UCC272xx and UCC273xx: 120V Half-Bridge Gate Drivers for High-Powered Applications

The UCC272xx and UCC273xx devices are a family of high current half-bridge drivers optimized to drive MOSFETs and IGBTs in fast switching, high-powered environments across industrial and automotive applications. The family has over 15 generic parts, each with specific differences. This product overview highlights the benefits of all the offerings and aims to assist engineers in selecting the best driver.

Optimized

UCC272xx and UCC273xx features both 3A/3A and 3.7A/4.5A drive current options to reduce switching losses and improve overall efficiency in high-power systems. This drive capability paired with small package options, such as the 3mm × 3mm VSON, make the UCC272xx and UCC273xx family one of the most versatile families of half-bridges. The extensive GPNs and feature sets maintains that there is a good device for your application.

Features

The UCC273xx family extends the UCC272xx devices by offering input interlock and enable functionality. Input interlock is a logic function built in to prevent shoot-through events. If both the high-side and low-side of the half bridge were to output at the same time, current "shoots through" and cause damage to the transistor. Since power FETs are not cheap, interlock is offered as a preventative measure to save the board. Enable functionality is designed via an additional pin, and thus only offered in the 10-pin DRC orderable parts. If enable is sent low, then regardless of the input signal the IC receives, the driver is prevented from outputting. An extended benefit of this feature is that UCC273xx operates at a lower quiescent current when disabled, drawing a typical of only 3uA. This decreases the power drawn from your system and helps optimize efficiency in designs.

Robust

The UCC272xx and UCC273xx 120V V $_{HB}$ and -(28V $_{DD}$)V negative transient handling allows the proper headroom and buffer for the driver to exist and operate in noisy environments without the need for external components. The integrated bootstrap diode is designed to handle fast-switching, high stress environments. As mentioned, interlock logic helps prevent damage to transistors which can be a significant cost on the board.

Table 1. Product Summary

Product Features	Product Benefits	Key Applications	
120V V _{HB} , 3.7A/4.5A Drive	Robust in fast switching environments	Rack and Server Power	
-(28V-V _{DD}) Switching Transient Handling	Good for handling transients and noise in operations	HEV/EV On-Board Charger Bi-directional DCDC	
5V or 8V UVLO Options	MOSFET and IGBT applications	Solar Inverters	
3mm × 3mm Package Options	Power Density	Traction Inverters	

Target End Equipments

With the product family features discussed, consider the ways that this can improve a system design.

Table 2. End Equipment Impact

System Requirement	System Benefit
Size	3mm × 3mm packages enable small design size
Robustness	-(28V-V _{DD}) handling on SH allows the UCC272xx and UCC273xx to better withstand noise and transients
	High-performance integrated bootstrap diode maintains operation across fastest switching applications
Cost	The excellent transient performance reduces the need for external components such as clamping diodes
	Integrating the bootstrap diode saves BOM cost and reduces components needed
Efficiency	5V and 8V UVLO options prevent the driver from partially turning on the power switch with insufficient voltage to the FET gate
	3.7A/4.5A drive current enables reduction in switching losses
Flexibility	UVLO and package options allow maximum customization
	Interlock (UCC2730x) or non-interlock options allow choice of including feature. DRC package offers enable functionality with low current shutdown mode.

The UCC272xx and UCC273xx can be utilized in a wide variety of end equipments. Figure 1 through Figure 3 help explore some of the most popular use cases and respective topologies.

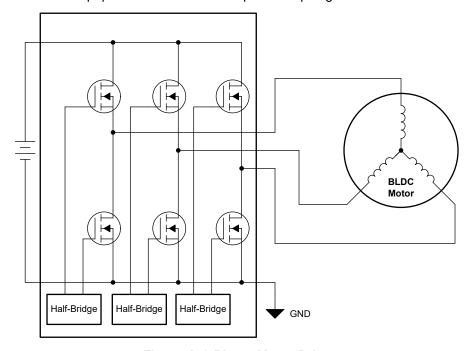


Figure 1. 3-Phase Motor Drive

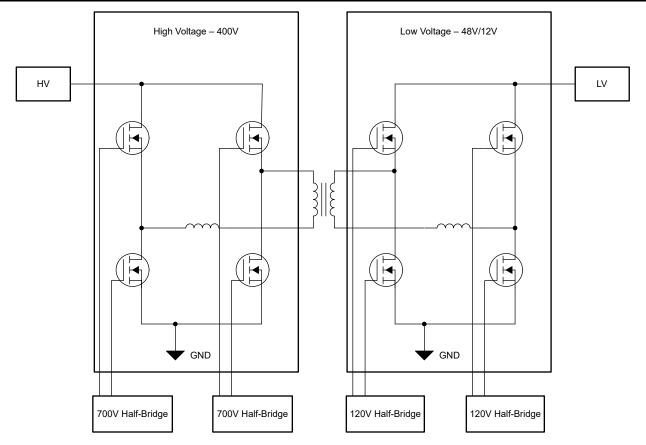


Figure 2. 48V-12V DC/DC Converter

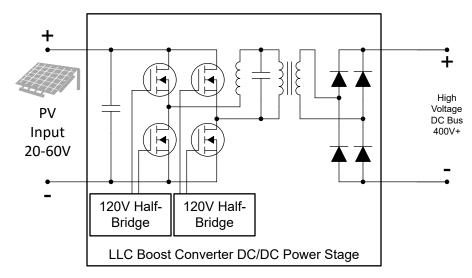


Figure 3. DC/DC in Solar Application

Device Selection Guides

The UCC272xx and UCC273xx devices have distinct features, electrical specifications, and pinouts. To aid in selection, Table 3 through Table 5 help distinguish major differences between part numbers and variants.

Table 3. Device Key Specs

Part Number	UVLO	Feature	Catalog Package Options	Automotive Package Options	
UCC27301A (-Q1)	8V	3.7A/4.5A, Input Interlock, Enable Pin (DRC only)	D, DRC	D, DDA, DRC	
UCC27311A(-Q1)	8V	3.7A/4.5A, Enable Pin (DRC only)	DRC	DRC	
UCC27302A(-Q1)	5V	3.7A/4.5A, Input Interlock, Enable Pin (DRC only)	D, DDA, DRC	D, DDA, DRC	
UCC27200	8V	3A/3A, CMOS Input	DDA, DRM	N/A	
UCC27200A(-Q1)	8V	3A/3A, CMOS Input	D, DPR, DRC	DDA	
UCC27201A(-Q1)	8V	3A/3A, TTL Input	D, DDA, DRM, DPR	DDA, DMK	
UCC27211(-Q1)	8V	3.7A/4.5A, TTL Input	D, DDA, DPR	D, DDA	
UCC27211A	8V	3.7A/4.5A, TTL Input	DRM	N/A	
UCC27212	5V	3.7A/4.5A, TTL Input	D, DPR	N/A	
UCC27212A-Q1	5V	3.7A/4.5A, TTL Input	N/A	D, DDA	

Table 4. Pinout Maps and Availability

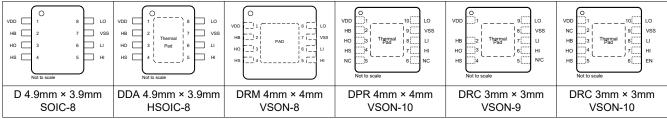


Table 5. Legacy Devices Similar to UCC272xx and UCC273xx

Legacy Device	New GPN Replacement	Pin-to-Pin?	Key Advantages
UCC27282 (+Q1)	UCC27302A (+Q1)	Yes	Increased drive current to decrease switching losses, increasing system efficiency.
UCC27284	UCC27212	Yes	Optimized integrated boot
UCC27289	UCC7211/A	Yes	diode to handle high-stress environment.
LM5101A	UCC27311A	Yes	Smaller package options allow for reduced design size

Additional Information

Table 6. Orderable Table

Orderable Device	Package Type	Pins	Op Temp (°C)	Device Marking	Samples
UCC27301ADR	SOIC	8	-40 to 150	27301A	Samples
UCC27301ADDAR	HSOIC	8	-40 to 150	27301A	Samples
UCC27301ADRCR	VSON	10	-40 to 150	27301A	Samples
UCC27301AQDRQ1	SOIC	8	-40 to 150	U27301Q	Samples
UCC27301AQDDARQ1	HSOIC	8	-40 to 150	U27301Q	Samples

Table 6. Orderable Table (continued)

Orderable Device	Package Type	Pins	Op Temp (°C)	Device Marking	Samples
UCC27301AQDRCRQ1	VSON	10	-40 to 150	27301Q	Samples
UCC27302ADR	SOIC	8	-40 to 150	27302A	Samples
UCC27302ADDAR	HSOIC	8	-40 to 150	U27302A	Samples
UCC27302ADRCR	VSON	10	-40 to 150	27302A	Samples
UCC27302AQDRQ1	SOIC	8	-40 to 150	27302Q	Samples
UCC27302AQDDARQ1	HSOIC	8	-40 to 150	U27302Q	Samples
UCC27302AQDRCRQ1	VSON	10	-40 to 150	27302Q	Samples
UCC27200ADR	SOIC	8	-40 to 150	27200A	Samples
UCC27200ADRCR	VSON	10	-40 to 150	200A	Samples
UCC27200DDAR	HSOIC	8	-40 to 150	27200	Samples
UCC27200DRMR	VSON	8	-40 to 150	27200	Samples
UCC27200QDDARQ1	HSOIC	8	-40 to 150	27200Q	Samples
UCC27201ADDAR	HSOIC	8	-40 to 150	27201A	Samples
UCC27201ADPRR	WSON	10	-40 to 150	UCC27201A	Samples
UCC27201ADR	SOIC	8	-40 to 150	27201A	Samples
UCC27201ADRCR	VSON	10	-40 to 150	201A	Samples
UCC27201ADRMR	WSON	10	-40 to 150	27201A	Samples
UCC27201AQDDARQ1	HSOIC	8	-40 to 150	201AQ1	Samples
UCC27211ADRMR	VSON	8	-40 to 150	27211A	Samples
UCC27211AQDDARQ1	HSOIC	8	-40 to 150	27211Q	Samples
UCC27211AQDRQ1	SOIC	8	-40 to 150	27211Q	Samples
UCC27211DDAR	HSOIC	8	-40 to 150	27211	Samples
UCC27211DPRR	WSON	10	-40 to 150	UCC27211	Samples
UCC27211DR	SOIC	8	-40 to 150	27211	Samples
UCC27212DR	SOIC	8	-40 to 150	27212	Samples
UCC27212DPRR	WSON	10	-40 to 150	UCC27212	Samples
UCC27212ADDARQ1	HSOIC	8	-40 to 150	27212Q	Samples
UCC27212AQDRQ1	SOIC	8	-40 to 150	27212Q	Samples

Additional References:

- Mapping Application Requirements with the 120V Halfbridge Gate Driver
- Challenges and Solutions for Half-Bridge Gate Drivers in Bidirectional DC-DC Converters
- Half-bridge Minimum Current Calculator

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated