
Application Note
Serial Flash Programming of F29H85x™

Skyler Baumer, Sen Wang, Aakash Kedia, Arush Pant

ABSTRACT

Embedded processors often need to be programmed in situations where JTAG cannot be used to program the
target device. In these cases, the engineer needs to rely on peripheral programming designs. C2000™ devices
aid in this endeavor through the inclusion of several program loading utilities in ROM. These utilities are useful,
but only solve half of the programming problem because the utilities only allow loading application code into
RAM. This application note builds on these ROM loaders by using a flash kernel. A flash kernel is loaded to
RAM using a ROM loader and is then executed and used to program the on-chip Flash memory of the target
device with the end application. A key consideration of using a flash kernel on the F29H85x is the addition of the
Hardware Security Module (HSM). This document details one possible implementation for C2000 devices and
provides PC utilities to evaluate the design.

Table of Contents
1 Programming Fundamentals... 3
2 Introduction...3

2.1 Hardware Security Module...3
2.2 ROM Bootloader ... 5
2.3 Combined Image with X.509 Certificate...6

3 Flash Kernel Implementation...7
3.1 CPU1 Firmware Upgrade (HS-FS)...8
3.2 Key Provision (HS-FS to HS-KP)... 9
3.3 CPU1 Secure Firmware Upgrade (HS-KP/SE to HS-SE).. 12
3.4 HSM Firmware Upgrade (HS-KP/SE to HS-SE).. 12
3.5 SECCFG Code Provisioning (HS-KP/SE to HS-SE)..13

4 Host Application: UART Flash Programmer.. 14
4.1 Overview.. 14
4.2 Build UART Flash Programmer with Visual Studio.. 15
4.3 Build UART Flash Programmer with CMake..15
4.4 Packet Format..16
4.5 Kernel Commands... 17

5 Example Usage... 18
5.1 Loading the Flash Kernel onto the Device... 18
5.2 CPU1 Device Firmware Upgrade (HS-FS only)... 19
5.3 Convert HS-FS to HS-SE...19
5.4 Loading a RAM-based HSMRt Image..20
5.5 Key Provision (HS-FS to HS-KP)... 20
5.6 Code Provision (HS-KP/SE to HS-SE)...20

6 Troubleshooting..21
6.1 General.. 21
6.2 UART Boot... 21
6.3 Application Load...21

7 Summary... 22
8 References.. 22

List of Figures
Figure 2-1. Flash Kernel Flow..3
Figure 5-1. UART Flash Programmer Prompt for Next Command After Downloading Flash Kernel to RAM............................19

www.ti.com Table of Contents

SPRADN0 – DECEMBER 2024
Submit Document Feedback

Serial Flash Programming of F29H85x™ 1

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN0&partnum=

List of Tables
Table 2-1. Device Security State..4
Table 2-2. Default Boot Modes for F29H85x devices.. 5
Table 4-1. Supported Parameters..14
Table 4-2. Packet Format...16
Table 4-3. ACK or NAK Values.. 16
Table 4-4. CPU1 Kernel Command Flows... 17

Trademarks
C2000™ and Code Composer Studio™ are trademarks of Texas Instruments.
Microsoft Visual Studio® and Windows® are registered trademarks of Microsoft Corporation.
Linux® is a registered trademark of Linus Torvalds.
All trademarks are the property of their respective owners.

Trademarks www.ti.com

2 Serial Flash Programming of F29H85x™ SPRADN0 – DECEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN0&partnum=

1 Programming Fundamentals
Before programming a device, understanding how the non-volatile memory of C2000 devices works is
necessary. Flash is a non-volatile memory that allows users to easily erase and re-program. Erase operations
set all the bits in a sector to '1' while programming operations selectively set bits to '0'.

Flash operations on all C2000 devices are performed using the CPU. Algorithms are loaded into RAM and
executed by the CPU to perform any flash operation. For example, erasing or programming the flash of a C2000
device with Code Composer Studio™ entails loading flash algorithms into RAM and letting the processor execute
them. There are no special JTAG commands that are used. All flash operations are performed using the flash
application programming interface (API). Because all flash operations are done using the CPU, there are many
possibilities for device programming. Irrespective of how the kernels and application are brought into the device,
flash is programmed using the CPU.

2 Introduction
ROM bootloader, also referred to as primary bootloader or simply loader, is a small piece of code that resides
in the boot-ROM memory of the target device that allows the loading and execution of code from an external
host. In most cases, a communication peripheral such as Universal Asynchronous Receiver/Transmitter (UART)
or Controller Area Network (CAN) is used to load code into the device rather than JTAG, which requires an
expensive specialized tool and is not advisable to use in a commercial setting.

Boot Pins are used to configure different boot modes using various peripherals that determine which ROM
loader is invoked. In this application note, the peripheral used is UART. The boot modes that are associated with
the boot pins refer to the first instance of the peripheral. For UART, the boot mode is associated with UARTA.

C2000 devices partially solve the problem of firmware updates by including some basic loading utilities in ROM.
Depending on the device and the communications peripherals present, code can be loaded into on-chip RAM
using UART, Serial Peripheral Interface (SPI), Inter-Integrated Circuit (I2C), and CAN. A subset of these loaders
is present in every C2000 device, but the loaders can only load code into RAM. How does one bridge the gap
and program the application code into non-volatile memory?

At a high-level, application programming to non-volatile memory like flash requires two steps:

1. Use the ROM bootloader to download a secondary bootloader to RAM.
2. Run the secondary bootloader in RAM to download the application to flash.

Figure 2-1. Flash Kernel Flow

Although the overarching concept are synonymous, note that there are a few major differences between the
flash kernels implemented for C28-based devices and the kernel described in this document.

2.1 Hardware Security Module
The primary difference between the flash kernel design for C28-based devices and the F29H85x flash kernel
is the integration of the Hardware Security Module (HSM). The HSM is a subsystem that provides security and
cryptographic functions. The C29 CPUs interface with the HSM to perform cryptographic operations required for
code authentication, secure boot, secure firmware upgrades, and encrypted run-time communications.

During the UART boot sequence, the HSM is responsible for authentication of the incoming image. For the
authentication to succeed, the incoming image must include an X.509 certificate. To properly generate an X.509
certificate with the flash kernel, refer to Section 2.2.

The HSM introduces the concept of different device security states. The device states are High Security - Field
Securable (HS-FS), High Security - Key Provisioned (HS-KP), and High Security - Security Enabled (HS-SE). By
default, the F29H85x device ships with HS-FS. Table 2-1 describes the differences between these three states.

www.ti.com Programming Fundamentals

SPRADN0 – DECEMBER 2024
Submit Document Feedback

Serial Flash Programming of F29H85x™ 3

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN0&partnum=

Table 2-1. Device Security State
HS-FS HS-KP HS-SE

C29 boot image (flash
kernel)

Secure boot not enforced Secure boot enforced with customer
keys programmed by keywriter

Secure boot enforced with customer
keys programmed by keywriter

HSM boot image Secure boot enforced (with
default TI-provided key)

Secure boot enforced with customer
keys programmed by keywriter

Secure boot enforced with customer
keys programmed by keywriter

C29 JTAG Open by default Open by default Closed by default

SoC firewalls Open by default Disabled for HSM and enabled for C29 Disabled for HSM and enabled fro C29

C29 CPU access to C29
flash banks

Enabled Disabled Enabled

TI provides OTP (One Time Programmable) Keywriter that can be used to transition an HS-FS device to HS-KP
or HS-SE. OTP Keywriter is a combination of TI delivered HSM Run Time Firmware and Tools (Certificate
generation) which together when executed on device enables the following:

• Provisioning up to two sets of Customer Keys (both public keys for root of trust of boot images and encryption
keys for decryption of boot images).

• Programming of Extended OTP fields which are additional OTP fields available for customer specific usage.
• Programming of OTP fields KEY_COUNT, KEY_REVISION which enables device transition from HS-FS

(Field Securable) to HS-KP (Key Provisioned).
• Programming of OTP fields like SWREV for SBL, HSM, APP, SECCFG images which enforce Anti Roll Back

checks by Secure Boot on HS-KP as well as HS-SE device.

Once these fields are programmed, the device state is transitioned to HS-KP, boot ROM enforces secure boot
with Image Authentication and decryption based on the keys provisioned and configured in the device. Secure
boot requires an image to be encrypted (optional) and signed using customer keys. This image is then verified
by the SoC using the active MPK Hash (to verify the signature) and the MEK (for decryption).

CAUTION
• This action of burning the keys is irreversible across the fields, so caution needs to be exercised

to provide the key values in correct format and correct key configurations.
• The action of programming fields is irreversible and providing incorrect values or configuration

can permanently damage the device.

For more information on the OTP Keywriter, request the Restricted Security Package from the F29H85x MCU
SDK download page.

The firmware upgrade process differs between HS-FS, HS-KP, and HS-SE devices.

• For details regarding C29 CPU1 firmware upgrade on an HS-FS device, refer to CPU1 Firmware Upgrade
(HS-FS).

• For details regarding C29 CPU1 firmware upgrade on an HS-KP/HS-SE device, refer to CPU1 Firmware
Upgrade (HS-KP or HS-SE).

• For details regarding HSM firmware upgrade on an HS-KP/HS-SE device, refer to HSM Firmware Upgrade
(HS-KP or HS-SE).

Introduction www.ti.com

4 Serial Flash Programming of F29H85x™ SPRADN0 – DECEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN0&partnum=

2.2 ROM Bootloader
The basic idea of a flash kernel and how the firmware upgrades has been described, the next section details the
first step of the process: loading the kernel to RAM via bootROM.

At the beginning, the device boots and, based on the boot mode, decides if the device executes the code
already programmed into the Flash memory or load in code using one of the ROM loaders. This application note
focuses on the boot execution path when the emulator is not connected.

Note
This section is based on the F29H85x device. Specific information for a particular device can be found
in the ROM Code and Peripheral Booting section of the device-specific technical reference manual
(TRM).

Table 2-2. Default Boot Modes for F29H85x devices
Boot Mode GPIO72 (default boot mode select pin 1) GPIO84 (default boot mode select pin 0)

Parallel I/O 0 0

UART 0 1

CAN 1 0

Flash 1 1

After the boot ROM readies the device for use, the device decides where to start executing. In the case of a
standalone boot, the device does this by examining the state of two GPIOs (as seen in Table 2-2 , the default
choices are GPIO 72 and 84). In some cases, two values programmed into one time programmable (OTP)
memory can be examined. In the implementation described in this application note, the UART loader is used, so
at powerup GPIO 84 must be forced high and GPIO 72 must be forced low. If this is the case when the device
boots, then the UART loader in ROM begins executing and operates at a baud rate of 115200. At this point, the
device is ready to receive code from the host.

A major difference between the previous C28-based devices and the F29H85x is the inclusion of the Hardware
Security Module (HSM). All boot flows require the HSM to authenticate the incoming image before the boot flows
can be executed.

Please see the ROM code and Peripheral Booting section of the Technical Reference Manual (TRM) for details
on the boot flow. And Device Boot Flow Diagrams section, on how the HSM and C29 CPUs communicate during
the boot sequence.

www.ti.com Introduction

SPRADN0 – DECEMBER 2024
Submit Document Feedback

Serial Flash Programming of F29H85x™ 5

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN0&partnum=

2.3 Combined Image with X.509 Certificate
With the inclusion of the HSM, the BootROM expects all incoming images to be in a binary format and be
combined with a X.509 certificate. The first 0x1000 bytes of the binary file must contain the key certificate.

Listed below are the default post-build steps provided by UART flash kernel and other SDK examples to
generate the combined binary image with X.509 certificate.

For new Code Composer Studio projects, paste the following script in the Post-build Steps section under Build
category of the project properties. To run the script standalone, find import.mak in the root directory of the device
SDK for the default alias of the variable.

RAM post-build steps (for Flash Kernel):

${CG_TOOL_OBJCOPY} --strip-all -O binary ${ProjName}.out ${ProjName}.bin
$(PYTHON) ${COM_TI_MCU_SDK_INSTALL_DIR}/tools/boot/signing/mcu_rom_image_gen.py --image-bin $
{ProjName}.bin --core C29 --swrv 1 --loadaddr 0x200E1000 --sign-key ${COM_TI_MCU_SDK_INSTALL_DIR}/
tools/boot/signing/mcu_custMpk.pem --out-image ${ProjName}.cert.bin --boot RAM --device f29h85x --
debug DBG_SOC_DEFAULT

• Produces RAM-based binary image: ${ProjName}.cert.bin
• mcu_rom_image_gen.py ram parameter: --loadaddr 0x200E100 (LDAx RAM), --boot RAM

Flash post-build steps (for Flash application images):

${CG_TOOL_OBJCOPY} --remove-section=cert -O binary ${ProjName}.out ${ProjName}.bin
$(PYTHON) ${COM_TI_MCU_SDK_INSTALL_DIR}/tools/boot/signing/mcu_rom_image_gen.py --image-bin $
{ProjName}.bin --core C29 --swrv 1 --loadaddr 0x10001000 --sign-key ${COM_TI_MCU_SDK_INSTALL_DIR}/
tools/boot/signing/mcu_gpkey.pem --out-image ${ProjName}_cert.bin --device f29h85x --boot FLASH --
img_integ no
${CG_TOOL_OBJCOPY} --update-section cert=C29-cert-pad.bin ${ProjName}.out ${ProjName}_cert.out
$(DELETE) ${ProjName}.out C29-cert-pad.bin;
$(RENAME) ${ProjName}_cert.out ${ProjName}.out

• Produces Flash-based binary image: ${ProjName}_cert.bin
• mcu_rom_image_gen.py flash parameter: --loadaddr 0x10001000 (Flash entry address), --boot FLASH

Both post build steps shown above generate a certificate for the application, converts the application .out file into
binary, and creates a combined binary image with an X.509 certificate.

Additionally, the post-build steps leverages two different keys provided in the SDK:

• mcu_gpkey.pem: General purpose key provided by TI to generate TI key certificate.
• mcu_custMpk.pem: A dummy key that mimics a custom key, can be used as an exemplary custom key to test

out Key Provision & Code Provisioning.

Note

To change the generated key certificate with a custom key certificate, provide an alternate key and
pass into the python script via parameter --sign-key. This is necessary for all flash images concerning
HS-KP and HS-SE, and HSMRt for HS-SE.

Introduction www.ti.com

6 Serial Flash Programming of F29H85x™ SPRADN0 – DECEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN0&partnum=

3 Flash Kernel Implementation
When compared to the C28-based designs, the UART flash kernel for F29H85x is quite different due to the
integration of the HSM. A high-level overview of the features implemented in this example is provided below.

• CPU1 DFU (HS-FS only)
1. Device need to be configured for Bank Mode 0.
2. Flash kernel in CPU1 programs application to the flash banks.
3. Certificate is programmed in 0x10000000 - 0x10000FFF, certificate is not used for authentication but

rather to infer the size of the kernel binary.
4. Application can be programmed in the remaining flash addresses, and TI recommends to program

codestart at 0x10001000. As 0x10001000 is the flash entry address in flash boot mode.

CAUTION
For users not concerned with the security features provided by the HSM, simply use the CPU1 DFU
flow to upgrade the CPU1 firmware.

• Load HSMRt (prerequisite for Key & Code Provisioning)
1. Flash kernel in CPU1 receives key provisioning HSM run-time (HSMRt) and places in LDAx RAM.
2. HSM authenticates HSMRt image and begin executing the run time in LDAx RAM.

• CPU1 Key Provisioning (HS-FS -> HS-KP)
1. Flash kernel in CPU1 loads HSMRt
2. Flash kernel receives key certificate and places in LDAx RAM
3. HSM validates key certificate and programs them to OTP

• CPU1 Code Provisioning (HS-SE only)
1. Flash kernel in CPU1 loads in HSMRt
2. Flash Kernel receives the CPU1 application image certificate and shares the same with HSMRt
3. After successful authentication of the image, HSMRt responds with an acknowledgment, after which flash

kernel starts importing the chunk of data via UART into the LDAx memory.
4. After each 16KB (size of LDAx memory) of data received, the flash kernel sends an HSM requests to

program the data for further processing
5. After all chunks are received and programmed, HSMRt is requested to verify the code programmed

in HSM active and dormant banks. When the HSMRt firmware authenticates the programmed image
against the certificate, the certificate is further programmed to make sure of a successful boot in the
subsequent power cycles.

6. Upon successful authentication, the HSM programs the firmware to CPU1 flash
• HSM Code Provisioning (HS-KP/HS-SE -> HS-SE)

1. Flash kernel in CPU1 loads in HSMRt
2. Flash kernel receives the HSM application image certificate and shares the same with HSMRt
3. After successful authentication of the image, HSMRt responds with an acknowledgment, after which flash

kernel starts importing the chunk of data via UART into the LDAx memory.
4. After each 16KB (size of LDAx memory) of data received, the flash kernel sends an HSM requests to

program the data for further processing
5. After all chunks are received and programmed, HSMRt is requested to verify the code programmed

in HSM active and dormant banks. When the HSMRt firmware authenticates the programmed image
against the certificate, the certificate is further programmed to make sure of a successful boot in the
subsequent power cycles.

• SECCFG Code Provisioning (HS-KP -> HS-SE)
1. Flash kernel in CPU1 loads in HSMRt
2. Flash kernel receives the image certificate and shares the same with HSMR
3. After successful authentication of the image, HSMRt responds with an acknowledgment, after which flash

kernel starts importing the SecCfg data via UART into the LDAx memory
4. After all the SecCfg data are received and programmed, the HSMRt is requested to verify the SecCfg

programmed in the dormant banks with valid counter values. When the HSMRt authenticates the
programmed image against the certificate, the certificate is further programmed to make sure of a
successful boot in the subsequent power cycles.

www.ti.com Flash Kernel Implementation

SPRADN0 – DECEMBER 2024
Submit Document Feedback

Serial Flash Programming of F29H85x™ 7

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN0&partnum=

5. Note in the case of HS-SE device, the decision of programming of the certificate is made on the swap
value of the SSU registers.

CAUTION

Key and code provision both require a RAM-based HSMRt image to be running on the HSM.
Nonetheless, the image requires a different key certificate at each stage of provisioning.

In key provisioning, user must provide the HSMRt image with default TI key certificate to complete
authentication on an HS-FS device, whereas code provisioning requires an image with user key
certificate to complete authentication on an HS-KP/HS-SE device.

The OTP Keywriter firmware described in the Hardware Security Module section contains a binary
image that can perform these tasks.

The UART flash kernel is designed for CPU1 while in Bank Mode 0. This means that all flash banks are
allocated to CPU1 and the bank swapping feature is not available. For more details on Bank Modes, please
see the Bank Modes and Swapping section of the TRM. The flash kernel communicates with the host
PC application provided in the F29H85x MCU SDK (MCU_SDK_F28H85x > utilities > flash_programmers >
serial_flash_programmer) and provides feedback to the host on the receiving of packets and completion of
commands given.

After loading the kernel into RAM and executing by the UART ROM bootloader, the kernel first initializes
the PLLs, GPIOs, the UARTA module, and the flash module. The UART communication is configured with a
baud rate of 115200, similar to the UART boot flow. After this, the kernel begins a while loop, which waits on
commands from the host, executes the commands, and sends a status packet back to the host. This while loop
breaks when a Run or Reset command is sent.

Commands are sent in a packet described in Table 4-2 and each packet is either acknowledged or not-
acknowledged. All commands, except for Run and Reset, send a packet after completion with the status of
the operation. The status packet sends a 16-bit status code and 32-bit address. In case of an error, the address
in the data specifies the address of the first error. In case of NO_COMMAND_ERROR, the address is 0x1000.

3.1 CPU1 Firmware Upgrade (HS-FS)
To perform a firmware upgrade for CPU1 of an HS-FS device, compile the CPU1_APP build configuration of
the project. This can be done by right-clicking the project, hovering over Build Configurations, and selecting
CPU1_APP.

In the case of a Device Firmware Upgrade (DFU) command, the following steps take place:

1. The kernel in CPU1 receives the command packet to perform DFU.
2. To prepare for a new application, the entirety of flash is erased before programming.
3. The kernel prepares to receive the X.509 certificate from the host.
4. The kernel verifies that the incoming certificate is of the proper size and format and derives the size of the

incoming image. For now, the certificate is stored in RAM.
a. While there is no authentication on the certificate or the incoming image during this process. The

certificate needs to still be generated properly as the kernel infers the image size from the certificate and
is authenticated during standalone flash boot routine.

5. If the certificate size and format are accepted, then the kernel prepares to receive and program the new
application to flash

6. The kernel programs the incoming application in chunks of 1024 bits. After each chunk is programmed, the
kernel verifies that the data and ECC were programmed correctly into flash.

7. After successfully programming the entire image, the kernel then programs the associated certificate into the
first 0x1000 addresses of FLC1 B0/B1. With the certificate programmed to this region of flash, the device is
able to boot to the existing application in the standalone flash boot mode.

To generate an application image that can be loaded by the kernel, refer to the post-build step of Section 2.3.
And see Section 5.1 for more details on usage.

Flash Kernel Implementation www.ti.com

8 Serial Flash Programming of F29H85x™ SPRADN0 – DECEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN0&partnum=

3.2 Key Provision (HS-FS to HS-KP)
To perform key provisioning on CPU1 of an HS-FS device, compile the KP_APP build configuration of the
project. This can be done by right-clicking the project, hovering over Build Configurations, and selecting
KP_APP.

Key Provision transitions an HS-FS device to an HS-KP device, and the following events occur:

1. BootROM in UART boot mode receives the UART flash kernel and boots the kernel.
2. The kernel in CPU1 receives a command packet to receive the HSMRt image.
3. The kernel prepares to receive an X.509 certificate as part of the combined image from the host.
4. The kernel verifies that the incoming certificate is of the proper size and format and derives the size of the

incoming image. For now, the certificate is stored in RAM.
5. The kernel stores HSMRt image in shared LDAx RAM and requested HSM to authenticate.
6. Upon successful authentication, the HSM begins executing the HSMRt in shared LDAx RAM.
7. The kernel then receives a command packet to receive HSM key.
8. The kernel receives key certificate and places in shared LDAx RAM.
9. The kernel notifies HSM that the keys have been received.
10. Upon successful authentication of the key certificate, HSMRt programs the key into OTP.
11. Perform power-on reset to transition the device into HS-KP.

CAUTION
The Keywriter binary image described in Section 2.1 need to be used as the HSMRt.

Refer to Section 5.5 on steps to perform on the host application.

As mentioned inSection 2.1 , the keywriter firmware is used to program customer keys and transition from
HS-FS to HS-KP. The keywriter firmware supports the programming of the following key types and fields:

Key Description KeyWriter usage notes Impact on HS-SE Device

SMPKH

Secondary Manufacturer
Public Key Hash
SMPKH Length: 512 Bits
BCH Length: 64 Bits

• Customer primary key set: Public Key Hash
• SMPK is 4096-bit customer RSA Public key

used for verifying RSA signature included in
Boot Images.

• SMPKH Value: 512 bit hash of SMPK
generated via SHA512 hashing algo which
is split into two parts of 256-bits. That is,
SMPKH_P1/SMPKH_P2

• BCH Value: 32-bit BCH is computed using
algorithm (288, 261, 7) for each part of
SMPKH_P1 and SMPKH_P2. This algorithm
supports 3 bit error correction

• Checks enforced by KeyWriter: N/A

Secure boot active key to
validate Root of Trust for
boot Image x.509 certificate
when key configuration field
KEYREV=1

SMEK

Secondary Manufacturer
Encryption Key
SMEK Length: 256 Bits
BCH Length: 32 Bits

• Customer primary key set: Encryption Key
• SMEK is 256-bit customer encryption key for

Boot Image Encryption
• SMEK Value: Original 256 Bit Symmetric

Key used for AES-CBC Encryption of Boot
Images

• BCH Value: 32-bit BCH is computed using
algorithm (288, 261, 7) for 256 bit SMEK.
This algorithm supports 3 bit error correction

• Checks enforced by KeyWriter: N/A

Active key for secure boot
to decrypt the boot Image
if encrypted and enabled via
x509 certificate when key
configuration field KEYREV=1

www.ti.com Flash Kernel Implementation

SPRADN0 – DECEMBER 2024
Submit Document Feedback

Serial Flash Programming of F29H85x™ 9

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN0&partnum=

Key Description KeyWriter usage notes Impact on HS-SE Device

BMPKH

Backup Manufacturer
Public Key Hash
BMPKH Length: 512 Bits
BCH Length: 64 Bits

• Customer backup key set: Public Key Hash

• Note
Device supports Backup key pair
which must be provisioned by
keywriter and can be activated once
product is deployed in field by
incremental programming of KEVREV
field in field. Note that if backup key
pair is not provisioned by keywriter on
HS-FS device then this is not possible
to program backup key pair later once
device transitions to HS-SE.

• BMPK is 4096-bit customer RSA Public key
used for verifying RSA signature included in
Boot Images.

• BMPKH Value: 512 bit hash of BMPK
generated by SHA512 hashing algo which
is split into two parts of 256-bits. That is,
BMPKH_P1/BMPKH_P2

• BCH Value: 32-bit BCH is computed using
algorithm (288, 261, 7) for each part of
BMPKH_P1 and BMPKH_P2. This algorithm
supports 3 bit error correction

• Checks enforced by KeyWriter: N/A

Secure boot active key to
validate Root of Trust for
boot Image x.509 certificate
when key configuration field
KEYREV=2

BMEK

Backup Manufacturer
Encryption Key
BMEK Length: 256 Bits
BCH Length: 32 Bits

• Customer backup key set: Encryption Key
• BMEK is 256-bit customer encryption key for

Boot Image Encryption
• BMEK Value: Original 256 Bit Symmetric

Key used for AES-CBC Encryption of Boot
Images

• BCH Value: 32-bit BCH is computed using
algorithm (288, 261, 7) for 256 bit BMEK.
This algorithm supports 3 bit error correction

• Checks enforced by KeyWriter: N/A

Active key for secure boot
to decrypt the boot Image
if encrypted and enabled via
x.509 certificate when key
configuration field KEYREV=2

Flash Kernel Implementation www.ti.com

10 Serial Flash Programming of F29H85x™ SPRADN0 – DECEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN0&partnum=

Key Description KeyWriter usage notes Impact on HS-SE Device

KEYCNT
Key count configuration
field
Length: 16 bits

• Active Key Sets provisioned in the device,
and supports following values

• If only Primary Key Set is Plan of Record for
device (SMPKH /SMEK)

• If both Primary Key Set and Backup Key Set
is Plan of Record for device (SMPKH /SMEK)
and (BMPKH /BMEK)

• Note
This field controls the active Key
sets in the device. If the user wants
to enable backup Key set, then
a mandatory issue is to provision
backup key pair and set KEYCNT
as 2 by Keywriter. If this field is
programmed as 1, then device can
only support primary Key set for
Secure boot and this field can not be
updated later.

• Checks enforced by KeyWriter: N/A

Active Key Sets provisioned in
the device for Key Manager to
decode and setup the Keys.

KEYREV
Key revision configuration
field
Length: 16 bits

• Current active key revision in the device for
Root of Trust and supports following values

• For Primary Key Set (SMPK/SMEK) used
for Secure Boot (Recommended config for
KeyWriter)

• For Backup Key Set (BMPK/BMEK) used for
Secure Boot

• Checks enforced by KeyWriter: N/A

Current active key revision for
Secure Boot

MSV
Model specific value
Length: 24 bits
BCH: 8 bits

• 24 bit Model Specific Value, Customers can
program 24 bit values to differentiate product
variants using same SoC either in production
flow Or in boot flow of the device.

• BCH Value: 8-bit BCH is computed using
algorithm (32, 24, 8) for 24 bit MSV. This
algorithm supports 2 bit error correction

No Impact for Boot ROM, SW
needs to comprehend the usage
of this field

SWREV-SBL
SBL software revision
Length: 64 bits

• Supports 32 values (1 to 32 states with
double redundancy)

• Recommended to set initial value of 0x1

Enables Anti Roll back feature
for SBL Image x.509 Certificate
via SWRV extension

SWREV-HSM
TIFS-MCU software
revision
Length: 64 bits

• Supports 32 values (1 to 32 states with
double redundancy)

• Recommended to set initial value of 0x1

Enables Anti Roll back feature
for TIFS-MCU Image x.509
Certificate via SWRV extension

SWREV-APP
Application Image
software revision
Length: 192 bits

• Supports 64 values (1 to 64 states with
double redundancy)

• Recommended to set initial value of 0x1

No Impact for Boot ROM, TIFS-
MCU needs to comprehend the
usage of this fields

EXTENDED OTP
Extended OTP array
Length: 1664 bits

1664 bit extended otp array for customer usage No Impact for Boot ROM

www.ti.com Flash Kernel Implementation

SPRADN0 – DECEMBER 2024
Submit Document Feedback

Serial Flash Programming of F29H85x™ 11

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN0&partnum=

3.3 CPU1 Secure Firmware Upgrade (HS-KP/SE to HS-SE)
To perform a secure firmware upgrade on CPU1 of an HS-KP or HS-SE device, compile the CP_APP build
configuration of the project. This can be done by right-clicking the project, hovering over Build Configurations,
and selecting CP_APP.

To perform a CPU1 secure firmware upgrade on an HS-KP or HS-SE device, the following events occur:

1. BootROM in UART boot mode receives the UART flash kernel and boots the kernel.
2. The kernel in CPU1 receives a command packet to receive the HSMRt image.
3. The kernel prepares to receive an X.509 certificate as part of the combined image from the host.
4. The kernel verifies that the incoming certificate is of the proper size and format and derives the size of the

incoming image. For now, the certificate is stored in RAM.
5. The kernel stores HSMRt image in shared LDAx RAM and requested HSM to authenticate.
6. Upon successful authentication, the HSM begins executing the HSMRt in shared LDAx RAM.
7. The kernel receives a command packet to receive CPU1 flash application image.
8. Kernel receives the X.509 image certificate and shares the same with HSMRt.
9. After successful authentication of the image, HSMRt responds with an acknowledgment, after which flash

kernel starts importing the chunk of data via UART into the LDAx memory.
10. After each 16KB (size of LDAx memory) of data received, the flash kernel sends an HSM requests to

program the data for further processing.
11. After all chunks are received and programmed, HSMRt is requested to verify the code programmed in HSM

active and dormant banks. When the HSMRt firmware authenticates the programmed image against the
certificate, the certificate is further programmed to make sure of a successful boot in the subsequent power
cycles.

12. Upon successful authentication, the HSM programs the firmware to CPU1 flash.
a. If the device is previously in HS-KP, then the device is transitioned to HS-SE.

Refer to Section 5.6 on steps to perform on the host application.

CAUTION

For HS-KP or HS-SE devices, the DPL interrupt LINK and STACK pointer needs to be set to LINK2
and STACK2, respectively. To adjust the setting, open the syscfg file in CCS, select Clock under TI
Driver Porting Layer (DPL) section.

The Keywriter binary image described in Section 2.1 needs to be used as the HSMRt.

3.4 HSM Firmware Upgrade (HS-KP/SE to HS-SE)
To perform a firmware upgrade on the HSM of an HS-KP or HS-SE device, compile the CP_APP build
configuration of the project. This can be done by right-clicking the project, hovering over Build Configurations,
and selecting CP_APP.

To perform a CPU1 firmware upgrade on an HS-KP or HS-SE device, the following events occur:

1. BootROM in UART boot mode receives the UART flash kernel and boots the kernel.
2. The kernel in CPU1 receives a command packet to receive the HSMRt image.
3. The kernel prepares to receive an X.509 certificate as part of the combined image from the host.
4. The kernel verifies that the incoming certificate is of the proper size and format and derives the size of the

incoming image. For now, the certificate is stored in RAM.
5. The kernel stores HSMRt image in shared LDAx RAM and requested HSM to authenticate.
6. The kernel receives a command packet to receive HSM flash application image.
7. Kernel receives the X.509 image certificate and shares the same with HSMRt.
8. After successful authentication of the image, HSMRt responds with an acknowledgment, after which flash

kernel starts importing the chunk of data via UART into the LDAx memory.
9. After each 16KB (size of LDAx memory) of data received, the flash kernel sends an HSM requests to

program the data for further processing.
10. After all chunks are received and programmed, HSMRt is requested to verify the code programmed in HSM

active and dormant banks. When the HSMRt firmware authenticates the programmed image against the

Flash Kernel Implementation www.ti.com

12 Serial Flash Programming of F29H85x™ SPRADN0 – DECEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN0&partnum=

certificate, the certificate is further programmed to make sure successful boot in the subsequent power
cycles.

11. Upon successful authentication, the HSM programs the firmware to CPU1 flash.
a. If the device is previously in HS-KP, then the device is transitioned to HS-SE.

Refer to Section 5.6 on steps to perform on the host application.

CAUTION
For HS-KP or HS-SE devices, the DPL interrupt LINK and STACK pointer needs to be set to LINK2
and STACK2, respectively. To adjust the setting, open the syscfg file in CCS, select Clock under TI
Driver Porting Layer (DPL) section. The Keywriter binary image described in the Hardware Security
Module section needs to be used as the HSMRt.

3.5 SECCFG Code Provisioning (HS-KP/SE to HS-SE)
To perform SECCFG programming of an HS-KP or HS-SE device, compile the CP_APP build configuration of
the project. This can be done by right-clicking the project, hovering over Build Configurations, and selecting
CP_APP.

To program a new image to SECCFG on an HS-KP or HS-SE device, the following events occur:

1. BootROM in UART boot mode receives the UART lash kernel and boots the kernel.
2. The kernel in CPU1 receives a command packet to receive the HSMRt image.
3. The kernel prepares to receive an X.509 certificate as part of the combined image from the host.
4. The kernel verifies that the incoming certificate is of the proper size and format and derives the size of the

incoming image. For now, the certificate is stored in RAM.
5. The kernel stores HSMRt image in shared LDAx RAM and requested HSM to authenticate.
6. Upon successful authentication, the HSM begins executing the HSMRt in shared LDAx RAM.
7. The kernel receives a command packet to receive Sec Cfg image.
8. Kernel receives the X.509 image certificate and shares the same with HSMRt.
9. After successful authentication of the image, HSMRt responds with an acknowledgment, after which flash

kernel starts importing the Sec Cfg data via UART into the LDAx memory.
10. After all the SecCfg data are received and programmed, the HSMRt is requested to verify the SecCfg

programmed in the dormant banks with valid counter values. When the HSMRt authenticates the
programmed image against the certificate, the certificate is further programmed to make sure successful
boot in the subsequent power cycles
a. Note in the case of HS-SE device, the decision of programming of the certificate is made on the swap

value of the SSU registers.

Refer to Section 5.6 on steps to perform on the host application.

CAUTION
For HS-KP or HS-SE devices, the DPL interrupt LINK and STACK pointer needs to be set to LINK2
and STACK2, respectively. To adjust the setting, open the syscfg file in CCS, select Clock under TI
Driver Porting Layer (DPL) section. The Keywriter binary image described in Section 2.1 needs be
used as the HSMRt.

www.ti.com Flash Kernel Implementation

SPRADN0 – DECEMBER 2024
Submit Document Feedback

Serial Flash Programming of F29H85x™ 13

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN0&partnum=

4 Host Application: UART Flash Programmer
4.1 Overview
The UART flash programmer is a program in command line interface that runs on the host PC and to be
interfaced with the bootROM or UART flash kernel on the target device. The program can be easily incorporated
into scripting environments for applications like production line programming.

UART flash programmer is written in C++ and can be built as either a Microsoft Visual Studio® or CMake
project in Windows® or Linux®. The project and the source can be found in the tools directory of the SDK
(f29h85x-sdk_x_xx_xx_xx > tools> flash_programmers > uart_flash_programmer).

Two Windows pre-compiled executables are provided:

• uart_flash_programmer.exe (x86_64): The program starts off with sending the SBL (secondary bootloader,
in this case the UART flash kernel) image to BootROM in UART boot mode, which BootROM proceeds to
hand off the device control to SBL. Then the user is prompted with options to communicate and perform
commands in the kernel.
– Note

BootROM follows a strict state machine sequence of expecting a SBL boot prior to any HSM
service, therefore, please use this executable for operations regarding HSM. For example, use this
executable for key and code provisioning.

– Refer to Section 2.2 on the specifics of BootROM.
• uart_flash_programmer_appIn.exe (x86_64): The program bypasses sending kernel to BootROM and goes

straight to prompting the user with command options. This is useful to debug the custom kernel.
– User can either load the kernel directly to the device via CCS or an alternative image load methods.
– User can un-define the kernel macro to include Common.h and rebuild the project to make an executable

with this behavior.

For Linux users, a shell script build_cmake.sh is provided to automate the CMake build. The default source code
generates an executable identical to uart_flash_programmer.exe.

To use this tool to program the F29H85x device, make sure that the target device has been reset and is in the
UART boot mode with UART pins connected to the host PC serial port via a UART transceiver. Refer to Section
5.1 for the setup specifics.

The supported parameters can be displayed by supplying -h or --help as a parameter.

Syntax:
uart_flash_programmer.exe -d f29h85x -p <COM/tty Port> -k <uart kernel image>.bin -a <CPU1
application image>.bin -e <F29x alternate entry address>-r <HSM runtime image>.bin -f <user HSM
keys>.bin -t <CPU1 application image>.bin -g <HSM application image>.bin -c <sec cfg program
image>.bin -q -w

Table 4-1. Supported Parameters

-d, --device <device>
The name of the device to connect and load to.
Currently, F29H85x is the only device supported.

-k, --kernel <file> The file name for the CPU1 flash kernel

-a, --appcpu1 <file> The file name for CPU1 application image to download via DFU for HS-FS device.

-r, --hsmrt <file> The file name for RAM-based HSM runtime image. This is required to load the runtime image prior to key and
code provisioning.

-f,
--hsmkeys <file>

The file name for HSM certificate key image used to convert devices to HS-KP.

-t, --cpappcpu1 <file> The file name for Flash-based CPU1 application image via code provisioning for devices in HS-KP/HS-SE.

-g, --cpapphsm <file> The file name for Flash-based HSM application image via code provisioning for devices in HS-KP/HS-SE.

-s,
--cpseccfg <file>

The file name for the image used to program SEC CFG section in non-main flash via code provisioning.

Host Application: UART Flash Programmer www.ti.com

14 Serial Flash Programming of F29H85x™ SPRADN0 – DECEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN0&partnum=

Table 4-1. Supported Parameters (continued)
-e, --entry <hex_num> An optional parameter to override the default entry address for C29 CPU1 application. For example, pass

10001000 for the hex address 0x10001000. TI recommends to use the default 10001000 as the entry address
because that is the bootROM flash entry point.

-h, --help Shows the help dialogue.

-q,
--quiet

Quiet mode. Suppress all non-essential printouts.

-l,
--log <file>

Log mode. Redirect
All non-essential printouts to the specified file. Overrides quiet mode if specified.

-w Wait for a key press before exiting.

-d, -p, -k are mandatory parameters.

Note

All files programmed to the F29H85x MUST be in binary format and combined with an X.509
certificate. The first 0x1000 bytes of the binary file must contain the certificate. See #none# for the
instruction on post-build steps .

4.2 Build UART Flash Programmer with Visual Studio
UART flash programmer can be compiled and run as a Visual Studio project.

1. Navigate to the uart_flash_programmer directory.
2. Double click the uart_flash_programmer.sln to open the Visual Studio project.
3. When Visual Studio opens, select Build → Build Solution.
4. After Visual Studio completes the build, select Debug → uart_flash_programmer properties.
5. Select Configuration Properties →Debugging.
6. Select the input box next to the Command Arguments.
7. Type the parameter arguments. The arguments are described in Section 4.1.

• Example:

-d f29h85x –k flash_kernel.bin –a application.bin –p COM34

8. Click Apply and OK.
9. Select Debug → Start Debugging to begin running the project.
10. The output from Visual Studio command prompt needs to match what is shown in Figure 5-1.

4.3 Build UART Flash Programmer with CMake
A shell script, build_cmake.sh is provided to automate the CMake project build. The script encapsulates the
steps below on building a CMake project:

• Instructions on building with CMake:
– In the terminal, proceed to create a build folder and cd into folder via

• mkdir build && cd build
– Generate CMake artifacts via

• cmake -S .. -DCMAKE_BUILD_TYPE={Debug/Release}
– Build the CMake project via

• cmake --build .

The generated executable is called uart_flash_programmer under the build folder.

Both executable generated by Visual Studio and CMake have the exact same utility and are used in the same
fashion. In the subsequent section, uart_flash_programmer.

www.ti.com Host Application: UART Flash Programmer

SPRADN0 – DECEMBER 2024
Submit Document Feedback

Serial Flash Programming of F29H85x™ 15

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN0&partnum=

4.4 Packet Format
Packets are sent in a standard format between the host and device. The packet allows for a variable amount of
data to be sent while making sure the correct transmission and reception of the packet. The header, footer and
checksum fields help to make sure that the data was not corrupted during transmission. The checksum is the
summation of the bytes in the command and data fields.

Note that the a shared f29h85x_kernel_commands_cpu1.h are used by both uart flash kernel and the host
programmer to synchronize packet macros such as header, footer, nak, ack, command and status error values.
Users are welcome to make new or modifications to existing macros.

Table 4-2. Packet Format
Header Data Length Command Data Checksum Footer

2 Bytes 2 Bytes 2 Bytes Length Bytes 2 Bytes 2 Bytes

0x1BE4 Length of Data in
Bytes

Command Data Checksum of
Command and Data

0xE41B

Both the host and device respond to a packet with an ACK or NAK.

Table 4-3. ACK or NAK Values
ACK NAK
0x2D 0xA5

Host Application: UART Flash Programmer www.ti.com

16 Serial Flash Programming of F29H85x™ SPRADN0 – DECEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN0&partnum=

4.5 Kernel Commands
A brief description of the commands and the associated kernel behavior are provided in Table 4-4.

Table 4-4. CPU1 Kernel Command Flows
Kernel Commands Command

Code Description

DFU CPU1 0x01 1. Receive the command packet with no data
2. Receive the flash application byte-by-byte
3. Program and verify the application
4. Send flash status packet
5. Send message for the final status

Load HSMRt Image 0x0B 1. Receive the command packet with no data
2. Receive the HSMRt byte-by-byte
3. Place HSMRt in shared LDAx RAM
4. Send flash status packet
5. Wait to receive status of the HSM client
6. Send message for the final status

Load HSM Keys 0x0E 1. Receive the command packet with no data

2. Receive the HSMRt byte-by-byte
3. Place key certificate in shared LDAx RAM so the HSM can program them
4. Waits for HSM authentication status in forms of IPC message
5. Send status packet
6. Forward the status log messages from HSM

Load
HSM Code Provisioning Image
(firmware upgrade for HSM)

0x0D 1. Receive the command packet with no data

2. Receive HSM firmware byte-by-byte, send the included key certificate for HSM validate
3. Proceed to store the firmware in shared LDAx RAM for HSM to validate in chunks (if the
firmware exceeds the size of RAM)
4. Waits for HSM to perform integrity checks on the programmed firmware
5. Send flash status packet
6. Send status log message

Load C29 Code Provisioning
Image (firmware upgrade for
HS-SE C29)

0x10 Identical to HSM Code Provisioning Image

Program SECCFG section
(HS-SE)

0x0C 1. Receive the command packet with no data

2. Receive SECCFG image byte-by-byte and store in shared RAM for the HSM to validate
3. Send status packet
4. Send status log message

Run CPU1 0x09 1. Receive the packet with no data

2. Branch to application entry point

Reset CPU1 0x0A 1. Receive the packet with no data

2. Enable WatchDog and allow to cause a reset

www.ti.com Host Application: UART Flash Programmer

SPRADN0 – DECEMBER 2024
Submit Document Feedback

Serial Flash Programming of F29H85x™ 17

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN0&partnum=

5 Example Usage
The kernel described above is available in the F29H85x MCU SDK at: mcu_sdk_f29h85x/examples/
driverlib/single_core/flash/uart_flash_kernel. The host application can be found in the same SDK as well
(mcu_sdk_f29h85x /tools/ flash_programmers /uart_flash_programmer). This section details how the kernel and
host programmer can be used together to perform firmware upgrades on an F29H85x device.

5.1 Loading the Flash Kernel onto the Device
The first step of performing a firmware upgrade on the F29H85x is to load the flash kernel to RAM via the
ROM bootloader. Make sure to load the appropriate build configuration for the desired behavior. For example, for
CPU1 DFU of an HS-FS device, make sure the CPU1_APP build configuration is selected when compiling the
kernel. Here are the steps required to achieve this:

1. Configure the Boot Mode Select Pins to put the device in UART boot mode.
2. Reset the device.
3. Send the kernel to the device via the UART host programmer.

These steps are described in more detail below.

5.1.1 Hardware Setup

Set up the device correctly to be able to communicate with the host PC running the UART flash programmer.

1. The first thing to do is make sure the boot mode select pins are configured properly to boot the device to
UART boot mode.

2. Next, connect the appropriate UART boot loader GPIO pins to the Rx and Tx pins that are connected to the
host PC serial port. A transceiver is often needed to convert a Virtual serial port from the PC to GPIO pins
that can connect to the device. On some systems, like the controlSOM, an FTDI chip is used to interface the
GPIO pins for UART communication to a USB Virtual serial port. Refer to the device-specific user's guide for
the controlSOM to get information on the switch configuration needed to enable UART communication.

3. After the hardware is set up correctly to communicate with the host, reset the device. This is to boot the
device to UART boot mode.

5.1.2 Running the UART Flash Programmer

Note
TI recommends to reset the device before running UART flash programmer so bootROM does not
timeout while waiting for UART data.

1. Navigate to the folder containing the compiled uart_flash_programmer executable.
2. Run the executable uart_flash_programmer.exe with the following command structure:

:> uart_flash_programmer.exe -d f29h85x -p COM41 -k ex3_uart_flash_kernel.bin --appcpu1
c29_cpu1_application.bin --hsmrt HSM_runtimeImage.bin --hsmkeys HSM_customKeyCert.bin --
cpseccfg sec_cfg_cert.bin --cpappcpu1 c29_cpu1_application.bin --cpapphsm hsm_application.bin

The program automatically connects to the device and download the CPU1 kernel (-k option) into RAM. If
the certificate is valid and authentication is successful, then the device begins executing the kernel in LPAx
RAM. Now, the CPU1 kernel is running and waiting for a packet from the host.

3. The uart_flash_programmer prints the options to the screen to choose from that is sent to the device kernel
(see Figure 5-1).

4. The same options is re-printed after succession of the previous operation.

Example Usage www.ti.com

18 Serial Flash Programming of F29H85x™ SPRADN0 – DECEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN0&partnum=

Figure 5-1. UART Flash Programmer Prompt for Next Command After Downloading Flash Kernel to RAM

5.2 CPU1 Device Firmware Upgrade (HS-FS only)
After the UART flash kernel has been loaded onto the device RAM, a device firmware upgrade can be
performed. This section discusses how to do this on a HS-FS device.

Figure 6-1 displays the options available when the flash kernel is running in RAM. For a firmware upgrade on an
HS-FS device, select DFU CPU1 (option 1). After successful, select Run CPU1 (option 7) to branch from kernel
to the newly loaded application. Alternatively, reset CPU1 (option 8) is also valid if the device is set to flash boot
mode.

5.3 Convert HS-FS to HS-SE
The following and subsequent sections discusses how to use the flash programmer commands to convert an
HS-FS device to an HS-SE device.

In an overarching view, to convert an default HS-FS device, user must first:

• Goes through Key Provision, which converts to an intermediate state of HS-KP. (Key Provisioned, but no
image has been flashed thus far).

• Goes through Code Provision, which converts HS-KP device to HS-SE upon any successful flash unto the
flash banks.
– The flash programmer has provided three options to program flash as part of Code Provisioning:

• CPU1 flash
• HSM flash
• SEC CFG flash (part of non-main flash bank)

• After the first Code Provision and the device is in HS-SE, any subsequent Code Provisions are still allowed to
program flash. And the device maintains the HS-SE status.

Even though any of the three provided Code Provision option uplifts the device into HS-SE, TI recommends to
program SEC CFG first, prior to either CPU1 flash or HSM flash programming.

Over the next subsequent sections, each provision flow is discussed in chronological order.

CAUTION
BootROM follows a state machine sequence of expecting a SBL boot prior to any HSM services,
as such, use the regular non-appIn version of the flash programmer. Refer to Section 4.1 on the
difference of the two.

www.ti.com Example Usage

SPRADN0 – DECEMBER 2024
Submit Document Feedback

Serial Flash Programming of F29H85x™ 19

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN0&partnum=

5.4 Loading a RAM-based HSMRt Image
For all functionality associated with Key and Code Provision, loading a RAM-based HSM runtime (HSMRt)
image is required.

HSMRt service HSM requests from the flash kernel, and once authenticated, this programs a set of field required
to convert the device to a different state. For more information on the fields being programmed, refer to the OTP
Keywriter section in Section 2.1.

After the flash kernel has been booted onto the device via BootROM in UART boot mode, select Load HSMRt
Image (option 2). The host sends a RAM-based HSMRt image to the C29 CPU1, which is subsequently
validated by HSM. Upon successful validation, this RAM-based HSMRt begins executing in shared RAM.

Note that two separate HSMRt binary are needed for Key and Code Provision, each with different key certificate.
In Key Provision for HS-FS, the key certificate needs to be the default TI-provided key, whereas Code Provision
is using the user's custom key certificate.

5.5 Key Provision (HS-FS to HS-KP)
As aforementioned, Key Provision permanently converts HS-FS device to HS-KP by supplying a user key
certificate to replace the default TI-provided key certificate.

The process on the Flash Programmer is as follows:

• Start the flash programmer, wait for flash kernel to be downloaded onto the device and prompts the user with
options listed in Figure 6-1.

• Select Load HSMRt Image (option 2), wait until completion.
• Select Load HSM keys (option 3), wait until completion.
• Perform a power-on reset.

In this process, HSMRt can use the default TI-signed key certificate as the device is still in HS-FS. Flash kernel
won't be authenticated in HS-FS so any certificate suffice, and the HSM key certificate need to be signed by a
custom key.

The necessary parameters are -d (--device), -p (--port), -k (--kernel), -r (--hsmrt), -f (--hsmkeys).

For instance:

uart_flash_programmer.exe -d f29h85x -p COM41 --kernel ex3_uart_flash_kernel.bin --hsmrt
HSM_runtimeImage.bin --hsmkeys HSM_customKeyCert.bin

For procedures and important notes on building the flash kernel, refer to Section 3.2.

5.6 Code Provision (HS-KP/SE to HS-SE)
After Key Provision converts the device into HS-KP, Code Provision can be conducted to either flash CPU1/HSM
application or SEC CFG section into the corresponding flash banks.

The process on the Flash Programmer is as follows:

• Start the flash programmer, wait for flash kernel to be downloaded onto the device and prompts the user with
options listed in Figure 6-1.

• Select Load HSMRt Image (option 2), wait until completion.
• Select either one of the three options and wait until completion.

– Program Sec Cfg (option 4)
– Load HSM Image (option 5)
– Load C29 CPU1 Image (option 6)

• Continue to perform the other two Code Provision options if needed.

Note that all image (flash kernel, HSMRt, application/sec cfg) requires the user key certificate as part of the
binary image. Refer to Section 2.3 on instructions to generate key certificate with custom key.

The necessary parameters are -d (--device), -p (--port), -k (--kernel), and either -t (--cpappcpu1), -g (--
cpapphsm), -s (--cpseccfg) depending on the Code Provision options.

Example Usage www.ti.com

20 Serial Flash Programming of F29H85x™ SPRADN0 – DECEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN0&partnum=

For instance:

uart_flash_programmer.exe -d f29h85x -p COM41 --kernel ex3_uart_flash_kernel.bin --hsmrt
HSM_runtimeImage.bin --cpseccfg sec_cfg_cert.bin --cpappcpu1 c29_cpu1_application.bin --cpapphsm
hsm_application.bin

For procedures and important notes on building the flash kernel for Code Provisioning, refer to Section 3.3.

6 Troubleshooting
Answers to some common issues encountered by users when utilizing the UART flash kernel are provided
below.

6.1 General
Question: I cannot find the UART flash kernel projects, where are the projects?

Answer:

Device Build Configurations Location

F29H85x CPU1_RAM mcu_sdk_f29h85x\examples\driverlib\single_core\flash\uart_flash_kernel

6.2 UART Boot
Question: I cannot download the UART kernel to RAM in UART boot mode, what course of action do I take?

Answer:
• The most common issue users encounter is that the correct boot pins for UART boot mode are not used. For

example, on the F29H85x devices, UART boot has five options for GPIO pins to use. Make sure that the pins
for the default option are not being used for something else. If the pins are already used, then make sure that
another UART boot option is used, so that the device can be connected to another set of pins. Make sure that
the UART kernel project uses this UART boot GPIO option as the parameter for UART_GetFunction() as well.

• Make sure there is an associated X.509 certificate in the first 0x1000 bytes of the binary file. Please refer to
Section 2.2dev for specific instructions.

• Make sure the user uses a high quality UART transceiver to minimize any issues with the baud rate.
• For baud rate and connection issues, try running UART loopback and echoback examples for the device

(user can find these in the MCU SDK driverlib folders for the device in concern).

6.3 Application Load
Question: I can download the kernel to the device successfully, but I cannot successfully load the application to
flash. What do I need to check?

Answer:

• Make all sections in the linker cmd file that are allocated to flash are aligned to 512-bit boundaries. This can
be done by adding palign(32) to the appropriate sections as shown below.

.text : {} > FLASH_RP0, palign(32)

• Make sure there is an appropriate X.509 certificate in the first 0x1000 bytes of your binary file. Refer to
Section 3.1 for specific instructions.

www.ti.com Troubleshooting

SPRADN0 – DECEMBER 2024
Submit Document Feedback

Serial Flash Programming of F29H85x™ 21

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN0&partnum=

7 Summary
As applications grow in complexity, the need to fix bugs, add features, and otherwise modify embedded firmware
is increasingly critical in end applications. Enabling functionality like this can be easily and inexpensively
accomplished through the use of bootloaders.

This application note aims to solve this problem by the introduction of a secondary bootloader (SBL), which is
the UART flash kernel in this case. This document discusses the specifics of the kernel and the host application
tool found in the F29H85x MCU SDK.

8 References
1. Texas Instruments: F29H85x and F29P58x Real-Time Microcontrollers, technical reference manual
2. Texas Instruments, F29H85x and F29P58x Real-Time Microcontrollers, data sheet

Summary www.ti.com

22 Serial Flash Programming of F29H85x™ SPRADN0 – DECEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRUJ79
https://www.ti.com/lit/pdf/SPRSP93
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADN0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADN0&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Programming Fundamentals
	2 Introduction
	2.1 Hardware Security Module
	2.2 ROM Bootloader
	2.3 Combined Image with X.509 Certificate

	3 Flash Kernel Implementation
	3.1 CPU1 Firmware Upgrade (HS-FS)
	3.2 Key Provision (HS-FS to HS-KP)
	3.3 CPU1 Secure Firmware Upgrade (HS-KP/SE to HS-SE)
	3.4 HSM Firmware Upgrade (HS-KP/SE to HS-SE)
	3.5 SECCFG Code Provisioning (HS-KP/SE to HS-SE)

	4 Host Application: UART Flash Programmer
	4.1 Overview
	4.2 Build UART Flash Programmer with Visual Studio
	4.3 Build UART Flash Programmer with CMake
	4.4 Packet Format
	4.5 Kernel Commands

	5 Example Usage
	5.1 Loading the Flash Kernel onto the Device
	5.1.1 Hardware Setup
	5.1.2 Running the UART Flash Programmer

	5.2 CPU1 Device Firmware Upgrade (HS-FS only)
	5.3 Convert HS-FS to HS-SE
	5.4 Loading a RAM-based HSMRt Image
	5.5 Key Provision (HS-FS to HS-KP)
	5.6 Code Provision (HS-KP/SE to HS-SE)

	6 Troubleshooting
	6.1 General
	6.2 UART Boot
	6.3 Application Load

	7 Summary
	8 References

