
Application Report
Integrating Virtual DRM Between VISION SDK and PSDK
on Jacinto6 SOC

Fredy Zhang, Joe Shen, and Peter Li

ABSTRACT

The Direct Rendering Manager (DRM) is widely used by user-space graphic stacks. In a setup where A15 is
not allowed to access DSS, a working omapdrm driver is not available to display content. Virtual DRM is a
driver framework to expose DRM devices to Linux® userspace in such a setup, therefore, enabling Linux DRM
applications to continue functioning.

Project collateral and source code discussed in this document can be downloaded from the following URL:
https://www.ti.com/lit/zip/spracx5.

Table of Contents
1 Introduction...2

1.1 Standard DRM Framework.. 3
1.2 vDRM-Based Framework...3

2 Display Content Based vDRM on Linux..4
3 Multimedia Support Based vDRM on Linux... 4

3.1 Gstreamer.. 5
3.2 viddec3test... 5
3.3 modetest.. 5
3.4 kmscube...5

4 Display Weston-Based Application...6
5 Display EGL-Based Application.. 6
6 Interactive Display Across PSDKLA and VISION-SDK..7

6.1 ALPHA Setting... 7
6.2 ZORDER Setting: DISPC_xxx_ATTRIBUTES[26-27] ... 7

7 Dual-Display Demo... 7
8 Build Linux Vision SDK File System...8
9 References.. 8

Trademarks
Linux® is a registered trademark of Linus Torvalds in the U.S. and other countries.
All trademarks are the property of their respective owners.

www.ti.com Table of Contents

SPRACX5 – MAY 2021
Submit Document Feedback

Integrating Virtual DRM Between VISION SDK and PSDK on Jacinto6 SOC 1

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/lit/zip/spracx5
https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACX5&partnum=

1 Introduction
The DRM/KMS framework is dedicated to the management of the display, graphic and composition subsystems,
as shown in Figure 1-1.

DRM Device

DRM

Framebuffer
CRTC Encoder Connector

Planes

DRM

Framebuffer

Content

Figure 1-1. DRM/KMS Architecture

With the help of other Linux multimedia frameworks and applications. the DRM/KMS framework is typically used:

• To compose animated contents taking advantages of the hardware acceleration.
• To control both display interfaces and external displays including their settings (resolution, frequencies,

multi-screen, and so forth).
• To display this animated content on display panels or HDMI outputs.

DRM device: Responsible for aggregating the other components. Device exposed to the user space (handles all
user-space requests.)

DRM Framebuffer: This is a standard object storing information about the content to be displayed.

CRTC: CRTC stands for CRT Controller, it scans out frame buffer content to one or more displays and update
the frame buffer.

Planes: A plane is an image layer

Encoder: Responsible for converting a frame into the appropriate format to be transmitted through the
connector.

Connector: Represent a display connector (HDMI, DP, VGA, DVI, and so forth), transmit the signals to the
display. Detect display connection/removal. Expose display supported modes.

In vision SDK Linux, DSS is controlled by software running on IPU. As a result, omapdrm needs to be disabled,
and Linux based DRM applications cease to function properly as there is no DRM device capable of modesetting
(displaying content). A virtual DRM framework was introduced to create multiple DRM devices capable of
modesetting and expose them to User space.

Using the vDRM framework, on the one hand, vDRM support the Linux display. On the other hand, M4 can
control the DSS hardware. So when the M4 starting, it can display content by M4.

Table 1-1 shows a DRM comparison of the DRM of PSDKLA and VISION SDK.

Table 1-1. DRM Comparison of PSDKLA and VISION SDK
Type PSDKLA VISION SDK
DRM DRM Virtual DRM

DSS Controlled by A15 (Linux) Controlled by M4 (RTOS)

Omapdrm support YES NO

Fb0 YES NO

Introduction www.ti.com

2 Integrating Virtual DRM Between VISION SDK and PSDK on Jacinto6 SOC SPRACX5 – MAY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACX5&partnum=

1.1 Standard DRM Framework
Normally, A IVI system may include the three parts: HMI plane, Logo plane and RVC video plane. A cluster
system may include the two parts: HMI planes and animation planes.

Linux Kernal

Wayland

Application

OpenGL

Application

Wayland

Compositor

OpenGLES DRI Driver

Cortex A15

(CPU)

GPU

KMS

LIBDRM

DRM

Logo

Application

RVC

Application

Logo

Application

RVC

Application

Figure 1-2. The Standard Framework

As shown in Figure 1-2, the standard framework, the Direct Rendering Manager (DRM) resides in kernel space,
so user-space programs must use kernel system calls to request its services. A library called libdrm was created
to facilitate the interface of user-space programs with the DRM subsystem. This library is merely a wrapper that
provides a function written in C for every ioctl of the DRM API, as well as constants, structures and other helper
elements.

1.2 vDRM-Based Framework

Linux Kernal

Wayland

Application

OpenGL

Application

Wayland

Compositor

OpenGLES DRI Driver

Cortex A15

(CPU)

GPU

KMS vDRM

Logo

Application

RVC Video Decode

Application

VSDK

IPU2 Cortex

M4 (CPU)

DSS

Display LinkIPC

Figure 1-3. The vDRM Framework

In this framework, the omapdrm needs to be disabled in Linux as DSS is controlled by software running on
IPU. The Linux application that based DRM will not work as there is no DRM device capable of mode setting
(displaying content).

www.ti.com Introduction

SPRACX5 – MAY 2021
Submit Document Feedback

Integrating Virtual DRM Between VISION SDK and PSDK on Jacinto6 SOC 3

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACX5&partnum=

Virtual DRM can create multiple DRM devices capable of modesetting and expose them to user space.
Each DRM device can contain multiple DRM connectors, and each connector can be configured to expose
a predefined resolution and frame rate. Each DRM connector internally creates a DRM encoder, a DRM plane
(primary) and a DRM CRTC, which are needed by DRM APIs to function properly.

Additionally, each DRM device creates a vdrm-controller device which can be opened by Linux applications to
read the buffers submitted by DRM applications. Vision SDK can run a chain (usecase) with multiple instances
of dispDistSrcLink, where each link reads a vdrm-controller device to obtain buffers submitted by a DRM
application to a particular CRTC in a virtual DRM device.

Linux applications can continue to call DRM APIs to display a DRM Frame buffer on a DRM CRTC, even when
the vision SDK application / chain is not running, or the running chain does not contain the dispDistSrcLink
associated with the CRTC.

From VISION SDK 0304, vDRM framework support in SDK.

2 Display Content Based vDRM on Linux
For Linux to display content, it needs to run dispDistSrcLink and DisplayLink on M4 so that the Linux application
buffer can transfer to the M4 for display. Use the following steps to run the Linux application:

1. Run apps.out on Linux terminal.
2. # press 1 to select the single camera usecase.
3. # press 8 to select the dispdist usecase.
4. ctrl+z back to Linux terminal.
5. Run Linux application.

SDK also provide the fast boot method to run the usecases. Use the following steps to run the usecase:

1. Change the filesystem script: init-demo.sh (/home/root) :
a. From LAUNCH_DEMO=0 to LAUNCH_DEMO=1.

2. Reboot the board, the system can run apps.out automatically.

3 Multimedia Support Based vDRM on Linux
Due to the IVI/cluster/ADAS project has a specific requirement for boot time. Different with the standard DRM
display framework. The vDRM framework can adjust the multicore architecture and improve the boot time
performance.

For PSDKLA + VISION-SDK architecture, we often use early boot late-attach. Figure 3-1 shows the boot flow.

ROM Boot Loader Kernel Execution

111 222 333 444

POR

A15

IPU

IPU Execution Userspace Init

Remotecore

Figure 3-1. The Boot Flow

For some application that based omapdrm will not work with virtual DRM. So we need to adjust the
vDRM requirement. Here are some examples: Gstreamer/viddec3test/modetest/kmscube. Those binaries can
download from the attachment.

Display Content Based vDRM on Linux www.ti.com

4 Integrating Virtual DRM Between VISION SDK and PSDK on Jacinto6 SOC SPRACX5 – MAY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACX5&partnum=

3.1 Gstreamer
For gstreamer, it will not work with prebuilt gstreamer drm allocator. It needs Gstreamer OmapDRM allocator
support. We provide a patch to support this feature.

Use the following steps in order to run the decode feature:

1. Enable IPUMM in VISON SDK.

PROCESSOR_SDK_VISION_03_05_00_00/vision_sdk/apps/configs/tda2xx_evm_linux_all/cfg.mk

Both IVAHD_INCLUDE & IPUMM_INCLUDE should not be set to "yes"
Only one should be enabled to avoid IVA-HD resource conflict
IPUMM_INCLUDE=yes
IVAHD_INCLUDE=no

2. Boot the board, run the command shown below:

root@dra7xx-evm# cd /opt/vision_sdk
root@dra7xx-evm# ./vision_sdk_load.sh
root@dra7xx-evm# ./apps.out
press 1 to select : single camera usecases
press 8 to select : dispDistSrc -> display usecase
root@dra7xx-evm# gst-launch-1.0 playbin uri=file:///home/root/test.mp4 video-sink=waylandsink

3.2 viddec3test
If IPUMM was included in the build, you can run any one of the following commands on the ssh terminal to
validate multimedia.

root@dra7xx-evm# viddec3test -w 640x480 --fps 24 /usr/share/ti/video/TearOfSteel-Short-1920x800.mov

3.3 modetest
• The tool modetest provided by the libdrm library is useful to:

– List all display capabilities: CRTCs, encoders and connectors (DSI, DPI, HDMI, ...), planes, modes, and so
forth

– Perform basic tests: display a test pattern, display 2 layers, perform a vsync test
– Specify the video mode: resolution and refresh rate

For vDRM framework, you can run the following to see DRM related information for each card:

root@dra7xx-evm# modetest -n /dev/dri/card1
root@dra7xx-evm# modetest -n /dev/dri/card1
root@dra7xx-evm# modetest -n /dev/dri/card2

3.4 kmscube
kmscube is a little demonstration program for how to drive bare metal graphics without a compositor like
X11, wayland or similar, using DRM/KMS (kernel mode setting), GBM (graphics buffer manager) and EGL for
rendering content using OpenGL or OpenGL ES.

For vDRM framework, please use the below command to run kmscube. If you want to run the kmscube, make
sure the weston is stopped (weston is running by default on /dev/dri/card0).

root@dra7xx-evm# kmscube -d /dev/dri/card0

www.ti.com Multimedia Support Based vDRM on Linux

SPRACX5 – MAY 2021
Submit Document Feedback

Integrating Virtual DRM Between VISION SDK and PSDK on Jacinto6 SOC 5

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACX5&partnum=

4 Display Weston-Based Application
Weston is running by default on /dev/dri/card0. Example for user use vDRM to display user app.

Check the file: /etc/powervr.ini.

[default]
#WindowSystem=libpvrws_WAYLAND.so

[weston]
DbmDriverName=vdrm

[kmscube]
DbmDriverName=vdrm
GbmNumBuffers=5

Make sure the Weston is configured in this file. Then, you can check the Weston status and run the Weston
application.

5 Display EGL-Based Application
Configure the EGL based application, see the file: /etc/powervr.ini.

[default]
#WindowSystem=libpvrws_WAYLAND.so

[weston]
DbmDriverName=vdrm

[kmscube]
DbmDriverName=vdrm
GbmNumBuffers=5

If you want to add the user app, add your app configuration as shown below:

[user_app]
DbmDriverName=vdrm
GbmNumBuffers=5

Except the configuration, you also need to configure the device name in your app. A patch (0001-add-flag-for-
device-node-name.patch) is provided for your reference.

Display Weston-Based Application www.ti.com

6 Integrating Virtual DRM Between VISION SDK and PSDK on Jacinto6 SOC SPRACX5 – MAY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACX5&partnum=

6 Interactive Display Across PSDKLA and VISION-SDK
You want to display Linux and VISION-SDK applications for some use cases, which are typically using a different
pipe lane. You can change the Alpha and Zorder setting in those use cases.

6.1 ALPHA Setting

Figure 6-1. Alpha Setting

6.2 ZORDER Setting: DISPC_xxx_ATTRIBUTES[26-27]

Figure 6-2. ZORDER Setting: DISPC_xxx_ATTRIBUTES[26-27]

7 Dual-Display Demo
The dual-display demo needs two screens to display different content: one screen for cluster and another screen
for surround view.

Attachment provides a dual Display-Demo use case.

www.ti.com Interactive Display Across PSDKLA and VISION-SDK

SPRACX5 – MAY 2021
Submit Document Feedback

Integrating Virtual DRM Between VISION SDK and PSDK on Jacinto6 SOC 7

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACX5&partnum=

8 Build Linux Vision SDK File System
From Vision-SDK 3.4, there are changes in the file-system build to enable a smaller file-system. While the
file-system provided as part of the Processor-SDK Linux automotive is ~700MB, the file-system as part of
Vision-SDK release is ~60MB. This reduction in size is achieved by removing components not required for
traditional ADAS use-cases.

Follow the instructions below to rebuild the Vision-SDK file-system:

1. Build the Yocto file-system by following the instructions as part of the
Processor_SDK_Linux_Automotive_Software_Developers_Guide wiki.

2. Apply the patches present in the linux-kernel-addon/fs-patches/yocto/meta-glsdk folder of Vision-SDK to the
tisdk/sources/meta-glsdk folder in the yocto repository.

3. Apply the patches present in the linux-kernel-addon/fs-patches/yocto/meta-arago folder of Vision-SDK to the
tisdk/sources/meta-arago folder in the yocto repository.

4. Rebuild the file-system by running the bitbake command as documented in the
Processor_SDK_Linux_Automotive_Software_Developers_Guide wiki.

5. The changes in meta-arago are for the reduction in file-system size while the changes in meta-glsdk are for
the VDRM and VDRM+ IPUMM-based decode.

9 References
• Processor SDK Linux Automotive Software Developers Guide

Build Linux Vision SDK File System www.ti.com

8 Integrating Virtual DRM Between VISION SDK and PSDK on Jacinto6 SOC SPRACX5 – MAY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://processors.wiki.ti.com/index.php/Processor_SDK_Linux_Automotive_Software_Developers_Guide
https://processors.wiki.ti.com/index.php/Processor_SDK_Linux_Automotive_Software_Developers_Guide
http://software-dl.ti.com/infotainment/esd/jacinto6/processor-sdk-linux-automotive/latest/index_FDS.html
https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACX5&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Table of Contents
	1 Introduction
	1.1 Standard DRM Framework
	1.2 vDRM-Based Framework

	2 Display Content Based vDRM on Linux
	3 Multimedia Support Based vDRM on Linux
	3.1 Gstreamer
	3.2 viddec3test
	3.3 modetest
	3.4 kmscube

	4 Display Weston-Based Application
	5 Display EGL-Based Application
	6 Interactive Display Across PSDKLA and VISION-SDK
	6.1 ALPHA Setting
	6.2 ZORDER Setting: DISPC_xxx_ATTRIBUTES[26-27]

	7 Dual-Display Demo
	8 Build Linux Vision SDK File System
	9 References

