Application Brief
How to Debug Interrupt Abnormalities

i3 TEXAS INSTRUMENTS

Ryan Ma, Shaoxing Ke

Introduction

Supporting real-time tasks on a CPU requires the use of interrupts. If an external sensor senses a fault, the

CPU needs to be interrupted or halted to perform a subroutine that is able to handle the fault. In this example,
timing of the interrupt of when the signal reaches the CPU matters. Interrupts are hardware or software-driven
signals that cause the CPU to suspend the current program sequence and execute a subroutine. Interrupts often
handle time critical loops and control algorithms that are critical to the application and need to execute in timely
fashion. Most of the case interrupts can happen periodically with a known frequency. However, when designing
the software architecture, have you ever seen an interrupt waveform oscillate incorrectly, as shown in Figure 1?

Xt s E e % Tektronix

" N
'
a |

KRR (O wops/&) C+) =) (3999) G E: 0 2914%)] X))
i1

103V

828 V

| 6.28 V

428 V

A wr = - i pue Sy e S B

T ‘ w W 228
Ew' J - J — angy —— AR o] J 80 m
st

12y

e ——
(CHEIN e | [R R =
2.00 V/i& 2.00 V/1& 5.00 ps/t& Bz 40.0 ms/1& 208V || B F
© & TRE(PERIL... Eﬁ SR: 25.0 ... 1Acgs 26 115 2024
100 MHz 100 MHz RL: 10 Mpts 70.0180 kHz 18:40:15

Figure 1. Abnormal Interrupt Oscillation (Ch4: Interrupt with GPIO toggle; Ch3: Interrupt trigger on
ePWM ZRO event, Red signal: Frequency trend measurement from oscilloscope)

=

Interrupt Propagation Path and Interrupt Timing

First, there are two concepts to focus on with interrupt latency that are interrupt propagation path and interrupt
timing. The interrupt propagation path is the time from an interrupt request triggering to the beginning of the
interrupt service function. Second, confirm if there are any interference factors during an interrupt request
triggering or with normal interrupt execution. Third, interrupt latency is maintained to be executed normally by
setting interrupt priority reasonably (such as interrupt nesting and register stack restore/protect) and shielding
others interrupt interference source.

SPRADPS8 — FEBRUARY 2025 How to Debug Interrupt Abnormalities 1
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADP8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADP8&partnum=

13 TEXAS

INSTRUMENTS

www.ti.com

Interrupt propagation path on C28x handles interrupts in four main phases:

1. Receive the interrupt request. Suspension of the current program sequence must be requested by a
software interrupt (from program code) or a hardware interrupt (from a pin or an on-chip device), as
described in Figure 2.

2. Approve the interrupt. The C28x must approve the interrupt request. If the interrupt is maskable, certain

conditions must be met for the C28x to approve the interrupt request. For non-maskable hardware interrupts

and for software interrupts, approval is immediate, as described in Figure 3.
3. Prepare for the interrupt service routine and save register values, as described in Figure 4.
4. Execute the interrupt service routine. This is interrupt loop processing entry, call ISR.

Most programmers only pay attention to first two phases, and know less about stack protection or recovery and
interrupt response in the last two phases. This application brief dives deeper into phases three and four.

TINTO
TIMERO
LPM Logic | LPMINT N\ WAKEINT
WDINT NMI module NMI
[wo 1
RTOSINT
INPUTXBAR4 » XINT1 Control CPU
GPIOO Input INPUTXBARS » XINT2 Control ePIE INT1
to X-BAR INPUTXBAR6 P XINT3 Control to
GPIOx INPUTXBAR13 » XINT4 Control INT12
INPUTXBAR14 » XINTS Control
TIMER1 INT13
Peripherals | TIMER2 INT14
See ePIE Table | /
Figure 2. Interrupt Triggering Source (F28003x)
Figure 3 shows how peripheral interrupts propagate to the CPU.
® @ ®
Peripheral sy
interrupt | PIEIFRx-1 —e/ 1
A Latch
Peripheral o Set -
Interrupt Plf;::'z —e/ - (IER.x 0) (STUN Ml) bat
8
(2 :Z':c; —o/ol—o/oo—i Interrupt
Logic
L] [] []
Peripheral 0
interrupt | PIEIFRX-16 |l o 6!
P Latch

Figure 3. Interrupt Propagation Path

How to Debug Interrupt Abnormalities

SPRADP8 — FEBRUARY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADP8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADP8&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Figure 4 shows how C28x generates and responds to interrupt service functions.

RESET
<0x3F FFCO0>

Reset Vector Boot option determines
<reset vector> = Boot Code | code execution entry point

CodeStartBranch.asm
.sect “codestart”
v v
MO RAM Entry Point OR Flash Entry Point
<0x00 0000> = LB _c_int00 <0x08 0000> = LB _c_int00
c int00: rts2800_fpu32.lib
CALL r;lain() v
PIE Vector Table
Main.c l Initialization () *| 512 Word RAM
] { 0x00 0D00 — OEFF
main () Load PIE Vectors v
{ initialization(); i Enable the PIE ' Defaultlsr.c
. 1 Enable PIEIER interrupt void name (void)
. Enable CPU IER
} Enable INTM {

} .

Figure 4. Interrupt PIE Initialization Code Flow

The interrupt timing from interrupt request triggering to interrupt service function ISR:

1. Minimum latency (to when real work occurs in the ISR), 14 or 16 cycles: take F280039C 120Mhz CPU
for example, Minimum latency- add All Registers Save or Restored automatically On Real-Time interrupt
prepared can be 40 cycles, it can be around 50 cycles/415ns latency.

2. Maximum latency: Depends on C28x handles cycles for stack protection and restoration, wait states, INTM,
and not interruptible RPT Instruction, as described in Figure 5.

b - Latency
i ext. ; Internal :
interrupt interrupt Assumes ISR in
occurs occurs internal RAM :
| here | here |
| | / T >
I cycles
Sync ext. Recognition Get vector F1/F2/D1 of Save D2/R1/R2 of :Egmcﬁon
signal delay (3), SP and place ISR return ISR executed
alignment (1), inPC instruction address instruction gn next
_ (ext. interrupt (3 reg. (3 reg. pairs cvcle
interrupt placed in pairs saved) y
only) pipeline saved)
Figure 5. Interrupt Latency Flow
SPRADPS8 — FEBRUARY 2025 How to Debug Interrupt Abnormalities

Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADP8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADP8&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

In addition to correct usage of interrupt request and interrupt approval operation bits (Such as INTM, IER bit),
consider the following interference factors and interrupt nesting that can affect interrupts.

Interrupt Nesting and Interference Factors

* When C28x is executing an interrupt or responding to a high-priority interrupt, by default the interrupt cannot
continue to respond to other low-priority interrupts. However, there are steps that can be followed to enable
servicing of other interrupts within the current interrupt. This is called interrupt nesting.

* When uninterruptible instructions such as RPT instructions are being executed for too long or too frequently,
the C28x CPU cannot respond to the interrupts in a timely manner.

These two points are sources that can affect how the interrupt timing can be affected.

Interrupt Nesting

When talking about interrupt nesting, interrupts are automatically prioritized by the C28x hardware. Prioritization
for all interrupts can be found in the System Control guide specific to the particular device family. When the
C28x CPU is responding to a low-priority interrupt, the CPU interferes with the normal response of a high-priority
interrupt, as described in Figure 6.

Table 3-3. Pie Channel Mapping

INTx.A INTx.2 INTx.3 INTx.4 INTx.5 INTx.6 INTX7 INTx.8 INTX.9 INTX.10 INTx. 11 INTx.12 INTx13 INTx.14 INTX.15 INTx.16
INTLY ADCA1 ADCB1 ADCC1 XINT1 XINT2 . TIMERO WAKE / . SYS_ERR
WDOG
INT2y EPWM1 EPWMZ EPWM3 EPWM4 EPWMS EPWME EPWM? EPWMS
\r4 \r4 1z r4 TZ 1z T2 T2
INT3.y EPWM1 EPWM2 EPYWM3 EPWM4 EPWMS EPWME EPWM7 EPWMS -
INT4y ECAP1 ECAP2 ECAP3 - - - ECAP3INT2 - - . .
INTS.y EQEP1 EQEP2 . . CcLB1 CLB2 CLB3 CLB4 SDFM1 SDFM2 . . SDFMIDR1 | SDFM1DR2 | SOFM1DR3 | SDFM1DR4
INTE.y SPIA_RX SPIA_TX SPIB_RX SPIB_TX - . - - SDFM2DR1 | SDFM2DR2 | SDFM2DR3 | SDFM2DR4
INTZ.y DMA DMA DMA DMA_ DMA DMA_ FSITX_ FSITX_ FSIRX FSIRX . DCCo
CH1 CH2 CH3 CH4 CHS CHE INT1 INT2 INT1 INT2
INTB.y 12CA 12CA, 2cs 12CB_ LINA_O LINA_1 LINB_O LINB_1 PMBUSA - . DCC1
FIFO FIFO
INTO.y SCIA_RX SCIA_TX SCIB_RX SCIB_TX DCANA 0 DCANA 1 . . MCAN_0 MCAN_1 MCAN_ECC MCAN BGCRC - . HICA
WAKE cPU
INT10.y ADCA ADCA2 ADCA3 ADCA4 ADCB_EVT ADCB2 ADCB3 ADCB4 ADCC ADCC2 ADCC3 ADCC4
EVT EVT
INT11y CLAT 1 CLA1 2 CLA1L S CLAt 4 CLA1 S CLAL 6 CLaL 7 CLA1 8 . -
INT12y XINT3 XINT4 XINTS MPOST FmC - FPU_OVER FPU, - RAM FLASH RAM_ACC AES_SIN BGCRC CLA_OVER CLA
FLOW UNDER CORR CORR VIOLATION TREQ CLAY FLOW UNDER
FLow ERR ERR FLOW

Figure 6. Interrupt PIE Channel Mapping

Therefore, application code needs to add simple software prioritization during low priority interrupts. This allows
the CPU to respond to high-priority interrupt processing in a timely manner from the execution of low-priority
interrupts. Here are the steps C28x performs interrupt nesting:

1. Set the global priority:

a. Modify the IER register to allow CPU interrupts with a higher user priority to be serviced. (Note: at this

time IER has already been saved on the stack.)
2. Set the group priority:

a. Modify the appropriate PIEIERX register to allow group interrupts with a higher user set priority to be
serviced. (Note: Do NOT clear PIEIER register bits from another group other than that being serviced by
this ISR. Doing so can cause erroneous interrupts to occur.)

3. Enable interrupts: There are three steps to do this:

a. Clear the PIEACK bits.

b. Wait at least one cycle.

c. Clear the INTM bit. Use the assembly statement asm(” CLRC INTM”); or Tl examples use #define EINT
asm(” CLRC INTM”).

4. Run the main part of the ISR.
5. Set INTM to disable interrupts. Use asm(” SETC INTM”); or Tl examples use #define DINT asm(” SETC

INTM”).

6. Restore PIEIERX (optional depending on step 2)

4 How to Debug Interrupt Abnormalities SPRADPS8 — FEBRUARY 2025
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADP8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADP8&partnum=

1§ TEXAS
INSTRUMENTS
www.ti.com
7. Return from ISR:
a. This restores INTM and IER automatically. Meanwhile, the example code as below:

// // C28x ISR Code // // Enable nested interrupts // // ADCAl interrupt for loop Interrput
void INT_myCPUTIMER2_ISR(void)

uintl6_t TempPIEIER;
TempPIEIER = PieCtrlRegs.PIEIER1.all; // Save PIEIER register for Tlater

IER |= 0x001; // Set global priority by adjusting IER

IER &= 0x001;

PieCtrlRegs.PIEIER1.all &= 0x0001; // Set group priority by adjusting PIEIERL
to //allow INT1l.1 to interrupt current CPU time0O ISR

PieCtr1Regs.PIEACK.all = OXFFFF; // Enable PIE interrupts

asm(" NOP") ; // Wait one cycle

EINT; // Clear INTM to enable interrupts

//

// Insert ISR Code here.......
// for now just insert a delay

//

//for(i = 1; i <= 10; 1i++) {}

//

// Restore registers saved:

DINT;

PieCtr1Regs.PIEIER1.all = TempPIEIER;

}

Our next-generation C29x architecture F29H85x supports Hardware Interrupt Prioritization requires no software
overhead and allows interrupt nesting. For C29x architecture all registers are save/restored automatically by
hardware on real-time interrupt in 10 cycles when compared C28x 40 cycles.

SPRADPS8 — FEBRUARY 2025 How to Debug Interrupt Abnormalities 5
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADP8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADP8&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Group size 1
(default, all can nest)

PRI_LEVEL 0

nest

PRI_LEVEL 1

nest

PRI_LEVEL 2

nest

-_|
A A

PRI_LEVEL 3

—

nest

PRI_LEVEL 4

nest

PRI_LEVEL 5

nest

PRI_LEVEL 6

nest

[
[N A

PRI_LEVEL7

nest o

(can nest in other groups)

Group size 2 Group size 4

(can nest in other groups)

PRI_LEVEL 0

PRI_LEVEL 0

PRI_LEVEL 1

PRI_LEVEL 1

nest

PRI_LEVEL 2 PRI_LEVEL 2

PRI_LEVEL 3 PRI_LEVEL 3

nest

nest

>

Figure 7. C29x Interrupt Grouping Overview

PRI_LEVEL 4 PRI_LEVEL 4
PRI_LEVEL 5 PRI_LEVEL 5
nest — -—
PRI_LEVEL 6 PRI_LEVEL 6
-—
nest

PRI_LEVEL 7 PRI_LEVEL 7

D D

[] L]

. .

L

nest

Group size maximum
(none can nest)

PRI_LEVEL 0

PRI_LEVEL 1

PRI_LEVEL 2

PRI_LEVEL 3

PRI_LEVEL 4

PRI_LEVEL 5

PRI_LEVEL 6

PRI_LEVEL 7

Nesting for INTs within the PIPE module is enabled within an Interrupt Service Routine (ISR) by setting the CPU
level DSTS.INTE bit active because this bit is disabled while entering the ISR., as described in Figure 7. Here
are the steps C28x performs interrupt nesting:

ENINT;

// Insert ISR Code here

// Set INTE to 1 to enable interrupts here.

// // C29x ISR Code // // Enable nested interrupts // // ADCAl interrupt for loop Interrput
void INT_myCPUTIMERO_ISR(void)
{

How to Debug Interrupt Abnormalities

Copyright © 2025 Texas Instruments Incorporated

SPRADP8 — FEBRUARY 2025
Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADP8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADP8&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

C28x Interrupt Nesting Test Results

The below test results are with two interrupts: EPWM interrupt at 150kHz (yellow signal) and Timer2 interrupt at
1kHz (blue signal). Timer2 interrupt has lower priority than the EPWM interrupt. Without C28x interrupt nesting
enabled, the interrupt frequency of the EPWM is not be 150kHz, as shown in Figure 8. Keeping EPWM interrupt
fixed at 150Khz is only possible by leveraging C28x CPU interrupt nesting, as shown in Figure 9. The test results
are based on LAUNCHXL-F280039C. If interrupt nesting is not enabled by software method as described with
the above code there is abnormal interrupt behavior.

With interrupt nesting enabled, the higher priority interrupts can still be entered and executed even when a lower
priority interrupt has occurred. This makes sure higher priority interrupt frequencies are constant..

ek Run I — - | E———————— L1
AR ' 4 :
(i T}

Figure 8. C28x Interrupt Nesting Disabled Test Results (CH1: EPWM interrupt, CH2: TIMER2 interrupt)

SPRADPS8 — FEBRUARY 2025 How to Debug Interrupt Abnormalities 7
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADP8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADP8&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Trig'd

Figure 9. C28x Interrupt Nesting Enabled Test Results (CH1: EPWM interrupt, CH2: TIMER2 interrupt)

C29x Interrupt Nesting Test Results

The below test results are with two interrupts: EPWM interrupt at 150kHz (pink signal) and Timer2 interrupt

at 1kHz (green signal). Timer2 interrupt has lower priority than the EPWM interrupt. Without C29x interrupt
nesting enabled, the interrupt frequency of the EPWM is not be 150kHz, as shown in Figure 10. Keeping EPWM
interrupt fixed at 150Khz is only possible by leveraging C29x CPU interrupt nesting, as shown in Figure 11. This
is tested based on the F29x devices. If interrupt nesting is not enabled by software method as described the
above code there is abnormal interrupt behavior.

With interrupt nesting enabled, the higher priority interrupts can still be entered and executed even when a lower
priority interrupt has occurred. This makes sure higher priority interrupt frequencies are constant.

8 How to Debug Interrupt Abnormalities SPRADPS8 — FEBRUARY 2025
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADP8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADP8&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

1.40
Std Dev

ek Prevu

) t 1.4
Yalue di Std Dev
o period found

Figure 11. C29x Interrupt Nesting Enabled Test Results (CH1: EPWM interrupt, CH2: TIMER2 interrupt)

SPRADPS8 — FEBRUARY 2025 How to Debug Interrupt Abnormalities 9
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADP8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADP8&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Uninterruptible Instructions Affects Interrupt Timing

When talking about uninterruptible instructions RPT, a large number of repeated global initialization variables are
used in the main program or state machine such as Memcopy, for loop assigns the same array, or repeated
operations are performed, the C2000 compiler automatically generates RPT instructions. The repeat (RPT)
instruction allows the execution of a single instruction (N + 1) times, where N is specified as an operand of the
RPT instruction. The instruction is executed once and then repeated N times. When RPT is executed, the repeat
counter (RPTC) is loaded with N. RPTC is then decremented every time the repeated instruction is executed,
until RPTC equals 0. For a description of RPT and a list of repeatable instructions, see the RPT *8bit/loc16
section in the C28x Assembly Language Instructions chapter of the TMS320C28x CPU and Instruction Set
Reference Guide.

Due to this RPT instruction being uninterruptible, it does not have the context saving stack protection or restore
function. So, the PC pointer stays in RPT at this time and it may not be able to respond to the interrupt request in
time, as described in Figure 12.

RPT #8bit/loc16 Repeat Next Instruction

Syntax Options

Syntax Options Opcode Objmode RPT cYc
RPT #8bit 1111 0110 CCCC CccCCC X - 1
RPT loc16 1111 0111 LLLL LLLL X - 4
Operands #8bit — 8-bit constant immediate value (0 to 255 range)

loc16 — Addressing mode (see Chapter 5)

Description Repeat the next instruction. An internal repeat counter (RPTC) is loaded with a value N
that is either the specified #8bit constant value or the content of the location pointed to
by the “loc16” addressing mode. After the instruction that follows the RPT is executed
once, it is repeated N times; that is, the instruction following the RPT executes N + 1
times. Because the RPTC cannot be saved during a context switch, repeat loops are
regarded as multicycle instructions and are not interruptible.

Note on syntax: Parallel bars (||) before the repeated instruction are used as a reminder
that the instruction is repeated and is not interruptable. When writing inline assembly,
use the syntax

asm (RPT #8bt/ loclée instruction®);

Not all instructions are repeatable. If an instruction that is not repeatable follows the RPT
instruction, the RPTC counter is reset to 0 and the instruction only executes once. The
28x Assembly Language tools check for this condition and issue warnings.

Flags and Modes None

Repeat This instruction is not repeatable. If this instruction follows the RPT instruction, it resets
the repeat counter (RPTC) and executes only once.

ayz:

Example ; Copy the number of elements specified in VarA from Arrayl
r

; [VarA] + 1 times

| XPREAD ; Array2({i] = Arrayli(i],

Figure 12. RPT Instructions Introduction

10 How to Debug Interrupt Abnormalities SPRADPS8 — FEBRUARY 2025
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRU430
https://www.ti.com/lit/pdf/SPRU430
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADP8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADP8&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Therefore, you can go into the C2000 compilers using the correct settings or you can avoid generated C usage
notes. Regarding the C2000 compilers, you can change the Project Properties -> C2000 Compiler -> Advanced
Options -> Runtime Model Options -> Enable “Don’t generate RPT instructions, as described in Figure 13.

&
type filter text Runtime Model Options =4 Y
Resource
General
v Build Configuration: CPUT_FLASH [Active] v Manage Configurations...
SysConfig
v C2000 Compiler
Sooceior Options Place each function in a separate sub == S, *| v
Optimization separate subsection (--gen_func_subsections, -mo) on
Include Options Place structs and arrays in separate subsections (--gen_data_subsections) v
Performance Advisor
Predefined Symbols esbi
v Advanced Options Specify if 8 CLA background task is in use (--cla_background_task) 0| off v
Advanced Debug Options
Langusage Options rigned_compare workaround) O off v
Parser Preprocessing Optig
Diagnostic Options v
Runtime Model Options 2] (=protect.volatile,)
Advanced Optimizations Run functions from RAM (--ramfunc) v
:Lr,;::::: :::;::; » Specify max number of repettions in a RPT instruction (--rpt_threshold) [0-256] ;
Library Function Assumptio Workaround CPU-to-FPU register write (--sificon_errata_fpul_workaround) 0 off v
Assembler Options
File Type Specifier
Directory Specifier
Default File Extensions
Internal Support Options
Command Files
MISRA-C:2004
Supplemental Information
Miscellaneous
C2000 Linker
C2000 Hex Utility [Disabled]
Debug
Figure 13. C2000 Compiler Setting About RPT Instructions
MCanGetDataLen(): sCanRxPutQue() : ”
0835eb: FE22 ADDB sp, #34 » 0832fa: AABD MOVL SP++, XAR2
» @835ec: | 1E62 MOVL *-SP[34], ACC Seiafb: | AAD il AR2, @sp
202 uint32_t dataSize[16] = {8, 1, 2, 3, 4, @832fc: DAs4 SUBB XAR2, #4
@835ed: 5CAD MovzZ AR4, @SP Su3afd: | TEvo . ol 510
@835ee: DCA® SUBB XARS, #32 6832fe: SDAD MOVZ Mo =
0835ef: 5CA4 MovVZ AR4, @AR4 0832ff: ABE2 MOVL +XAR2£4], XAR4
9835f@: 76834378 MOVL XAR7, #0x@84378 083300: CSE2 HOVL XAR7, *+XAR2[4]
I ©9835F2: F61F RPT #31 I 883301: DDC4 SuBB XARS, #68
0835T3: 2454 TT PREAD "XERGTT, *XAR7 AT |) BEE, e
204 if(dlc < 16) 883303: SAA9 MOVL XAR4, [@ACC
@835f4: @210 MOVB ACC, #16 | 983304: F643 RPT #67
An~eLe. Arca e arr % enfaal 083305: 2484 [T PREAD "XARAT+, TXAR7
~a -~ “r s ar- - . ~ass M cwmes L s~

Figure 14. RPT Instructions Generated By Above Functions

SPRADPS8 — FEBRUARY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

How to Debug Interrupt Abnormalities

1"

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADP8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADP8&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

7void sCanRxPutQue(CANFRAME CanRx)
{

uint32_t datasize[m] = {0’ 1, 2, 3, 4, 5, 6,7, 8, //uintl6_t ul6UDSRxDataFlag = 0;
12, 16, 20, 24, 32, 48, 64}; if ((s_ul6CanRxLength >« CAN_RXBUF_SIZE)||(CanRx.uBLen !«8))
if(dlc < 16)

return;

return(datasize[dlc]);

} *s_pCanRxIn = CanRx;
else if(s_pCanRxIn->Canld.alll= @)
{
return @; if (s_pCanRxIn == 8s_aCanRxBuf[CAN_RXBUF_SIZE - 1])
} {
s_pCanRxIn = s_aCanRxBuf;
else
{
s_pCanRxIn++;

s_ul6CanRxLength++;

Figure 15. Source Code

Finally, follow the above C2000 compilers settings and the EPWM ISR works normally, as described in Figure
16.

X i s % Tektronix

" g [
KEGEHIE: @ o) (x20) 00 (9%E&ER GERfE: (0 2914 %) [
i
268 s
218 ps
.
H
H
16.8 ps
1.8 ps
T ¥ - . . O
= b ’ 1 i o i |] . [b.80 us
- n | T ™ 3 4. .
IA ! | —
-3.20 ps
e ———— e
e o [
2.00 V/i& | 2.00 V/I& || 5.00 ps/i§ 40.0 ms/H& 208V | B
© ey TRE(PERI... SR: 25.0 ... 1 Acgs 26 115 2024
100 MHz 100 MHz RL: 10 Mpts 70.0185 kHz 18:45:05

Figure 16. Abnormal Interrupt Oscillation Fixed (Ch4: Interrupt with GPIO toggle; Ch3: Interrupt trigger
on ePWM ZRO event, Red signal: Frequency trend measurement from oscilloscope)

12 How to Debug Interrupt Abnormalities SPRADP8 — FEBRUARY 2025
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADP8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADP8&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Trademarks

Summary

The interrupt is executed normally by observing the minimum interrupt delay. However, the factors that affect the
normal execution of the interrupt are:

* Whether the interrupt request is triggered normally

* Whether the INTM or IER enable bit is enabled, and whether the IFG flag is set normally

* Whether the interrupt propagation path is likely to be blocked

* Whether the interrupt response is likely to be disturbed when saving the register, such as the non-interruptible
instruction RPT

* Whether the interrupt is nested, when the low-priority interrupt is responding, the high-priority interrupt is
blocked, affecting the timeliness of the interrupt response

This technical article tells you how to locate and troubleshoot the factors affecting the interrupts.

Trademarks
All trademarks are the property of their respective owners.

SPRADPS8 — FEBRUARY 2025 How to Debug Interrupt Abnormalities 13
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADP8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADP8&partnum=

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with Tl products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an
application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other Tl intellectual property right or to any third party intellectual property right. Tl disclaims responsibility for, and you
will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.

TI’'s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such Tl products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for
Tl products.

Tl objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Trademarks

