
TMS320VC5509 DSP
MultiMediaCard / SD Card Controller

Reference Guide

Literature Number: SPRU593A
September 2007

iiiRead This First

Preface

��������	�
��	�

About This Manual

TMS320VC5509 digital signal processors (DSPs) in the TMS320C55x
(C55x) DSP generation contain a peripheral for controlling memory cards
that conform to the MultiMediaCard standard or the SD (Secure Digital)
Memory Card standard. This manual describes the features of this
MultiMediaCard / SD card controller and how to use it. Throughout this
document, the name of this peripheral is abbreviated as MMC controller.

Notational Conventions

This document uses the following conventions:

� In most cases, hexadecimal numbers are shown with the suffix h. For
example, the following number is a hexadecimal 40 (decimal 64):

40h

Similarly, binary numbers often are shown with the suffix b. For example,
the following number is the decimal number 4 shown in binary form:

0100b

� If a signal or pin is active low, it has an overbar. For example, the RESET
signal is active low.

� Bits and signals are sometimes referenced with the following notations:

Notation Description Example

Register(n−m) Bits n through m of Register R(15−0) represents the 16 least
significant bits of register R.

Bus[n:m] Signals n through m of Bus A[21:1] represents signals 21
through 1 of bus A.

Related Documentation From Texas Instruments

iv

Related Documentation From Texas Instruments

The following documents describe the C55x devices and related support tools.
Copies of these documents are available on the Internet at www.ti.com.
Tip: Enter the literature number in the keyword search box provided at
www.ti.com.

TMS320VC5509 Fixed-Point Digital Signal Processor Data Manual
(literature number SPRS163) describes the features of the
TMS320VC5509 fixed-point DSP and provides signal descriptions,
pinouts, electrical specifications, and timings for the device.

TMS320VC5509A Fixed-Point Digital Signal Processor Data Manual
(literature number SPRS205) describes the features of the
TMS320VC5509A fixed-point DSP and provides signal descriptions,
pinouts, electrical specifications, and timings for the device.

TMS320C55x Technical Overview (literature number SPRU393) introduces
the TMS320C55x DSPs, the latest generation of fixed-point DSPs in the
TMS320C5000 DSP platform. Like the previous generations, this proc-
essor is optimized for high performance and low-power operation. This
book describes the CPU architecture, low-power enhancements, and
embedded emulation features.

TMS320C55x DSP CPU Reference Guide (literature number SPRU371)
describes the architecture, registers, and operation of the CPU for the
TMS320C55x DSPs.

TMS320C55x DSP Peripherals Overview Reference Guide (literature
number SPRU317) introduces the peripherals, interfaces, and related
hardware that are available on TMS320C55x DSPs.

TMS320C55x DSP Algebraic Instruction Set Reference Guide (literature
number SPRU375) describes the TMS320C55x DSP algebraic instruc-
tions individually. It also includes a summary of the instruction set, a list
of the instruction opcodes, and a cross-reference to the mnemonic
instruction set.

TMS320C55x DSP Mnemonic Instruction Set Reference Guide (literature
number SPRU374) describes the TMS320C55x DSP mnemonic instruc-
tions individually. It also includes a summary of the instruction set, a list
of the instruction opcodes, and a cross-reference to the algebraic
instruction set.

TMS320C55x Optimizing C/C++ Compiler User’s Guide (literature number
SPRU281) describes the TMS320C55x C/C++ Compiler. This C/C++
compiler accepts ISO standard C and C++ source code and produces
assembly language source code for TMS320C55x devices.

Trademarks

vRead This First

TMS320C55x Assembly Language Tools User’s Guide (literature number
SPRU280) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for TMS320C55x devices.

TMS320C55x DSP Programmer’s Guide (literature number SPRU376)
describes ways to optimize C and assembly code for the TMS320C55x
DSPs and explains how to write code that uses special features and
instructions of the DSPs.

Trademarks

TMS320, TMS320C5000, TMS320C55x, and C55x are trademarks of
Texas Instruments.

MultiMediaCard is a trademark of the MultiMediaCard Association.

Other trademarks are the property of their respective owners.

Related Documentation From Texas Instruments / Trademarks

vi

Contents

vii

������	

1 Features and Operation 1-1.
1.1 Overview 1-2.
1.2 Role of the MMC Controller 1-3.
1.3 MMC Controller Interface 1-4.

1.3.1 Write Operation 1-5.
1.3.2 Read Operation 1-7.

1.4 Function Clock and Memory Clock 1-8.
1.5 Interrupt Activity in the MMC Controller 1-9.
1.6 DMA Events Generated by the MMC Controller 1-11.
1.7 Data Flow in the Data Registers (MMCDRR and MMCDXR) 1-12.
1.8 Power, Emulation, and Reset Considerations 1-13.

1.8.1 Conserving Power 1-13.
1.8.2 Effect of Emulation Suspend Condition 1-13.
1.8.3 Resetting the MMC Controller 1-13.

2 Procedures for Common Operations 2-1.
2.1 Card Identification Operation 2-2.
2.2 Single-Block Read Operation 2-4.
2.3 Multiple-Block Read Operation 2-7.
2.4 Stream Read Operation 2-10.
2.5 Single-Block Write Operation 2-12.
2.6 Multiple-Block Write Operation 2-15.
2.7 Stream Write Operation 2-18.

3 Initializing the MMC Controller 3-1.
3.1 Initializing the MMC Controller 3-2.
3.2 Initializing the MMC Control Register (MMCCTL) 3-3.

3.2.1 Enable/Disable DMA Events 3-3.
3.2.2 Select a Type of Edge Detection (If Any) for the DAT3 Pin 3-3.
3.2.3 Select a Data Bus Width 3-4.
3.2.4 Enable/Reset the MMC Controller 3-4.

3.3 Initializing the Clock Control Registers (MMCFCLK and MMCCLK) 3-5.
3.3.1 Set the Function Clock and the Memory Clock 3-5.
3.3.2 Enable/Disable the Idle Capability 3-6.
3.3.3 Enable/Disable the CLK Pin 3-6.

3.4 Initializing the Interrupt Enable Register (MMCIE) 3-7.

Contents

viii

3.5 Initializing the Time-Out Registers (MMCTOR and MMCTOD) 3-8.
3.5.1 Set the Time-Out Period for a Response 3-8.
3.5.2 Set the Time-Out Period for a Data Read Operation 3-9.

3.6 Initializing the Data Block Registers (MMCBLEN and MMCNBLK) 3-10.
3.6.1 Set the Data Block Length 3-10.
3.6.2 Specify the Number of Blocks in a Multiple-Block Transfer 3-10.

4 Monitoring the MMC Controller 4-1.
4.1 Monitoring the DAT3 and CLK Pins 4-2.

4.1.1 Detecting Edges and Level Changes on the DAT3 Pin 4-2.
4.1.2 Checking the Status of the CLK Pin 4-2.

4.2 Monitoring Data Transfers 4-3.
4.2.1 Determining Whether New Data is Available in MMCDRR 4-3.
4.2.2 Verifying That MMCDXR is Ready to Accept New Data 4-3.
4.2.3 Checking for CRC Errors 4-3.
4.2.4 Checking for Time-Out Events 4-4.
4.2.5 Determining When a Response/Command is Done 4-4.
4.2.6 Determining Whether the Memory Card is Busy 4-5.
4.2.7 Determining Whether a Data Transfer is Done 4-5.
4.2.8 Checking for a Data Transmit Empty Condition 4-6.
4.2.9 Checking for a Data Receive Full Condition 4-6.
4.2.10 Getting the CRC Status Token After a Block is Written 4-6.
4.2.11 Getting the Remaining Block Count During a Multiple-Block Transfer 4-6.

5 MMC Controller Registers 5-1.
5.1 Summary of the MMC Controller Registers 5-1.
5.2 Function Clock Control Register (MMCFCLK) 5-3.
5.3 MMC Control Register (MMCCTL) 5-4.
5.4 Clock Control Register (MMCCLK) 5-6.
5.5 Status Register 0 (MMCST0) 5-7.
5.6 Status Register 1 (MMCST1) 5-10.
5.7 Interrupt Enable Register (MMCIE) 5-12.
5.8 Response Time-Out Register (MMCTOR) 5-14.
5.9 Data Read Time-Out Register (MMCTOD) 5-15.
5.10 Block Length Register (MMCBLEN) 5-15.
5.11 Number of Blocks Register (MMCNBLK) 5-16.
5.12 Number of Blocks Counter Register (MMCNBLC) 5-16.
5.13 Data Receive Register (MMCDRR) 5-17.
5.14 Data Transmit Register (MMCDXR) 5-17.
5.15 Command Register (MMCCMD) 5-18.
5.16 Argument Registers (MMCARGH and MMCARGL) 5-20.
5.17 Response Registers (MMCRSP0−MMCRSP7) 5-22.
5.18 Data Response Register (MMCDRSP) 5-24.
5.19 Command Index Register (MMCCIDX) 5-24.

Figures

ixContents

�����	

1−1 Role of the MMC Controller 1-3.
1−2 MMC Configuration Versus SD Configuration 1-5.
1−3 Write Operation 1-6.
1−4 Read Operation 1-7.
1−5 Clocking Diagram for the MMC Controller 1-8.
1−6 Enable Paths of the MMC Interrupt Requests 1-10.
1−7 Data Flow in the Data Receive Register (MMCDRR) 1-12.
1−8 Data Flow in the Data Transmit Register (MMCDXR) 1-12.
2−1 Card Identification Operation (MMC Protocol) 2-3.
2−2 Single-Block Read Operation (MMC Protocol) 2-5.
2−3 Multiple-Block Read Operation (MMC Protocol) 2-8.
2−4 Stream Read Operation (MMC Protocol) 2-11.
2−5 Single-Block Write Operation (MMC Protocol) 2-13.
2−6 Multiple-Block Write Operation (MMC Protocol) 2-16.
2−7 Stream Write Operation (MMC Protocol) 2-19.
3−1 MMCCTL 3-3.
3−2 MMCFCLK 3-5.
3−3 MMCCLK 3-5.
3−4 MMCIE 3-7.
3−5 MMCTOR 3-8.
3−6 MMCTOD 3-8.
3−7 MMCBLEN 3-10.
3−8 MMCNBLK 3-10.
5−1 Function Clock Control Register (MMCFCLK) 5-3.
5−2 MMC Control Register (MMCCTL) 5-4.
5−3 Clock Control Register (MMCCLK) 5-6.
5−4 Status Register 0 (MMCST0) 5-7.
5−5 Status Register 1 (MMCST1) 5-10.
5−6 Interrupt Enable Register (MMCIE) 5-12.
5−7 Response Time-Out Register (MMCTOR) 5-14.
5−8 Data Read Time-Out Register (MMCTOD) 5-15.
5−9 Block Length Register (MMCBLEN) 5-15.
5−10 Number of Blocks Register (MMCNBLK) 5-16.
5−11 Number of Blocks Counter Register (MMCNBLC) 5-16.
5−12 Data Receive Register (MMCDRR) 5-17.
5−13 Data Transmit Register (MMCDXR) 5-17.

Figures

x

5−14 Command Register (MMCCMD) 5-18.
5−15 Argument Registers (MMCARGH and MMCARGL) 5-20.
5−16 Format of a Response Register (MMCRSPn) 5-22.
5−17 Data Response Register (MMCDRSP) 5-24.
5−18 Command Index Register (MMCCIDX) 5-24.

Tables

xiContents

�����	

1−1 MMC Controller Pins 1-4.
1−2 Write Operation Description 1-6.
1−3 Read Operation Description 1-7.
1−4 Descriptions of the MMC Interrupt Requests 1-9.
1−5 DMA Events Generated by the MMC Controller 1-11.
5−1 MMC Controller I/O-Mapped Registers 5-1.
5−2 Function Clock Control Register (MMCFCLK) Field Descriptions 5-3.
5−3 MMC Control Register (MMCCTL) Field Descriptions 5-4.
5−4 Clock Control Register (MMCCLK) Field Descriptions 5-6.
5−5 Status Register 0 (MMCST0) Field Descriptions 5-7.
5−6 Status Register 1 (MMCST1) Field Descriptions 5-10.
5−7 Interrupt Enable Register (MMCIE) Field Descriptions 5-12.
5−8 Response Time-Out Register (MMCTOR) Field Descriptions 5-14.
5−9 Data Read Time-Out Register (MMCTOD) Field Description 5-15.
5−10 Block Length Register (MMCBLEN) Field Descriptions 5-15.
5−11 Number of Blocks Register (MMCNBLK) Field Description 5-16.
5−12 Number of Blocks Counter Register (MMCNBLC) Field Description 5-16.
5−13 Data Receive Register (MMCDRR) Field Description 5-17.
5−14 Data Transmit Register (MMCDXR) Field Description 5-17.
5−15 Command Register (MMCCMD) Field Descriptions 5-18.
5−16 Argument Register, High (MMCARGH) Field Description 5-20.
5−17 Argument Register, Low (MMCARGL) Field Description 5-20.
5−18 Command Format 5-21.
5−19 R1, R3, R4, R5, or R6 Response (48 Bits) 5-22.
5−20 R2 Response (136 Bits) 5-23.
5−21 Data Response Register (MMCDRSP) Field Descriptions 5-24.
5−22 Command Index Register (MMCCIDX) Field Descriptions 5-24.

xii

1-1

������	��������������

This chapter describes the core functional behavior of the MultiMediaCard /
SD card controller. The controller supports both the MultiMediaCard protocol
and the SD (Secure Digital) Memory Card protocol, but for brevity, this docu-
ment refers to the peripheral as the MMC controller.

Topic Page

1.1 Overview 1-2.

1.2 Role of the MMC Controller 1-3.

1.3 MMC Controller Interface 1-4.

1.4 Function Clock and Memory Clock 1-8.

1.5 Interrupt Activity in the MMC Controller 1-9.

1.6 DMA Events Generated by the MMC Controller 1-11.

1.7 Data Flow in the Data Registers (MMCDRR and MMCDXR) 1-12.

1.8 Power, Emulation, and Reset Considerations 1-13.

Chapter 1

Overview

Features and Operation1-2 SPRU593A

1.1 Overview

The MMC controller includes:

� Support for a MultiMediaCard (MMC) or a Secure Digital Memory Card
(SD card)

� A programmable frequency for the operation of the MMC controller

� A programmable frequency for the clock that controls the timing of
transfers between the MMC controller and the memory card

The MMC controller does not support the SPI protocol. It cannot communicate
with a memory card that is in its SPI mode.

Note:

Each of the two MMC controllers shares pins with a multichannel buffered
serial port (McBSP) in the DSP. You select the MMC/SD mode or the McBSP
mode for the pins by programming serial port mode bits in the external bus
selection register (EBSR). For more details, see the device-specific data
manual.

Role of the MMC Controller

1-3Features and OperationSPRU593A

1.2 Role of the MMC Controller

As shown in Figure 1−1, the MMC controller passes data between the CPU
or the DMA controller on one side and one or more a memory cards on the
other side. The CPU or the DMA controller can read from or write to the control
and status registers in the MMC controller. As necessary, the CPU and/or the
DMA controller can store or retrieve data in the DSP memory or in the registers
of other peripherals. The CPU can monitor data activity by reading the status
registers and responding to interrupt requests (see section 1.5 on page 1-9).
The DMA controller can be notified of data reception/transmission status with
the two DMA events (see section 1.6 on page 1-11).

Data transfers between the MMC controller and a memory card can use one
bidirectional data line (for the MMC protocol) or four parallel data lines (for the
SD protocol). If multiple cards are connected, the MMC controller uses
commands of the MMC/SD protocol to select and communicate with one card
at a time.

Figure 1−1. Role of the MMC Controller

MMC
controller

Control
and status
registers

CPU

DMA
controller

DSP

MMC(s)/
SD card(s)

Communications using
MMC or SD protocol

MMC Controller Interface

Features and Operation1-4 SPRU593A

1.3 MMC Controller Interface

Table 1−1 describes the seven pins of the MMC controller and indicates which
pins are used for the MMC protocol and the SD protocol. For a visual
comparison of the MMC and SD configurations, see Figure 1−2.

Because the command and data lines are separate, sequential and
multiple-block read/write operations are possible. The next command to the
card may be sent at the same time as data associated with the previous
command.

Table 1−1. MMC Controller Pins

Protocol

Pin Type † MMC SD Description

CLK O Clock line Clock line CLK provides a clock signal to time the transfers
on the other pins.

CMD I/O/Z Command line Command line CMD is used for two-way control communication
with the memory card or cards connected to the
interface. On CMD, the MMC controller drives
commands followed by arguments, and the
memory card drives responses to the commands.

DAT0 I/O/Z Data line Data line 0 One data line (DAT0) is used for an MMC. All four
data lines are needed for an SD card. You

DAT1 I/O/Z (Not used) Data line 1
data lines are needed for an SD card. You
configure the number of DAT pins (the data bus
width) when you initialize the WIDTH bit of

DAT2 I/O/Z (Not used) Data line 2

configure the number of DAT pins (the data bus
width) when you initialize the WIDTH bit of
MMCCTL.

DAT3 I/O/Z (Not used) Data line 3

MMCCTL.

† I = Input to the MMC controller; O = Output from the MMC controller; Z = High-impedance

MMC Controller Interface

1-5Features and OperationSPRU593A

Figure 1−2. MMC Configuration Versus SD Configuration

MMC controller MMC

CLK

CMD

DAT0

CLK

CMD

DAT0

(WIDTH = 0) (not in SPI mode)

MMC Configuration

MMC controller SD card

CLK

CMD

DAT0
DAT1
DAT2
DAT3

CLK

CMD

DAT0
DAT1
DAT2
DAT3

(WIDTH = 1) (not in SPI mode)

SD Configuration

1.3.1 Write Operation

Figure 1−3 and Table 1−2 describe the signal activity when the MMC controller
is writing data to a memory card. The same block length must be defined in
the MMC controller and in the card. In a successful write sequence:

1) The controller sends a write command to the card.

2) The card sends a response to acknowledge the command.

3) The controller sends a block of data to the card.

4) The card sends the CRC status to the controller.

5) The card sends low BUSY bits until all the data have been programmed
into the flash memory inside the card.

MMC Controller Interface

Features and Operation1-6 SPRU593A

Figure 1−3. Write Operation

CRC STAT

End
bit

6 bytes

WR CMD

DAT BLK

CMD

Busy
low

2 CRC
bytes

CLK

6 bytes

CMD RSP

BSY

512 bytes

Start
bit

1 byte

End
bit

Start
bit

Data

Table 1−2. Write Operation Description

Portion of the Sequence Description

WR CMD Write command. A 6-byte WRITE_BLOCK command token is sent from the DSP
to the card.

CMD RSP Command response. The card sends a 6-byte response of type R1 to the DSP,
to acknowledge the WRITE_BLOCK command.

DAT BLK Data block. The DSP writes a block of data to the card. The data content is
preceded by one start bit and is followed by two CRC bytes and one end bit.

CRC STAT CRC status. The card sends one byte of CRC status information to the DSP. This
byte indicates whether the data has been accepted by the card or rejected due
to a CRC error. The CRC status content is preceded by one start bit and followed
by one end bit.

BSY Busy bits. The CRC status information is followed by a continuous stream of low
busy bits until all of the data have been programmed into the flash memory on the
card.

MMC Controller Interface

1-7Features and OperationSPRU593A

1.3.2 Read Operation

Figure 1−4 and Table 1−3 describe the signal activity when the MMC controller
is reading data from a memory card. The same block length must be defined
in the MMC controller and in the card. In a successful read sequence:

1) The controller sends a read command to the card.

2) The card sends a response to acknowledge the command.

3) The card sends a block of data to the DSP.

Figure 1−4. Read Operation

6 bytes

RD CMD

DAT BLK

2 CRC
bytes

CLK

6 bytes

CMD RSP

1−512 bytes

1 transfer
source bit

CMD

Data

Stop
 bit

Start
 bit

Table 1−3. Read Operation Description

Portion of the Sequence Description

RD CMD Read command. A 6-byte READ_SINGLE_BLOCK command token is sent from
the DSP to the card.

CMD RSP Command response. The card sends a 6-byte response of type R1 to the DSP,
to acknowledge the READ_SINGLE_BLOCK command.

DAT BLK Data block. The card sends a block of data to the DSP. The data content is
preceded by a start bit and then a transfer source bit. The data content is followed
by two CRC bytes and then a stop bit.

Function Clock and Memory Clock

Features and Operation1-8 SPRU593A

1.4 Function Clock and Memory Clock

You must set the desired frequencies for the function clock and for the memory
clock in the MMC controller.

The function clock determines the frequency at which the MMC controller
operates. Figure 1−5 shows the source of this clock. The DSP clock generator
receives a signal from an external clock source and produces a CPU clock with
a programmed frequency. A programmable clock divider in the MMC controller
divides down the CPU clock to produce the function clock. To specify the
divide-down value, initialize the FDIV field of the function clock control register,
MMCFCLK. The resulting frequency is:

function clock frequency �
CPU clock frequency

(FDIV � 1)

The memory clock appears on the CLK pin of the MMC controller interface.
This clock controls the timing of communication between the MMC controller
and the attached memory card(s). As shown in Figure 1−5, a second clock
divider in the MMC controller divides down the function clock to produce the
memory clock. Load the divide-down value into the CDIV field of the clock
control register, MMCCLK. The resulting frequency is:

memory clock frequency �
function clock frequency

2 (CDIV � 1)
�

CPU clock frequency

2 (FDIV � 1) (CDIV � 1)

Figure 1−5. Clocking Diagram for the MMC Controller

DSP

generator
DSP clock

CDIVFDIV

CPU clock ÷ ÷Input clock
on CLKIN pin

Function clock for
MMC controller operation

Memory clock

on CLK pin

MMC controller

SD card
MMC/

Interrupt Activity in the MMC Controller

1-9Features and OperationSPRU593A

1.5 Interrupt Activity in the MMC Controller

Each MMC controller can generate the interrupt requests described in
Table 1−4 and shown in Figure 1−6. When an interrupt event occurs, its flag
bit is set in status register 0 (MMCST0). If the corresponding enable bit is set
in the interrupt enable register (MMCIE), an interrupt request is generated. All
such requests are multiplexed to a single MMC interrupt request for the CPU.

The MMC interrupt is one of the maskable interrupts of the CPU. As with any
maskable interrupt request, if it is properly enabled in the CPU, the CPU
executes the corresponding interrupt service routine (ISR). The ISR for the
MMC interrupt can determine the event that caused the interrupt by checking
the bits in MMCST0. When the CPU reads MMCST0, all of the register’s bits
are automatically cleared except for DRRDY and DXRDY. DRRDY and
DXRDY remain set until your code explicitly clears them.

Table 1−4. Descriptions of the MMC Interrupt Requests

Interrupt Request Interrupt Event

DATEGINT An edge was detected on the DAT3 pin.

DRRDYINT MMCDRR is ready to be read (data received).

DXRDYINT MMCDXR is ready for new data (data transmitted).

CRCRSINT A CRC error was detected in a response from the memory card.

CRCRDINT A CRC error was detected while data was being read from the
memory card.

CRCWRINT A CRC error was detected while data was being written to the
memory card.

TOUTRSINT A time-out condition occurred while the MMC controller was
waiting for a response to a command.

TOUTRDINT A time-out condition occurred while the MMC controller was
waiting for data from the memory card.

RSPDNEINT For a command that requires a response: The MMC
controller has received the response without a CRC error.

For a command that does not require a response: The
MMC controller has finished sending the command.

Interrupt Activity in the MMC Controller

Features and Operation1-10 SPRU593A

Interrupt Request Interrupt Event

BSYDNEINT The memory card is no longer sending a busy signal.

DATDNEINT For read operations: The MMC controller has received data
without a CRC error.

For write operations: The MMC controller has finished
sending data.

Figure 1−6. Enable Paths of the MMC Interrupt Requests

CRCRSINT

MMC interrupt
request to CPU

MMCIE(DATEG)

MMCST0(DATEG) DATEGINT

MMCIE(DRRDY)

MMCIE(DXRDY)

MMCST0(DRRDY)

MMCST0(DXRDY)

DRRDYINT

DXRDYINT

MMCST0(CRCWR)

MMCIE(CRCWR)

CRCWRINT

MMCST0(CRCRD)

MMCIE(CRCRD)

CRCRDINT

MMCIE(CRCRS)

MMCST0(CRCRS)

MMCIE(TOUTRS)

MMCST0(TOUTRS)TOUTRSINT

MMCIE(TOUTRD)

MMCST0(TOUTRD)TOUTRDINT

MMCIE(RSPDNE)

MMCST0(RSPDNE)RSPDNEINT

MMCIE(BSYDNE)

MMCST0(BSYDNE)BSYDNEINT

MMCIE(DATDNE)

MMCST0(DATDNE)DATDNEINT

DMA Events Generated by the MMC Controller

1-11Features and OperationSPRU593A

1.6 DMA Events Generated by the MMC Controller

If the DMA event enable bit is set (DMAEN = 1 in MMCCTL), the MMC
controller can generate the two DMA events described in Table 1−5. These
events are sent to the DMA controller in the DSP. Activity in each DMA channel
can be synchronized to respond to one of the two DMA events from the MMC
controller.

Table 1−5. DMA Events Generated by the MMC Controller

DMA Event Description

MMC receive event New data is available to be read from the data receive
register (MMCDRR).

MMC transmit event The data transmit register (MMCDXR) is ready to
accept new data for transmission.

Data Flow in the Data Registers (MMCDRR and MMCDXR)

Features and Operation1-12 SPRU593A

1.7 Data Flow in the Data Registers (MMCDRR and MMCDXR)

The DSP (via the CPU or the DMA controller) reads 16 bits at a time from the
data receive register (MMCDRR) and writes 16 bits at a time to the data
transmit register (MMCDXR). However, the memory cards are 8-bit devices;
they receive or transmit one byte at a time. Figure 1−7 and Figure 1−8 show
how this difference in data size is handled via the data registers.

In most cases, once MMCDRR is filled with two bytes, the MMC controller
generates a data receive ready (DRRDY) event. If an odd number of bytes is
received, the last byte is loaded into the low half of MMCDRR and a DRRDY
event is generated.

During transmission, the DSP typically loads two bytes to MMCDXR. When the
second byte leaves MMCDXR, a data transmit ready (DXRDY) event is
generated. If an odd number of bytes is transmitted, the DSP writes the last
byte right aligned (see Figure 1−8). The transmission of the last byte causes
a DXRDY event.

Figure 1−7. Data Flow in the Data Receive Register (MMCDRR)

1st byte

MMCDRR (16 bits)

2nd byte
When notified of a DRRDY
event, the DSP reads all 16
bits at once.

The memory card transmits
one byte at a time. When 2
bytes fill DRR, a DRRDY
event is generated.

Most common case:

MMCDRR (16 bits)

Last byte
After reading all 16 bits from
DRR, the DSP must take the
last byte from the 8 low bits.

When the last byte arrives in
DRR, a DRRDY event is
generated.

If an odd number of bytes is received:

Figure 1−8. Data Flow in the Data Transmit Register (MMCDXR)

1st byte

MMCDXR (16 bits)

2nd byte
When notified of a DXRDY
event, the DSP writes 2
bytes to DXR.

The MMC controller
transmits one byte at a time.
When the 2nd byte leaves
DXR, a DXRDY event is
generated.

Most common case:

MMCDXR (16 bits)

Last byte
The DSP must right align the
last byte with 0s to the left.

When the last byte is driven
out, a DXRDY event is
generated.

If an odd number of bytes is transmitted:

0000 0000

Power, Emulation, and Reset Considerations

1-13Features and OperationSPRU593A

1.8 Power, Emulation, and Reset Considerations

1.8.1 Conserving Power

The DSP is divided into a number of idle domains. To minimize power
consumption, you can choose which domains are active and which domains
are idle at any given time. The TMS320C55x DSP Peripherals Overview
Reference Guide (SPRU317) points to the power management
documentation that describes how to control the idle domains.

If the peripherals domain is idle, the MMC controller may enter an inactive,
low-power mode, depending on whether the IDLEEN bit is set in MMCFCLK.
If the peripherals domain is idle and IDLEEN = 1, the MMC controller becomes
idle. All of its activity stops immediately and only continues when the
peripherals domain is reactivated. If IDLEEN = 0, the MMC controller remains
active regardless of whether the peripherals domain is idle.

Keep in mind that idle domains other than the peripherals domain can affect
the MMC controller. For example, if the clock generator domain is idle, the
MMC controller has no clocks for operation.

1.8.2 Effect of Emulation Suspend Condition

An emulation suspend condition causes the MMC controller to halt its activity
immediately.

1.8.3 Resetting the MMC Controller

The MMC controller is reset when one of the following occurs:

� The entire TMS320VC5509 DSP is reset with the RESET pin.

� An MMC controller software reset occurs. This occurs when a 1 is written
to the CMDRST bit and to the DATRST bit of the control register
(MMCCTL).

In either case, the state machines of the MMC controller are reset. One result
is that all communications with memory cards stop immediately. In addition,
the registers of the MMC controller are forced to the default values shown in
the figures in Chapter 5. The transition of DATRST from 0 to 1 resets the two
data-ready status bits, DRRDY and DXRDY. These bits are in status register
0 (MMCST0).

While CMDRST = 1 and DATRST = 1, the MMC controller is in its reset state
and is disabled. To enable the MMC controller, clear both bits simultaneously.

Features and Operation1-14 SPRU593A

2-1

���������	�����
���������������	

This chapter describes how to program the MMC controller to send common
command sequences to memory cards.

Note:

1) The procedures in this chapter are written for the MMC protocol. If you
plan to use the SD protocol, check the appropriate SD card
specifications to determine which of these procedures are supported
and what modifications must be made to the supported procedures.

2) To determine which of these procedures is supported for a given MMC,
check the MMC manufacturer’s documentation.

Topic Page

2.1 Card Identification Operation 2-2.

2.2 Single-Block Read Operation 2-4.

2.3 Multiple-Block Read Operation 2-7.

2.4 Stream Read Operation 2-10.

2.5 Single-Block Write Operation 2-12.

2.6 Multiple-Block Write Operation 2-15.

2.7 Stream Write Operation 2-18.

Chapter 2

Card Identification Operation

Procedures for Common Operations2-2 SPRU593A

2.1 Card Identification Operation

Before the MMC controller can start data transfers to or from memory cards,
it must first identify and configure all cards that are connected to it. This section
describes the card identification operation, assuming the MMC protocol is
used.

The MMC controller must first reset all the cards with a GO_IDLE_STATE
command (CMD0). Second, the controller must issue a SEND_OP_COND
broadcast command (CMD1) with the desired voltage range as the argument.
Incompatible cards enter the inactive state, and compatible cards respond
simultaneously, providing a wired-AND result that informs the controller of all
supported voltage ranges.

Next, the controller must read the 128-bit card identification (CID) number of
each compatible card and assign the card a 16-bit relative card address
(RCA). This address is used by the controller to identify the card in all future
commands that involve the card. The MMC controller issues an
ALL_SEND_CID broadcast command (CMD2), and all cards compete to
respond. When the winning card responds, the MMC controller assigns the
card an RCA by issuing the SET_RELATIVE_ADDR command (CMD3). After
a card has been assigned an RCA, it does not respond to future
ALL_SEND_CID commands. The MMC controller repeats the process until no
card responds.

The procedure for programming the MMC controller for the card identification
operation follows. Figure 2−1 illustrates the procedure and includes
recommended values to write to MMCCMD for each command.

1) Use MMCCMD to send a GO_IDLE_STATE command (CMD0). This puts
all cards in the idle state.

2) Load the desired voltage range to MMCARGH:MMCARGL, and use
MMCCMD to send a SEND_OP_COND broadcast command (CMD1).
The result of all responses can be read from MMCCIDX and
MMCRSP7−MMCRSP5.

3) Use MMCCMD to send a SEND_ALL_CID command (CMD2).

4) Wait for a card to respond. If a card responds, go to step 5. Otherwise,
stop.

5) Read the response from MMCCIDX and MMCRSP7−MMCRSP0. If the
CID number has been successfully received, continue.

Card Identification Operation

2-3Procedures for Common OperationsSPRU593A

6) Write a 16-bit RCA to MMCARGH (the bits in MMCARGL are don’t cares).
Then use MMCCMD to send a SET_RELATIVE_ADDR command
(CMD3). The response can be read from MMCCIDX and
MMCRSP7−MMCRSP5. The response should indicate that the card is in
its stand-by (stby) state. Go to step 4.

Figure 2−1. Card Identification Operation (MMC Protocol)

MMCCMD

Command/Data
MMC Controller

Register(s)

GO_IDLE_STATE
Set all cards to the idle state.

SEND_ALL_CID
Request all cards to send their
unique CID numbers.

Read the CID number of the
card that responded to
ALL_SEND_CID.

Assign a relative card address
(RCA) to the responding card.

Repeat until no card
responds.

MMCCIDX
Response to CMD2

MMCCMD
SET_RELATIVE_ADDR

MMCCMD

MMCARGHDesired voltage range
MMCARGL

MMCCMD
SEND_OP_COND

Determine all voltage ranges
supported by the cards.

MMCCIDX
Response to CMD1 MMCRSP7

MMCRSP6
MMCRSP5

MMCRSP7
through

MMCRSP0

MMCARGHDesired voltage range
MMCARGL

MMCCMD
SEND_OP_COND

MMCCIDX
MMCRSP7
MMCRSP6
MMCRSP5

MMCRSP7
through

MMCRSP0

MMCARGH
Assigned RCA

(including CID number)

Description
Recommended Value
to Write to MMCCMD

C000h

0601h

0402h

0203h

(CMD0)

(CMD1)

(CMD2)

(CMD3)

MMCCIDX
Response to CMD3 MMCRSP7

MMCRSP6
MMCRSP5

MMCCIDX
MMCRSP7
MMCRSP6
MMCRSP5

Single-Block Read Operation

Procedures for Common Operations2-4 SPRU593A

2.2 Single-Block Read Operation

To read a single block of data from a memory card, use the following
procedure, which is also illustrated in Figure 2−2. This procedure assumes the
MMC protocol is used. It also assumes the MMC controller has completed the
card identification operation and the card you want to access is in its stand-by
(stby) state. The same block length must be defined in the MMC controller and
in the card.

1) Write the RCA of the card to argument register MMCARGH (the bits in
MMCARGL are don’t cares). Then use MMCCMD to send a
SELECT/DESELECT_CARD command (CMD7) to select the addressed
card and deselect the others.

2) Check the BSYDNE bit of MMCST0 or the BUSY bit of MMCST1 to
determine whether the card is busy. If the card is busy, wait. Otherwise,
read the response from MMCCIDX and MMCRSP7−MMCRSP5. The
response should indicate that the card is in its transfer (tran) state.

3) If the block length is different from the length used in the previous
operation, set the block length in the MMC controller and in the card. For
the MMC controller, load the block length into MMCBLEN. For the card,
load the block length to MMCARGH:MMCARGL, and use MMCCMD to
send a SET_BLOCKLEN command (CMD16). The response can be read
from MMCCIDX and MMCRSP7−MMCRSP5.

4) Load MMCARGH and MMCARGL with the memory start address. Write
the upper 16 bits to MMCARGH and the lower 16 bits to MMCARGL. Then
use MMCCMD to send a READ_SINGLE_BLOCK command (CMD17).
The response can be read from MMCCIDX and MMCRSP7−MMCRSP5.

5) Monitor MMCST0 to determine when a new byte has been successfully
received in MMCDRR.

6) Read the new byte of data from MMCDRR.

7) If more bytes are to be read, go to step 5. Otherwise, stop.

Single-Block Read Operation

2-5Procedures for Common OperationsSPRU593A

Figure 2−2. Single-Block Read Operation (MMC Protocol)

Command/Data
MMC Controller

Register(s)

Select the desired card
and deselect the other
cards.

MMCCMD
SELECT/DESELECT_CARD

Test whether the card is
busy. When the card is not
busy, read the response.
The response should
indicate that the card is in
its transfer state.

MMCARGH
Relative card address (RCA)

Description
Recommended Value
to Write to MMCCMD

0207h

0210h

MMCST0/1BSYDNE/BUSY bit

Response to CMD7
MMCCIDX
MMCRSP7
MMCRSP6
MMCRSP5

(CMD7)

MMCARGH
MMCARGL

MMCCMD

MMCCIDX
MMCRSP7
MMCRSP6
MMCRSP5

SET_BLOCKLEN

New block length

(CMD16)

Response to CMD16

If the block length is
different for this operation,
define the new block
length in the MMC
controller, and send the
new block length to the
card.

A211h

MMCARGH
MMCARGL

MMCCMD

MMCCIDX
MMCRSP7
MMCRSP6
MMCRSP5

READ_SINGLE_BLOCK

Memory start address

(CMD17)

Response to CMD17

Initiate a single-block read
operation.

Figure continued on next page

MMCBLEN
New block length

Single-Block Read Operation

Procedures for Common Operations2-6 SPRU593A

Figure 2−2. Single-Block Read Operation (MMC Protocol) (Continued)

Command/Data
MMC Controller

Register(s)

Monitor MMCST0 to
check for error conditions
and for DRRDY = 1.
When a new byte is
successfully received,
read it from MMCDRR.
Repeat until all bytes are
received.

Description
Recommended Value
to Write to MMCCMD

MMCST0
Status bits

MMCDRRData byte

Multiple-Block Read Operation

2-7Procedures for Common OperationsSPRU593A

2.3 Multiple-Block Read Operation

To read multiple blocks of data from a memory card, use the following
procedure (see also Figure 2−3). This procedure assumes the MMC protocol
is used. It also assumes the MMC controller has completed the card
identification operation and the card you want to access is in its stand-by (stby)
state. The same block length must be defined in the MMC controller and in the
card.

1) Write the RCA of the card to MMCARGH (the bits in MMCARGL are don’t
cares). Then use MMCCMD to send a SELECT/DESELECT_CARD
command (CMD7) to select the addressed card and deselect the others.

2) Check the BSYDNE bit of MMCST0 or the BUSY bit of MMCST1 to
determine whether the card is busy. If the card is busy, wait. Otherwise,
read the response from MMCCIDX and MMCRSP7−MMCRSP5. The
response should indicate that the card is in its transfer (tran) state.

3) If the block length is different from the length used in the previous
operation, set the block length in the MMC controller and in the card. For
the MMC controller, load the block length to MMCBLEN. For the card, load
the block length to MMCARGH:MMCARGL, and use MMCCMD to send
a SET_BLOCKLEN command (CMD16). The response can be read from
MMCCIDX and MMCRSP7−MMCRSP5.

4) If the number of blocks is different from the number used in the previous
operation, write the new number to MMCNBLK. The number of blocks can
be in the range 1−65535 or can be defined as “infinite” (MMCNBLK = 0).
The content of MMCNBLK is copied to MMCNBLC, which is decremented
after each block transfer.

5) Load MMCARGH and MMCARGL with the memory start address. Write
the upper 16 bits to MMCARGH and the lower 16 bits to MMCARGL. Then
use MMCCMD to send a READ_MULTIPLE_BLOCK command
(CMD18). The response can be read from MMCCIDX and
MMCRSP7−MMCRSP5.

6) Monitor MMCST0 to determine when a new byte has been successfully
received in MMCDRR.

7) Read the new byte of data from MMCDRR.

8) If more bytes are to be read, go to step 6. Otherwise, use MMCCMD to
send a STOP_TRANSMISSION command (CMD12). When the card
responds to the command, the response can be read from MMCCIDX and
MMCRSP7−MMCRSP5.

Multiple-Block Read Operation

Procedures for Common Operations2-8 SPRU593A

Figure 2−3. Multiple-Block Read Operation (MMC Protocol)

Command/Data
MMC Controller

Register(s)

Select the desired card
and deselect the other
cards.

MMCCMD
SELECT/DESELECT_CARD

Test whether the card is
busy. When the card is not
busy, read the response.
The response should
indicate that the card is in
its transfer state.

MMCARGH
Relative card address (RCA)

Description
Recommended Value
to Write to MMCCMD

0207h

0210h

MMCST0/1BSYDNE/BUSY bit

Response to CMD7
MMCCIDX
MMCRSP7
MMCRSP6
MMCRSP5

(CMD7)

MMCARGH
MMCARGL

MMCCMD

MMCCIDX
MMCRSP7
MMCRSP6
MMCRSP5

SET_BLOCKLEN

New block length

(CMD16)

Response to CMD16

If the block length is
different for this operation,
define the new block
length in the MMC
controller, and send the
new block length to the
card.

Figure continued on next page

MMCBLEN
New block length

MMCNBLK
New number of blocks If the number of blocks is

different for this operation,
write the new number of
blocks to MMCNBLK. The
number is copied to
MMCNBLC, which is
decremented after each
block transfer.

Multiple-Block Read Operation

2-9Procedures for Common OperationsSPRU593A

Figure 2−3. Multiple-Block Read Operation (MMC Protocol) (Continued)

Monitor MMCST0 to
check for error conditions
and for DRRDY = 1.
When a new byte is
successfully received,
read it from MMCDRR.
Repeat until no more
bytes are to be received.

MMCST0
Status bits

MMCDRRData byte

A212h

MMCARGH
MMCARGL

MMCCMD

MMCCIDX
MMCRSP7
MMCRSP6
MMCRSP5

READ_MULTIPLE_BLOCK

Memory start address

(CMD18)

Response to CMD18

Initiate a multiple-block
read operation.

Command/Data
MMC Controller

Register(s) Description
Recommended Value
to Write to MMCCMD

020ChMMCCMD

MMCCIDX
MMCRSP7
MMCRSP6
MMCRSP5

STOP_TRANSMISSION

(CMD12)

Response to CMD12

Tell the card to stop
transmission.

Stream Read Operation

Procedures for Common Operations2-10 SPRU593A

2.4 Stream Read Operation

To read a continuous stream of data from a memory card, use the following
procedure (see also Figure 2−4). This procedure assumes the MMC protocol
is used. It also assumes the MMC controller has completed the card
identification operation and the card you want to access is in its stand-by (stby)
state.

A stream read operation does not use blocks. Because the operation is not
block oriented, no CRC bits are included with the data.

The stream read procedure follows:

1) Write the RCA of the card to MMCARGH (the bits in MMCARGL are don’t
cares). Then use MMCCMD to send a SELECT/DESELECT_CARD
command (CMD7) to select the addressed card and deselect the others.

2) Check the BSYDNE bit of MMCST0 or the BUSY bit of MMCST1 to
determine whether the card is busy. If the card is busy, wait. Otherwise,
read the response from MMCCIDX and MMCRSP7−MMCRSP5. The
response should indicate that the card is in its transfer (tran) state.

3) Load MMCARGH and MMCARGL with the memory start address. Write
the upper 16 bits to MMCARGH and the lower 16 bits to MMCARGL. Then
use MMCCMD to send a READ_DAT_UNTIL_STOP command (CMD11).
The response can be read from MMCCIDX and MMCRSP7−MMCRSP5.

4) Monitor MMCST0 to determine when a new byte has been successfully
received in MMCDRR.

5) Read the new byte of data from MMCDRR.

6) If more bytes are to be read, go to step 4. Otherwise, use MMCCMD to
send a STOP_TRANSMISSION command (CMD12). When the card
responds to the command, the response can be read from MMCCIDX and
MMCRSP7−MMCRSP5.

Stream Read Operation

2-11Procedures for Common OperationsSPRU593A

Figure 2−4. Stream Read Operation (MMC Protocol)

Command/Data
MMC Controller

Register(s)

Select the desired card
and deselect the other
cards.

MMCCMD
SELECT/DESELECT_CARD

Test whether the card is
busy. When the card is not
busy, read the response.
The response should
indicate that the card is in
its transfer state.

MMCARGH
Relative card address (RCA)

Description
Recommended Value
to Write to MMCCMD

0207h

MMCST0/1BSYDNE/BUSY bit

Response to CMD7
MMCCIDX
MMCRSP7
MMCRSP6
MMCRSP5

(CMD7)

B20Bh

MMCARGH
MMCARGL

MMCCMD

MMCCIDX
MMCRSP7
MMCRSP6
MMCRSP5

READ_DAT_UNTIL_STOP

Memory start address

(CMD11)

Response to CMD11

Initiate a stream read
operation.

Monitor MMCST0 to check
for error conditions and for
DRRDY = 1. When a new
byte is successfully
received, read it from
MMCDRR. Repeat until no
more bytes are to be
received.

MMCST0
Status bits

MMCDRR
Data byte

020ChMMCCMD

MMCCIDX
MMCRSP7
MMCRSP6
MMCRSP5

STOP_TRANSMISSION

(CMD12)

Response to CMD12

Tell the card to stop
transmission.

Single-Block Write Operation

Procedures for Common Operations2-12 SPRU593A

2.5 Single-Block Write Operation

To write a single block of data to a memory card, use the following the
procedure, which is also illustrated in Figure 2−5. This procedure assumes the
MMC protocol is used. It also assumes the MMC controller has completed the
card identification operation and the card you want to access is in its stand-by
(stby) state. The same block length must be defined in the MMC controller and
in the card.

1) Write the RCA of the card to MMCARGH (the bits in MMCARGL are don’t
cares). Then use MMCCMD to send a SELECT/DESELECT_CARD
command (CMD7) to select the addressed card and deselect the others.

2) Check the BSYDNE bit of MMCST0 or the BUSY bit of MMCST1 to
determine whether the card is busy. If the card is busy, wait. Otherwise,
read the response from MMCCIDX and MMCRSP7−MMCRSP5. The
response should indicate that the card is in its transfer (tran) state.

3) If the block length is different than the length used in the previous
operation, set the block length in the MMC controller and in the card. For
the MMC controller, load the block length into MMCBLEN. For the card,
load the block length to MMCARGH:MMCARGL, and use MMCCMD to
send a SET_BLOCKLEN command (CMD16). The response can be read
from MMCCIDX and MMCRSP7−MMCRSP5.

4) Write the first byte of the data block to MMCDXR.

5) Load MMCARGH and MMCARGL with the memory start address. Write
the upper 16 bits to MMCARGH and the lower 16 bits to MMCARGL. Then
use MMCCMD to send a WRITE_BLOCK command (CMD24). The
response can be read from MMCCIDX and MMCRSP7−MMCRSP5.

6) Monitor MMCST0 to determine when the current byte has been
successfully transferred out of MMCDXR.

7) If more bytes of the block remain to be transmitted, write the next byte of
the data block to MMCDXR, and go to step 6. Otherwise, stop. The CRC
status token from the memory card can be read from MMCDRSP.

Single-Block Write Operation

2-13Procedures for Common OperationsSPRU593A

Figure 2−5. Single-Block Write Operation (MMC Protocol)

Command/Data
MMC Controller

Register(s)

Select the desired card
and deselect the other
cards.

MMCCMD
SELECT/DESELECT_CARD

Test whether the card is
busy. When the card is not
busy, read the response.
The response should
indicate that the card is in
its transfer state.

MMCARGH
Relative card address (RCA)

Description
Recommended Value
to Write to MMCCMD

0207h

0210h

MMCST0/1BSYDNE/BUSY bit

Response to CMD7
MMCCIDX
MMCRSP7
MMCRSP6
MMCRSP5

(CMD7)

MMCARGH
MMCARGL

MMCCMD

MMCCIDX
MMCRSP7
MMCRSP6
MMCRSP5

SET_BLOCKLEN

New block length

(CMD16)

Response to CMD16

If the block length is
different for this operation,
define the new block
length in the MMC
controller, and send the
new block length to the
card.

MMCDXR
First data byte

Figure continued on next page

MMCBLEN
New block length

Write the first byte of the
data block to MMCDXR.

Single-Block Write Operation

Procedures for Common Operations2-14 SPRU593A

Figure 2−5. Single-Block Write Operation (MMC Protocol) (Continued)

Command/Data
MMC Controller

Register(s) Description
Recommended Value
to Write to MMCCMD

AA18h

MMCARGH
MMCARGL

MMCCMD

MMCCIDX
MMCRSP7
MMCRSP6
MMCRSP5

WRITE_BLOCK

Memory start address

(CMD24)

Response to CMD24

Initiate a single-block write
operation.

Monitor MMCST0 to check
for error conditions and for
DXRDY = 1. When the
current byte is successfully
transferred out of MMCDXR,
write the next byte to
MMCDXR. Repeat until all
bytes are transmitted.

MMCST0
Status bits

MMCDXR
Next data byte

MMCDRSP
CRC status token The CRC status token

from the card can be read
from MMCDRSP.

Multiple-Block Write Operation

2-15Procedures for Common OperationsSPRU593A

2.6 Multiple-Block Write Operation

To write multiple blocks of data to a memory card, use the following procedure
(see also Figure 2−6). This procedure assumes the MMC protocol is used. It
also assumes the MMC controller has completed the card identification
operation and the card you want to access is in its stand-by (stby) state. The
same block length must be defined in the MMC controller and in the card.

1) Write the RCA of the card to MMCARGH (the bits in MMCARGL are don’t
cares). Then use MMCCMD to send a SELECT/DESELECT_CARD
command (CMD7) to select the addressed card and deselect the others.

2) Check the BSYDNE bit of MMCST0 or the BUSY bit of MMCST1 to
determine whether the card is busy. If the card is busy, wait. Otherwise,
read the response from MMCCIDX and MMCRSP7−MMCRSP5. The
response should indicate that the card is in its transfer (tran) state.

3) If the block length is different from the length used in the previous
operation, set the block length in the MMC controller and in the card. For
the MMC controller, load the block length to MMCBLEN. For the card, load
the block length to MMCARGH:MMCARGL, and use MMCCMD to send
a SET_BLOCKLEN command (CMD16). The response can be read from
MMCCIDX and MMCRSP7−MMCRSP5.

4) If the number of blocks is different from the number used in the previous
operation, write the new number to MMCNBLK. The number of blocks can
be in the range 1−65535 or can be defined as “infinite” (MMCNBLK = 0).
The content of MMCNBLK is copied to MMCNBLC, which is decremented
after each block transfer.

5) Write the first byte of the first data block to MMCDXR.

6) Load MMCARGH and MMCARGL with the memory start address. Write
the upper 16 bits to MMCARGH and the lower 16 bits to MMCARGL. Then
use MMCCMD to send a WRITE_MULTIPLE_BLOCK command
(CMD25). The response can be read from MMCCIDX and
MMCRSP7−MMCRSP5.

7) Monitor MMCST0 to determine when the current byte has been
successfully transferred out of MMCDXR.

8) If more bytes are to be transmitted, write the next byte of data to MMCDXR,
and go to step 7. Otherwise, go to step 9. At the end of each block, the CRC
status token from the memory card can be read from MMCDRSP.

Multiple-Block Write Operation

Procedures for Common Operations2-16 SPRU593A

9) Send a STOP_TRANSMISSION command (CMD12). After sending this
command, check the BSYDNE bit of MMCST0 or the BUSY bit of
MMCST1 to determine whether the card is busy. If the card is busy, wait.
When the card responds to the command, the response can be read from
MMCCIDX and MMCRSP7−MMCRSP5.

Figure 2−6. Multiple-Block Write Operation (MMC Protocol)

Command/Data
MMC Controller

Register(s)

Select the desired card
and deselect the other
cards.

MMCCMD
SELECT/DESELECT_CARD

Test whether the card is
busy. When the card is not
busy, read the response.
The response should
indicate that the card is in
its transfer state.

MMCARGH
Relative card address (RCA)

Description
Recommended Value
to Write to MMCCMD

0207h

0210h

MMCST0/1BSYDNE/BUSY bit

Response to CMD7
MMCCIDX
MMCRSP7
MMCRSP6
MMCRSP5

(CMD7)

MMCARGH
MMCARGL

MMCCMD

MMCCIDX
MMCRSP7
MMCRSP6
MMCRSP5

SET_BLOCKLEN

New block length

(CMD16)

Response to CMD16

If the block length is
different for this operation,
define the new block
length in the MMC
controller, and send the
new block length to the
card.

Figure continued on next page

MMCBLEN
New block length

MMCNBLK
New number of blocks

If the number of blocks is
different for this operation,
write the new number to
MMCNBLK. The number
is copied to MMCNBLC,
which is decremented
after each block transfer.

Multiple-Block Write Operation

2-17Procedures for Common OperationsSPRU593A

Figure 2−6. Multiple-Block Write Operation (MMC Protocol) (Continued)

Command/Data
MMC Controller

Register(s) Description
Recommended Value
to Write to MMCCMD

AA19h

MMCARGH
MMCARGL

MMCCMD

MMCCIDX
MMCRSP7
MMCRSP6
MMCRSP5

WRITE_MULTIPLE_BLOCK

Memory start address

(CMD25)

Response to CMD25

Initiate a multiple-block
write operation.

Monitor MMCST0. When the
current byte is successfully
transferred out of MMCDXR,
write the next byte to
MMCDXR. Repeat until the
block is transmitted.

MMCST0
Status bits

MMCDXR
Next data byte

MMCDRSP
CRC status token

Tell the card to stop
transmission. Test whether
the card is busy. When the
card is not busy, read the
response.

030ChMMCCMD
STOP_TRANSMISSION

(CMD12)

MMCST0/1BSYDNE/BUSY bit

Response to CMD12
MMCCIDX
MMCRSP7
MMCRSP6
MMCRSP5

At the end of each block
transfer, the CRC status
token from the card can be
read from MMCDRSP.

Repeat the process for all
bytes to be transmitted.

MMCDXR
First data byte Write the first byte of the

first data block to
MMCDXR.

Stream Write Operation

Procedures for Common Operations2-18 SPRU593A

2.7 Stream Write Operation

To write a continuous stream of data from a memory card, use the following
procedure (see also Figure 2−7). This procedure assumes the MMC protocol
is used. It also assumes the MMC controller has completed the card
identification operation and the card you want to access is in its stand-by (stby)
state.

A stream write operation does not use blocks. Because the operation is not
block oriented, no CRC bits are included with the data.

The stream write procedure follows:

1) Write the RCA of the card to MMCARGH (the bits in MMCARGL are don’t
cares). Then use MMCCMD to send a SELECT/DESELECT_CARD
command (CMD7) to select the addressed card and deselect the others.

2) Check the BSYDNE bit of MMCST0 or the BUSY bit of MMCST1 to
determine whether the card is busy. If the card is busy, wait. Otherwise,
read the response from MMCCIDX and MMCRSP7−MMCRSP5. The
response should indicate that the card is in its transfer (tran) state.

3) Write the first byte of data to MMCDXR.

4) Load MMCARGH and MMCARGL with the memory start address. Write
the upper 16 bits to MMCARGH and the lower 16 bits to MMCARGL. Then
use MMCCMD to send a WRITE_DAT_UNTIL_STOP command
(CMD20). The response can be read from MMCCIDX and
MMCRSP7−MMCRSP5.

5) Use MMCST0 to determine when the current byte has been successfully
transferred out of MMCDXR.

6) If more bytes are to be transmitted, write the next byte of data to MMCDXR,
and go to step 5. Otherwise, go to step 7.

7) Send a STOP_TRANSMISSION command (CMD12). After sending this
command, check the BSYDNE bit of MMCST0 or the BUSY bit of
MMCST1 to determine whether the card is busy. If the card is busy, wait.
When the card responds to the command, the response can be read from
MMCCIDX and MMCRSP7−MMCRSP5.

Stream Write Operation

2-19Procedures for Common OperationsSPRU593A

Figure 2−7. Stream Write Operation (MMC Protocol)

Command/Data
MMC Controller

Register(s)

Select the desired card
and deselect the other
cards.

MMCCMD
SELECT/DESELECT_CARD

Test whether the card is
busy. When the card is not
busy, read the response.
The response should
indicate that the card is in
its transfer state.

MMCARGH
Relative card address (RCA)

Description
Recommended Value
to Write to MMCCMD

0207h

MMCST0/1BSYDNE/BUSY bit

Response to CMD7
MMCCIDX
MMCRSP7
MMCRSP6
MMCRSP5

(CMD7)

Figure continued on next page

MMCDXR
First data byte Write the first byte of data

to MMCDXR.

BB14h

MMCARGH
MMCARGL

MMCCMD

MMCCIDX
MMCRSP7
MMCRSP6
MMCRSP5

WRITE_DAT_UNTIL_STOP

Memory start address

(CMD20)

Response to CMD20

Initiate a stream write
operation.

Stream Write Operation

Procedures for Common Operations2-20 SPRU593A

Figure 2−7. Stream Write Operation (MMC Protocol) (Continued)

Command/Data
MMC Controller

Register(s) Description
Recommended Value
to Write to MMCCMD

Tell the card to stop
transmission. Test whether
the card is busy. When the
card is not busy, read the
response.

030ChMMCCMD
STOP_TRANSMISSION

(CMD12)

MMCST0/1
BSYDNE/BUSY bit

Response to CMD12
MMCCIDX
MMCRSP7
MMCRSP6
MMCRSP5

Monitor MMCST0. When the
current byte is successfully
transferred out of MMCDXR,
write the next byte to
MMCDXR. Repeat until no
more bytes are to be
transmitted.

MMCST0
Status bits

MMCDXR
Next data byte

3-1

�������������������
�
���������

This chapter describes how to program the registers that should be initialized
before the MMC controller begins communications with attached memory
cards.

Topic Page

3.1 Initializing the MMC Controller 3-2.

3.2 Initializing the MMC Control Register (MMCCTL) 3-3.

3.3 Initializing the Clock Control Registers
(MMCFCLK and MMCCLK) 3-5.

3.4 Initializing the Interrupt Enable Register (MMCIE) 3-7.

3.5 Initializing the Time-Out Registers (MMCTOR and MMCTOD) 3-8.

3.6 Initializing the Data Block Registers
(MMCBLEN and MMCNBLK) 3-10.

Chapter 3

Initializing the MMC Controller

Initializing the MMC Controller3-2 SPRU593A

3.1 Initializing the MMC Controller

The general procedure for initializing the MMC controller is given in the
following steps.

1) Place the MMC controller in its reset state by setting the CMDRST bit of
MMCCTL and the DATRST bit of MMCCTL. With the same register write
operation, write the desired values to other bits in MMCCTL.

2) Write to other registers to complete the MMC controller configuration.

3) Clear the CMDRST bit and the DATRST bit to release the MMC controller
from its reset state. Make sure you do not change the values you wrote to
the other bits of MMCCTL in step 1.

4) Enable the CLK pin so that the memory clock is sent to the memory card.

Initializing the MMC Control Register (MMCCTL)

3-3Initializing the MMC ControllerSPRU593A

3.2 Initializing the MMC Control Register (MMCCTL)

Figure 3−1 shows the bit fields in the MMC control register (MMCCTL).

Figure 3−1. MMCCTL

15 12 11 9 8

Reserved Reserved† DMAEN

R−0 R/W−0 R/W−0

7 6 5 3 2 1 0

DATEG Reserved† WIDTH CMDRST DATRST

R/W−00 R/W−0 R/W−0 R/W−0 R/W−0

Legend: R = Read; W = Write; -n = Value after hardware reset

† Keep the default value (0) in these reserved bits.

3.2.1 Enable/Disable DMA Events

Register(Field) Value Description

MMCCTL(DMAEN) 0 Disable DMA events.

1 Enable DMA events.

Use DMAEN to disable for enable the MMC controller DMA events, which are
described in section 1.6 (page 1-11).

3.2.2 Select a Type of Edge Detection (If Any) for the DAT3 Pin

Register(Field) Value Description

MMCCTL(DATEG) 00b Disable DAT3 edge detection.

01b Enable DAT3 rising edge detection.

10b Enable DAT3 falling edge detection.

11b Enable DAT3 dual edge detection (detect both edges).

The DATEG control bit of MMCCTL enables or disables general-purpose edge
detection on the DAT3 pin. If you enable edge detection and an edge is
detected, the DATEG flag bit of MMCST0 is set. In addition, if DATEG = 1 in
MMCIE, an interrupt request is generated.

Initializing the MMC Control Register (MMCCTL)

Initializing the MMC Controller3-4 SPRU593A

3.2.3 Select a Data Bus Width

Register(Field) Value Description

MMCCTL(WIDTH) 0 Use a 1-bit data bus (DAT0 pin).

1 Use a 4-bit data bus (pins DAT0−DAT3).

The MMC controller must know how wide the data bus must be for the memory
card that is connected. If an MMC is connected, specify a 1-bit data bus
(WIDTH = 0). If an SD card is connected, specify a 4-bit data bus (WIDTH = 1).

3.2.4 Enable/Reset the MMC Controller

Register(Field) Value Description

MMCCTL(CMDRST) 0 Enable the CMD (command) logic of the MMC controller.

1 Place the CMD logic of the MMC controller in its reset state.

MMCCTL(DATRST) 0 Enable the DAT (data) logic of the MMC controller.

1 Place the DAT logic of the MMC controller in its reset state.

To place the MMC controller in its reset state and disable it, set the CMDRST
and DATRST bits of MMCCTL. The first step of the MMC controller
initialization process is to disable both sets of logic. When initialization is
complete but before you enable the CLK pin, enable the MMC controller by
clearing the CMDRST and DATRST bits.

Initializing the Clock Control Registers (MMCFCLK and MMCCLK)

3-5Initializing the MMC ControllerSPRU593A

3.3 Initializing the Clock Control Registers (MMCFCLK and MMCCLK)

Figure 3−2 and Figure 3−3 show the bit fields in the function clock control
register (MMCFCLK) and the clock control register (MMCCLK), respectively.

Figure 3−2. MMCFCLK

15 9 8 7 0

Reserved IDLEEN FDIV

R−0 R/W-0 R/W-07h

Legend: R = Read; W = Write; -n = Value after hardware reset

Figure 3−3. MMCCLK

15 9 8 7 0

Reserved CLKEN CDIV

R−0 R/W−0 R/W−0Fh

Legend: R = Read; W = Write; -n = Value after hardware reset

3.3.1 Set the Function Clock and the Memory Clock

Register(Field) Value Description

MMCFCLK(FDIV) 1−255 Use this field to set the divide-down value for the function
clock.

MMCCLK(CDIV) 0−255 Use this field to set the divide-down value for the memory
clock.

To generate the function clock (the clock for activity inside the MMC controller),
the MMC controller divides down the CPU clock as shown in the following
equation. When you initialize MMCFCLK, you specify FDIV, a divide-down
value in the range 1 through 255.

function clock frequency �
CPU clock frequency

(FDIV � 1)

The memory clock (the clock for the attached memory card) is a divided-down
version of the function clock; see the following equation. When you initialize
MMCCLK, you specify CDIV, a divide-down value in the range 0 through 255.

memory clock frequency �
function clock frequency

2 (CDIV � 1)
�

CPU clock frequency

2 (FDIV � 1) (CDIV � 1)

For more information about the function clock and the memory clock, see
section 1.4 on page 1-8.

Initializing the Clock Control Registers (MMCFCLK and MMCCLK)

Initializing the MMC Controller3-6 SPRU593A

3.3.2 Enable/Disable the Idle Capability

Register(Field) Value Description

MMCFCLK(IDLEEN) 0 The MMC controller cannot be made idle.

1 If PERI = 1 (see just below), the MMC controller is idle (the
function clock is stopped) after the IDLE instruction is
executed.

ICR(PERI) 0 Any peripheral in the peripherals idle domain will be active
after the IDLE instruction is executed.

1 Any peripheral in the peripherals idle domain can be idle after
the IDLE instruction is executed, depending on the state of
that peripheral’s idle enable bit.

The DSP is divided into a number of idle domains. The MMC controller is one
of the peripherals in the peripherals idle domain. If you want the MMC
controller to become idle in response to an IDLE instruction, make the
following preparations:

1) Write 1 to the idle enable (IDLEEN) bit in MMCFCLK. This tells the DSP
to stop the function clock of the MMC controller when the peripherals
domain becomes idle.

2) Write 1 to the PERI bit in the idle control register (ICR) of the DSP. This tells
the DSP to make the peripherals domain idle when an IDLE instruction is
executed.

The TMS320C55x DSP Peripherals Overview Reference Guide (SPRU317)
points to the power management documentation that describes how to control
the idle domains.

3.3.3 Enable/Disable the CLK Pin

Register(Field) Value Description

MMCCLK(CLKEN) 0 Disable the CLK pin; drive a constant, low signal on the pin.

1 Enable the CLK pin, so that it shows the memory clock
signal.

The CLKEN bit determines whether the memory clock appears on the CLK pin.

Initializing the Interrupt Enable Register (MMCIE)

3-7Initializing the MMC ControllerSPRU593A

3.4 Initializing the Interrupt Enable Register (MMCIE)

Register(Field) Value Description

MMCIE(11−0) 000h−FFFh Use this field to select which of the MMC interrupt requests
will be forwarded to the CPU.

The bits in MMCIE individually enable or disable the interrupt requests
described in section 1.5 (page 1-9). Figure 3−4 shows the bit fields of MMCIE.
Set one of these bits to enable the associated interrupt request. Clear one of
these bit to disable the associated interrupt request.

Figure 3−4. MMCIE

15 12 11 10 9 8

Reserved DATEG DRRDY DXRDY Reserved†

R−0 R/W−0 R/W−0 R/W−0 R/W−0

7 6 5 4 3 2 1 0

CRCRS CRCRD CRCWR TOUTRS TOUTRD RSPDNE BSYDNE DATDNE

R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0

Legend: R = Read; W = Write; -n = Value after hardware reset

† Keep the default value (0) in this reserved bit.

Initializing the Time-Out Registers (MMCTOR and MMCTOD)

Initializing the MMC Controller3-8 SPRU593A

3.5 Initializing the Time-Out Registers (MMCTOR and MMCTOD)

Specify the time-out period for responses (TOR, see Figure 3−5) and the
time-out period for read data (TOD, see Figure 3−6) as described in the
following subsections. If a memory card should require longer time-out periods
than MMCTOR and MMCTOD can provide, software time-out mechanisms
can be implemented.

Figure 3−5. MMCTOR

15 8 7 0

Reserved TOR

R−0 R/W-0

Legend: R = Read; W = Write; -n = Value after hardware reset

Figure 3−6. MMCTOD

15 0

TOD

R/W-0

Legend: R = Read; W = Write; -n = Value after hardware reset

3.5.1 Set the Time-Out Period for a Response

Register(Field) Value Description

MMCTOR(7−0) 0 Do not check for a response time-out condition.

n = 1−255 If there is no response from the memory card in n CLK
cycles, record a time-out condition.

When the MMC controller sends a command a memory card, it often must wait
for a response. The controller can wait indefinitely or for up to 255 memory
clock cycles. If you load 0 into MMCTOR during initialization, the controller
waits for a response indefinitely. If you load a nonzero value into MMCTOR,
the controller automatically stops waiting after the specified number of cycles
and then records a response time-out condition. If the associated interrupt
request is enabled, the controller also sends an interrupt request to the CPU.

Initializing the Time-Out Registers (MMCTOR and MMCTOD)

3-9Initializing the MMC ControllerSPRU593A

3.5.2 Set the Time-Out Period for a Data Read Operation

Register(Field) Value Description

MMCTOD(15−0) 0 Do not check for a data-read time-out condition.

n = 1−65535 If no data is received from the memory card in n CLK cycles,
record a time-out condition.

When the MMC controller requests data from a memory card, it can wait
indefinitely for that data, or it can stop waiting after a programmable number
of cycles. If you load 0 into MMCTOD during initialization, the controller waits
indefinitely. If you load a nonzero value n into MMCTOD, the controller waits
n memory clock cycles and then records a data-read time-out condition in
MMCST0. If the associated interrupt request is enabled, the controller also
sends an interrupt request to the CPU.

Initializing the Data Block Registers (MMCBLEN and MMCNBLK)

Initializing the MMC Controller3-10 SPRU593A

3.6 Initializing the Data Block Registers (MMCBLEN and MMCNBLK)

Specify the number of bytes in a data block in MMCBLEN (see Figure 3−7) and
the number of blocks in a multiple-block transfer in MMCNBLK (see
Figure 3−8). Details about these values are in the following subsections.

Figure 3−7. MMCBLEN

15 12 11 0

Reserved BLEN

R−0 R/W-200h

Legend: R = Read; W = Write; -n = Value after hardware reset

Figure 3−8. MMCNBLK

15 0

NBLK

R/W-0

Legend: R = Read; W = Write; -n = Value after hardware reset

3.6.1 Set the Data Block Length

Register(Field) Value Description

MMCBLEN(11−0) 1−512 Use this field to set the number of bytes in a data block.

In MMCBLEN, you must define the size for each block of data transferred
between the MMC controller and a memory card. The valid size depends on
the type of read/write operation. A length of 0 bytes is prohibited.

3.6.2 Specify the Number of Blocks in a Multiple-Block Transfer

Register(Field) Value Description

MMCNBLK(15−0) 0 Transfer an infinite number of blocks.

n = 1−65535 Transfer n blocks.

For multiple-block transfers, you must specify how many blocks of data are to
be transferred between the MMC controller and a memory card. You can
specify an infinite number of blocks by loading 0 into MMCNBLK. When
MMCNBLK = 0, the MMC controller transfers blocks until you end the
transferring with a STOP_TRANSMISSION command. If you need a specific
number of blocks transferred, load MMCNBLK with a value from 1 through
65535.

4-1

�����������������
�
���������

This chapter describes registers and specific register bits that you can use to
obtain the status of the MMC controller and its communications with memory
cards.

Topic Page

4.1 Monitoring the DAT3 and CLK Pins 4-2.

4.2 Monitoring Data Transfers 4-3.

Chapter 4

Monitoring the DAT3 and CLK Pins

Monitoring the MMC Controller4-2 SPRU593A

4.1 Monitoring the DAT3 and CLK Pins

4.1.1 Detecting Edges and Level Changes on the DAT3 Pin

Register(Field) Value Description

MMCST0(DATEG) 0 No edge has been detected on the DAT3 pin.

1 An edge has been detected on the DAT3 pin

MMCST1(DAT) 0 The signal level on DAT3 is low.

1 The signal level on DAT3 is high.

Detecting edges. The MMC controller sets the DATEG flag of status register
0 (MMCST0) if DAT3 edge detection is enabled (DATEG is nonzero in
MMCCTL) and the specified edge is detected. The CPU can also be notified
of the DAT3 edge by an interrupt if you enable the interrupt request in the
interrupt enable register (DATEG = 1 in MMCIE).

Detecting level changes. The DAT bit of status register 1 tracks the signal
level on the DAT3 pin.

4.1.2 Checking the Status of the CLK Pin

Register(Field) Value Description

MMCST1(CLKSTP) 0 CLK is active. The memory clock signal is being driven on the
pin.

1 CLK is held low. Possible reasons are a manual stop
(CLKEN = 0), a data receive full condition, or a data transmit
empty condition.

Read CLKSTP to determine whether the memory clock has been stopped on
the CLK pin.

Monitoring Data Transfers

4-3Monitoring the MMC ControllerSPRU593A

4.2 Monitoring Data Transfers

4.2.1 Determining Whether New Data is Available in MMCDRR

Register(Field) Value Description

MMCST0(DRRDY) 0 MMCDRR is not ready.

1 MMCDRR is ready. New data has arrived and can be read
by the CPU or by the DMA controller.

The MMC controller sets the DRRDY flag of MMCST0 when new data arrives
in the data receive register (MMCDRR). The CPU can also be notified of the
event by an interrupt if you enable the interrupt request (DRRDY = 1 in
MMCIE).

4.2.2 Verifying That MMCDXR is Ready to Accept New Data

Register(Field) Value Description

MMCST0(DXRDY) 0 MMCDXR is not ready.

1 MMCDXR is ready. The data in MMCDXR has been
transmitted; MMCDXR can accept new data from the CPU
or from the DMA controller.

The MMC controller sets the DXRDY flag of MMCST0 when data leaves the
data transmit register (DXRDY). The CPU can also be notified of the event by
an interrupt if you enable the interrupt request (DXRDY = 1 in MMCIE).

4.2.3 Checking for CRC Errors

Register(Field) Value Description

MMCST0(CRCRS) 0 No response CRC error has been detected.

1 A response CRC error has been detected.

MMCST0(CRCRD) 0 No read-data CRC error has been detected.

1 A read-data CRC error has been detected.

MMCST0(CRCWR) 0 No write-data CRC error has been detected.

1 A write-data CRC error has been detected.

The MMC controller sets one of these flags in response to the corresponding
CRC error. The CPU can also be notified of the CRC error by an interrupt if you
enable the interrupt request (CRCRS/CRCRD/CRCWR = 1 in MMCIE).

Monitoring Data Transfers

Monitoring the MMC Controller4-4 SPRU593A

4.2.4 Checking for Time-Out Events

Register(Field) Value Description

MMCST0(TOUTRS) 0 A response time-out event has not been detected.

1 A response time-out event has been detected.

MMCST0(TOUTRD) 0 A read-data time-out event has not been detected.

1 A read-data time-out event has been detected.

The MMC controller sets one of these flags in response to a the corresponding
time-out event. The CPU can also be notified of the time-out event by an
interrupt if you enable the interrupt request (TOUTRS/TOUTRD = 1 in
MMCIE).

4.2.5 Determining When a Response/Command is Done

Register(Field) Value Description

MMCST0(RSPDNE) If the command requires a response:

0 The response has not been fully received with no CRC error.

1 The response has been fully received with no CRC error.

If no response required:

0 The command has not been sent.

1 The command has been sent.

The MMC controller sets the RSPDNE flag when the response is done (or, for
commands that do not require a response, when the command is done). The
CPU can also be notified of the done condition by an interrupt if you enable the
interrupt request (RSPDNE = 1 in MMCIE).

Monitoring Data Transfers

4-5Monitoring the MMC ControllerSPRU593A

4.2.6 Determining Whether the Memory Card is Busy

Register(Field) Value Description

MMCST0(BSYDNE) 0 The memory card is busy.

1 The memory card is no longer sending a busy signal.

MMCST1(BUSY) 0 The memory card has not sent a busy signal.

1 The memory card is busy.

The card sends a busy signal either as an expected part of an R1b response
or to indicate that the card is still programming the last write data into its flash
memory. The MMC controller has two flags to tell you whether the memory
card is sending a busy signal. The two flags are complements of each other:

� BSYDNE is set if the card did not send or is not sending a busy signal. As
with the other bits in status register 0, this bit has an associated interrupt
that can be enabled (BSYDNE = 1 in MMCIE).

� BUSY is set when a busy signal is received from the card.

4.2.7 Determining Whether a Data Transfer is Done

Register(Field) Value Description

MMCST0(DATDNE) When reading from memory card:

0 The data has not been fully received with no CRC error.

1 The data has been fully received with no CRC error.

When writing to memory card:

0 The data has not been fully transmitted.

1 The data has been fully transmitted.

The MMC controller sets the DATDNE flag when all the bytes of a data transfer
have been transmitted/received. You can poll this bit to determine when to stop
writing to the data transmit register (for a write operation) or when to stop
reading from the data receive register (for a read operation). The CPU can also
be notified of the data-done event by an interrupt if you enable the interrupt
request (DATDNE = 1 in MMCIE).

Monitoring Data Transfers

Monitoring the MMC Controller4-6 SPRU593A

4.2.8 Checking for a Data Transmit Empty Condition

Register(Field) Value Description

MMCST1(DXEMP) 0 A data-transmit-empty condition has not been detected.

1 A data-transmit-empty condition has been detected.

During transmission, a data value is passed from the data transmit register
(MMCDXR) to the data transmit shift register. Then the value is passed from
this shift register to the memory card, one bit at a time. The DXEMP bit
indicates when this shift register is empty (when there are no bits available to
shift out to the memory card).

Typically, this bit is not used to control data transfers; it is checked during
recovery from an error condition. There is no interrupt associated with the
data-transmit-empty condition.

4.2.9 Checking for a Data Receive Full Condition

Register(Field) Value Description

MMCST1(DRFUL) 0 A data-receive-full condition has not been detected.

1 A data-receive-full condition has been detected.

During reception, the data receive shift register accepts a data value, one bit
at a time. Then the whole value is passed from this shift register to the data
receive register (MMCDRR). The DRFUL bit indicates when this shift register
is full. At that time, no new bits can be shifted in from the memory card.

Typically, this bit is not used to control data transfers; it is checked during
recovery from an error condition. There is no interrupt associated with the
data-receive-full condition.

4.2.10 Getting the CRC Status Token After a Block is Written

Register(Field) Value Description

MMCDRSP(7−0) 00h−FFh CRC status token from the memory card.

After the MMC controller sends a data block to a memory card, the memory
card returns a CRC status token. This token is stored in the data response
register (MMCDRSP).

4.2.11 Getting the Remaining Block Count During a Multiple-Block Transfer

Register(Field) Value Description

MMCNBLC(15−0) n = 1−65535 There are n blocks left to be transferred.

During a transfer of multiple data blocks, the block counter register
(MMCNBLC) tells you how many blocks are left to be transferred.

5-1

��

��������� ����	���	

This chapter provides a summary and detailed descriptions of the registers in
the MMC controller.

5.1 Summary of the MMC Controller Registers

The MMC controller registers are listed in Table 5−1. These registers are
accessible at 16-bit addresses in the I/O space of the DSP. The x’s in the
Address column of Table 5−1 indicate the part of the address that is different
for each of the two MMC controllers on the DSP. For the first MMC controller,
the start address is 4800h. For the second MMC controller, the start address
is 4C00h.

Table 5−1. MMC Controller I/O-Mapped Registers

Address Name Description See ...

xx00h MMCFCLK Function Clock Control Register Page 5-3

xx01h MMCCTL MMC Control Register Page 5-4

xx02h MMCCLK Clock Control Register Page 5-6

xx03h MMCST0 Status Register 0 Page 5-7

xx04h MMCST1 Status Register 1 Page 5-10

xx05h MMCIE Interrupt Enable Register Page 5-12

xx06h MMCTOR Response Time-Out Register Page 5-14

xx07h MMCTOD Data Read Time-Out Register Page 5-15

xx08h MMCBLEN Block Length Register Page 5-15

xx09h MMCNBLK Number of Blocks Register Page 5-16

xx0Ah MMCNBLC Number of Blocks Counter Register Page 5-16

xx0Bh MMCDRR Data Receive Register Page 5-17

xx0Ch MMCDXR Data Transmit Register Page 5-17

Chapter 5

Summary of the MMC Controller Registers

MMC Controller Registers5-2 SPRU593A

Table 5−1. MMC Controller I/O-Mapped Registers (Continued)

Address See ...DescriptionName

xx0Dh MMCCMD Command Register Page 5-18

xx0Eh MMCARGL Argument Register, Low Page 5-20

xx0Fh MMCARGH Argument Register, High Page 5-20

xx10h MMCRSP0 Response Register 0 Page 5-22

xx11h MMCRSP1 Response Register 1 Page 5-22

xx12h MMCRSP2 Response Register 2 Page 5-22

xx13h MMCRSP3 Response Register 3 Page 5-22

xx14h MMCRSP4 Response Register 4 Page 5-22

xx15h MMCRSP5 Response Register 5 Page 5-22

xx16h MMCRSP6 Response Register 6 Page 5-22

xx17h MMCRSP7 Response Register 7 Page 5-22

xx18h MMCDRSP Data Response Register Page 5-24

xx19h − Reserved −

xx1Ah MMCCIDX Command Index Register Page 5-24

Function Clock Control Register (MMCFCLK)

5-3MMC Controller RegistersSPRU593A

5.2 Function Clock Control Register (MMCFCLK)

Use MMCFCLK to:

� Select whether the MMC controller can be placed into an idle state when
the peripherals domain of the DSP is turned off with an IDLE instruction
(IDLEEN bit).

� Select how much the CPU clock is divided down to produce the function
clock (FDIV bits). The MMC controller operates at the frequency of the
function clock. For more details about clock generation, see section 1.4
on page 1-8.

Figure 5−1 and Table 5−2 summarize MMCFCLK.

Figure 5−1. Function Clock Control Register (MMCFCLK)

15 9 8 7 0

Reserved IDLEEN FDIV

R−0 R/W−0 R/W−07h

Legend: R = Read; W = Write; -n = Value after hardware reset

Table 5−2. Function Clock Control Register (MMCFCLK) Field Descriptions

Bit Field Value Description

15−9 Reserved These read-only reserved bits always return 0s.

8 IDLEEN IDLE enable

0 The function clock cannot be stopped by an IDLE instruction.

1 If an IDLE instruction makes the peripherals domain idle, the MMC
controller is idle (the function clock is stopped).

7−0 FDIV 1−255 Use this field to set the divide-down value for the function clock. The
CPU clock is divided as follows to create the function clock:
 function clock frequency = CPU clock frequency/(FDIV + 1)

MMC Control Register (MMCCTL)

MMC Controller Registers5-4 SPRU593A

5.3 MMC Control Register (MMCCTL)

Use MMCCTL (see Figure 5−2 and Table 5−3) to enable or configure various
modes of the MMC controller. Set or clear the DATRST and CMDRST bits at
the same time to reset or enable the MMC controller.

Figure 5−2. MMC Control Register (MMCCTL)

15 12 11 9 8

Reserved Reserved† DMAEN

R−0 R/W−0 R/W−0

7 6 5 3 2 1 0

DATEG Reserved† WIDTH CMDRST DATRST

R/W−00 R/W−0 R/W−0 R/W−0 R/W−0

Legend: R = Read; W = Write; -n = Value after hardware reset

† Keep the default value (0) in these reserved bits.

Table 5−3. MMC Control Register (MMCCTL) Field Descriptions

Bit Field Value Description

15−12 Reserved These read-only reserved bits always return 0s.

11−9 Reserved 0 Keep the default value (0) in these reserved bits.

8 DMAEN DMA event enable

0 Disable DMA events.

1 Enable DMA events.

7−6 DATEG DAT3 edge detection select

00b DAT3 edge detection is disabled.

01b DAT3 rising edge detection is enabled.

10b DAT3 falling edge detection is enabled.

11b DAT3 dual edge detection is enabled (both edges detected).

5−3 Reserved 0 Keep the default value (0) in these reserved bits.

2 WIDTH Data bus width select

0 The data bus has 1 bit (DAT0 is used). The MMC protocol is selected.

1 The data bus has 4 bits (DAT0−3 are used). The SD protocol is selected.

MMC Control Register (MMCCTL)

5-5MMC Controller RegistersSPRU593A

Table 5−3. MMC Control Register (MMCCTL) Field Descriptions (Continued)

Bit DescriptionValueField

1 CMDRST CMD (command) logic reset

0 The CMD logic of the MMC controller is enabled.

1 The CMD logic of the MMC controller is in the reset state.

0 DATRST DAT (data) logic reset

0 The DAT logic of the MMC controller is enabled.

1 The DAT logic of the MMC controller is in the reset state.

Clock Control Register (MMCCLK)

MMC Controller Registers5-6 SPRU593A

5.4 Clock Control Register (MMCCLK)

Use MMCCLK to:

� Select whether the CLK pin is enabled or disabled (CLKEN bit).

� Select how much the function clock is divided down to produce the
memory clock (CDIV bits). When the CLK pin is enabled, the MMC
controller drives the memory clock on this pin to control the timing of
communications with attached memory cards. For more details about
clock generation, see section 1.4 on page 1-8.

Figure 5−3 and Table 5−4 summarize MMCCLK.

Figure 5−3. Clock Control Register (MMCCLK)

15 9 8 7 0

Reserved CLKEN CDIV

R−0 R/W−0 R/W−0Fh

Legend: R = Read; W = Write; -n = Value after hardware reset

Table 5−4. Clock Control Register (MMCCLK) Field Descriptions

Bit Field Value Description

15−9 Reserved These read-only reserved bits always return 0s.

8 CLKEN CLK pin enable

0 The CLK pin is disabled and fixed low.

1 The CLK pin is enabled; it shows the memory clock signal.

7−0 CDIV 0−255 Use this field to set the divide-down value for the memory clock. The function
clock is divided down as follows to produce the memory clock:
memory clock frequency = function clock frequency/(2(CDIV + 1))

Status Register 0 (MMCST0)

5-7MMC Controller RegistersSPRU593A

5.5 Status Register 0 (MMCST0)

The status bits in MMCST0 (see Figure 5−4 and Table 5−5) record specific
events or errors. The transition from 0 to 1 of each bit in MMCST0 can cause
an interrupt signal to be sent to the CPU. If an interrupt is desired, set the
corresponding interrupt enable bit in MMCIE, which is described in section 5.7
(page 5-12).

In most cases, when a status bit is read, it is cleared. The two exceptions are
the DRRDY bit and the DXRDY bit; these bits are cleared only in response to
the functional events described for them in Table 5−5, or in response to a
hardware reset.

Figure 5−4. Status Register 0 (MMCST0)

15 12 11 10 9 8

Reserved DATEG DRRDY DXRDY† Reserved†

R−0 R−0 R−0 R−1 R−0

7 6 5 4 3 2 1 0

CRCRS CRCRD CRCWR TOUTRS TOUTRD RSPDNE BSYDNE DATDNE

R−0 R−0 R−0 R−0 R−0 R−0 R−0 R−0

Legend: R = Read; -n = Value after hardware reset
† The reset values shown for bits 9 and 8 are valid when the MMC controller stabilizes after reset.

Table 5−5. Status Register 0 (MMCST0) Field Descriptions

Bit Field Value Description

15−12 Reserved These read-only reserved bits always return 0s.

11 DATEG DAT3 edge detected

0 A DAT3 edge has not been detected.

1 A DAT3 edge has been detected.

10 DRRDY Data receive ready

DRRDY is cleared to 0 when the DAT logic is reset (DATRST = 1),
when a command is sent with data receive/transmit clear
(DCLR = 1), or when data is read from MMCDRR.

0 MMCDRR is not ready.

1 MMCDRR is ready. New data has arrived and can be read by the
CPU or by the DMA controller.

Status Register 0 (MMCST0)

MMC Controller Registers5-8 SPRU593A

Table 5−5. Status Register 0 (MMCST0) Field Descriptions (Continued)

Bit DescriptionValueField

9 DXRDY Data transmit ready

DXRDY is set to 1 when the DAT logic is reset (DATRST = 1), when
a command is sent with data receive/transmit clear (DCLR = 1), or
when data is written to MMCDXR.

0 MMCDXR is not ready.

1 MMCDXR is ready. The data in MMCDXR has been transmitted;
MMCDXR can accept new data from the CPU or from the DMA
controller.

8 Reserved This read-only reserved bit always returns 0.

7 CRCRS Response CRC error

0 A response CRC error has not been detected.

1 A response CRC error has been detected.

6 CRCRD Read-data CRC error

0 A read-data CRC error has not been detected.

1 A read-data CRC error has been detected.

5 CRCWR Write-data CRC error

0 A write-data CRC error has not been detected.

1 A write-data CRC error has been detected.

4 TOUTRS Response time-out event

0 A response time-out event has not occurred.

1 A time-out event has occurred while the MMC controller was waiting
for a response to a command.

3 TOUTRD Read-data time-out event

0 A read-data time-out event has not occurred.

1 A time-out event has occurred while the MMC controller was waiting
for data.

Status Register 0 (MMCST0)

5-9MMC Controller RegistersSPRU593A

Table 5−5. Status Register 0 (MMCST0) Field Descriptions (Continued)

Bit DescriptionValueField

2 RSPDNE Command/response done

If the command requires a response:

0 The response has not been fully received with no CRC error.

1 The response has been fully received with no CRC error.

If no response required:

0 The command has not been sent.

1 The command has been sent.

1 BSYDNE Busy done

BSYDNE is used for commands with an R1b response. BSYDNE is
set to indicate that the card is no longer busy.

0 The memory card is busy.

1 The memory card is no longer sending a busy signal.

0 DATDNE Data transfer done

When reading from memory card:

0 The data has not been fully received with no CRC error.

1 The data has been fully received with no CRC error.

When writing to memory card:

0 The data has not been fully transmitted.

1 The data has been fully transmitted.

Status Register 1 (MMCST1)

MMC Controller Registers5-10 SPRU593A

5.6 Status Register 1 (MMCST1)

The status bits in MMCST1 (see Figure 5−5 and Table 5−6) record specific
events or errors. There are no interrupts associated with these events or
errors.

Figure 5−5. Status Register 1 (MMCST1)

15 8

Reserved

R−0

7 5 4 3 2 1 0

Reserved DAT DRFUL DXEMP CLKSTP BUSY

R−0 R−0 R−0 R−0 R−0 R−0

Legend: R = Read; -n = Value after hardware reset

Table 5−6. Status Register 1 (MMCST1) Field Descriptions

Bit Field Value Description

15−5 Reserved These read-only reserved bits always return 0s.

4 DAT DAT3 level

0 The signal level on the DAT3 pin is low.

1 The signal level on the DAT3 pin is high.

3 DRFUL Data receive full

0 A data receive full condition has not been detected. The data receive
shift register is not full.

1 A data receive full condition has been detected. The data receive shift
register is full. No new bits can be shifted in from the memory card.

2 DXEMP Data transmit empty

0 A data transmit empty condition has not been detected. The data
transmit shift register is not empty.

1 A data transmit empty condition has been detected. The data transmit
shift register is empty. No bits are available to be shifted out to the
memory card.

Status Register 1 (MMCST1)

5-11MMC Controller RegistersSPRU593A

Table 5−6. Status Register 1 (MMCST1) Field Descriptions (Continued)

Bit DescriptionValueField

1 CLKSTP Clock stopped

0 The CLK pin is active. The memory clock signal is being driven on the
pin.

1 The CLK pin is held low. Possible reasons are a manual stop
(CLKEN = 0), a data receive full condition, or a data transmit empty
condition.

0 BUSY Busy

0 A busy signal has not been detected.

1 A busy signal has been detected (the memory card is busy).

Interrupt Enable Register (MMCIE)

MMC Controller Registers5-12 SPRU593A

5.7 Interrupt Enable Register (MMCIE)

This register is used to enable or disable status interrupts. To disable an
interrupt, clear the corresponding bit in MMCIE; to enable it, set the bit.
Figure 5−6 and Table 5−7 summarize MMCIE.

Figure 5−6. Interrupt Enable Register (MMCIE)

15 12 11 10 9 8

Reserved DATEG DRRDY DXRDY Reserved†

R−0 R/W−0 R/W−0 R/W−0 R/W−0

7 6 5 4 3 2 1 0

CRCRS CRCRD CRCWR TOUTRS TOUTRD RSPDNE BSYDNE DATDNE

R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0

Legend: R = Read; W = Write; -n = Value after hardware reset

† Keep the default value (0) in this reserved bit.

Table 5−7. Interrupt Enable Register (MMCIE) Field Descriptions

Bit Field Value Description

15−12 Reserved These read-only reserved bits always return 0s.

11 DATEG DAT3 edge interrupt enable

0 The DAT3 edge detect interrupt is disabled.

1 The DAT3 edge detect interrupt is enabled.

10 DRRDY Data receive ready interrupt enable

0 The data receive ready interrupt is disabled.

1 The data receive ready interrupt is enabled.

9 DXRDY Data transmit ready interrupt enable

0 The data transmit ready interrupt is disabled.

1 The data transmit ready interrupt is enabled.

8 Reserved 0 Keep the default value (0) in this reserved bit.

7 CRCRS Response CRC error interrupt enable

0 The response CRC error interrupt is disabled.

1 The response CRC error interrupt is enabled.

Interrupt Enable Register (MMCIE)

5-13MMC Controller RegistersSPRU593A

Table 5−7. Interrupt Enable Register (MMCIE) Field Descriptions (Continued)

Bit DescriptionValueField

6 CRCRD Read-data CRC error interrupt enable

0 The read-data CRC error interrupt is disabled.

1 The read-data CRC error interrupt is enabled.

5 CRCWR Write-data CRC error interrupt enable

0 The write-data CRC error interrupt is disabled.

1 The write-data CRC error interrupt is enabled.

4 TOUTRS Response time-out interrupt enable

0 The response time-out interrupt is disabled.

1 The response time-out interrupt is enabled.

3 TOUTRD Read-data time-out interrupt enable

0 The read-data time-out interrupt is disabled.

1 The read-data time-out interrupt is enabled.

2 RSPDNE Response/command done interrupt enable

0 The response/command done interrupt is disabled.

1 The response/command done interrupt is enabled.

1 BSYDNE Busy done interrupt enable

0 The busy done interrupt is disabled.

1 The busy done interrupt is enabled.

0 DATDNE Data transfer done interrupt enable

0 The data transfer done interrupt is disabled.

1 The data transfer done interrupt is enabled.

Response Time-Out Register (MMCTOR)

MMC Controller Registers5-14 SPRU593A

5.8 Response Time-Out Register (MMCTOR)

MMCTOR defines how long the MMC controller waits for a response from a
memory card before recording a time-out condition in the TOUTRS bit of
MMCST0. If the corresponding bit is set in MMCIE, an interrupt is generated
when TOUTRS is set. MMCTOR is summarized in Figure 5−7 and Table 5−8.
If a memory card should require a longer time-out period than MMCTOR can
provide, a software time-out mechanism can be implemented.

Figure 5−7. Response Time-Out Register (MMCTOR)

15 8 7 0

Reserved TOR

R−0 R/W−0

Legend: R = Read; W = Write; -n = Value after hardware reset

Table 5−8. Response Time-Out Register (MMCTOR) Field Descriptions

Bit Field Value Description

15−8 Reserved These read-only reserved bits always return 0s.

7−0 TOR Time-out period for response

0 No time-out

01h−FFh 1 CLK clock cycle to 255 CLK clock cycles

Data Read Time-Out Register (MMCTOD)

5-15MMC Controller RegistersSPRU593A

5.9 Data Read Time-Out Register (MMCTOD)
When the MMC controller has requested data from a memory card, MMCTOD
defines how long the MMC controller waits for the data before recording a
time-out condition in the TOUTRD bit of MMCST0. If the corresponding bit is
set in MMCIE, an interrupt is generated when TOUTRD is set. MMCTOD is
summarized in Figure 5−8 and Table 5−9. If a memory card should require a
longer time-out period than MMCTOD can provide, a software time-out
mechanism can be implemented.

Figure 5−8. Data Read Time-Out Register (MMCTOD)

15 0

TOD

R/W−0

Legend: R = Read; W = Write; -n = Value after hardware reset

Table 5−9. Data Read Time-Out Register (MMCTOD) Field Description

Bit Field Value Description

15−0 TOD Time-out period for data read

0 No time-out

0001h−FFFFh 1 CLK clock cycles to 65535 CLK clock cycles

5.10 Block Length Register (MMCBLEN)
MMCBLEN specifies the data block length in bytes. This value must match the
block length setting in the memory card. The default value in this register after
a hardware reset is 512. Figure 5−9 and Table 5−10 summarize MMCBLEN.

Figure 5−9. Block Length Register (MMCBLEN)

15 12 11 0

Reserved BLEN

R−0 R/W-200h (512)

Legend: R = Read; W = Write; -n = Value after hardware reset

Table 5−10. Block Length Register (MMCBLEN) Field Descriptions

Bit Field Value Description

15−12 Reserved These read-only reserved bits always return 0s.

11−0 BLEN 1−512 Use this field to set the block length, which is the byte count of a data
block. The value 0 is prohibited.

Data Read Time-Out Register (MMCTOD) / Block Length Register (MMCBLEN)

Number of Blocks Register (MMCNBLK)

MMC Controller Registers5-16 SPRU593A

5.11 Number of Blocks Register (MMCNBLK)

MMCNBLK is used for specifying the number of blocks for a multiple-block
transfer. Figure 5−10 and Table 5−11 summarize MMCNBLK.

Figure 5−10. Number of Blocks Register (MMCNBLK)

15 0

NBLK

R/W−0

Legend: R = Read; W = Write; -n = Value after hardware reset

Table 5−11. Number of Blocks Register (MMCNBLK) Field Description

Bit Field Value Description

15−0 NBLK Use this field to set the total number of blocks to be transferred.

0 Infinite number of blocks. The MMC controller reads/writes blocks of
data until a STOP_TRANSMISSION command is written to
MMCCMD.

n = 1−65535 n blocks. The MMC controller reads/writes only n blocks of data,
even if the STOP_TRANSMISSION command has not been written
to MMCCMD yet.

5.12 Number of Blocks Counter Register (MMCNBLC)

MMCNBLC is a down counter for tracking the number of blocks left to be
transferred during a multiple-block transfer. Figure 5−11 and Table 5−12
summarize MMCNBLC.

Figure 5−11.Number of Blocks Counter Register (MMCNBLC)

15 0

NBLC

R−0

Legend: R = Read; -n = Value after hardware reset

Table 5−12. Number of Blocks Counter Register (MMCNBLC) Field Description

Bit Field Value Description

15−0 NBLC 0−65535 Read this field to determine the number of blocks left to be
transferred.

Number of Blocks Register (MMCNBLK) / Number of Blocks Counter Register (MMCNBLC)

Data Receive Register (MMCDRR)

5-17MMC Controller RegistersSPRU593A

5.13 Data Receive Register (MMCDRR)

Data comes into the MMC controller via MMCDRR (see Figure 5−12 and
Table 5−13). The CPU or the DMA controller can read data from this register.

Figure 5−12. Data Receive Register (MMCDRR)

15 0

DRR

R/W−0

Legend: R = Read; W = Write; -n = Value after hardware reset

Table 5−13. Data Receive Register (MMCDRR) Field Description

Bit Field Value Description

15−0 DRR 0000h−FFFFh This field holds data received by the MMC controller.

5.14 Data Transmit Register (MMCDXR)

Data exits the MMC controller via MMCDXR (see Figure 5−13 and
Table 5−14). The CPU or the DMA controller can write data to this register.

Figure 5−13. Data Transmit Register (MMCDXR)

15 0

DXR

R/W−0

Legend: R = Read; W = Write; -n = Value after hardware reset

Table 5−14. Data Transmit Register (MMCDXR) Field Description

Bit Field Value Description

15−0 DXR 0000h−FFFFh Data to be transmitted by the MMC controller must be written
to this field.

Data Receive Register (MMCDRR) / Data Transmit Register (MMCDXR)

Command Register (MMCCMD)

MMC Controller Registers5-18 SPRU593A

5.15 Command Register (MMCCMD)

Note:

Writing to MMCCMD causes the MMC controller to send the programmed
command. Therefore, the argument registers (MMCARGH and MMCARGL)
have to be loaded properly before a write to MMCCMD.

When the DSP writes to MMCCMD, the MMC controller sends the
programmed command, including any arguments in the argument registers
(MMCARGH and MMCARGL). For the format of a command (index,
arguments, and other bits), see the description for the argument registers
(section 5.16 on page 5-20).

Figure 5−14 and Table 5−15 summarize MMCCMD. The CMD field of
MMCCMD specifies the type of command to be sent. The other fields define
the operation (command, response, additional activity) for the MMC controller.

The content of MMCCMD is kept after the transfer to the transmit shift register.

Figure 5−14. Command Register (MMCCMD)

15 14 13 12 11 10 9 8

DCLR INIT DATA STREAM WRITE RSPFMT BSYEXP

R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0

7 6 5 0

Reserved CMD

R−0 R/W−0
Legend: R = Read; W = Write; -n = Value after hardware reset

Table 5−15. Command Register (MMCCMD) Field Descriptions

Bit Field Value Description

15 DCLR Data receive/transmit clear. Use this bit to clear the data receive ready
(DRRDY) and data transmit ready (DXRDY) bits before a new read or
write sequence. This clears any previous status.

0 Do not clear DRRDY and DXRDY.

1 Clear DRRDY and DXRDY.

14 INIT Initialization clock cycles

0 Do not insert initialization clock cycles.

1 Insert initialization clock cycles; insert 80 CLK cycles before sending the
command specified in the CMD field. These dummy clock cycles are
required for resetting a card after power on.

Command Register (MMCCMD)

5-19MMC Controller RegistersSPRU593A

Table 5−15. Command Register (MMCCMD) Field Descriptions (Continued)

Bit DescriptionValueField

13 DATA Data transfer indicator

0 There is to be no data transfer.

1 There is a data transfer associated with the command.

12 STREAM Stream enable

0 If DATA = 1, the data transfer is a block transfer. The data transfer stops
after the movement of the programmed number of bytes (defined by the
programmed block size and the programmed number of blocks).

1 If DATA = 1, the data transfer is a stream transfer. Once the data transfer
is started, it does not stop until the MMC controller issues a stop
command to the memory card.

11 WRITE Write enable

0 If DATA = 1, the data transfer is a read operation.

1 If DATA = 1, the data transfer is a write operation.

10−9 RSPFMT Response format (expected type of response to the command)

00b No response

01b R1, R4, R5, or R6. 48 bits with CRC.

10b R2. 136 bits with CRC.

11b R3. 48 bits with no CRC.

8 BSYEXP Busy expected. If an R1b (R1 with busy) response is expected, set
RSPFMT = 01 and BSYEXP = 1.

0 A busy signal is not expected.

1 A busy signal is expected.

7−6 Reserved These read-only reserved bits always return 0s.

5−0 CMD xxxxxxb Command index. This field must contain the command index for the
command to be sent to the memory card.

Argument Registers (MMCARGH and MMCARGL)

MMC Controller Registers5-20 SPRU593A

5.16 Argument Registers (MMCARGH and MMCARGL)

MMCARGH and MMCARGL are used for specifying the arguments to be sent
with the command specified in MMCCMD. Writing to MMCCMD causes the
MMC controller to send a command; load MMCARGH and MMCARGL before
writing to MMCCMD. The contents of the argument registers are kept after the
transfer to the shift register.

Note:

Do not modify the argument registers while they are being used for an opera-
tion.

Figure 5−15, Table 5−16, and Table 5−17 summarize the argument registers.
Table 5−18 shows the format for a command.

Figure 5−15. Argument Registers (MMCARGH and MMCARGL)

MMCARGH

15 0

ARGH

R/W−0

MMCARGL

15 0

ARGL

R/W−0

Legend: R = Read; W = Write; -n = Value after hardware reset

Table 5−16. Argument Register, High (MMCARGH) Field Description

Bit Field Value Description

15−0 ARGH 0000h−FFFFh High part (upper 16 bits) of argument

Table 5−17. Argument Register, Low (MMCARGL) Field Description

Bit Field Value Description

15−0 ARGL 0000h−FFFFh Low part (lower 16 bits) of argument

Argument Registers (MMCARGH and MMCARGL)

5-21MMC Controller RegistersSPRU593A

Table 5−18. Command Format

Register Bit Position Description

− 47 Start bit

− 46 Transmission bit

MMCCMD(5−0) 45−40 Command index

MMCARGH 39−24 Argument, high part

MMCARGL 23−8 Argument, low part

− 7−1 CRC7

− 0 End bit

Response Registers (MMCRSP0−MMCRSP7)

MMC Controller Registers5-22 SPRU593A

5.17 Response Registers (MMCRSP0−MMCRSP7)

Each command has a preset response type. When the MMC controller
receives a response, it is stored in some or all of the eight response registers
(MMCRSP7−MMCRSP0). The response registers are updated as the
responses arrive, even if the CPU has not read the previous contents.

As shown in Figure 5−16, each of the response registers holds up to 16 bits.
The tables that follow the figure show which registers are used for each type
of response. Table 5−19 and Table 5−20 show response formats. The first
byte of the response is a command index byte and is stored in the command
index register (MMCCIDX; see section 5.19 on page 5-24).

Figure 5−16. Format of a Response Register (MMCRSPn)

15 0

RSP

R/W−0

Legend: R = Read; W = Write; -n = Value after hardware reset

Table 5−19. R1, R3, R4, R5, or R6 Response (48 Bits)

Register Bits of the Response

MMCCIDX 47−40

MMCRSP7 39−24

MMCRSP6 23−8

MMCRSP5† 7−0

MMCRSP4−0 −

† Bits 7−0 of the response are stored to the lower half (bits 7−0) of MMCRSP5.

Response Registers (MMCRSP0−MMCRSP7)

5-23MMC Controller RegistersSPRU593A

Table 5−20. R2 Response (136 Bits)

Register Bits of the Response

MMCCIDX 135−128

MMCRSP7 127−112

MMCRSP6 111−96

MMCRSP5 95−80

MMCRSP4 79−64

MMCRSP3 63−48

MMCRSP2 47−32

MMCRSP1 31−16

MMCRSP0 15−0

Data Response Register (MMCDRSP)

MMC Controller Registers5-24 SPRU593A

5.18 Data Response Register (MMCDRSP)

After the MMC controller sends a data block to a memory card, the return byte
from the memory card is stored in MMCDRSP. Figure 5−17 and Table 5−21
summarize this register.

Figure 5−17. Data Response Register (MMCDRSP)

15 8 7 0

Reserved DRSP

R−0 R/W−0

Legend: R = Read; W = Write; -n = Value after hardware reset

Table 5−21. Data Response Register (MMCDRSP) Field Descriptions

Bit Field Value Description

15−8 Reserved These read-only reserved bits always return 0s.

7−0 DRSP xxh During a write operation (see section 1.3.1 on page 1-5), the CRC status
token is stored in this register .

5.19 Command Index Register (MMCCIDX)

The first byte of a response from a memory card is a command index byte. The
MMC controller stores this byte in MMCCIDX (see Figure 5−18 and
Table 5−22).

Figure 5−18. Command Index Register (MMCCIDX)

15 8 7 0

Reserved CIDX

R−0 R/W−0

Legend: R = Read; W = Write; -n = Value after hardware reset

Table 5−22. Command Index Register (MMCCIDX) Field Descriptions

Bit Field Value Description

15−8 Reserved These read-only reserved bits always return 0s.

7−0 CIDX xxh When a command index byte is received, the byte is stored in this field.
The byte consists of a start bit, a transmission bit, and a command index.

Data Response Register (MMCDRSP) / Command Index Register (MMCCIDX)

Index

Index-1

�����

136-bit response (table) 5-23
48-bit response (table) 5-22

A
argument registers (MMCARGH and

MMCARGL) 5-20

B
block count, getting 4-6
block length register (MMCBLEN)

description 5-15
initializing 3-10

block length, setting 3-10
BSYDNE bit of MMCIE

described in table 5-13
shown in figure 5-12

BSYDNE bit of MMCST0
described in table 5-9
shown in figure 5-7

BSYEXP bit of MMCCMD
described in table 5-19
shown in figure 5-18

bus width select bit (WIDTH)
described in table 5-4
shown in figure 5-4

bus width, selecting 3-4
BUSY bit of MMCST1

described in table 5-11
shown in figure 5-10

busy done bit (BSYDNE)
described in table 5-9
shown in figure 5-7

busy done interrupt enable bit (BSYDNE)
described in table 5-13
shown in figure 5-12

busy expected bit (BSYEXP)
described in table 5-19
shown in figure 5-18

busy/not busy status of memory card 4-5

C
card identification operation 2-2

CDIV bits of MMCCLK
described in table 5-6
shown in figure 5-6

CLK pin
checking status 4-2
described in table 1-4
enabling/disabling 3-6

CLK pin enable (CLKEN) bit of MMCCLK
described in table 5-6
shown in figure 5-6

CLKSTP bit of MMCST1
described in table 5-11
shown in figure 5-10

clock control registers (MMCFCLK and MMCCLK)
initializing 3-5
MMCCLK description 5-6
MMCFCLK description 5-3

clock pin (CLK)
checking status 4-2
described in table 1-4
enabling/disabling 3-6

clock stopped bit (CLKSTP)
described in table 5-11
shown in figure 5-10

clocks of MMC controller 1-8

CMD bits of MMCCMD
described in table 5-19
shown in figure 5-18

CMD pin 1-4

Index

Index-2

CMDRST bit of MMCCTL
described in table 5-5
shown in figure 5-4

command, determining when done 4-4

command format (table) 5-21

command index bits (CMD)
described in table 5-19
shown in figure 5-18

command index register (MMCCIDX) 5-24

command logic reset bit (CMDRST)
described in table 5-5
shown in figure 5-4

command pin (CMD) 1-4

command register (MMCCMD) 5-18

command/response done bit (RSPDNE)
described in table 5-9
shown in figure 5-7

command/response done interrupt enable bit
(RSPDNE)
described in table 5-13
shown in figure 5-12

common operation procedures 2-1

conserving power 1-13

CRC errors, checking for 4-3

CRC status token, getting 4-6

CRCRD bit of MMCIE
described in table 5-13
shown in figure 5-12

CRCRD bit of MMCST0
described in table 5-8
shown in figure 5-7

CRCRS bit of MMCIE
described in table 5-12
shown in figure 5-12

CRCRS bit of MMCST0
described in table 5-8
shown in figure 5-7

CRCWR bit of MMCIE
described in table 5-13
shown in figure 5-12

CRCWR bit of MMCST0
described in table 5-8
shown in figure 5-7

D
DAT bit of MMCST1

described in table 5-10
shown in figure 5-10

DAT0−DAT3 pins 1-4
DAT3 edge detected bit (DATEG)

described in table 5-7
shown in figure 5-7

DAT3 edge detection select bits (DATEG)
described in table 5-4
shown in figure 5-4

DAT3 edge interrupt enable bit (DATEG)
described in table 5-12
shown in figure 5-12

DAT3 level bit (DAT)
described in table 5-10
shown in figure 5-10

DAT3 pin
detecting edges and level changes 4-2
selecting type of edge detection 3-3

DATA bit of MMCCMD
described in table 5-19
shown in figure 5-18

data block length, setting 3-10
data block registers, initializing 3-10
data bus width select bit (WIDTH)

described in table 5-4
shown in figure 5-4

data bus width, selecting 3-4
data flow in MMCDRR and MMCDXR 1-12
data logic reset bit (DATRST)

described in table 5-5
shown in figure 5-4

data pins (DAT0−DAT3) 1-4
data read time-out register (MMCTOD)

description 5-15
initializing 3-8

data receive full bit (DRFUL)
described in table 5-10
shown in figure 5-10

data receive full condition, checking for 4-6
data receive ready bit (DRRDY)

described in table 5-7
shown in figure 5-7

data receive ready interrupt enable bit (DRRDY)
described in table 5-12
shown in figure 5-12

Index

Index-3

data receive register (MMCDRR)
checking status 4-3
description 5-17
how data flows through 1-12

data receive/transmit clear bit (DCLR)
described in table 5-18
shown in figure 5-18

data response register (MMCDRSP) 5-24

data transfer done bit (DATDNE)
described in table 5-9
shown in figure 5-7

data transfer done interrupt enable bit (DATDNE)
described in table 5-13
shown in figure 5-12

data transfer indicator bit (DATA)
described in table 5-19
shown in figure 5-18

data transfers, determining when done 4-5

data transmit empty bit (DXEMP)
described in table 5-10
shown in figure 5-10

data transmit empty condition, checking for 4-6

data transmit ready bit (DXRDY)
described in table 5-8
shown in figure 5-7

data transmit ready interrupt enable bit (DXRDY)
described in table 5-12
shown in figure 5-12

data transmit register (MMCDXR)
checking status 4-3
description 5-17
how data flows through 1-12

DATDNE bit of MMCIE
described in table 5-13
shown in figure 5-12

DATDNE bit of MMCST0
described in table 5-9
shown in figure 5-7

DATEG bit of MMCIE
described in table 5-12
shown in figure 5-12

DATEG bit of MMCST0
described in table 5-7
shown in figure 5-7

DATEG bits of MMCCTL
described in table 5-4
shown in figure 5-4

DATRST bit of MMCCTL
described in table 5-5
shown in figure 5-4

DCLR bit of MMCCMD
described in table 5-18
shown in figure 5-18

DMA event enable bit (DMAEN)
described in table 5-4
shown in figure 5-4

DMA events
description 1-11
enabling/disabling 3-3

DMAEN bit of MMCCTL
described in table 5-4
shown in figure 5-4

DRFUL bit of MMCST1
described in table 5-10
shown in figure 5-10

DRRDY bit of MMCIE
described in table 5-12
shown in figure 5-12

DRRDY bit of MMCST0
described in table 5-7
shown in figure 5-7

DSP hardware reset, effects on
MMC controller 1-13

DXEMP bit of MMCST1
described in table 5-10
shown in figure 5-10

DXRDY bit of MMCIE
described in table 5-12
shown in figure 5-12

DXRDY bit of MMCST0
described in table 5-8
shown in figure 5-7

E
emulation suspend condition, effect on

MMC controller 1-13
enabling/resetting MMC controller via software 3-4

F
FDIV bits of MMCFCLK

described in table 5-3
shown in figure 5-3

features and operation of MMC controller 1-1

Index

Index-4

function clock and memory clock 1-8

function clock control register (MMCFCLK)
description 5-3
initializing 3-5

function clock divide-down bits (FDIV)
described in table 5-3
shown in figure 5-3

I
idle capability

enabling/disabling 3-6
using for power conservation 1-13

idle enable (IDLEEN) bit of MMCFCLK
described in table 5-3
shown in figure 5-3

initialization clock cycles (INIT) bit of MMCCMD
described in table 5-18
shown in figure 5-18

initializing MMC controller 3-1

interface of MMC controller 1-4

interrupt enable paths (figure) 1-10

interrupt enable register (MMCIE)
description 5-12
initializing 3-7

interrupt requests 1-9

M
memory clock and function clock 1-8

memory clock divide-down bits (CDIV)
described in table 5-6
shown in figure 5-6

MMC configuration versus SD configuration
(figure) 1-5

MMC control register (MMCCTL)
description 5-4
initializing 3-3

MMC controller software reset 1-13

MMCARGH and MMCARGL 5-20

MMCBLEN
description 5-15
initializing 3-10

MMCCIDX 5-24

MMCCLK
description 5-6
initializing 3-5

MMCCMD 5-18
MMCCTL

description 5-4
initializing 3-3

MMCDRR
checking status 4-3
description 5-17
how data flows through 1-12

MMCDRSP 5-24
MMCDXR

checking status 4-3
description 5-17
how data flows through 1-12

MMCFCLK
description 5-3
initializing 3-5

MMCIE
description 5-12
initializing 3-7

MMCNBLC 5-16
MMCNBLK

description 5-16
initializing 3-10

MMCRSP0−MMCRSP7 5-22
MMCST0 5-7
MMCST1 5-10
MMCTOD

description 5-15
initializing 3-8

MMCTOR
description 5-14
initializing 3-8

monitoring MMC controller 4-1
multiple-block read operation 2-7
multiple-block write operation 2-15

N
number of blocks counter register

(MMCNBLC) 5-16
number of blocks register (MMCNBLK)

description 5-16
initializing 3-10

number of blocks, specifying 3-10

Index

Index-5

O
operation and features of MMC controller 1-1

P
pins/signals of MMC controller 1-4

power conservation 1-13

procedures for common operations 2-1

R
R1, R3, R4, R5, or R6 response (table) 5-22

R2 response (table) 5-23

read operation
multiple-block 2-7
overview 1-7
single-block 2-4
stream 2-10

read-data CRC error bit (CRCRD)
described in table 5-8
shown in figure 5-7

read-data CRC error interrupt enable bit (CRCRD)
described in table 5-13
shown in figure 5-12

read-data time-out event bit (TOUTRD)
described in table 5-8
shown in figure 5-7

read-data time-out interrupt enable bit (TOUTRD)
described in table 5-13
shown in figure 5-12

registers of MMC controller 5-1

remaining block count, getting 4-6

resetting MMC controller 1-13

resetting/enabling MMC controller via software 3-4

response, determining when done 4-4

response CRC error bit (CRCRS)
described in table 5-8
shown in figure 5-7

response CRC error interrupt enable bit (CRCRS)
described in table 5-12
shown in figure 5-12

response format
R1, R3, R4, R5, or R6 response (table) 5-22
R2 response (table) 5-23

response format bits (RSPFMT)
described in table 5-19
shown in figure 5-18

response registers (MMCRSP0−MMCRSP7) 5-22

response time-out event bit (TOUTRS)
described in table 5-8
shown in figure 5-7

response time-out interrupt enable bit (TOUTRS)
described in table 5-13
shown in figure 5-12

response time-out register (MMCTOR)
description 5-14
initializing 3-8

response/command done bit (RSPDNE)
described in table 5-9
shown in figure 5-7

response/command done interrupt enable bit
(RSPDNE)
described in table 5-13
shown in figure 5-12

role of MMC controller 1-3

RSPDNE bit of MMCIE
described in table 5-13
shown in figure 5-12

RSPDNE bit of MMCST0
described in table 5-9
shown in figure 5-7

RSPFMT bits of MMCCMD
described in table 5-19
shown in figure 5-18

S
SD configuration versus MMC configuration

(figure) 1-5

signals/pins of MMC controller 1-4

single-block read operation 2-4

single-block write operation 2-12

status register 0 (MMCST0) 5-7

status register 1 (MMCST1) 5-10

stream enable (STREAM) bit of MMCCMD
described in table 5-19
shown in figure 5-18

stream read operation 2-10

stream write operation 2-18

summary of MMC controller registers 5-1

Index

Index-6

T
time-out events, checking for 4-4
time-out period setting

for data during read operation 3-9
for response 3-8

time-out register
for data during read operation (MMCTOD) 5-15
for response (MMCTOR) 5-14

TOUTRD bit of MMCIE
described in table 5-13
shown in figure 5-12

TOUTRD bit of MMCST0
described in table 5-8
shown in figure 5-7

TOUTRS bit of MMCIE
described in table 5-13
shown in figure 5-12

TOUTRS bit of MMCST0
described in table 5-8
shown in figure 5-7

W

WIDTH bit of MMCCTL
described in table 5-4
shown in figure 5-4

write enable (WRITE) bit of MMCCMD
described in table 5-19
shown in figure 5-18

write operation
multiple-block 2-15
overview 1-5
single-block 2-12
stream 2-18

write-data CRC error bit (CRCWR)
described in table 5-8
shown in figure 5-7

write-data CRC error interrupt enable bit (CRCWR)
described in table 5-13
shown in figure 5-12

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Telephony www.ti.com/telephony

Low Power www.ti.com/lpw Video & Imaging www.ti.com/video
Wireless

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://interface.ti.com
http://www.ti.com/digitalcontrol
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lpw
http://www.ti.com/video
http://www.ti.com/wireless

