 pixels (4 rows) 
at a time, the processing chain is executed a total of 128 times. Table 4–9 
shows a detailed cycle breakdown into execute cycles, data cache (L1D) read 
miss stalls, and program cache (L1P) read miss stalls for each routine. The first 
time the processing chain is executed, the interface buffers and the code have 
to be allocated into cache (cold cache). Therefore, the cycle counts for the first 
iteration are shown separately. 

 
Table 4–9. Cache Stall Cycle Count Breakdown for Fully-Optimized Processing Chain 

 

1st Iteration (Cold Cache) All Following 127 Iterations 
 

 Pixel 
Expand 

(With 
Touch) 

Wavelet 
Filter 
(With 

Touch) 

Pixel 
Saturation 

(With 
Touch) 

 Pixel 
Expand 

(With 
Touch) 

 
 

Wavelet 
Filter 

 
 

Pixel 
Saturation 

 
 
 

Total 
Execute Cycles 436 4322 450  436 4280 401 655 067 

L1D Stall Cycles 112 144 134  76 0 0 10 042 

L1P Stall Cycles 18 89 23  0 0 0 130 

Total Cycles 566 4555 607  512 4280 401 665 239 

Cache Overhead 
(includes touch 
execute cycles) 

39.4% 6.6% 51.8%  26.7% 0% 0% 2.2% 

 
 
 

The individual routines are now discussed. The cycle count formula for each 
routine is listed in Table 4–10. Assume that the first DMA input buffer has been 
filled, and the routine pix_expand is executed. For 2048 pixels, the routine 
takes 399 cycles to execute. We also have to add the number of execute 
cycles for the touch routine, which is 32 cycles. The total execute cycle count 
therefore is 431 cycles. The routine accesses 2048 pixels spanning 
2048/64 bytes per cache line = 32 cache lines. Since we use the touch loop, 
we expect 6 + (2 × 32) = 70 read miss stalls. However, in the first iteration, 
L1D may still contain dirty data that needs to be written back to memory that 
will disrupt miss pipelining. Also, we may see a slightly higher number of misses 
due to stack activity. Therefore, the actual L1D stall cycle count, 112 cycles, 
is somewhat higher than the estimate. For all following iterations, the L1D stall 
cycles are 76, closer to the estimate. Also, no L1P miss stalls occur. 
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Table 4–10. Cycle Count Formulas 
 

Routine Formula Pixels = 2048 

pix_expand (3 × pixels/16)+ 15 399 

wave_horz rows × (2 × columns + 25) 4196 

pix_sat (3 × pixels/16) + 13 397 

touch (pixels + 124)/128 + 16 32 (8-bit pixels) 
48 (16-bit pixels) 

 
The wavelet filter takes 4196 cycles to execute plus 48 cycles for the touch 
routine in the first iteration. The actual cycle count, 4322 in the first iteration, 
is slightly higher due to the loop overhead. Since the pixels have been expanded 
to 16 bits, the number of read misses is 64 (= 2048 pixels × 2 bytes/64 bytes 
per cache line), resulting in 6 + (2 × 64) = 134 stall cycles. The actual stall 
count is 144, again due to spurious stack accesses. In the following iterations, 
this routine will not have any L1D or L1P read misses. 

 
The routine pix_sat executes in 397 cycles plus 48 cycles for the touch routine 
in the first iteration. The measured cycle count, 450, comes very close to this 
estimate. L1D read miss stalls are about the same as for the wavelet routine 
since both routines access the same amount of data. Again, for all following 
iterations this routine will not have any L1D or L1P read misses. 

 
Table 4–9 summarizes all cycle counts. Note that the cache overhead for 
executing an algorithm the first time is as high as 51.8 percent. However, when 
the algorithm is called repeatedly within an optimized processing chain, cache 
related stalls are completely eliminated, except for the compulsory misses of 
the first routine that reads new data. The total cache overhead of the optimized 
processing chain is only 2.2 percent. 

 
The DMA setup overhead can be estimated as follows. The number of DMA 
buffers that have to be transferred is 32 = 256 Kbytes image size/16 Kbytes 
DMA buffer size × 2 (from and to external memory). Each transfer requires one 
initiation (DAT_copy) and a loop to wait for completion (DAT_wait). Bench- 
marking results for DMA setup and wait code are around 130 and 30 cycles, 
respectively. The total number of cycles spent on DMA management, there- 
fore, is (130 + 30) × 32 = 5120 cycles. However, we can expect additional 
stall cycles due to conflicts between CPU and DMA accesses. The measured 
total  cycle  count  without  DMA  is  666 580   cycles   and   with   DMA  
674 582 cycles. This is a difference of 8002 cycles, made up of 5120 cycles 
for DMA management, as determined above, and 2882 stall cycles. 
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There will also be some overhead due to the loop control code required for 
DMA double buffering. The breakdown of all overhead cycle counts is given 
in Table 4–11. Taking into account both cache and DMA related overhead 
cycles, the relative total overhead is now 3.6 percent for the fully-optimized 
version. Note, that the total cycle count omits the memory transfer cycles for 
the first DMA buffer, since these can usually overlapped with other CPU proc- 
essing. Table 4–11 also shows cycle counts for implementations without 
cache optimization and/or DMA for comparison. If we had used DMA but not 
performed any cache optimizations, the overhead would have increased by 
about a factor of 10 to 35.2 percent. Further, if we had relied on L2 cache for 
accesses to the external memory instead of using DMA, but had performed 
cache optimizations, the overhead would have been 155 percent. 

The results show that benchmarking algorithms individually to assess cache 
stall cycles can be very misleading. Instead, algorithms have to be considered 
within the context of an entire application. It was also shown that for high 
throughput signal processing algorithms, DMA combined with cache optimiza- 
tions achieves the best possible performance. 

 
 
 

Table 4–11. Cycle Count Results  

 DMA and Cache 
Optimization 

DMA, But No Cache 
Optimization 

L2 Cache With 
Cache Optimization 

L1D Stall Cycles 10 042 219 615 1 008 224 

L1P Stall Cycles 130 633 1 489 

Touch Execute Cycles 4 192 0 0 

DMA Management Cycles 5 120 5 120 0 

DMA Relative Stall Cycles 2 882 2 246 0 

Loop Control Cycles 1 341 1 341 0 

Total Overhead 23 707 228 955 1 009 713 

Image Processing Execute Cycles 650 875 650 875 650 875 

Relative Total Overhead 3.6% 35.2% 155% 
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