
Application Note
UART Log Debug System on Jacinto 7 SoC

Kangjia Dong and Kevin Peng

ABSTRACT

TI latest automotive processor Jacinto 7 series covers the automotive applications in ADAS and Gateway
under different scenarios. It contains both TDA4X and DRA82X series which are mainly used for ADAS and
Gateway respectively. These processors are based on multi-core heterogeneous architecture, consisting of
Cortex®-R5, Cortex-A72, Cortex-M3/M4, DSP and some common peripherals. There is a high reusability within
these processors. Normally, this series processors need to run an operating system and the related application
threads on each core, involving the internal data transmission and peripheral calls. Hence, there is a pretty high
complexity for the applications of Jacinto™ 7 series processors. Sometimes when a problem occurs, it is not that
easy to debug.

This application note demonstrates the basic information on the hardware and software levels of the universal
asynchronous receiver/transmitter (UART) logging system in the reference design provided by TI. It includes the
way to customize customers’ own log output serial port based on the default SDK and reference design, and the
method of debugging multi-core heterogeneous system-on-chips (SoCs) by printing the UART logs to solve the
problems.

Table of Contents
1 UART Introduction..2

1.1 Jacinto 7 UART Overview.. 2
1.2 Jacinto 7 UART Features...2
1.3 Jacinto 7 UART Functional Introduction...3

2 UART Usage Overview... 4
2.1 WKUP_UART0 Usage... 4
2.2 MCU_UART0 Usage..6
2.3 MAIN_UARTx Usage... 6

3 Log Level Design on Software Module...9
4 Change UART Instance.. 11

4.1 Change MAIN_UARTx for MAIN Domain...11
4.2 Set Standalone UART Port for DSP/MCU..15

5 Summary... 18
6 References.. 18

Trademarks
Jacinto™ is a trademark of Texas Instruments.
Cortex® and Arm® are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
All trademarks are the property of their respective owners.

www.ti.com Table of Contents

SPRADG5 – JANUARY 2024
Submit Document Feedback

UART Log Debug System on Jacinto 7 SoC 1

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADG5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADG5&partnum=

1 UART Introduction
UART is a common peripheral in processors and is usually used for system log information output, low-cost
human-computer interaction, communication between devices, and so forth. Particularly common in vehicle
communications, the Lin bus often uses UART as a low-cost serial communication protocol. UART does not
need both clock synchronization and master-slave settings, only the configuration of the start bit and stop bit
is required, since it is an asynchronous communication, and it can send and receive data at any time. TX and
RX are sufficient for the external hardware connections when flow control and level conversion are not required.
However, in common debugging processes, log information often needs to be output to the computer. Therefore,
in hardware design, a USB serial port chip is required to convert the TTL level into a USB serial port protocol and
output it to the computer port. Software tools on PC need properly set the serial port parameters applied in the
processor driver, including baud rate, start bit, data bit, parity bit, stop bit, and so on, then the log information can
be received for debugging.

1.1 Jacinto 7 UART Overview
Jacinto 7 series processors all have the same UART IP, so the functions and usage methods of UART on
different processors in this series are basically the same. Table 1-1 shows that each processor has totally 11
UART interfaces, one of which is in the WKUP domain, one is in the MCU domain, and the remaining nine are
in the MAIN domain. After all the domains are powered on normally, each core can access any of these UART
through software. However, in the system software architecture, multiple cores should not access a UART at the
same time. This may lead to some system conflicts, causing a certain core to hang.

Table 1-1. UART Allocation Across Device Domains

Instance
Domain

WKUP MCU MAIN
WKUP_UART0 √ - -

MCU_UART0 - √ -

UART0 - - √

UART1 - - √

UART2 - - √

UART3 - - √

UART4 - - √

UART5 - - √

UART6 - - √

UART7 - - √

UART8 - - √

UART9 - - √

1.2 Jacinto 7 UART Features
Jacinto 7 UART includes the following features:

• 16C750-compatible
• RS-485 external transceiver auto flow control support
• 64-byte FIFO buffer for receiver and 64-byte FIFO buffer for transmitter
• Programmable interrupt trigger levels for FIFOs
• Programmable sleep mode
• The 48 MHz functional clock is default option and allows baud rates up to 3.6 Mbps
• Auto-baud between 1200 bits/s and 115.2 Kbits/s (only when 48 MHz function clock is used)
• Optional multi-drop transmission
• Configurable time-guard feature
• Configurable data format:

– Data bit: 5, 6, 7, 8, or 9 bits
– Parity bit: Even, odd, none
– Stop-bit: 1, 1.5, 2 bit(s)

UART Introduction www.ti.com

2 UART Log Debug System on Jacinto 7 SoC SPRADG5 – JANUARY 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADG5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADG5&partnum=

• Flow control: Hardware (RTS/CTS) or software (XON/XOFF)
• False start bit detection
• Line break generation and detection
• Fully prioritized interrupt system controls
• Internal test and loopback capabilities
• Modem control functions (CTS, RTS)
• Module instance has extended modem control signals (DCD, RI, DTR, DSR)

1.3 Jacinto 7 UART Functional Introduction
Figure 1-1 shows the Jacinto 7 UART functional block diagram. When the processor needs to send data, it only
needs to write the output data into the FIFO through CPU/DMA. Then, the data is automatically transmitted to TX
pin by UART_THR register and converted into TTL level. The data transmission is completed if the UART_THR
register is empty. During the data receiving process, the TTL level is firstly converted into bit data through the
pin, and is written to the FIFO by UART_RHR. When the FIFO reaches a threshold (maximum 64 Bytes), a
CPU/DMA interrupt will be triggered to write the data to the memory. When enough data is read and the data in
the FIFO is lower than the threshold, the interrupt condition disappears and the data receiving is finished.

Figure 1-1. UART Functional Block Diagram

www.ti.com UART Introduction

SPRADG5 – JANUARY 2024
Submit Document Feedback

UART Log Debug System on Jacinto 7 SoC 3

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADG5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADG5&partnum=

2 UART Usage Overview
The EVM boards of Jacinto 7 series processors all have multiple serial ports, which can be seen from Table 2-1.
Normally, during hardware design, at least three serial ports are reserved for log information debugging, and the
remaining serial ports can be used for communication with external devices. By default, the software parameters
of all serial ports are the same, the baud rate is 115200 bit/s, the start bit is 0, there are 8 data bits, the parity bit
is None, and the stop bit is 1.

WKUP_UART0 is reserved for DSMC debugging, which is common when the system accidentally triggers the
firewall. For SBL boot, MCU_UART0 is used for the serial port output of MCU1_0. For UART boot, MCU_UART0
is used to print the "C" character to determine whether the processor is working normally and to debug whether
the HS key burning is successful. The A72 cores log in DRA821 is printed to MAIN_UARTx. The log of all the
cores in TDA4X is printed into MAIN_UARTx, except the MCU1_0 log is printed in to MCU_UART0 in the SBL
boot.

Therefore, when designing the board, at least WKUP_UART0, MCU_UART0 and one MAIN_UARTx should be
reserved. Moreover, they are suggested to have the same Pin configuration with TI reference design. Especially
for MCU_UART0, if the Pin is changed then it cannot use “C” character printing to debug in the early stages of
project development, because this feature is implemented in the ROM code with the default Pin setting.

When connecting to external devices, it is required to connect the flow control. It is always recommended
to connect hardware flow control lines for UART communication. Also, software should enable hardware flow
control explicitly. Otherwise, there will be data loss and data corruption.

CAUTION
The reference design provided by TI uses USB to UART for serial printing. When connecting on
Windows, it is required to install an additional driver.

Table 2-1. UART Pinout on the Reference Design

Instance
Device

DRA821 TDA4VM TDA4VL/Eco/AL TDA4VH
WKUP_UART0 √ √ √ √

MCU_UART0 √ √ √ √

UART0 √ √ - -

UART1 √ √ - -

UART2 - √ √ √

UART3 √ - - √

UART4 - √ - -

UART5 - - √ √

UART6 - - - -

UART7 - - - -

UART8 - - √ √

UART9 - - - -

2.1 WKUP_UART0 Usage
Jacinto 7 series processors use WKUP_UART0 to print DMSC (Device Management and Security Control) log,
this log can be used to check if there is any error in the firewall or SYSFW (System Firmware). By default, the
WKUP_UART0 log output is not sufficient, some additional steps are needed to obtain the full log. The steps are
provided below in details.

1. For SPL Boot:
a. Enable the ENABLE_TRACE macro in the ti-processor-sdk-linux-xxxx-evm-0x_0x_00_xx/board-

support/k3-image-gen-xxxxxxxx/soc/j7xxxx/evm/board-cfg.c
b. Recompile board configure under Linux SDK home directory, $make sysfw-image
c. Recompile tiboot3.bin, $make u-boot

UART Usage Overview www.ti.com

4 UART Log Debug System on Jacinto 7 SoC SPRADG5 – JANUARY 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://ftdichip.com/products/ft4232hq/
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADG5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADG5&partnum=

d. Copy tiboot3.bin and sysfw.itb to SD BOOT partition
e. Boot up board, and copy the WUKUP_UART0 log (on the screen) to input_log.txt file
f. There is a script parser sysfw_trace_parser.py in RTOS SDK
g. ./sysfw_trace_parser.py -l input_log.txt -o output_log.txt

Figure 2-1. SPL Boot Board configure
2. For SBL Boot:

a. Enable the code comments in ti-processor-sdk-rtos-j7xxxx-evm-xx_xx/pdk_xxxx/packages/ti/drv/
sciclient/soc/Vx/sciclient_defaultBoardcfg.c

b. Recompile board configure under pdk_xxxx/packages/ti/build, $make sciclient_boardcfg
c. Update PDK library under pdk_xxxx/packages/ti/build, $make pdk_libs_allcores BOARD=j7xxx_evm

SOC=j7xxx
d. Recompile sbl_mmcsd_img_mcu1_0_release.tiimage under pdk_xxxx/packages/ti/build $make -j

BOARD=j7xxx_evm CORE=mcu1_0 BUILD_PROFILE=release sbl_mmcsd_img
e. Copy the sbl_mmcsd_img_mcu1_0_release.tiimage to SD BOOT

partition as tiboot3.bin $cp pdk_xxxx/packages/ti/boot/sbl/binary/j7xxx_evm/mmcsd/bin/
sbl_mmcsd_img_mcu1_0_release.tiimage /media/BOOT/tiboot3.bin

f. Boot up board, and copy the WUKUP_UART0 log (on the screen) to input_log.txt file
g. There is a script parser sysfw_trace_parser.py in RTOS SDK
h. ./sysfw_trace_parser.py -l input_log.txt -o output_log.txt

Figure 2-2. SBL Boot Board Configure

www.ti.com UART Usage Overview

SPRADG5 – JANUARY 2024
Submit Document Feedback

UART Log Debug System on Jacinto 7 SoC 5

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADG5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADG5&partnum=

CAUTION
Different SOC and SDK versions have different code path, so here using xxxxx to represent. The
value of BOARD includes j7200_evm/j721e_evm/j721s2_evm/j784s4_evm, and the value of SOC
includes j7200/j721e/j784s4/j721s2

2.2 MCU_UART0 Usage
1. After MCU_UART0 is reserved, it can be used to check whether the processor is working normally. The

method is to set the board to UART boot mode firstly, then the MCU_UART0 serial port will print out the
"CCCCC" string, which can detect whether the power supply of the board is normal.

2. MCU_UART0 also can be used to burn OSPI flash according to this link.
3. For HS processors, MCU_UART0 also can be used to check if efuse burns the key successfully, the steps in

details could be referred to in the TDA4 HS Prime chapter of this document.
4. For SBL boot, MCU_UART0 will be used as the debugging serial port of SBL and MCU1_0 firmware to print

logs. The main function entry in sbl_main.c configures and initializes this serial port.

2.3 MAIN_UARTx Usage
1. The default SDK will use MAIN_UARTx to print the boot log of HLOS.
2. For TDA4X series processors, MAIN_UARTx is used to print the APP log and the boot log of A72, R5F and

DSP cores.

The software-level design of printing multi-core log to a serial port is a complex process. Understanding this
multi-core log output system helps to customize the design of own system output. By default, U-BOOT and
kernel will initialize a serial port for log output. For the drivers and other related information in details, see this
U-BOOT / Kernel document. The control of this serial port is always on the A72 side. The log of A72 cores will
be printed out directly through this serial port. However, the log of other cores is firstly put into a shared memory,
and then it will be read out by the A72 application. The specific process is as follows:

1. The OS boot of every core except A72 cores will call appInit function to initialize a 256KB shared memory
shown in Figure 2-3 for storing the log.

Figure 2-3. Log Share Memory Definition on the Code
2. This shared memory will be divided into 16 parts. Every part has 16 KB in total, and the first 32 Bytes for

each part is used to store a struct shown the following code block. This struct is used to show the position of
pointers in reading and writing respectively. The rest of this shared memory is used for log output.

typedef struct {

 /**< Init by reader to 0 */

 uint32_t log_rd_idx;

/**< Init by writer to 0 */
 uint32_t log_wr_idx;

/**< Init by writer to APP_LOG_AREA_VALID_FLAG.
 reader will ignore this CPU shared mem log
 until the writer sets this
 to APP_LOG_AREA_VALID_FLAG */

 uint32_t log_area_is_valid;

 /**< CPU sync state */
 uint32_t log_cpu_sync_state;

/**< Init by writer to CPU name, used by reader to add a prefix when writing to console device
*/
 uint8_t log_cpu_name[APP_LOG_MAX_CPU_NAME];

UART Usage Overview www.ti.com

6 UART Log Debug System on Jacinto 7 SoC SPRADG5 – JANUARY 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://software-dl.ti.com/jacinto7/esd/processor-sdk-rtos-jacinto7/09_00_01_01/exports/docs/mcusw/mcal_drv/docs/drv_docs/demo_xip_fota_profile_top.html
https://www.ti.com.cn/cn/lit/an/zhcab48/zhcab48.pdf?ts=1699801130924&ref_url=https%253A%252F%252Fwww.ti.com.cn%252Fproduct%252Fzh-cn%252FTDA4VM%253FkeyMatch%253DTDA4VM%2526tisearch%253Dsearch-everything%2526usecase%253DGPN-ALT
https://software-dl.ti.com/jacinto7/esd/processor-sdk-linux-jacinto7/08_02_00_03/exports/docs/linux/Foundational_Components/U-Boot/UG-UART.html
https://software-dl.ti.com/jacinto7/esd/processor-sdk-linux-jacinto7/08_02_00_03/exports/docs/linux/Foundational_Components/Kernel/Kernel_Drivers/UART.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADG5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADG5&partnum=

 /**< memory into which logs are written by this CPU */

 uint8_t log_mem[APP_LOG_PER_CPU_MEM_SIZE];
} app_log_cpu_shared_mem_t;

3. Apart from A72 cores, the log of other cores will be written to this shared memory by appLogPrintf, no matter
using printf or UART_print. At the same time, the timestamp of this output log will also be written to this
shared memory shown in Figure 2-4.

Figure 2-4. MCU/DSP Core Write Log to Share Memory

www.ti.com UART Usage Overview

SPRADG5 – JANUARY 2024
Submit Document Feedback

UART Log Debug System on Jacinto 7 SoC 7

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADG5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADG5&partnum=

4. The A72 application vx_app_arm_remote_log.out will map this shared memory from Linux. It reads the
memory every second to extract the log of each core except A72 cores, and add the name of the
corresponding core and output it to the serial port shown in Figure 2-5.

Figure 2-5. A72 Core Read Log From Share Memory

UART Usage Overview www.ti.com

8 UART Log Debug System on Jacinto 7 SoC SPRADG5 – JANUARY 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADG5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADG5&partnum=

3 Log Level Design on Software Module
In large software projects, there is usually a log level used for debugging, and TI's SDK also has some
commonly used log levels for controlling and printing more useful information to assist debugging. For more
details, see the following steps.

1. Linux kernel log level:

During the boot stage, Linux kernel could configure different log levels on the bootargs in the device
tree(k3-j721e-common-proc-board.dts if use TDA4VM). By adding the loglevel=8 parameter in the Linux
kernel configure, where the value ranges from 0 (least detailed) to 8 (most detailed). By default, the loglevel
is 7 shown in Figure 3-1.

Figure 3-1. Linux Default Kernel Log Level
2. SBL BOOT log level:

The SBL log level ranges from 0 (least detailed) to 3 (most detailed). The following describes the steps
needed to set the log level to 3 and remove the log output restriction.

Changes DSBL_LOG_LEVEL=3 in mcusw/mcuss_demos/boot_app_mcu_rtos/makefile

Changes DSBL_LOG_LEVEL=3 in pdk_xxxx /packages/ti/boot/sbl/sbl_component.mk

Changes in pdk_xxxx/packages/ti/boot/sbl/soc/k3/sbl_log.h show as following #define
SBL_log(dbg_level, ...) if (1) { UART_printf(__VA_ARGS__); }

Changes DSBL_LOG_LEVEL=3 in pdk_xxxx/packages/ti/build/makerules/build_config.mk

www.ti.com Log Level Design on Software Module

SPRADG5 – JANUARY 2024
Submit Document Feedback

UART Log Debug System on Jacinto 7 SoC 9

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADG5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADG5&partnum=

3. Openvx log level:

As an important part of the TDA4X applications, Openvx also provides log level for debugging. From Figure
3-2, the g_debug_zonemask (default 0) is used to calculate the current log level. To make it easier for
printing Openvx log level, the following if condition could be simply commented out.

Figure 3-2. Openvx Low Level Print API

Figure 3-3. Openvx Log Level Set

Log Level Design on Software Module www.ti.com

10 UART Log Debug System on Jacinto 7 SoC SPRADG5 – JANUARY 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADG5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADG5&partnum=

4. TIDL log level:

During the import and inference stage of TIDL, the debugTraceLevel=3 could be used to configure different
log level ranging from 0 (least detailed) to 3 (most detailed) in the TIDL inference configure file.

5. Memory allocation log level:

The C file in this directory ti-processor-sdk-rtos-j7xxxx-evm-xx_xx_xx_xx/app_utils/utils/mem/src/ , when the
APP_MEM_DEBUG (default is not defined) macro is defined, the memory allocation log will be printed out.

4 Change UART Instance
Normally, the default PINs configurations of MCU_UART0 and WKUP_UART0 serial ports are not suggested to
be modified during the customers’ hardware design stage. The reason is that ROM code uses the default pin
setting of MCU_UART0 when doing OSPI burning, and SYSFW uses the default pin setting in WUKP_UART0.
However, due to PIN conflicts and other reasons, MAIN_UARTX is often changed to a new serial port. Moreover,
in multi-core debugging, a separate MAIN_UARTX serial port is often required to be configured for the DSP/
MAIN_R5F core for debugging purpose.

4.1 Change MAIN_UARTx for MAIN Domain
The default terminal output on the different Jacinto 7 series processors is not the same. For example, UART0 is
used for the terminal output on the J721E and J7200 EVMs, but UART8 is the primary UART interface for the
J721S2 and J784S4 EVMs. As the pins of UART ports can also be used by other applications, it is a common
request to customize the UART port depending on customers’ use cases. The following was an example of
changing the default UART8 to UART2 on TDA4VH main domain base on SDK 8.6, and this also can be a
reference of changing to other ports on other Jacinto 7 processors.

1. Add the clock setting for UART2.

The 389 is the device ID of J784S4 series, and can be found from the link.

Figure 4-1. TDA4VH UART Clock ID

diff --git a/arch/arm/mach-k3/j784s4/clk-data.c b/arch/arm/mach-k3/j784s4/clk-data.c
index a266735cc0..081c6d8970 100644
--- a/arch/arm/mach-k3/j784s4/clk-data.c
+++ b/arch/arm/mach-k3/j784s4/clk-data.c
@@ -283,7 +283,7 @@ static const struct clk_data clk_list[] = {
 CLK_MUX("emmcsd_refclk_sel_out1", emmcsd_refclk_sel_out1_parents, 4, 0x1080b4, 0, 2, 0),
 CLK_MUX("gtc_clk_mux_out0", gtc_clk_mux_out0_parents, 16, 0x108030, 0, 4, 0),
 CLK_DIV_DEFFREQ("usart_programmable_clock_divider_out0",
"hsdiv4_16fft_main_1_hsdivout0_clk", 0x1081c0, 0, 2, 0, 0, 48000000),
- CLK_DIV("usart_programmable_clock_divider_out5", "hsdiv4_16fft_main_1_hsdivout0_clk",
0x1081d4, 0, 2, 0, 0),
+ CLK_DIV("usart_programmable_clock_divider_out2", "hsdiv4_16fft_main_1_hsdivout0_clk",
0x1081c8, 0, 2, 0, 0),
 CLK_DIV("usart_programmable_clock_divider_out8", "hsdiv4_16fft_main_1_hsdivout0_clk",
0x1081e0, 0, 2, 0, 0),
 CLK_DIV("k3_pll_ctrl_wrap_main_0_chip_div24_clk_clk",
"k3_pll_ctrl_wrap_main_0_sysclkout_clk", 0x41011c, 0, 5, 0, 0),
 CLK_DIV("k3_pll_ctrl_wrap_wkup_0_chip_div24_clk_clk",
"k3_pll_ctrl_wrap_wkup_0_sysclkout_clk", 0x4201011c, 0, 5, 0, 0),
@@ -405,8 +405,8 @@ static const struct dev_clk soc_dev_clk_data[] = {
 DEV_CLK(279, 2, "wkup_i2c_mcupll_bypass_out0"),
 DEV_CLK(279, 3, "hsdiv4_16fft_mcu_1_hsdivout3_clk"),
 DEV_CLK(279, 4, "gluelogic_hfosc0_clkout"),
- DEV_CLK(392, 0, "usart_programmable_clock_divider_out5"),
- DEV_CLK(392, 3, "k3_pll_ctrl_wrap_main_0_chip_div1_clk_clk"),
+ DEV_CLK(389, 0, "usart_programmable_clock_divider_out2"),

www.ti.com Change UART Instance

SPRADG5 – JANUARY 2024
Submit Document Feedback

UART Log Debug System on Jacinto 7 SoC 11

Copyright © 2024 Texas Instruments Incorporated

https://software-dl.ti.com/jacinto7/esd/processor-sdk-rtos-jacinto7/08_02_00_05/exports/docs/tidl_j721e_08_02_00_11/ti_dl/docs/user_guide_html/md_tidl_sample_test.html#tidl_inference_2
https://software-dl.ti.com/tisci/esd/latest/5_soc_doc/j784s4/devices.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADG5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADG5&partnum=

+ DEV_CLK(389, 3, "k3_pll_ctrl_wrap_main_0_chip_div1_clk_clk"),
 DEV_CLK(395, 0, "usart_programmable_clock_divider_out8"),
 DEV_CLK(395, 3, "k3_pll_ctrl_wrap_main_0_chip_div1_clk_clk"),
 DEV_CLK(398, 0, "k3_pll_ctrl_wrap_main_0_chip_div1_clk_clk"),

2. Add the device ID and LPSC setting in the list for UART2.

The 44 is the LPSC index of UART2 for J784S4 series, and could be searched from device-specific TRM.

Figure 4-2. TDA4VH UART LPSC

diff --git a/arch/arm/mach-k3/j784s4/dev-data.c b/arch/arm/mach-k3/j784s4/dev-data.c
index e44afad3ec..b5ae132b4a 100644
--- a/arch/arm/mach-k3/j784s4/dev-data.c
+++ b/arch/arm/mach-k3/j784s4/dev-data.c
@@ -51,6 +51,7 @@ static struct ti_lpsc soc_lpsc_list[] = {
 [20] = PSC_LPSC(81, &soc_psc_list[2], &soc_pd_list[6], &soc_lpsc_list[18]),
 [21] = PSC_LPSC(120, &soc_psc_list[2], &soc_pd_list[7], &soc_lpsc_list[22]),
 [22] = PSC_LPSC(121, &soc_psc_list[2], &soc_pd_list[7], NULL),
+ [23] = PSC_LPSC(44, &soc_psc_list[2], &soc_pd_list[3], NULL),
 };
static struct ti_dev soc_dev_list[] = {
@@ -76,7 +77,7 @@ static struct ti_dev soc_dev_list[] = {
 PSC_DEV(141, &soc_lpsc_list[14]),
 PSC_DEV(140, &soc_lpsc_list[15]),
 PSC_DEV(146, &soc_lpsc_list[16]),
- PSC_DEV(392, &soc_lpsc_list[17]),
+ PSC_DEV(389, &soc_lpsc_list[23]),
 PSC_DEV(395, &soc_lpsc_list[17]),
 PSC_DEV(198, &soc_lpsc_list[18]),
 PSC_DEV(202, &soc_lpsc_list[19]),
--

3. Set serial port and pin, this should set for both UBOOT dts and Kernel dts files.

diff --git a/arch/arm/dts/k3-j784s4-evm-u-boot.dtsi b/arch/arm/dts/k3-j784s4-evm-u-boot.dtsi
index 9d6f7dbbd5..3846d90f9a 100644
--- a/arch/arm/dts/k3-j784s4-evm-u-boot.dtsi
+++ b/arch/arm/dts/k3-j784s4-evm-u-boot.dtsi
@@ -12,7 +12,7 @@
 aliases {
 serial0 = &wkup_uart0;
 serial1 = &mcu_uart0;
- serial2 = &main_uart8;
+ serial2 = &main_uart2;
 i2c0 = &wkup_i2c0;
 i2c1 = &mcu_i2c0;
 i2c2 = &mcu_i2c1;
@@ -105,6 +105,10 @@
 u-boot,dm-spl;
 };

Change UART Instance www.ti.com

12 UART Log Debug System on Jacinto 7 SoC SPRADG5 – JANUARY 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADG5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADG5&partnum=

+&main_uart2_pins_default {
+ u-boot,dm-spl;
+};
+
 &main_mmc1_pins_default {
 u-boot,dm-spl;
 };
@@ -132,6 +136,10 @@
 u-boot,dm-spl;
 };

+&main_uart2 {
+ u-boot,dm-spl;
+};
+
 &mcu_uart0 {
 u-boot,dm-spl;
 };
diff --git a/arch/arm/dts/k3-j784s4-evm.dts b/arch/arm/dts/k3-j784s4-evm.dts
index 5e213b2c11..7f8f507318 100644
--- a/arch/arm/dts/k3-j784s4-evm.dts
+++ b/arch/arm/dts/k3-j784s4-evm.dts
@@ -21,7 +21,7 @@
 stdout-path = "serial2:115200n8";
 };
 aliases {
- serial2 = &main_uart8;
+ serial2 = &main_uart2;
 mmc0 = &main_sdhci0;
 mmc1 = &main_sdhci1;
 can0 = &mcu_mcan0;
@@ -402,6 +402,15 @@
 >;
 };

+ main_uart2_pins_default: main-uart2-pins-default {
+ pinctrl-single,pins = <
+ J784S4_IOPAD(0x0c4, PIN_INPUT, 11) /* (AD36) CTSn */
+ J784S4_IOPAD(0x0c8, PIN_OUTPUT, 11) /* (AJ32) RTSn */
+ J784S4_IOPAD(0x0dc, PIN_OUTPUT, 11) /* (AM36) TXD */
+ J784S4_IOPAD(0x0d8, PIN_INPUT, 11) /* (AM35) RXD*/
+ >;
+ };
+
 main_i2c3_pins_default: main-i2c3-pins-default {
 pinctrl-single,pins = <
 J784S4_IOPAD(0x064, PIN_INPUT_PULLUP, 13) /* (AF38) MCAN0_TX.I2C3_SCL */
@@ -743,11 +752,13 @@
 status = "disabled";
 };
-&main_uart1 {
- status = "disabled";
+&main_uart2 {
+ status = "okay";
+ pinctrl-names = "default";
+ pinctrl-0 = <&main_uart2_pins_default>;
 };

-&main_uart2 {
+&main_uart1 {
 status = "disabled";
 };

diff --git a/arch/arm/dts/k3-j784s4-r5-evm.dts b/arch/arm/dts/k3-j784s4-r5-evm.dts
index 4a697e2738..154a07c802 100644
--- a/arch/arm/dts/k3-j784s4-r5-evm.dts
+++ b/arch/arm/dts/k3-j784s4-r5-evm.dts
@@ -13,7 +13,7 @@
 / {
 chosen {
 firmware-loader = &fs_loader0;
- stdout-path = &main_uart8;
+ stdout-path = &main_uart2;
 tick-timer = &timer1;
 };

@@ -151,6 +151,15 @@

www.ti.com Change UART Instance

SPRADG5 – JANUARY 2024
Submit Document Feedback

UART Log Debug System on Jacinto 7 SoC 13

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADG5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADG5&partnum=

 >;
 };

+ main_uart2_pins_default: main-uart2-pins-default {
+ pinctrl-single,pins = <
+ J784S4_IOPAD(0x0c4, PIN_INPUT, 11) /* (AD36) CTSn */
+ J784S4_IOPAD(0x0c8, PIN_OUTPUT, 11) /* (AJ32) RTSn */
+ J784S4_IOPAD(0x0dc, PIN_OUTPUT, 11) /* (AM36) TXD */
+ J784S4_IOPAD(0x0d8, PIN_INPUT, 11) /* (AM35) RXD*/
+ >;
+ };
+
 main_mmc1_pins_default: main-mmc1-pins-default {
 pinctrl-single,pins = <
 J784S4_IOPAD(0x104, PIN_INPUT, 0) /* (AB38) MMC1_CLK */
@@ -253,6 +262,12 @@
 pinctrl-0 = <&main_uart8_pins_default>;
 };

+&main_uart2 {
+ status = "okay";
+ pinctrl-names = "default";
+ pinctrl-0 = <&main_uart2_pins_default>;
+};

4. Configure the boot command for UART2.

diff --git a/include/configs/j784s4_evm.h b/include/configs/j784s4_evm.h
index eb609100b0..942d6c3dbe 100644
--- a/include/configs/j784s4_evm.h
+++ b/include/configs/j784s4_evm.h
@@ -75,7 +75,7 @@
 "setenv fdtfile ${name_fdt}\0" \
 "name_kern=Image\0" \
 "console=ttyS2,115200n8\0" \
- "args_all=setenv optargs earlycon=ns16550a,mmio32,0x02880000 " \
+ "args_all=setenv optargs earlycon=ns16550a,mmio32,0x02820000 " \
 "${mtdparts}\0" \
 "run_kern=booti ${loadaddr} ${rd_spec} ${fdtaddr}\0"

--

5. Rebuild the OPTEE if it is Used.

Just change 8 to 2 in export CFG_CONSOLE_UART=0x8 according to this link.
6. Change the Arm® Trust Firmware.

diff --git a/plat/ti/k3/include/platform_def.h b/plat/ti/k3/include/platform_def.h
index 690c68e5c..db083ca2f 100644
--- a/plat/ti/k3/include/platform_def.h
+++ b/plat/ti/k3/include/platform_def.h
@@ -91,14 +91,14 @@
 /* Platform default console definitions */
 #ifndef K3_USART_BASE
-#define K3_USART_BASE 0x02800000
+#define K3_USART_BASE 0x02820000
 #endif

After modifying the above K3_USART_BASE for UART2, then the following instructions are needed to
recompile bl31.bin

a. cd $SDK_PATH/board-support/trusted-firmware-a-2.8+gitAUTOINC+2fcd408bb3
b. make CROSS_COMPILE=aarch64-none-linux-gnu- ARCH=aarch64 PLAT=k3

TARGET_BOARD=generic SPD=opted
c. cp ./build/k3/generic/release/bl31.bin ../prebuilt-images/

Then based on the rebuilt bl31.bin, the below instructions are required to make it as part of tispl.bin, and
copy tispl.bin and u-boot.img to the BOOT in the SD card.

a. cd ../../
b. make u-boot-spl-jacinto
c. cp board-support/u-boot_build/a72/tispl.bin board-support/u-boot_build/a72/u-boot.img /media/$USER/

BOOT

Change UART Instance www.ti.com

14 UART Log Debug System on Jacinto 7 SoC SPRADG5 – JANUARY 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://software-dl.ti.com/jacinto7/esd/processor-sdk-linux-j784s4/09_00_00_08/exports/docs/linux/Foundational_Components_OPTEE.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADG5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADG5&partnum=

7. Clear the UBOOT Environment to the Default and Save the Changes.

Figure 4-3. UBOOT Environment Set

CAUTION
Step 7 is not requested anymore starting from SDK9.0. It is sufficient to apply the above 7 steps
to change the default main UART port from 8 to 2 on TDA4VH.

4.2 Set Standalone UART Port for DSP/MCU
By default, the MCU and DSP cores of J7 SOC do not set a separate UART for serial port output. For TDA4X, by
default the log of every core except A72 cores will be written to a shared memory, and then the A72 application
will read it and print these logs to MAIN_UARTX serial port. However, in order to facilitate debugging, it is often
necessary to print logs of multiple cores at the same time or to continue to print logs when core A is not working
properly. In this case, it is necessary to configure a separate serial port for the MCU/DSP cores. The following
uses TDA4VM as an example to set up a separate serial port for C7.

1. Add UART Initial configuration in MAIN function.

diff --git a/vision_apps/platform/j721e/rtos/c7x_1/main.c
b/vision_apps/platform/j721e/rtos/c7x_1/main.c
index 0dcfa4fd..e857838b 100755
--- a/vision_apps/platform/j721e/rtos/c7x_1/main.c
+++ b/vision_apps/platform/j721e/rtos/c7x_1/main.c
@@ -88,7 +88,8 @@
#include <ti/sysbios/family/c7x/Hwi.h>
#include <ti/sysbios/family/c7x/Mmu.h>
#endif
+#include <ti/drv/uart/UART.h>
+#include <ti/drv/uart/UART_stdio.h>
/* For J7ES/J721E/TDA4VM the upper 2GB DDR starts from 0x0008_8000_0000 */
/* This address is mapped to a virtual address of 0x0001_0000_0000 */
#define DDR_C7X_1_LOCAL_HEAP_VADDR (DDR_C7X_1_LOCAL_HEAP_ADDR)
@@ -96,18 +97,33 @@
+extern int uart_print_test(void);
+extern int uart_test(void);
@@ -181,9 +197,13 @@ int main(void)
{
TaskP_Params tskParams;
TaskP_Handle task;
OS_init();
+/* Set TDA4VM PINMUX UART2_RX(PIN Y1)&UART2_TX(PIN Y5)
+* We can get the register address from the datasheet
+*/
+ *((int *)(0x00011C1DC))=0x50003;
+ *((int *)(0x00011C1E0))=0x10003;
+ uart_print_test();
appC7xClecInitDru();

www.ti.com Change UART Instance

SPRADG5 – JANUARY 2024
Submit Document Feedback

UART Log Debug System on Jacinto 7 SoC 15

Copyright © 2024 Texas Instruments Incorporated

https://software-dl.ti.com/jacinto7/esd/processor-sdk-rtos-jacinto7/08_06_00_12/exports/docs/vision_apps/docs/user_guide/RUN_INSTRUCTIONS.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADG5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADG5&partnum=

2. Create UART instance for C7.

Create c7_uart_print temp folder under the path vision_apps/basic_demos/ and create c7_uart_print.c and
concerto.mk file as initial configuration UART library.

The following content is for c7_uart_print.c.

#include <ti/drv/uart/UART.h>
#include <ti/drv/uart/UART_stdio.h>
#include <ti/board/src/j721e_evm/include/board_utils.h>
#include <ti/board/board.h>
#include <ti/board/src/j721e_evm/include/board_cfg.h>
int uart_test(void)
{
 UART_printf("\n===\n");
 UART_printf("\n**********c7x uart printf********************\n");
 UART_printf("* UART Test *\n");
 UART_printf("***\n");
 return 0;
}

int uart_print_test(void)
{
 Board_initParams_t initParams;

 /* Verify the SoC UART0 */
 Board_getInitParams(&initParams);
 initParams.uartInst = 2;
 initParams.uartSocDomain = BOARD_SOC_DOMAIN_MAIN;
 Board_setInitParams(&initParams);
 Board_init(BOARD_INIT_UART_STDIO);

 uart_test();

return 0;
}

The following content is for concerto.mk.

ifeq ($(TARGET_CPU),$(filter $(TARGET_CPU), x86_64 C71 C7120))

include $(PRELUDE)
TARGET := c7_uart_print
TARGETTYPE := library
CSOURCES := $(call all-c-files)
CPPSOURCES := $(call all-cpp-files)
CFLAGS+= -mv7100 --c11
ifeq ($(TARGET_CPU), x86_64)
IDIRS += $(CGT7X_ROOT)/host_emulation/include/C7100
CFLAGS += --std=c++14 -D_HOST_EMULATION -pedantic -fPIC -w -c -g -o4
CFLAGS += -Wno-sign-compare
endif

include $(FINALE)

endif

Change UART Instance www.ti.com

16 UART Log Debug System on Jacinto 7 SoC SPRADG5 – JANUARY 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADG5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADG5&partnum=

3. Change output log from shared memory to UART FIFO.

diff --git a/vision_apps/utils/console_io/src/app_log_writer.c b/vision_apps/utils/
console_io/src/app_log_writer.c
index a02a785c..561d1434 100755
--- a/vision_apps/utils/console_io/src/app_log_writer.c
+++ b/vision_apps/utils/console_io/src/app_log_writer.c
@@ -220,6 +220,32 @@ int32_t appLogWrPutString(app_log_wr_obj_t *obj)

 return status;
 }
+#if defined C71
+int32_t c7x_appLogWrPutString(app_log_wr_obj_t *obj)
+{
+ int32_t status = 0;
+ volatile uint32_t copy_bytes,num_bytes;
+ volatile uint8_t *buf = (uint8_t*)obj->buf;
+
+
+ if (0 == status)
+ {
+ num_bytes = strlen((char*)buf);
+
+ if (num_bytes <= 0)
+ {
+ status = -1;
+ }
+ }
+
+ if (0 == status)
+ {
+ UART_puts(buf,num_bytes);
+ }
+
+ return status;
+}
+#endif

 void appLogPrintf(const char *format, ...)
 {
@@ -266,6 +292,8 @@ void appLogPrintf(const char *format, ...)
 printf(obj->buf);
 #endif
 }
+ #elif defined C71
+ c7x_appLogWrPutString(obj);
 #else
 appLogWrPutString(obj);
 #endif

4. Add Library path for compile binary.

diff --git a/vision_apps/platform/j721e/rtos/concerto_c7x_inc.mak b/vision_apps/platform/j721e/
rtos/concerto_c7x_inc.mak
index 4e3c5a29..4a9c94db 100755
--- a/vision_apps/platform/j721e/rtos/concerto_c7x_inc.mak
+++ b/vision_apps/platform/j721e/rtos/concerto_c7x_inc.mak
@@ -19,6 +19,10 @@ endif
 ifeq ($(RTOS),SAFERTOS)
 LDIRS += $(PDK_PATH)/packages/ti/osal/lib/safertos/$(SOC)/c7x/$(TARGET_BUILD)/
 endif
+
+LDIRS += $(PDK_PATH)/packages/ti/drv/uart/lib/$(SOC)/c7x/$(TARGET_BUILD)/
+LDIRS += $(PDK_PATH)/packages/ti/drv/i2c/lib/$(SOC)/c7x/$(TARGET_BUILD)/
+LDIRS += $(PDK_PATH)/packages/ti/board/lib/$(SOC)_evm/c7x/$(TARGET_BUILD)/
 LDIRS += $(PDK_PATH)/packages/ti/csl/lib/$(SOC)/c7x/$(TARGET_BUILD)/
 LDIRS += $(PDK_PATH)/packages/ti/drv/ipc/lib/$(SOC)/c7x_1/$(TARGET_BUILD)/
 LDIRS += $(PDK_PATH)/packages/ti/drv/udma/lib/$(SOC)/c7x_1/$(TARGET_BUILD)/
@@ -45,6 +49,7 @@ STATIC_LIBS += vx_app_ptk_demo_common
 STATIC_LIBS += vx_kernels_common
 STATIC_LIBS += vx_target_kernels_img_proc_c71
 STATIC_LIBS += vx_app_c7x_voxel2point
+STATIC_LIBS += c7_uart_print

 PTK_LIBS =
 PTK_LIBS += ptk_algos
@@ -76,6 +81,9 @@ ADDITIONAL_STATIC_LIBS += ipc.ae71
 ADDITIONAL_STATIC_LIBS += dmautils.ae71

www.ti.com Change UART Instance

SPRADG5 – JANUARY 2024
Submit Document Feedback

UART Log Debug System on Jacinto 7 SoC 17

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADG5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADG5&partnum=

 ADDITIONAL_STATIC_LIBS += sciclient.ae71
 ADDITIONAL_STATIC_LIBS += udma.ae71
+ADDITIONAL_STATIC_LIBS += ti.drv.uart.ae71
+ADDITIONAL_STATIC_LIBS += ti.board.ae71
+ADDITIONAL_STATIC_LIBS += ti.drv.i2c.ae71

 ifeq ($(RTOS),FREERTOS)
 ADDITIONAL_STATIC_LIBS += ti.kernel.freertos.ae71

The above describes all changes at the SDK level. The next step is only required to recompile the C7
firmware and flash it to SD card or EMMC.

5 Summary
This application note aims to provide you with a basic introduction about the UART analysis and the common
UART applications. You can refer to this guide to setup your own software designs on your boards depending on
the hardware connections. This document also introduces ways for users to perform a better debugging based
on UART.

6 References
• Trace Layer
• Kernel UART Driver
• PDK UART User Interface
• Texas Instruments: TDA4VM Technical Reference Manual

Summary www.ti.com

18 UART Log Debug System on Jacinto 7 SoC SPRADG5 – JANUARY 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://software-dl.ti.com/tisci/esd/latest/4_trace/trace.html
https://software-dl.ti.com/jacinto7/esd/processor-sdk-linux-jacinto7/08_02_00_03/exports/docs/linux/Foundational_Components/Kernel/Kernel_Drivers/UART.html
https://software-dl.ti.com/jacinto7/esd/processor-sdk-rtos-jacinto7/08_02_00_05/exports/docs/pdk_jacinto_08_02_00_21/docs/userguide/jacinto/modules/uart.html
https://www.ti.com.cn/cn/lit/zip/spruil1
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADG5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADG5&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 UART Introduction
	1.1 Jacinto 7 UART Overview
	1.2 Jacinto 7 UART Features
	1.3 Jacinto 7 UART Functional Introduction

	2 UART Usage Overview
	2.1 WKUP_UART0 Usage
	2.2 MCU_UART0 Usage
	2.3 MAIN_UARTx Usage

	3 Log Level Design on Software Module
	4 Change UART Instance
	4.1 Change MAIN_UARTx for MAIN Domain
	4.2 Set Standalone UART Port for DSP/MCU

	5 Summary
	6 References

